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Abstract
The constructive formal theory of computable functionals TCF+ was first sketched in [4]. Its
main feature is the incorporation of both ideal objects (functionals) and their approximations
(formal neighborhoods) in its language. Here we present some advances in the development of
TCF+ due to the implementation in the proof assistant Minlog of some of its basic concepts
and results. Namely, we give new definitions of the notions related to the information-system
structure SCι connected to a base type given by a free finitary algebra ι and extend them to the
arrow types. Working with the algebra of derivations D as a case study we describe the fully
implemented proofs of SCD and SCD→D satisfying (an even stronger form of) the axioms of
an information system. These proofs can be extended to any given finitary algebra ι. We also
present an implemented proof of a point-free version of Kreisel’s density theorem for the base
type D which suggests its generalization to the arrow case. All notions involved and the line of
results presented here are due to the implementation procedure.
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1 Introduction

The theory TCF+ is a formal constructive theory of computable functionals which extends
the theory TCF. The latter, guided by some fundamental ideas of Kreisel [6] and developed
by the Munich logic group1, is a variant of HAω and its terms extend both Gödel’s T and
Plotkin’s PCF. The idea of a formal theory of computable functionals based on the partial
continuous functionals as its intended domain goes back to Scott’s LCF [15] and Platek’s
Thesis [11]. The terms of LCF denote the partial continuous functionals, which are seen as
elements of the so-called Scott-Ershov domains. It is important to note though, that Scott
used classical logic. Later Plotkin in [12] treated LCF as a programming language, a typed
λ-calculus with constants for the fixed-point operators, and proved that the Scott model is
fully abstract for PCF + por, and universal for PCF + por +∃.

In contrast to LCF, TCF has the following features:
1. It uses non-flat free algebras as semantical domains for the base types. These algebras are

given by their constructors, and they are injective with disjoint ranges (see [14] p.263).
2. Its underlying logic is intuitionistic (as it is explained in [4], minimal logic suffices).
3. It uses information systems instead of abstract domains for the description of the Scott

model2.

1 Especially by H. Schwichtenberg, U. Berger and W. Bucholz. An elaborated presentation of TCF can
be found in [14].

2 Information systems were introduced by Scott in [16].
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2 Advances in TCF+ due to its Implementation

The passage from TCF to TCF+ is motivated by:
1. Our need to have a formal theory better adjusted to the Scott model. The object terms

of TCF+ are the terms of TCF, representing the functionals, while its approximation
terms represent their finite approximations (tokens and formal neighborhoods). In that
way TCF+ is better adjusted to the common (non-flat) Scott model than TCF.

2. The paradigm of the point-free topology (see e.g., [2]). Within higher type computability
this directs to an as much as possible reconstruction of the study of the “ideal”, abstract
functionals (points) through the study of their concrete and finite approximations. In-
strumental to this will be the use of information systems instead of abstract domains for
the description of the Scott model, and the study of decidable ideals (see section 5).

3. Our need to give completely formal proofs to important theorems of higher type com-
putability. Consider, for example, a generalized version of Kreisel’s density theorem3,
according to which a finitely generated functional U (or equivalently U) can be extended
to a total ideal x i.e.,

∀U∈Conρ∃x∈Tρ(U ⊆ x).
It is clear by its formulation that in order to reveal the computational content of the
density theorem we need to express in our formal language both formal neighborhoods
and functionals.

4. Our need to provide fully implemented proofs of our formal proofs in the proof assistant
Minlog4. Formalization and implementation in a proof assistant are, in our view, comple-
mentary and interdependent processes. As we show here, the implementation procedure
sheds new light on the mathematical structure of the “syntactic” information systems
defined in sections 3 and 4, and offers new and enriched information on the constructive
content of the density theorem.

We present here some advances in the development of TCF+ and its implementation with
respect to [4], in which TCF+ was first introduced. The main idea behind the formation of
TCF+ is the incorporation within its syntax of its intended Scott model. Thus to each set-
theoretic information system Cρ, the ideals |Cρ| of which form the Scott model, corresponds
a “syntactic” information system SCρ, an object belonging to the syntax of TCF+. In [4]
this program was sketched for the case of SCD, where D, the algebra of derivations, was
introduced as a generic case study. But neither a proof of SCD being an information system
nor any kind of implementation were included5.

We report on the following advances in TCF+:
1. Based on the coherence property of the information systems Cρ we define in section 3

consistency in SCD resting on the consistency of pairs of tokens. The implementation
of this idea facilitates crucially all proofs concerning consistency. We also give a fully
implemented proof of SCD satisfying the axioms of an information system.

2. Extending our concepts and methods to the arrow case we give in section 4 a fully
implemented proof of SCD→D being an information system. Although the initial non-
implemented proofs used general induction (see [14], p.322), the simplicity of concepts an

3 For the importance of this theorem see [9] and [1].
4 Minlog [7] is developed by H. Schwichtenberg and the Munich logic group during at least the last 20

years.
5 In [4] one can find though, informal proofs of Kreisel’s general density theorem and Plotkin’s definability
theorem, and also directions for their proof within TCF+. These proofs are the “non-flat” versions of
the corresponding proofs in [13] within the flat Scott model. An elaborated version of the informal
proof of Plotkin’s non-flat definability theorem can be found in [5].
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implementation often demands generated simpler proofs, where no general induction is
used. Moreover, the implementation revealed that SCD and SCD→D satisfy a stronger
version of the axioms of an information system, a not anticipated fact which generalizes
also to the information systems Cρ of the Scott model.

3. Formalizing in section 5 the notion of a decidable ideal of SCD in a point-free way, we give
a fully implemented proof of the density theorem in the algebra D, giving a completely
constructive description of a total decidable ideal including a formal neighborhood of D.
In [4] a central inductive definition of [[λ~xM ]] is given, where ~x contains all free variables
of a TCF-term M , such that computation rules can define an ideal in a function space.
This definition is meant to connect the approximation terms with the object terms. Since
one can prove informally the density theorem by proving the existence of a decidable
ideal extending a formal neighborhood, this definition can be avoided. Here we define
a decidable ideal as an appropriate boolean-valued function on approximation terms
(tokens) avoiding object terms (points) and proving the corresponding point-free version
of density theorem in D. In the last section we explain why we expect this approach to
be extended to general types too. Hence, regarding density theorem, the approximation
level of TCF+ seems sufficient for its formalization.

2 The non-flat Scott model

An information system6 (i.s.) is a structure A = (A,Con,`), where A is a set of tokens
(denoted by a, b, c), Con ⊆ Pfin(A) is the set of formal neighborhoods (denoted by U, V,W ),
and `⊆ Con×A is the entailment relation7 satisfying the following axioms:
1. Con(U)→ V ⊆ U → Con(V ),
2. Con({a}),
3. Con(U)→ U ` a→ Con(U ∪ {a}),
4. Con(U)→ a ∈ U → U ` a,
5. Con(U)→ Con(V )→ U � V → V ` a→ U ` a,
where U � V := ∀a∈V (U ` a). An ideal of A is an x ⊆ A which is consistent i.e.,
U ⊆fin x→ Con(U), and deductively closed i.e., x ⊇ U → U ` a→ a ∈ x. If U ∈ Con, then
U = {a ∈ A : U ` a} is a compact ideal. The structure (|A|,⊆, ∅, |A|0), where |A| is the set
of all ideals of A and |A|0 is the set of all compact ideals of A, is an algebraic domain8. The
basic open sets of the Scott topology on |A| are the cones OU = {J ∈ |A| : U ⊆ J}, for each
U ∈ |A|0. If A = (A,ConA,`A) and B = (B,ConB,`B) are i.s., then one defines an arrow
i.s. A → B such that |A → B| ∼= |A| → |B|, the set of continuous functions with respect to
the Scott topologies on |A| and |B| (see [14], pp. 253-259). An i.s. is called coherent, if U is
consistent whenever each pair of its elements is consistent.

Following [14] the algebras ι considered here are of the form µξ(K0, . . . ,Kl−1), where
each constructor Kj is of type of the form

~ρ→ ( ~σν → ξ)ν<n → ξ.

6 In this section we review briefly some mathematical notions and facts necessary to subsequent sections.
We denote the finite subsets of a set A by Pfin(A).

7 U ` a is intuitively understood as “the information in U is sufficient to compute the bit of data a”.
8 An algebraic domain (D,≤,⊥, D0) is a consistently complete, algebraic cpo and it is the result of
investigating the structure of the domains arising in the Scott model of PCF. Also, each algebraic
domain is isomorphic to the ideals of an i.s. (see e.g., [17]).
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Some examples of such algebras are the following:

B := µξ(ξ, ξ)(booleans).
N := µξ(ξ, ξ → ξ)(natural numbers).
D := µξ(ξ, ξ → ξ → ξ)(derivations).
O := µξ(ξ, ξ → ξ, (N→ ξ)→ ξ)(ordinals).

Our type system Typ is generated by ρ, σ ::= ι | ρ→ σ, and by induction on the length of ρ
one shows that a type ρ ∈ Typ takes the form ρ = τ1 → ...→ τn → ι, where n ≥ 0 and ι is
one of the base types. We define next the set-theoretic i.s. (Cρ)ρ. Since we allow (infinitary)
algebras with constructors having function arguments like the algebra of ordinals O and its
constructor Sup, we do not define Cρ by recursion on the type ρ. Instead, following [14], we
define it by recursion on the height of the syntactic expressions involved. We simultaneously
define Cι, Cρ→σ,Conι,Conρ→σ,`ι and `ρ→σ as follows:
1. A base type token, a ∈ Cι, is a type correct constructor expression Ca∗1...a∗n, where each

a∗i is an extended token i.e., a proper token or the special symbol ∗ι which carries no
information.

2. An arrow type token, a ∈ Cρ→σ, is a pair (U, b), where U ∈ Conρ and b ∈ Cσ.
3. A base type formal neighborhood, U ∈ Conι, is a finite set of tokens in Cι starting with

the same constructor Cτ1→...→τn→ι, i.e.,

U = {Ca∗(1)1...a
∗
(1)n, . . . , Ca

∗
(k)1...a

∗
(k)n},

for some k ∈ N, such that, for each 1 ≤ l ≤ n,

Ul = {a∗(i)l : a∗(i)l is a proper token in Cτl ∧ 1 ≤ i ≤ k} ∈ Conτl .

4. An arrow type formal neighborhood, W ∈ Conρ→σ, is a finite set of tokens in Cρ→σ i.e.,
W = {(Ui, bi) : i ∈ I}, for some finite set I, such that

∀J⊆I(
⋃
j∈J

Uj ∈ Conρ → {bj : j ∈ J} ∈ Conσ).

5. If U = {Ca∗(1)1...a
∗
(1)n, . . . , Ca

∗
(k)1...a

∗
(k)n} is a base type formal neighborhood such that

k ≥ 1 and Cτ1→...→τn→ι is a constructor, then

{Ca∗(1)1...a
∗
(1)n, . . . , Ca

∗
(k)1...a

∗
(k)n} `ι C

′
~a∗ :↔ C = C

′
∧ ∀l(Ul `τl a∗l ),

where Ul is defined as above, and U ` ∗ is always true.
6. If W = {(Ui, bi) : i ∈ I} is an arrow type formal neighborhood, then

W `ρ→σ (V, b) :↔WV := {bi : V �ρ Ui} `σ b.

I Theorem 1. The structure Cρ = (Cρ,Conρ,`ρ) is a coherent i.s., for each ρ ∈ Typ.

Since the definition of Cρ is given by recursion on the height of the syntactic expressions
involved, the proof9 is also done w.r.t. this height. It is simple for the base types, but for
the arrow types it uses simultaneous general induction in a non trivial way; note e.g., that
WV ∈ Conσ is not obvious and has to be proved.

9 All missing proofs of lemmas and theorems are found in the Appendix. Also, in the next sections a
lemma ending to some axiom of i.s. contains exactly the necessary facts for the proof of that axiom.
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The non-flat Scott model S = (Sρ)ρ, or the partial continuous functionals of type ρ, for
each ρ ∈ Typ, is defined by:

Sι = |Cι|,

Sρ→σ = |Cρ→σ| ∼= |Cρ| → |Cσ| = Sρ → Sσ.

3 The syntactic information system SCD

The starting point of TCF+ is the syntactic reproduction of the systems Cρ avoiding their
set-theoretic character. As in [4], we work with the generic algebra of derivations D defining
the syntactic information systems SCD and SCD→D. The related notions and results are
easy generalizable though, to any finitary10 algebra ι. It is important to stress that the
development of all subsequent concepts and results is determined by their corresponding
implementation in the proof assistant Minlog.

The algebra of derivations D is given by its constructors 0D (axiom) and CD→D→D

(double premise rule). The extended tokens of D are defined inductively by a predicate TokD
(in our metalanguage this is a predicate on the words of the alphabet {∗, 0, C}) with clauses

TokD(∗D), TokD(0), TokD(a1)→ TokD(a2)→ TokD(Ca1a2).

For simplicity we write ∗ instead of ∗D and we use a, b, c, d for extended tokens of D. To the
inductively defined predicate TokD corresponds the following elimination axiom11:

(TokElim) ϕ(∗)→ ϕ(0)→ ∀a1,a2(ϕ(a1)→ ϕ(a2)→ ϕ(Ca1a2))→ ϕ(a),

where ϕ is an arbitrary formula12. In order to avoid the set-theoretic notion of a finite set
we use lists of extended tokens of D defined inductively through the predicate LTokD by the
clauses

LTokD(nilD), TokD(a)→ LTokD(U)→ LTokD(a ::D U),

where nilD denotes the empty list in D and a ::D U denotes the list constructed by appending
a to U . We write U, V for lists of extended tokens. The corresponding elimination axiom is

(LTokElim) Φ(nilD)→ ∀a∀U (Φ(U)→ Φ(a :: U))→ Φ(U),

where Φ is an arbitrary formula. Similarly we define the predicate TokB, corresponding to the
proper13 tokens of the algebra B given by the nullary constructors ttB, ffB. Equality in B is
the Leibniz equality, while the total token-valued functions ∧B,∨B : TokB → TokB → TokB
are defined as expected. The predicate LTokB of lists of booleans is defined similarly to
LTokD. Its corresponding elimination axiom is defined as above.

Token-equality, =D: TokD → TokD → TokB, is defined by the clauses:

(∗ =D ∗) := (0 =D 0) := tt,
(∗ =D 0) := (∗ =D Ca1a2) := (0 =D ∗) := (0 =D Ca1a2) := ff,
(Ca1a2 =D ∗) := (Ca1a2 =D 0) := ff,
(Ca1a2 =D Cb1b2) := (a1 =D b1) ∧B (a2 =D b2),

10An algebra is called finitary, if for each Kj (i) only finitary algebras appear in ~ρ and (ii) ~σν ’s are empty.
11This is a special case of the general elimination axiom ϕ(∗ι)→ ∀~a,C(∀j(ϕ(~aj))→ ϕ(C~a))→ ϕ(a).
12 It is not our intention to describe here explicitly our formal language. A sketch of it can be found in [4].
13For simplicity in notation we use the same symbol TokB, while its corresponding elimination axiom is
ϕ(tt)→ ϕ(ff)→ ϕ(bb), where bb denotes an arbitrary proper boolean token. Also, BB denotes a list of
proper boolean tokens.
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and appears in the obviously defined equality between lists of tokens. Since a list of tokens
is the syntactic counterpart of a finite set of tokens, a syntactic notion of ‘belongs to’,
∈̇D : TokD → LTokD → TokB, is defined by the clauses:

a∈̇DnilD := ff, and a∈̇D(b :: U) := (a = b) ∨B (a∈̇DU).

To the subset relation corresponds the sublist relation, ⊆̇D : LTokD → LTokD → TokB,
defined by the clauses:

nil⊆̇DV := tt, and a ::D U⊆̇DV := (a∈̇DV ) ∧B (U⊆̇DV ).

I Lemma 2. ∀U∀V (∀a(a∈̇DU → a∈̇DV )↔ U⊆̇DV ).

Incorporating coherence in the definition of consistency we first define consistency between
two tokens, con : TokD → TokD → TokB, by the clauses:

con(∗, a) := con(a, ∗) := tt,
con(0, 0) := tt,
con(0, Cab) := con(Cab, 0) := ff,
con(Cab,Ccd) := con(a, c) ∧B con(b, d).

Of course, the above definition is compatible to the definition of consistency in the set-
theoretic CD. The function Altcon : TokD → LTokD → TokB expresses the consistency of a
token with all the elements of a list of tokens, and it is defined by the clauses:

Altcon(a,nilD) := tt, and Altcon(a, b :: U) := con(a, b) ∧B Altcon(a, U).

The consistency of a list of tokens, Con : LTokD → TokB, is defined by the clauses:

Con(nilD) := tt, and Con(a :: U) := Altcon(a, U) ∧B Con(U).

I Lemma 3. (i) ∀U (∀a(Altcon(a, U)↔ ∀b(b∈̇U → con(a, b)))).
(ii) ∀a(con(a, a)).
(iii) (axiom 2) ∀a(Con(a :: nil)).
(iv) ∀U (∀a1,a2(a1∈̇U → a2∈̇U → con(a1, a2))↔ Con(U)).
(v) (axiom 1) ∀U,V (Con(U)→ V ⊆̇U → Con(V )).

The function argi : LTokD → LTokD, where i = 1, 2, acts on a list of tokens and outputs the
list of tokens which are the i-argument of the constructor C, namely:

argi(nilD) := nilD,
argi(∗ :: U) := argi(0 :: U) := argi(U),
argi(Ca1a2 :: U) := ai :: argi(U).

The function comp : TokD → TokB expresses that a token is composite i.e., it is of the form
Cab, namely:

comp(∗) := comp(0) := ff, and comp(Ca1a2) := tt,
while Comp : LTokD → TokB expresses that a list of tokens contains a composite token,
namely

Comp(nil) := ff,
Comp(∗ :: U) := Comp(0 :: U) := Comp(U),
Comp(Ca1a2 :: U) := tt,
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Entailment in D, `D: LTokD → TokD → TokB, is defined by the clauses:

(U ` ∗) := tt,
(U ` 0) := (0∈̇U),
(U ` Cab) := Comp(U) ∧B arg1(U) ` a ∧B arg2(U) ` b.

I Lemma 4. (i) ∀a(∀U (Comp(U)→ Comp(a :: U))).
(ii) ∀U (∀a1,a2(Ca1a2∈̇U → Comp(U))).
(iii) ∀b(∀a,U (a∈̇ argi(U)→ a∈̇ argi(b :: U))), for each i = 1, 2.
(iv) ∀U (∀a1,a2(Ca1a2∈̇U → ai∈̇ argi(U))), for each i = 1, 2.
(v) (axiom 4′) ∀a(∀U (a∈̇U → U ` a)).

I Lemma 5. (i) ∀U (∀a(Con(U)→ a∈̇U → U ` 0→ con(0, a))).
(ii) ∀U (∀a(a∈̇ arg1(U)→ ∃b(Cab∈̇U))), and ∀U (∀a(a∈̇ arg2(U)→ ∃b(Cba∈̇U))).
(iii) ∀U (Con(U)→ Con(argi(U))), for each i = 1, 2.
(iv) ∀a(∀U (Comp(a :: U)→ comp(a) ∨B Comp(U))).
(v) ∀U (Comp(U)→ ∃a(a∈̇U ∧B comp(a))).
(vi) ∀b(∀U,a1,a2(Con(U)→ b∈̇U → U ` Ca1a2 → b = ∗ ∨B comp(b))).
(vii) ∀a(∀U,b1,b2(Con(U)→ a∈̇U → U ` Cb1b2 → con(Cb1b2, a))).
(viii) ∀a(∀U,b(Con(U)→ b∈̇U → U ` a→ con(a, b))).
(ix) ∀U,a(Con(U)→ U ` a→ Altcon(a, U)).
(x) (axiom 3) ∀U,a(Con(U)→ U ` a→ Con(a :: U)).

The function �: LTokD → LTokD → TokB expresses that a list entails all the tokens of
another list, and it is defined by the clauses:

U � nil := tt, and U � (a :: V ) := U ` a ∧B U � V.

I Lemma 6. (i) ∀a(∀U (comp(a)→ U ` a→ Comp(U))).
(ii) ∀U (∀V (V � U → Comp(U)→ Comp(V ))).
(iii) ∀U (∀V (V � U → argi(V ) � argi(U))), for each i = 1, 2.
(iv) ∀U (∀V (V � U ↔ ∀a(a∈̇U → V ` a))).
(v) (axiom 5′) ∀a(∀U,V (U � V → V ` a→ U ` a)).

Proof. (i) We apply TokElim on the obvious ϕ(a).
(ii) We apply LTokElim on the obvious Φ(U). The case Φ(nil) is proved through the ex-falso-
quodlibet (Efq). For the inductive step we suppose Φ(U), V � b :: U and Comp(b :: U),
which by Lemma 5(iv) translates into comp(b) or Comp(U). In the first case we get by (i)
Comp(V ), since V ` b, while in the second we use Φ(U) and the fact that V � U .
(iii) We apply LTokElim on the obvious Φi(U). The case Φi(nil) is proved trivially by the
definitions of argi and �. For the inductive step we apply TokElim on

ϕi(b) := V � (b :: U)→ argi(V ) � argi(b :: U).

The cases ϕi(∗), ϕi(0) are proved directly from the hypothesis Φi(U) and the fact that
V � (b :: U)→ V � U . For the case ϕi(Ca1a2) we need to show that

argi(V ) � argi(Ca1a2 :: U) = ai :: argi(U) := argi(V ) ` ai ∧ argi(V ) � argi(U).

The first conjunct is proved by the definition of V ` Ca1a2 (V � (b :: U) → V ` b), while
the second by the hypothesis Φ(U).
(iv) We show the direction (→) and the converse is proved similarly. We apply LTokElim on
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the obvious Φ(U). The case Φ(nil) is proved trivially through Efq. For the inductive step we
suppose that V � (b :: U) := V ` b∧ V � U and that a∈̇(b :: U) := a = b∨ a∈̇U . If a = b, we
get V ` a by V ` b. If a∈̇U , we use the hypothesis Φ(U) and the fact that V � U .
(v) We apply TokElim on the obvious ϕ(a).The case ϕ(∗) is proved automatically, while the
case ϕ(0) is proved by the definition of V ` 0 and the use of (iv). For the case ϕ(Ca1a2)
we suppose that U � V , V ` Ca1a2 and we show that U ` Ca1a2 i.e., Comp(U) and
argi(U) ` ai, for each i = 1, 2. We get Comp(U) by (ii), since by (i) V ` Ca1a2 → Comp(V ).
If we apply ϕ(ai) on argi(U), argi(V ) i.e.,

argi(U) � argi(V )→ argi(V ) ` ai → argi(U) ` ai,

we get the required argi(U) ` ai, since by (iii) we have argi(U) � argi(V ).
J

I Theorem 7. The syntactic system SCD = (TokD,ConD,`D) satisfies the axioms of a
coherent information system. Moreover, the entailment relation satisfies the stronger axioms
4′ and 5′ of an information system14, namely
4′. ∀a(∀U (a∈̇U → U ` a)),
5′. ∀a(∀U,V (U � V → V ` a→ U ` a)).

Proof. The axioms 1 and 2 are Lemma 3(iii) and Lemma 3(v), respectively. The axiom 3 is
Lemma 5(x), while the axiom 4′ is Lemma 4(v) and the axiom 5′ is Lemma 6(v). Finally,
coherence is Lemma 3(iv). J

The function ++D : LTokD → LTokD → LTokD appends U to V , corresponding in that way
to the union of two finite sets, and it is defined by the clauses:

nil++U := U, and (b :: V )++U := b :: (V++U).

I Corollary 8. (i) ∀U (U � U).
(ii) ∀U1,U2,U3(U1 � U2 → U2 � U3 → U1 � U3).
(iii) ∀U (∀V (Con(V )→ V � U → Con(V++U))).
(iv) ∀U (∀V (Con(V )→ V � U → Con(U))).

4 The syntactic information system SCD→D

While the object-terms Mρ of TCF+ represent ideals of type ρ ∈ Typ, the approximation-
terms of TCF+ are tokens Tokρ of type ρ, lists of tokens LTokρ of type ρ, or even lists of
lists of tokens LLTokρ of type ρ. Thus, in order to incorporate to our syntax the definition
of A → B we define

TokD→D := LTokD × TokD,

while we denote the tokens of type TokD→D by u,w and the lists of type LTokD→D by W .
We use the same symbols for the similarly to the D-case defined functions w∈̇W andW1⊆̇W2.
The obvious projections lft : TokD→D → LTokD and rht : TokD→D → TokD, defined by the
clauses

lft(U, a) := U, and rht(U, a) := a,

14That axioms 4 and 5 of an information system are satisfied by SCD without the corresponding consistency
hypotheses is due to the fact that entailment is defined on all lists of tokens and not only on consistent
ones.
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are extended to the functions One : LTokD→D → LLTokD, and Two : LTokD→D → LTokD:

One(NilD→D) := nnilD, and One(w :: W ) := lft(w) :: One(W ),

Two(NilD→D) := nilD, and Two(w :: W ) := rht(w) :: Two(W ),

respectively, where NilD→D, or Nil for simplicity, is the empty list of type LTokD→D, and
nnilD, or nnil, is the empty list of type LLTokD (also, we use UU or VV to denote the lists of
type LLTokD). In order to define consistency in D→ D we follow the pattern of definition
of consistency in D. If →B: TokB → TokB → TokB is the obviously defined total boolean
implication, we define arrcon : TokD→D → TokD→D → TokB, arrAltcon : TokD→D →
LTokD→D → TokB and arrCon : LTokD→D → TokB, respectively by the clauses:

arrcon(u,w) := Con(lft(u)++lft(w))→B con(rht(u), rht(w)),

arrAltcon(w,Nil) := tt, and arrAltcon(u,w :: W ) := arrcon(u,w) ∧B arrAltcon(u,W ),

arrCon(Nil) := tt, and arrCon(w :: W ) := arrAltcon(w,W ) ∧B arrCon(W ).

I Lemma 9. (i) ∀W (∀u(arrAltcon(u,W )↔ ∀w(w∈̇W → arrcon(u,w)))).
(ii) ∀w(arrcon(w,w)).
(iii) (axiom 2) ∀w(arrCon(w :: Nil)).
(iv) ∀W (∀w1,w2(w1∈̇W → w2∈̇W → arrcon(w1, w2))↔ arrCon(W )).
(v) (axiom 1) ∀W1,W2(arrCon(W1)→W2⊆̇W1 → arrCon(W2)).

In order to reproduce syntactically the entailment `A→B we need to formalize the application
WV of W on V , where W = {(U1, b1), . . . , (Ut, bt)}, V ∈ ConA and WV = {bi : V �A Ui}.
As in the D-case we define arrow-entailment independently from consistency. First we express
how from a list of tokens (a1 :: . . . :: am) we take the list of all aj ’s which correspond to
the tt-values of a given list of booleans (bb1 :: . . . :: bbm). For that we define the function
PTS : LTokB → LTokD → LTokD by the clauses

PTS(nilB, U) := nilD,
PTS(BB,nilD) := nilD,
PTS(tt :: BB, a :: U) := a :: PTS(BB, U),
PTS(ff :: BB, a :: U) := PTS(BB, U).

The function AltEntList : LTokD → LLTokD → LTokB outputs the list of booleans U � V ,
where V ∈̇UU, and it is defined by the clauses

AltEntList(U,nnil) := nilB,
AltEntList(U, V :: UU) := (U � V ) :: AltEntList(U,UU).

The application WV is defined as the function App : LTokD→D → LTokD → LTokD, where

App(W,V ) := PTS(AltEntList(V,One(W )),Two(W )).

Entailment in D → D is defined by the function `D→D: LTokD→D → TokD→D → TokB,
where15

W ` u := App(W, lft(u)) ` rht(u).

15For simplicity we omit the subscript from the entailment symbol.
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I Lemma 10. (i) ∀W,u(u :: W ` u).
(ii) ∀W,u,w(W ` w → u :: W ` w).
(iii) (axiom 4′) ∀W (∀u((u∈̇W →W ` u)).

I Lemma 11. (i) ∀U (∀V1,V2,UU(V1 � V2 →

PTS(AltEntList(V2,UU), U) ⊆̇ PTS(AltEntList(V1,UU), U))).

(ii) ∀U1,U2,W,a(U1 � U2 → App(W,U2) ` a→ App(W,U1) ` a).
(iii) ∀W1(∀W2,V (W2 �W1 → App(W2, V ) � App(W1, V ))).
(iv) (axiom 5′) ∀W1,W2,u(W1 �W2 →W2 ` u→W1 ` u).

We use n,m to denote tokens of the algebra of naturals N, while their inequality <: TokN →
TokN → TokB is defined by the clauses (i) n < 0N := ff, (ii) 0N < S(n) := tt, (iii) S(n1) <
S(n2) := n1 < n2. The length |.| of a list of an arbitrary type is defined in the obvious way.
Additionally, we can define the projection functions on lists of tokens of arbitrary type16.

I Lemma 12. (i) ∀W (∀n(n < |W | → Proj(n,W )∈̇W )).
(iia) ∀W (∀n(n < |W | → Proj(n,One(W )) = lft(Proj(n,W )))).
(iib) ∀W (∀n(n < |W | → Proj(n,Two(W )) = rht(Proj(n,W )))).
(iii) ∀UU(∀n,U (n < |UU| → Proj(n,AltEntList(U,UU)) = (U � Proj(n,UU)))).
(iv) ∀U (∀BB,b(b∈̇PTS(BB, U)→ ∃n(n < |BB| ∧ Proj(n,BB) = tt ∧ Proj(n,U) = b))).
(v) ∀b,W,U (b∈̇App(W,U)→ ∃n(n < |W | ∧ U � lft(Proj(n,W )) ∧ rht(Proj(n,W )) = b)).
(vi) ∀W,U (arrCon(W )→ Con(U)→ Con(App(W,U))).
(vii) ∀W (∀u,U (u∈̇W → rht(u)∈̇App(W,U++lft(u)))).
(viii) ∀W,u,w(arrCon(W )→ u∈̇W →W ` w → arrcon(w, u)).
(ix) ∀W,u(arrCon(W )→W ` u→ arrAltcon(u,W )).
(x) (axiom 3) ∀W,u(arrCon(W )→W ` u→ arrCon(u :: W )).

Proof. (vi) If (W = Nil) = tt, then App(Nil, U) = nil, and we have Con(nil) by definition. If
(W = Nil) = ff, then, by Lemma 3(iv), we show b1, b2∈̇App(W,U)→ con(b1, b2). By (v) we
get

∃ni(ni < |W | ∧ U � lft(Proj(ni,W )) ∧ rht(Proj(ni,W )) = bi),

for each i = 1, 2. Next we show Con(lft(Proj(n1,W ))++lft(Proj(n2,W ))) as follows:

U � lft(Proj(n1,W ))
Cor.8(iii)
−→ Con(U++lft(Proj(n1,W ))),

U � lft(Proj(n2,W ))
Lm.6(v)
−→ U++lft(Proj(n1,W )) � lft(Proj(n2,W ))

Cor.8(iii)
−→ Con(U++lft(Proj(n1,W ))++lft(Proj(n2,W )))

Lm.3(v)
−→ Con(lft(Proj(n1,W ))++lft(Proj(n2,W ))).

By (i) Proj(ni,W )∈̇W , therefore, by Lemma 9(iv) and the definition of arrcon we get

con(rht(Proj(n1,W )), rht(Proj(n2,W )))↔ con(b1, b2).

16E.g., Proj : N → LTokD → TokD is defined by the clauses (i) Proj(0N,nil) := ∗, (ii) Proj(0N, a ::
U) := a, (iii) Proj(n+ 1, a :: U) := Proj(n,U). The first clause plays no role to what follows.
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(vii) We apply LTokElimD→D on the appropriate Φ(W ). The case Φ(Nil) is proved by Efq.
Next we suppose that Φ(W ) and we show Φ(w :: W ) i.e.,

u∈̇(w :: W )→ rht(u)∈̇App(w :: W,U++lft(u)).

By the definition of the notions involved we have that

App(w :: W,U++lft(u)) =
PTS(AltEntList(U++lft(u),One(w :: W )),Two(w :: W )) =
PTS(AltEntList(U++lft(u), lft(w) :: One(W )), rht(w) :: Two(W )) =

PTS((U++lft(u) � lft(w)) :: AltEntList(U++lft(u),One(W )), rht(w) :: Two(W )) u=w=
rht(w) :: PTS(AltEntList(U++lft(u),One(W )),Two(W )),

since lft(u)⊆̇U++lft(u)→ U++lft(u) � lft(u). In case u∈̇W , then by the inductive hypothesis
Φ(W ) we get

rht(u)∈̇PTS(AltEntList(U++lft(u),One(W )),Two(W ))→
rht(u)∈̇PTS((U++lft(u) � lft(w)) :: AltEntList(U++lft(u),One(W )), rht(w) :: Two(W )),

as a special case of the direct from the definitions of the related notions fact

b∈̇PTS(BB, U)→ b∈̇PTS(bb :: BB, a :: U).

J

I Theorem 13. The syntactic system SCD→D = (TokD→D,ConD→D,`D→D) satisfies the
axioms of a coherent information system. Moreover, the entailment relation satisfies the
stronger axioms 4′ and 5′ of an information system17.

Proof. The axioms 1 and 2 are Lemma 9(iii) and Lemma 9(v), respectively. The axiom 3
is Lemma 12(x), while the axiom 4′ is Lemma 10(iii) and the axiom 5′ is Lemma 11(iv).
Finally, coherence is Lemma 9(iv). J

The fact that SCD and SCD→D satisfy the axioms 4′, 5′ motivated the next result on Cρ.

I Theorem 14. The information systems Cρ satisfy the axioms 4′, 5′, for each type ρ.

5 A point-free density theorem in D

Kreisel’s density theorem asserts the existence of a total functional xρ (point) extending a
given compact functional U (or equivalently U) of type ρ. A formal proof of it within TCF+

should involve the construction of an object term Mρ such that Mρ “includes” (this should
be a formally defined relation between lists of type ρ and terms Mρ) a given list U of that
type. But since one proves that xρ can also be decidable (see in [4] the based on [1] informal
proof of density theorem), one needs for the formalization of density theorem only a formal
representation of decidable ideals. This representation can be given without referring to
points (object terms), but only through boolean-valued functions on approximation terms.
Here we show how such a point-free notion of a decidable ideal in D leads to a proof of the

17 See Theorem 7.
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corresponding point-free density theorem. As we indicate in the last section, these notions
and proofs are expected to be extended to general types too. This is an example of the “as
much as possible reconstruction of the study of points through their finite approximations”
that we mentioned in the introduction as a motivation for TCF+.

A decidable ideal in D is an “appropriate” function I : TokD → TokB. In order to explain
what “appropriate” here means we introduce, keeping for simplicity the same notation,
elementhood ∈̇ : TokD → (TokD → TokB)→ TokB defined by

a∈̇I := I(a),

and inclusion ⊆̇ : LTokD → (TokD → TokB)→ TokB defined by

nilD⊆̇I := tt and (a :: U)⊆̇I := a∈̇I ∧B U⊆̇I.

Next we describe the notion of a decidable ideal at a “local” level i.e., we explain how an
ideal I behaves on a list U included in I and on a token a entailed by such a list U . Namely,
we define Ideal : (TokD → TokB)→ LTokD → TokD → TokB by the clause

Ideal(I, U, a) := [U⊆̇I →B Con(U)] ∧B [(U⊆̇I ∧B U ` a)→B a∈̇I].

The following lemma expresses the expected fact, that if V is consistent, then V , which is
another notation for the function `D (V ) : TokD → TokB, is an ideal at a “global” level i.e.,
V satisfies the local ideal-property for each U and a.

I Lemma 15. (i) ∀U (∀V (U⊆̇V ↔ V � U)).
(ii) ∀V (Con(V )→ ∀U,a(Ideal(V ,U, a))).

The function total : TokD → TokB expresses that the tree corresponding to a total token
contains no ∗, and it is defined by the clauses:

total(∗) := ff, total(0) := tt, and total(Cab) := total(a) ∧B total(b).

The totalization function, t : TokD → TokD, mapping a token to a total one, is defined by:

t(∗) := t(0) := 0, and t(Cab) := Ct(a)t(b).

I Lemma 16. (i) ∀a(total(t(a))).
(ii) ∀a(t(a) :: nil ` a).

The main idea behind the proof of density theorem in D is to find a total token aU which
entails a given consistent list U . We determine aU in two steps; first we find a token b

entailing U and then aU is defined as the totalization of b. The initial step in the construction
of b is the definition of a token sup(a, b) having the maximum “common information” between
a and b. Namely, sup : TokD → TokD → TokD is defined by the clauses:

sup(∗, a) := sup(a, ∗) := a,

sup(0, 0) := 0,
sup(0, Cab) := sup(Cab, 0) := ∗,
sup(Cab,Ccd) := C sup(a, c) sup(b, d).

I Lemma 17. (i) ∀a(sup(a, a) = a).
(ii) ∀a(∀b(sup(a, b) = sup(b, a))).
(iiia) ∀a(∀b(con(a, b)→ sup(a, b) :: nil ` a)).
(iiib) ∀a(∀b(con(a, b)→ sup(a, b) :: nil ` b)).
(iv) ∀a(∀b(∀c(con(a, b)→ con(b, c)→ con(a, c)→ con(sup(a, b), sup(b, c))))).
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The function Sup : TokD → LTokD → TokD outputs a token having the maximum “common
information” between a token and a list, and it is defined by the clauses:

Sup(a,nilD) := a, and Sup(a, b :: U) := sup(sup(a, b),Sup(a, U)).

I Lemma 18. (i) ∀U (∀a,b(Con(a :: b :: U)→ con(sup(a, b),Sup(a, U)))).
(ii) ∀U (∀a(Con(a :: U)→ Sup(a, U) :: nil � a :: U)).

Proof. (i) We apply LTokElimD on the obvious Φ(U). The case Φ(nil) takes the form

∀a,b(Con(a :: b :: nil)→ con(sup(a, b), a)).

Since it is direct by Lemma 3(iv) that Con(a :: b :: nil)↔ con(a, b), by Lemma 17(iiia) we
get sup(a, b) :: nil ` a, and consequently, by Lemma 5(x) and the above equivalence, we
conclude con(sup(a, b), a). Next we suppose that Φ(U) and we prove Φ(c :: U) i.e.,

∀a,b(Con(a :: b :: (c :: U))→ con(a′, sup(b′, c′))),

where
(a′, b′, c′) := (sup(a, b), sup(a, c),Sup(a, U)).

For that we suppose Con(a :: b :: (c :: U)), where a, b are fixed tokens, and we apply Lemma
17(iv) on a′, b′, c′. By Lemma 17(ii) con(a′, b′)↔ con(sup(b, a), sup(a, c)), which we get by
applying Lemma 17(iv) on tokens b, a, c (the consistencies con(b, a), con(a, c), con(b, c) are im-
plied by Con(a :: b :: (c :: U)) and Lemma 3(iv)). Also, con(b′, c′)↔ con(sup(a, c),Sup(a, U))
is derived by applying the inductive hypothesis Φ(U) on tokens a, c (clearly, Con(a :: b :: (c ::
U)) → Con(a :: c :: U) by Lemma 3(v)). Finally, con(a′, c′) ↔ con(sup(a, b),Sup(a, U)) is
derived by the application of Φ(U) on tokens a, b (again, Con(a :: b :: (c :: U))→ Con(a :: b ::
U)). The conclusion of Lemma 17(iv) on a′, b′, c′ is

con(sup(a′, b′), sup(b′, c′))↔ Con(a′′ :: b′′ :: nil),

where
(a′′, b′′) := (sup(a′, b′), sup(b′, c′)).

Since con(a′, b′) has already been proved, by Lemma 17(iiia) we get a′′ :: nil ` a′, which
implies, by Lemma 6(v), that a′′ :: b′′ :: nil ` a′. By Lemma 5(x) and the already proved
Con(a′′ :: b′′ :: nil) we conclude Con(a′ :: a′′ :: b′′ :: nil). By Lemma 3(iv) we get the required
consistency con(a′, b′′).
(ii) We apply LTokElimD on the obvious Φ(U). The case Φ(nil) takes the form Con(a ::
nil)→ a :: nil � a :: nil, which is proved by Corollary 8(i). Next we suppose that Φ(U) and
we prove Φ(b :: U) i.e., fixing a token a we show that

Con(a :: (b :: U))→ sup(a′, b′) :: nil � a :: (b :: U),

where
(a′, b′) := (sup(a, b),Sup(a, U)).

By (i) we know that con(a′, b′). Hence by Lemma 17(iiia) we get sup(a′, b′) :: nil ` a′, or
equivalently, sup(a′, b′) :: nil � a′ :: nil. Since Con(a :: (b :: U)) → con(a, b), by Lemma
17(iiia) and (iiib) we have

a′ :: nil ` a ∧ a′ :: nil ` b.

Thus, by Lemma 6(v) we conclude that sup(a′, b′) :: nil ` a and sup(a′, b′) :: nil ` b. By
Lemma 17(iiib) we also get that sup(a′, b′) :: nil ` b′, which is equivalent to sup(a′, b′) :: nil �



14 Advances in TCF+ due to its Implementation

b′ :: nil. Since by the inductive hypothesis Φ(U) we have b′ :: nil � U , we get, by Corollary
8(ii), that sup(a′, b′) :: nil � U too.

J

I Theorem 19 (point-free density in D). (i) ∀U (Con(U)→ ∃a(total(a) ∧B a :: nil � U)).
(ii) ∀U (Con(U)→ ∃a(total(a) ∧B U⊆̇ a :: nil)).

Proof. (i) We apply apply LTokElimD on the obvious Φ(U). For the case Φ(nil) it suffices
to take a = 0. Next we suppose that Φ(U) and we prove Φ(b :: U) i.e.,

Con(b :: U)→ ∃a(total(a) ∧B a :: nil � b :: U).

By Lemma 18(ii) Sup(b, U) :: nil � b :: U , therefore we define

a := t(Sup(b, U)).

By Lemma 16(i) we have that total(a), while by Lemma 16(ii) we get that a :: nil ` Sup(b, U),
which is equivalent to a :: nil � Sup(b, U) :: nil. Hence by Corollary 8(ii) we conclude that
a :: nil � b :: U .
(ii) Consider a consistent list U . By (i) there exists a token a such that t(a) and a :: nil � U .
By Lemma 15(i) though, a :: nil � U → U⊆̇ a :: nil.

J

If we define18 a decidable ideal in D to be total by

Total(I) := ∃a(total(a) ∧ a∈̇I ∧ ∀b(b∈̇I → a :: nil ` b)),

then total(a) → Total(a :: nil), and Theorem 19(ii) fully recovers the content of density
theorem in D.

6 Conclusion and future work

We have presented here some advances in the constructive formal theory of computable
functions TCF+ that have taken place after its first sketch in [4]. All definitions and proofs
are due to the corresponding implementation procedure, which can be found in [10].

The project of “mirroring” the non-flat Scott model into a formal theory like TCF+

and the elaboration of important case studies19 within it is still at its beginning. The
current development of TCF+ though, promises that this project is far from a mechanical
procedure without mathematical benefits. The implementation enterprise revealed, apart
from unexpected analogies between the basic notions of SCD and SCD→D, that these
syntactic systems satisfy an even stronger form of the axioms of an information system, a
fact that was extended to the Scott model itself.

Even more surprisingly, the implementation showed that in the case of the density theorem
a point-free approach is possible. In the future we want to prove a formal point-free density
theorem in D→ D. Then we will have all the necessary tools for a formal proof of a general

18 In subsequent work we explain how this definition conforms to Normann’s [8] notion of totality as
complete information by connecting totality of an ideal with normalization with respect to a certain
reduction relation. We also note here that the total token a which entails all the other tokens of I is
proved to be unique, and moreover it is the unique total token in I.

19Such case studies are Plotkin’s definability theorem, the totality of the fan functional, or Normann’s
solution to the Cook-Berger conjecture.
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point-free density theorem (e.g., in Dn+1 = Dn → D). Such a generalization seems possible
because we can define a decidable ideal R in D→ D in a way similar to that of a decidable
ideal I in D. A decidable ideal R can be represented as a decidable approximable mapping,
i.e., an appropriate boolean-valued function on approximation terms which behaves as an
approximable mapping at a “local” and a “global” level, exactly like I. In that way the
motivation behind the introduction of an approximable mapping, as the point-free version of
a function between domains, is realized.

Acknowledgements I want to thank Helmut Schwichtenberg for his ongoing motivation
and support.
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A Appendix

A.1 The non-flat Scott model
The definition of the non-flat Scott model is actually by recursion on the height ||.|| of the
set-theoretical syntactic expressions E involved, where ||.|| : E → N defined by the following
clauses:

|| ∗ι || := 0,
||Ca∗1...a∗n|| := 1 + max {||a∗i || : 1 ≤ i ≤ n}
||(U, b)|| := 1 + max {||U ||, ||b||},
||U `ρ b|| := 1 + max {||U ||, ||b||},
||{ai : i ∈ I}|| := 1 + max {||ai|| : i ∈ I},

where I is a finite set, and Cτ1→...→τn→ι is a constructor.
In [14], p.262, the proof of Cρ being an information system is not given, since it is

considered easy. Actually the proof for the ground types is easy, but the proof for the arrow
types is less trivial. Since the definition of Cρ is given by recursion on the height of the
syntactic expressions involved, the proof must also be given w.r.t. this height.

Theorem 1. The structure Cρ = (Cρ,Conρ,`ρ) is a coherent i.s., for each ρ ∈ Typ.

Proof. First we show that Cρ satisfies the axioms of an information system, i.e.,
1. V ∈ Conρ → U ⊆ V → U ∈ Conρ.
2. a ∈ Cρ → {a} ∈ Conρ.
3. U ∈ Conρ → U `ρ a→ U ∪ {a} ∈ Conρ.
4. a ∈ U → U ∈ Conρ → U `ρ a.
5. U ∈ Conρ → V ∈ Conρ → U �ρ V → V `ρ a→ U `ρ a.
(1) If ρ = ι, and V = {Ca∗(1)1...a

∗
(1)n, . . . , Ca

∗
(k)1...a

∗
(k)n}, for some k ∈ N, then U ⊆ V →

Ul ⊆ Vl, for each 1 ≤ l ≤ n. Since, by the definition of Conι, Ul ∈ Conτl and ||Vl|| < ||V ||,
we get that Ul ∈ Conτl , for each 1 ≤ l ≤ n. Hence, by the definition of Conι again, we get
that U ∈ Conι. If W = {(Ui, bi) : i ∈ I} ∈ Conρ→σ, W ′ = {(Ui′ , bi′) : i′ ∈ I ′} ⊆ W , and⋃
j′∈J′⊆I′⊆I Uj′ ∈ Conρ, then automatically we get that {bj′ : j′ ∈ J ′} ∈ Conσ. Note that

this argument is independent from the height of W .
(2) If ρ = ι, then U = {Ca∗1...a∗n} ∈ Conι ↔ ∀1≤l≤n(Ul = {a∗l } ∈ Conτl). By the definition
of Ul the token a∗l is proper and ||Ul|| < ||U || therefore, Ul ∈ Conτl , for each l. In the arrow
type case we need to show that {(U, b)} ∈ Conρ→σ ↔ (U ∈ Conρ → {b} ∈ Conσ). But since
||b|| < ||(U, b)|| and b ∈ Conσ, the inductive hypothesis guarantees that {b} ∈ Conσ.
(3) What we actually prove is simultaneously (3) with the following weaker, because of (4),
form of (5)

(6) U ∈ Conρ → V ⊆ U → V `ρ a→ U `ρ a.

If ρ = ι, U = {Ca∗(1)1...a
∗
(1)n, . . . , Ca

∗
(k)1...a

∗
(k)n}, for some k ∈ N, and a = Ca∗1...a

∗
n, then,

since ||Ul|| < ||U ||,

U `ι a→ ∀l(Ul `τl a∗l )→ ∀l(Ul ∪ {a∗l } = (U ∪ {a})l ∈ Conτl)→ U ∪ {a} ∈ Conι.

Also for (6) we know that V `ι Ca∗1...a∗n → Vl `τl a∗l , for each l. But since Vl ⊆ Ul and
||Ul|| < ||U ||, we get Ul `τl a∗l , for each l. In the arrow type case, if W = {(Ui, bi) : i ∈ I}
and WV = {bi : V �ρ Ui} = {bi : i ∈ I0 ⊆ I}, we show that

W ∈ Conρ→σ →W `ρ→σ (V, b)→W ∪ {(V, b)} ∈ Conρ→σ,
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and simultaneously we prove (6) i.e.,

W ∈ Conρ→σ →W ′ ⊆W →W ′ `ρ→σ (V, b)→W `ρ→σ (V, b).

Our simultaneous inductive hypotheses (IH1 and IH2, respectively) are that (3) and (6) hold
for all formal neighborhoods U and proper tokens a such that ||U ||+ ||a|| < ||W ||+ ||(V, b)||.
First we show that IH1 guarantees that WV ∈ Conσ. Since V ∈ Conρ, if V `ρ Ui, for some i,
then V `ρ a, for each a ∈ Ui. Since ||V ||+ ||a|| < ||(V, b)||+ ||W || we get that V ∪{a} ∈ Conρ.
Since that happens for arbitrary a and i we conclude that

V ∪
⋃
i∈I0

Ui ∈ Conρ
(1)→

⋃
i∈I0

Ui ∈ Conρ
(W∈Conρ→σ)−→ WV ∈ Conσ.

Since we know now that WV ∈ Conσ, and WV `σ b, we can apply again IH1 to conclude
that

{bi : V �ρ Ui} ∪ {b} ∈ Conσ,

by the fact that ||WV || < ||W || and ||V || < ||(V, b)||. By the definition of Conρ→σ the
consistency of W ∪ {(U, b)} amounts to

∀J⊆I(
⋃
j∈J

Uj ∪ V ∈ Conρ → {bj : j ∈ J} ∪ {b} ∈ Conσ).

If we consider such a J ⊆ I, then, by our hypothesis,
⋃
j∈J Uj ∪ V ∈ Conρ. Suppose that

a ∈ Ui, where i ∈ I0. Clearly, V �ρ Ui → V `ρ a. Since ||Ui|| < ||W || and ||V || < ||(V, b)||,
we get that

||
⋃
j∈J

Uj ∪ V ||+ ||a|| = 1 + max {||c|| : c ∈
⋃
j∈J

Uj ∪ V }+ ||a|| < ||W ||+ ||((V, b)||.

Applying IH2 to
⋃
j∈J Uj ∪ V and a we get that⋃

j∈J
Uj ∪ V `ρ a.

Since that is established, we can apply now IH1 to
⋃
j∈J Uj ∪ V and a in order to get⋃

j∈J
Uj ∪ V ∪ {a} ∈ Conρ.

Since that is proved for arbitrary a ∈ Ui and i ∈ I0, we get that⋃
j∈J

Uj ∪ V ∪
⋃
i∈I0

Ui ∈ Conρ.

By (1) we get that ⋃
j∈J

Uj ∪
⋃
i∈I0

Ui ∈ Conρ

therefore, by the definition of consistency for W we have that

{bj : j ∈ J} ∪ {bi : i ∈ I0} ∈ Conσ.

Since ||{bj : j ∈ J} ∪ {bi : i ∈ I0}||+ ||b|| < ||W ||+ ||(V, b)||, and {bi : i ∈ I0} `σ b we get by
IH2 on {bj : j ∈ J} ∪ {bi : i ∈ I0} and b that

{bj : j ∈ J} ∪ {bi : i ∈ I0} `σ b.
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Because of the last fact though, we can apply IH1 to them again and take

{bj : j ∈ J} ∪ {bi : i ∈ I0} ∪ {b} ∈ Conσ
(1)→ {bj : j ∈ J} ∪ {b} ∈ Conσ,

which is what required for the proof of (3). Next we prove (6) for the arrow type case. By
the definition of `ρ→σ it suffices to prove W ′V `σ b → WV `σ b. Since WV ∈ Conσ is
already proved and ||WV ||+ ||b|| < ||W ||+ ||(V, b)||, and since trivially (independently from
the height of W ) we have that

W ′ ⊆W →W ′V ⊆WV,

applying IH2 to WV and b we get the required WV `σ b.
(4) If ρ = ι and a = Ca∗(i)1 . . . a

∗
(i)n ∈ U , where 1 ≤ i ≤ k, then a∗(i)l ∈ Ul, for each 1 ≤ l ≤ n.

Since ||Ul|| < ||U || and Ul ∈ Conτl , we get that Ul `τl a∗(i)l, for each l, i.e., U `ι a. In the
arrow type case we need to show that

(Ui, bi) ∈W →W ∈ Conρ→σ →W `ρ→σ (Ui, bi).

Thus, we need to show that WUi = {bj : Ui �ρ Uj} `σ bi. We do it by induction on the
measure ||W ||+ ||(Ui, bi)||. If a ∈ Ui, then Ui `ρ a, because ||Ui||+ ||a|| < ||(Ui, bi)||+ ||W ||.
Since this holds for arbitrary a ∈ Ui, we conclude that Ui �ρ Ui therefore, bi ∈WUi. Since
||WUi||+ ||b|| < ||W ||+ ||(Ui, bi)||, we have thatWUi `σ bi applying our inductive hypothesis.
The only thing we need to justify is that WUi ∈ Conσ20. But we can use the already proved
(3) so that Ui `ρ a→ Ui ∪ {a} ∈ Conρ therefore,

Ui ∪
⋃

Ui`ρUj

Uj ∈ Conρ
(1)→

⋃
Ui`ρUj

Uj ∈ Conρ
(W∈Conρ→σ)−→ WUi ∈ Conσ.

(5) If ρ = ι, U = {Ca∗(1)1...a
∗
(1)n, . . . , Ca

∗
(k)1...a

∗
(k)n}, for some k ∈ N,

V = {Cb∗(1)1...b
∗
(1)n, . . . , Cb

∗
(m)1...a

∗
(m)n},

for some m ∈ N, and a = Ca∗1...a
∗
n, then

U �ι V → ∀1≤l≤n∀1≤ν≤m(Ul `τl b∗(ν)l).

Thus Ul �τl Vl, for each l. Also, w.r.t. the measure ||U ||+ ||V || we have

V `ι a→ ∀l(Vl `τl a∗l )
||Vl||+||Ul||<||U ||+||V ||−→ ∀l(Ul `τl a∗l )→ U `ι a.

In the arrow type case we need to show that

W,W ′ ∈ Conρ→σ →W �ρ→σ W
′ →W ′ `ρ→σ (V, b)→W `ρ→σ (V, b).

We use induction on the measure ||W || + ||W ′|| + ||(V, b)||. If W = {(Ui, bi) : i ∈ I} and
W ′ = {(Vj , cj) : j ∈ J}, then WV,W ′V,WVj ∈ Conσ, for each j ∈ J ; for that we work
exactly like in the corresponding proof in (4). By our hypotheses we have

∀j∈J(W `ρ→σ (Vj , cj))↔ ∀j∈J(WVj = {bi : Vj �ρ Ui} `σ cj),

20Note that we cannot use the resultWV ∈ Conσ in the proof of (3), because there we used the hypothesis
W `ρ→σ (V, b), which is exactly what we want to prove for (Ui, bi).
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W ′ `ρ→σ (V, b))↔W ′V = {cj : V �ρ Vj} `σ b,
and we want to show that

W `ρ→σ (V, b))↔WV = {bi : V �ρ Ui} `σ b.

Since ||WV ||+ ||W ′V ||+ ||b|| < ||W ||+ ||W ′||+ ||(V, b)|| we reach our conclusion applying
our inductive hypothesis on

WV ∈ Conσ →W ′V ∈ Conσ →WV �σ W
′V →W ′V `σ b→WV `σ b.

The only thing we need to establish in order to complete our proof is the implication

(∗) W `ρ→σ W ′ →WV �σ W
′V.

If cj ∈ W ′V therefore, V �ρ Vj , we show that WV `σ cj . If a ∈ Ui and bi ∈ WVj i.e.,
Vj �ρ Ui → Vj `ρ a we get

V �ρ Vj → Vj `ρ a→ V `ρ a,

since ||V || + ||Vj || + ||a|| < ||(V, b)|| + ||W ′|| + ||W ||. Since that holds for each a ∈ Ui, we
conclude that V �ρ Ui i.e., we showed that bi ∈ WV therefore, we get WVj ⊆ WV . If we
apply (6) on

WVj ⊆WV →WVj `σ cj →WV `σ cj ,
we prove (∗), therefore we complete the proof of (5).
To prove the coherence property of the information systems Cρ it suffices to show it for the
ground information systems Cι and then use the standard fact that if B is a coherent i.s.,
then A → B is also coherent (see [14], p.264). For an information system Cι we prove its
coherence by induction on the height ||U || of a ground formal neighborhood U . If k ∈ N,
Cτ1→...→τn→ι is a constructor, and U = {Ca∗(1)1...a

∗
(1)n, . . . , Ca

∗
(k)1...a

∗
(k)n}, then

U ∈ Conι ↔ ∀1≤l≤n(Ul = {a∗(i)l : a∗(i)l is proper in Cτl ∧ 1 ≤ i ≤ k} ∈ Conτl)
||Ul||<||U ||↔ ∀1≤i,j≤k({a∗(i)1, a

∗
(j)1} ∈ Conτ1 ∧ . . . ∧ {a∗(i)n, a

∗
(j)n} ∈ Conτn)

↔ ∀1≤i,j≤k({Ca∗(i)1...a
∗
(i)n, Ca

∗
(j)1...a

∗
(j)n} ∈ Conι).

J

Because of the coherence property of Cρ we can define Conι,Conρ→σ as follows:
1. A base type formal neighborhood, U ∈ Conι, is a finite set of tokens in Cι starting with

the same constructor Cτ1→...→τn→ι i.e., U = {Ca∗(1)1...a
∗
(1)n, . . . , Ca

∗
(k)1...a

∗
(k)n}, for some

k ∈ N, such that, for each 1 ≤ l ≤ n and for each 1 ≤ i, i′ ≤ k,

U i,i
′

l = {a∗(i)l, a∗(i′)l : a∗(i)l, a∗(i′)l proper tokens in Cτl} ∈ Conτl .

2. An arrow type formal neighborhood, W ∈ Conρ→σ, is a finite set of tokens in Cρ→σ, i.e.,
W = {(Ui, bi) : i ∈ I}, for some finite set I, such that

∀i,i′∈I(Ui ∪ Ui′ ∈ Conρ → {bi, bi′} ∈ Conσ).

It is this definition of consistency that we use for the syntactic information systems SCρ.

Theorem 14. The information systems Cρ satisfy the axioms 4′, 5′, for each type ρ.

Proof. By inspection of the proof of Theorem 1 we see that the axioms 4′, 5′ follow in an
even simpler way. One only needs to extend appropriately the definition of entailment on
finite sets of tokens which are not necessarily consistent. J
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A.2 The syntactic information system SCD

Lemma 2. ∀U∀V (∀a(a∈̇DU → a∈̇DV )↔ U⊆̇DV ).

Proof. The two directions are proved applying LTokElim on

Φ1(U) := ∀V (∀a(a∈̇DU → a∈̇DV )→ U⊆̇DV ),

Φ2(U) := ∀V (U⊆̇DV → ∀a(a∈̇DU → a∈̇DV )).

J

Lemma 3. (i) ∀U (∀a(Altcon(a, U)↔ ∀b(b∈̇U → con(a, b)))).
(ii) ∀a(con(a, a)).
(iii) ∀a(Con(a :: nil)).
(iv) ∀U (∀a1,a2(a1∈̇U → a2∈̇U → con(a1, a2))↔ Con(U)).
(v) ∀U,V (Con(U)→ V ⊆̇U → Con(V )).

Proof. (i) We prove the direction (→) and we work similarly for the converse. We apply
LTokElim on

Φ(U) := ∀a(Altcon(a, U)→ ∀b(b∈̇U → con(a, b))).

Using Efq we prove Φ(nil). Suppose that Altcon(a, c :: U) i.e., con(a, c) ∧Altcon(a, U), and
also that b∈̇(c :: U) i.e., b = c ∨ b∈̇U . If b = c, then we get con(a, b) by hypothesis. If b∈̇U
we use the hypothesis Altcon(a, U) and the inductive hypothesis Φ(U).
(ii) We apply TokElim on ϕ(a) := con(a, a).
(iii) We apply TokElim on ϕ(a) := Con(a :: nil).
(iv) We prove the direction (←) and we work similarly for the converse. We apply LTokElim
on

Φ(U) := Con(U)→ ∀a1,a2(a1∈̇U → a2∈̇U → con(a1, a2)).

By Efq we get directly Φ(nil). Next we suppose that Φ(U) and we show Φ(b :: U), for some
b. Supposing Con(b :: U) we show that ∀a1,a2(a1∈̇(b :: U)→ a2∈̇(b :: U)→ con(a1, a2)). In
case a1 = b = a2 we use (ii). In case a1 = b and a2∈̇U we use the direction (→) of (i), since
the hypothesis Con(b :: U) entails Altcon(b, U). In case a2 = b and a1∈̇U we work similarly.
In case a1, a2∈̇U we use the inductive hypothesis Φ(U), since Con(b :: U) entails Con(U).
(v) By (iv) it suffices to show that

∀a1,a2(a1∈̇V → a2∈̇V → con(a1, a2)).

By Lemma 1 the hypothesis V ⊆̇U implies that a1, a2∈̇U , if a1, a2∈̇V . By the (←) direction
of (iv) for U we get that con(a1, a2).

J

Lemma 4. (i) ∀a(∀U (Comp(U)→ Comp(a :: U))).
(ii) ∀U (∀a1,a2(Ca1a2∈̇U → Comp(U))).
(iii) ∀b(∀a,U (a∈̇ argi(U)→ a∈̇ argi(b :: U))), for each i = 1, 2.
(iv) ∀U (∀a1,a2(Ca1a2∈̇U → ai∈̇ argi(U))), for each i = 1, 2.
(v) ∀a(∀U (a∈̇U → U ` a)).
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Proof. All cases are proved through the use of the appropriate elimination axiom. Case (i)
is used in the inductive step of (ii) and case (iii) in the inductive step of (iv). We present
only the proof of (v). We apply TokElim on

ϕ(a) := ∀U (a∈̇U → U ` a).

The cases ϕ(∗), ϕ(0) are derived automatically by the definition of entailment. To show
ϕ(Ca1a2) from ϕ(a1), ϕ(a2) we suppose that Ca1a2∈̇U , for a fixed U . By (ii) we get
Comp(U). By (iv) we get that ai∈̇ argi(U), for each i = 1, 2. Applying the inductive
hypotheses ϕ(a1), ϕ(a2) on arg1(U) and arg2(U), respectively, we get that arg1(U) ` a1 and
arg2(U) ` a2.

J

Lemma 5. (i) ∀U (∀a(Con(U)→ a∈̇U → U ` 0→ con(0, a))).
(ii) ∀U (∀a(a∈̇ arg1(U)→ ∃b(Cab∈̇U))), and ∀U (∀a(a∈̇ arg2(U)→ ∃b(Cba∈̇U))).
(iii) ∀U (Con(U)→ Con(argi(U))), for each i = 1, 2.
(iv) ∀a(∀U (Comp(a :: U)→ comp(a) ∨B Comp(U))).
(v) ∀U (Comp(U)→ ∃a(a∈̇U ∧B comp(a))).
(vi) ∀b(∀U,a1,a2(Con(U)→ b∈̇U → U ` Ca1a2 → b = ∗ ∨B comp(b))).
(vii) ∀a(∀U,b1,b2(Con(U)→ a∈̇U → U ` Cb1b2 → con(Cb1b2, a))).
(viii) ∀a(∀U,b(Con(U)→ b∈̇U → U ` a→ con(a, b))).
(ix) ∀U,a(Con(U)→ U ` a→ Altcon(a, U)).
(x) ∀U,a(Con(U)→ U ` a→ Con(a :: U)).

Proof. (i) Since U ` 0 means that 0∈̇U , then a, 0∈̇U . By Lemma 3(iv) we get con(0, a).
(ii) We apply LTokElim on

Φ1(U) := ∀a(a∈̇ arg1(U)→ ∃b(Cab∈̇U)).

The case Φ1(nil) is proved through Efq. For the inductive step we apply TokElim on

ϕ1(c) := a∈̇ arg1(c :: U)→ ∃b(Cab∈̇(c :: U)),

for some fixed a, U . The cases ϕ1(∗) and ϕ1(0) are trivial. If c = Cd1d2, for some d1, d2,
then arg1(c :: U) = d1 :: arg1(U). If a = d1, then b = d2. If a∈̇ arg1(U), then we use the
inductive hypothesis Φ1(U) on a.
(iii) We apply LTokElim on

Φi(U) := Con(U)→ Con(argi(U)).

Φi(nil) is proved automatically by the definitions. For the inductive step we apply TokElim
on

ϕi(b) := Con(b :: U)→ Con(argi(b :: U)).

The cases ϕi(∗) and ϕi(0) are trivial. If b = Cd1d2, for some d1, d2, then argi(b :: U) = di ::
argi(U) and we need to show Con(di :: argi(U)), or, equivalently, Altcon(di, argi(U)) and
Con(argi(U)). Since Con(b :: U)→ Con(U), we get Con(argi(U)) by the inductive hypothesis
Φ(U). To show Altcon(di, argi(U)) it suffices, by Lemma 3(i), that a∈̇ argi(U)→ con(di, a),
for each a. By (ii) there exist c1, c2 such that Cc1c2∈̇U and c1 = a, if i = 1, or c2 = a, if
i = 2. Since Con(b :: U)→ Altcon(b, U) and Altcon(b, U)→ con(Cd1d2, Cc1c2), by Lemma
3(i), we get con(di, ci) i.e., con(di, a).
(iv) We apply TokElim on the obvious ϕ(a).
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(v) We apply LTokElim on the obvious Φ(U). In the inductive step we use the case (iv).
(vi) We apply TokElim on the obvious ϕ(b). The cases ϕ(∗) and ϕ(Cb1b2) are proved
automatically. If U ` Ca1a2, then by the definition of entailment we have Comp(U),
therefore, by (v), there exists a∈̇U such that comp(a). By Lemma 3(iv) and Con(U) we get
that con(0, a) which is false. Then we use the Efq.
(vii) We apply TokElim on the obvious ϕ(a). The case ϕ(∗) is trivial. The hypotheses of
ϕ(0) lead, because of (vi), to falsity, and then by Efq we get the conclusion of ϕ(0). We
prove ϕ(Cd1d2) by ϕ(d1) and ϕ(d2). Suppose that Con(U), Cd1d2∈̇U and U ` Cb1b2. By
(iii) we get that Con(argi(U)), while by the definitions of argi and of entailment we have
that di∈̇ argi(U) and argi(U) ` bi, for each i = 1, 2, respectively. To show con(Cb1b2, Cd1d2)
it suffices to show con(b1, d1) and con(b2, d2). We show con(b1, d1) and we work similarly for
con(b2, d2). We apply TokElim on

ϕ1(b1) := Con(arg1(U))→ d1∈̇ arg1(U)→ arg1(U) ` b1 → con(b1, d1).

The case ϕ1(∗) is proved automatically, while for the case ϕ1(0) we apply (i) on arg1(U). To
show ϕ1(Cc1c2) we use the inductive hypothesis ϕ(a1) on arg1(U), c1 and c2.
(viii) We apply TokElim on the obvious ϕ(a). The case ϕ(∗) is trivial, while the case ϕ(0) is
(i) and the case ϕ(Ca1a2) is (vii).
(ix) This is proved directly from Lemma 3(i) and the case (viii).
(x) This is proved directly from the definition of Con(a :: U) and the case (ix). J

Corollary 8. (i) ∀U (U � U).
(ii) ∀U1,U2,U3(U1 � U2 → U2 � U3 → U1 � U3).
(iii) ∀U (∀V (Con(V )→ V � U → Con(V++U))).
(iv) ∀U (∀V (Con(V )→ V � U → Con(U).

Proof. (i) This is a direct consequence of Lemma 6(iv) and Lemma 4(v).
(ii) By Lemma 6(iv) it suffices to show that ∀a(a∈̇U3 → U1 ` a). By the other direction of
Lemma 6(iv), if a∈̇U3 → U2 ` a. Using Lemma 6(v) on U1, U2, a we get U1 ` a.
(iii) We apply LTokElim on the obvious Φ(U). The case Φ(nil) is proved by the trivial
fact V++nil = V . We show next that Φ(U) → Φ(b :: U) := Con(V ) → V � b :: U →
Con(V++(b :: U)) in two steps. First we show that Con(b :: (V++U)). By Lemma 5(x) it
suffices to show that V++U ` b (we have that Con(V++U) by the inductive hypothesis
Φ(U) and the fact that V � b :: U → V � U). That we get by applying Lemma 6(v)
on V++U, V and b. Then we show that V++(b :: U)⊆̇b :: (V++U); this suffices because
then we have Con(b :: (V++U)) by Lemma 3(v). It is easy to see that V ⊆̇b :: (V++U),
b :: U⊆̇b :: (V++U), and then we conclude that V++(b :: U)⊆̇b :: (V++U) by using the
following easy to show property of ++:

∀U1,U2,U3(U1⊆̇U3 → U2⊆̇U3 → (U1++U2)⊆̇U3).

(iv) By (iii) we know that Con(V++U). Since it is easy to see that U⊆̇V++U , we get Con(U)
by Lemma 3(v).

J

A.3 The syntactic information system SCD→D

Lemma 9. (i) ∀W (∀u(arrAltcon(u,W )↔ ∀w(w∈̇W → arrcon(u,w)))).
(ii) ∀w(arrcon(w,w)).
(iii) ∀w(arrCon(w :: Nil)).
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(iv) ∀W (∀w1,w2(w1∈̇W → w2∈̇W → arrcon(w1, w2))↔ arrCon(W )).
(v) ∀W1,W2(arrCon(W1)→W2⊆̇W1 → arrCon(W2)).

Proof. Similar to the proof of Lemma 321.
J

Lemma 10. (i) ∀W,u(u :: W ` u).
(ii) ∀W,u,w(W ` w → u :: W ` w).
(iii) ∀W (∀u((u∈̇W →W ` u)).

Proof. (i) By the definition of `D→D and AltEntList we need to show that

PTS((lft(u) � lft(u)) :: AltEntList(lft(u),One(W )), rht(u) :: Two(W )) ` rht(u).

Since by Corollary 8(i) (lft(u) � lft(u)) = tt, by the definition of PTS we get

rht(u) :: PTS(AltEntList(lft(u),One(W )),Two(W )) ` rht(u),

which holds by Lemma 4(v).
(ii) By the definitions of One,Two and AltEntList we need to show

PTS(AltEntList(lft(w), lft(u) :: One(W )), rht(u) :: Two(W )) ` rht(w)↔

PTS((lft(w) � lft(u)) :: AltEntList(lft(w),One(W )), rht(u) :: Two(W )) ` rht(w).

If (lft(w) � lft(u)) = tt, then by the definition of PTS we get

rht(u) :: PTS(AltEntList(lft(w),One(W )),Two(W )) ` rht(w).

Since the hypothesis W ` w is exactly the entailment

PTS(AltEntList(lft(w),One(W )),Two(W )) ` rht(w),

we get what we want by a trivial use of Lemma 6(v). If (lft(w) � lft(u)) = ff, then what we
want to show is reduced directly to the above entailment of the hypothesis.
(iii) We apply the, similar to LTokElim defined, LTokElimD→D on the obvious Φ(W ). The
case Φ(Nil) is proved trivially through Efq. To show Φ(u :: W ) i.e., w∈̇(u :: W )→ (u :: W ) `
w we use (i), in case w = u, while in case w∈̇W we use the hypothesis Φ(W ) and (ii). J

Lemma 11. (i) ∀U (∀V1,V2,UU(V1 � V2 →

PTS(AltEntList(V2,UU), U) ⊆̇ PTS(AltEntList(V1,UU), U))).

(ii) ∀U1,U2,W,a(U1 � U2 → App(W,U2) ` a→ App(W,U1) ` a).
(iii) ∀W1(∀W2,V (W2 �W1 → App(W2, V ) � App(W1, V ))).
(iv) ∀W1,W2,u(W1 �W2 →W2 ` u→W1 ` u).

21Actually, both lemmas are special cases of an easy to formulate general proposition. This analogy in
the treatment of consistency was revealed again by the implementation procedure.
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Proof. (i) We apply LTokElim on the obvious Φ(U). The case Φ(nil) is proved by the trivial
fact PTS(BB,nil) = nil, for each list of booleans BB. To show Φ(U) → Φ(b :: U) for some
fixed token b we assume V1 � V2 and we prove

Φ′(UU) := PTS(AltEntList(V2,UU), b :: U) ⊆̇ PTS(AltEntList(V1,UU), b :: U)))

using the corresponding elimination axiom. The case Φ′(nnil) holds trivially by the definition
of PTS and the fact that AltEntList(V2,nnil) = nilB. For the inductive step we assume
Φ′(UU) and we show Φ′(V :: UU), that is,

PTS(AltEntList(V2, V :: UU), b :: U) ⊆̇ PTS(AltEntList(V1, V :: UU), b :: U)))↔

PTS((V2 � V ) :: AltEntList(V2,UU), b :: U) ⊆̇ PTS((V1 � V ) :: AltEntList(V1,UU), b :: U))).

If (V2 � V ) = tt, therefore by Corollary 8(ii) (V1 � V ) = tt too, the last inclusion is reduced to

b :: PTS(AltEntList(V2,UU), U) ⊆̇ b :: PTS(AltEntList(V1,UU), U))),

which is trivially implied by the hypothesis Φ(U). If (V2 � V ) = ff, then we are reduced
directly to the inductive hypothesis Φ(U).
(ii) Applying (i) on (Two(W ), U1, U2,One(W )) we get App(W,U2)⊆̇App(W,U1), which en-
tails, by Lemma 4(v), that App(W,U1) � App(W,U2). Then we just use Lemma 6(v).
(iii) We apply LTokElimD→D on the obvious Φ(W1). The case Φ(Nil) follows by

App(Nil, V ) = PTS(AltEntList(V,One(Nil)),Two(Nil))
= PTS(AltEntList(V,nnil),nil)
= PTS(nilB,nil)
= nil.

Assuming Φ(W1) we show Φ(u :: W1), for some arrow token u. We suppose thatW2 � (u :: W1)
and we prove that App(W2, V ) � App(u :: W1, V ). By definition

App(u :: W1, V ) = PTS(AltEntList(V,One(u :: W1)),Two(u :: W1))
= PTS(AltEntList(V, lft(u) :: One(W1)), rht(u) :: Two(W1))
= PTS((V � lft(u)) :: AltEntList(V,One(W1)), rht(u) :: Two(W1)).

If (V � lft(u)) = tt, we need to show that

App(W2, V ) � rht(u) :: PTS(AltEntList(V,One(W1),Two(W1))
� rht(u) :: App(W1, V ).

The fact that App(W2, V ) � App(W1, V ) follows from Φ(W1) and the trivial implication
W2 � (u :: W1)→W2 �W1. Also, applying (ii) on (V, lft(u),W2, rht(u)), and since W2 ` u,
we have that

V � lft(u)→ App(W2, lft(u)) ` rht(u)→ App(W2, V ) ` rht(u).

If (V � lft(u)) = ff, then App(u :: W1, V ) = App(W1, V ) and we apply the inductive
hypothesis Φ(W1).
(iv) Suppose that W1 � W2 and W2 ` u := App(W2, lft(u)) ` rht(u). By (iii) we get that
App(W1, lft(u)) � App(W2, lft(u)) and by Lemma 6(v) we conclude that App(W1, lft(u)) `
rht(u) i.e., W1 ` u. J
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Lemma 12. (i) ∀W (∀n(n < |W | → Proj(n,W )∈̇W )).
(iia) ∀W (∀n(n < |W | → Proj(n,One(W )) = lft(Proj(n,W )))).
(iib) ∀W (∀n(n < |W | → Proj(n,Two(W )) = rht(Proj(n,W )))).
(iii) ∀UU(∀n,U (n < |UU| → Proj(n,AltEntList(U,UU)) = (U � Proj(n,UU)))).
(iv) ∀U (∀BB,b(b∈̇PTS(BB, U)→ ∃n(n < |BB| ∧ Proj(n,BB) = tt ∧ Proj(n,U) = b))).
(v) ∀b,W,U (b∈̇App(W,U)→ ∃n(n < |W | ∧ U � lft(Proj(n,W )) ∧ rht(Proj(n,W )) = b)).
(viii) ∀W,u,w(arrCon(W )→ u∈̇W →W ` w → arrcon(w, u)).
(ix) ∀W,u(arrCon(W )→W ` u→ arrAltcon(u,W )).
(x) ∀W,u(arrCon(W )→W ` u→ arrCon(u :: W )).

Proof. (i) We apply LTokElimD→D on the appropriate Φ(W ) in order to show

(∗) ∀W (∀w,n(n < |w :: W | → Proj(n,w :: W )∈̇(w :: W ))).

The case Φ(Nil) is derived by the obvious fact Proj(0, w :: W ) = w∈̇(w :: W ). Next we
suppose Φ(W ) and we show Φ(u :: W ) i.e., m < |w :: (u :: W )| → Proj(m,w :: (u :: W ))∈̇(w ::
(u :: W )). If m = 0, we work as in the case Φ(Nil). Supposing that the above holds for m we
show it for m+ 1 = S(m). If m < |w :: (u :: W )| ↔ m < |u :: W |, then, since by definition
Proj(m+ 1, w :: (u :: W )) = Proj(m,u :: W ), we take by the inductive hypothesis Φ(W ) on
u,m that Proj(m,u :: W )∈̇(u :: W ), therefore Proj(m,u :: W )∈̇(w :: (u :: W )). In order now
to show (i) we apply LTokElimD→D on the appropriate Φ′(W ). The case Φ′(Nil) is derived
trivially by Efq. The inductive step is proved directly by (∗).
(iia) By applying LTokElimD→D on the appropriate Φ(W ) we show that

(∗∗) ∀W (∀n(∀u(n < |u :: W | → Proj(n,One(u :: W )) = lft(Proj(n, u :: W ))))).

The case Φ(Nil) is derived by the obvious fact

Proj(0, lft(u) :: One(Nil)) = lft(u) = lft(Proj(0, (u :: Nil)),

and, if 0 < n, we use Efq. Supposing next Φ(W ) we show Φ(w :: W ) i.e.,

∀n(∀u(n < |u :: (w :: W )| → Proj(n,One(u :: (w :: W ))) = lft(Proj(n, u :: (w :: W ))))),

by applying LTokElimN again on the obvious formula A(n). The case A(0) is proved directly
by

Proj(0, lft(u) :: One(w :: W )) = lft(u) = lft(Proj(0, u :: (w :: W )).

In order to show A(n)→ A(n+ 1) we suppose that n+ 1 < |u :: (w :: W )| ↔ n < |w :: W |,
and then by the inductive hypothesis Φ(W ) on n,w we get

Proj(n+ 1,One(u :: (w :: W ))) = Proj(n+ 1, lft(u) :: One(w :: W ))
= Proj(n,One(w :: W )
= lft(Proj(n,w :: W ))
= lft(Proj(n+ 1, u :: (w :: W ))).

The proof of (iia) then follows by a simple application of LTokElimD→D on the obvious
Φ′(W ). The proof of (iib) is exactly the same.
(iii) The proof is similar to the proof of (iia); first we prove

∀UU(∀n(∀U,V (n < |V :: UU| → Proj(n,AltEntList(U, V :: UU)) = (U � Proj(n, (V :: UU)))))),
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and then we prove easily (iii).
(iv) We apply LTokElimD on the obvious Φ(U). The case Φ(nil) is proved directly by Efq.
To show Φ(U)→ Φ(a :: U) we show

b∈̇PTS(BB, a :: U)→ ∃n(n < |BB| ∧ Proj(n,BB) = tt ∧ Proj(n, a :: U) = b)

by applying LTokElimB on the obvious Φ′(BB). The case Φ′(nilB) is proved again by
Efq. In order to show Φ′(BB) → Φ(bb :: BB) we suppose that b∈̇PTS(bb :: BB, a :: U). If
bb = tt, then PTS(tt :: BB, a :: U) = a :: PTS(BB, U). If b = a, then clearly n = 0. If
b∈̇PTS(BB, U), then the required natural is n + 1, where n is the one determined by the
hypothesis Φ′(BB), since by definition Proj(n,BB) = Proj(n + 1, bb :: BB). If bb = ff, then
PTS(ff :: BB, a :: U) = PTS(BB, U), and the required natural is again n+ 1, where n is the
one determined by the hypothesis Φ′(BB).
(v) By the definition of App(W,U) it suffices to apply (iv) on the pair

(U,BB) = (Two(W ),AltEntList(U,One(W ))).

Thus we get the existence of an n such that

n < |AltEntList(U,One(W ))|∧Proj(n,AltEntList(U,One(W ))) = tt∧Proj(n,Two(W )) = b.

Since it is easy to show that

|AltEntList(U,One(W ))| = |One(W )| = |W |,

we get the first required conjunct. Also,

Proj(n,AltEntList(U,One(W ))) = tt (iii)↔ U � Proj(n,One(W )) = tt
↔ U � Proj(n,One(W ))
(iia)↔ U � lft(Proj(n,W )).

Finally, by (iib) we have that Proj(n,Two(W )) = b↔ rht(Proj(n,W )) = b.
(viii) It suffices to consider only the case Con(lft(w)++lft(u)) = tt and then show that
con(rht(w), rht(u)) = tt. By Lemma 11(ii) we have that

lft(w)++lft(u) � lft(w)→ App(W, lft(w)) ` rht(w)→ App(W, lft(w)++lft(u)) ` rht(w).

Since by Lemma 3(v) we have that lft(w)++lft(u) � lft(w) and by the definition of W ` w
we have that App(W, lft(w)) ` rht(w), we conclude App(W, lft(w)++lft(u)) ` rht(w). By
Lemma 5(x) we then get

Con(rht(w) :: App(W, lft(w)++lft(u))),

and by applying (vii) on W,u, lft(w) we have that

rht(u)∈̇App(W, lft(w)++lft(u)).

Since rht(w), rht(u)∈̇(rht(w) :: App(W, lft(w)++lft(u))), through Lemma 3(iv) we get the
required con(rht(w), rht(u)).
(ix) By Lemma 9(i) we only nee to show w∈̇W → arrcon(u,w), which is derived directly
from (viii).
(x) By definition arrCon(u :: W ) = arrAltcon(u,W ) ∧ arrCon(W ). By case (ix) we get
arrAltcon(u,W ), while by hypothesis we already have arrCon(W ). J



I. Petrakis 27

A.4 A point-free density theorem in D
Lemma 15. (i) ∀U (∀V (U⊆̇V ↔ V � U)).
(ii) ∀V (Con(V )→ ∀U,a(Ideal(V ,U, a))).

Proof. (i) We apply LTokElimD on the obvious Φ(U). The case Φ(nil), that is, nil⊆̇V ↔
V � nil, is direct. Next we suppose that Φ(U) and we show Φ(b :: U) i.e.,

b∈̇V ∧ U⊆̇V ↔ V ` a ∧ V � U.

It is obvious by the definition of ∈̇ that b∈̇V ↔ V ` a, while by the inductive hypothesis
Φ(U) we get U⊆̇V ↔ V � U .
(ii) We assume V,Con(V ), U, a and we show Ideal(V ,U, a) i.e.,

[U⊆̇V →B Con(U)] ∧B [(U⊆̇V ∧B U ` a)→B V ` a].

For the first conjunct it suffices to consider the case (U⊆̇V ) = tt. By (i) we get that V � U ,
and by Corollary 8(iv) we conclude Con(U). For the second conjunct it suffices also to
assume (U⊆̇V ∧B U ` a) = tt. By (i) again we have that V � U , while by Lemma 6(v) we
conclude V ` a. J

I Lemma 20. (i) ∀a(total(t(a))).
(ii) ∀a(t(a) :: nil ` a).

Proof. Both proofs are simple applications of TokElimD on the obvious formulas φ(a). J

Lemma 17. (i) ∀a(sup(a, a) = a).
(ii) ∀a(∀b(sup(a, b) = sup(b, a))).
(iiia) ∀a(∀b(con(a, b)→ sup(a, b) :: nil ` a)).
(iiib) ∀a(∀b(con(a, b)→ sup(a, b) :: nil ` b)).
(iv) ∀a(∀b(∀c(con(a, b)→ con(b, c)→ con(a, c)→ con(sup(a, b), sup(b, c))))).

Proof. Cases (i) and (ii) are simple applications of TokElimD on the obvious formulas φ(a).
(iiia) We apply TokElimD on the obvious formula φ(a). The case φ(∗) is trivial by the
definition of `. Since by the definition of con we have that con(0, b)↔ b = ∗ ∨ b = 0, then
sup(0, b) = 0→ (0 :: nil) ` 0. Next we suppose that φ(a1), φ(a2) and we show φ(Ca1a2) i.e.,

∀b(con(Ca1a2, b)→ sup(Ca1a2, b) :: nil ` Ca1a2),

by applying TokElimD on the obvious formula φ′(a). The case φ′(∗) is proved by Lemma 4(v),
since by definition sup(Ca1a2, ∗) = Ca1a2, while the case φ′(0) is reduced to the formula ff →
ff. Next we suppose that φ′(b1), φ′(b2) and we show φ′(Cb1b2). Since con(Ca1a2, Cb1b2) =
con(a1, b1) ∧ con(a2, b2) and sup(Ca1a2, Cb1b2) = C sup(a1, b1) sup(a2, b2) we get

C sup(a1, b1) sup(a2, b2) :: nil ` Ca1a2 ↔ sup(a1, b1) :: nil ` a1 ∧ sup(a2, b2) :: nil ` a2,

which follows by applying the inductive hypotheses φ(a1), φ(a2) on b1, b2, respectively.
(iiib) The proof is similar to the proof of (iiia).
(iv) We apply TokElimD on the obvious formula φ(a). The case φ(∗) takes the form

∀b(∀c(con(∗, b)→ con(b, c)→ con(∗, c)→ con(b, sup(b, c)).
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By (iiia) we take sup(b, c) :: nil ` b therefore, by Lemma 5(x), Con(b :: sup(b, c) :: nil), which
entails, by Lemma 3(iv), con(b, sup(b, c)). The case φ(0) takes the form

∀b(∀c(con(0, b)→ con(b, c)→ con(0, c)→ con(sup(0, b), sup(b, c)).

By hypotheses con(0, b), con(0, c) though, we conclude that b, c are either 0 or ∗. In all four
cases the required consistency follows trivially. Next we suppose φ(a1), φ(a2) and we show
φ(Ca1a2) i.e.,

∀b(∀c(con(Ca1a2, b)→ con(b, c)→ con(Ca1a2, c)→ con(sup(Ca1a2, b), sup(b, c)),

by applying TokElimD on the obvious formula φ′(b). The conclusion of the case φ′(∗) becomes
con(Ca1a2, c), which is already a hypothesis. The case φ′(0) is proved directly by Efq, since
con(Ca1a2, 0) = ff. Next we suppose φ′(b1), φ′(b2) and we show φ′(Cb1b2) i.e.,

∀c(con(Ca1a2, Cb1b2)→ con(Cb1b2, c)→ con(Ca1a2, c)→

→ con(sup(Ca1a2, Cb1b2), sup(Cb1b2, c)),

by applying TokElimD on the obvious formula φ′′(c). The conclusion of φ′′(∗) becomes

con(C sup(a1, b1) sup(a2, b2), Cb1b2)↔ con(sup(a1, b1), b1) ∧ con(sup(a2, b2), b2).

We derive the first conjunct and similarly we work for the second. By the hypothesis
con(Ca1a2, Cb1b2) we have that con(a1b1) and by (iiib) we get sup(a1, b1) :: nil ` b1. Then
we conclude that con(sup(a1, b1), b1) arguing in exactly the same way as in the case of φ(∗).
The case φ′′(0) is proved directly from Efq, since con(Cb1b2, 0) = ff. Finally we suppose
φ′′(c1), φ′′(c2) and we prove φ′′(Cc1c2) i.e.,

con(Ca1a2, Cb1b2)→ con(Cb1b2, Cc1c2)→ con(Ca1a2, Cc1c2)→

→ con(sup(Ca1a2, Cb1b2), sup(Cb1b2, Cc1c2).

The conclusion of this case takes the form

con(C sup(a1, b1) sup(a2, b2), C sup(b1, c1) sup(b2, c2))↔

con(sup(a1, b1), sup(b1, c1)) ∧ con(sup(b1, c1), sup(b2, c2)).

We derive the first conjunct and we work similarly for the second. The hypotheses
con(Ca1a2, Cb1b2), con(Cb1b2, Cc1c2) and con(Ca1a2, Cc1c2) entail con(a1, b1), con(b1, c1),
and con(a1, c1), respectively. Applying the inductive hypothesis φ(a1) on b1, c1, we get
con(sup(a1, b1), sup(b1, c1). J
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