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Abstract: We define a Hausdorff extension of the Scott topology on the domain of
ideals of an information system. This topology can be characterized as the topology of
the “strong Scott condition”, a strong version of the standard Scott condition. To our
knowledge this is a new refinement of the Scott topology. We prove its basic properties
and we show that in general it properly refines the corresponding Lawson topology,
the strong topology associated with the Scott topology and the liminf topology. We
also prove some basic results on continuity of functions with respect to this topology
and we show how the Alexandrov condition and the Scott condition are related to the
introduced notion of a pair of approximation structures for the same set.

1 Information systems and approximation structures

Following the minor modification of the definition of Scott [Scott 1982] due

to Larsen and Winskel [Larsen and Winskel 1991], an information system is a

structure A = (A,Con,`), where A is a non-empty set of tokens or data objects,

Con is a non-empty set of finite subsets of A known as consistent sets or formal

neighborhoods and ` is a subset of Con×A, the entailment relation, satisfying:

(i) if V ⊂ U and U ∈ Con, then V ∈ Con, (ii) if a ∈ A, then {a} ∈ Con, (iii) if

U ` a, then U ∪ {a} ∈ Con, (iv) if U ∈ Con and a ∈ U , then U ` a and (v) if

U,W ∈ Con and U `W , then W ` a→ U ` a, where U `W means that U ` c,
for each c ∈W .

An ideal J of A is a subset of A satisfying: (i) if U is a finite subset of J ,

U ⊆fin J , then U ∈ Con and (ii) if U ⊆fin J and U ` a, then a ∈ J . Let

|A| denote the set of ideals of A. If U ∈ Con, then the deductive closure of U ,

U = {a ∈ A : U ` a}, is an ideal called compact. Let |A|0 denote the set of all

compact ideals J0 of A. Since ∅ ∈ Con, ⊥ = ∅ is an ideal included in all ideals

of A.

A partial ordering (D,≤) is called a complete partial ordering (cpo), if there

is a least element ⊥ and every directed F ⊆ D has a least upper bound (lub),∨
F , in D, where F ⊆ D is called directed, if each finite subset of F is bounded

in F . An element d0 of a cpo D is called compact, if for every directed F ⊆ D

d0 ≤
∨
F → d0 ≤ b ,

for some b ∈ F . Let D0 denote the non-empty set (⊥ ∈ D0) of the compact

elements of D. A cpo (D,≤) is called algebraic, if for each d ∈ D the non-empty



set

D0(d) = {d0 ∈ D0 : d0 ≤ d}

is directed and d =
∨
D0(d). In this case we call D0 the base of D. A cpo (D,≤)

is called consistently complete, if every bounded (finite) subset of D has a lub in

D. A domain is a consistently complete, algebraic cpo (D,≤,⊥, D0).

It is direct to prove that if A is an information system, then the structure

(|A|,⊆,⊥, |A|0) is a domain. Conversely, every domain D can be identified to

the domain of ideals of an appropriately defined by D information system AD
(see [Stoltenberg-Hansen et.al 1994] or [Schwichtenberg and Wainer 2012]).

The fact that each ideal J of an information system A is the union of all the

compact ideals included in it,

J =
⋃
U⊆J

U,

expresses an approximation of the abstract object J by its compact sub-ideals.

The concept of approximation can be abstractly defined as follows1. If X,P are

non-empty sets, a relation ≺ ⊆ P ×X is called an approximation of X by P

and p ≺ x is interpreted as “p approximates x”. A quasi-ordering ≤ (that is a

reflexive and a transitive relation) is defined on P by

p ≤ q ↔ (∀x ∈ X)q ≺ x→ p ≺ x.

If p ≤ q, then “q is a better approximation than p”, since q approximates fewer

elements than p. We call an approximation relation external, if P ⊆ P(X) and

p ≺ x is of the form x ∈ p, in which case p ≤ q ↔ p ⊇ q. We call an approximation

relation internal, if it is not external. The set P (x) = {p ∈ P : p ≺ x} contains

all P -approximations of x w.r.t. ≺.

Suppose that ≺ is an approximation of X by P , ≤ is the induced quasi-

ordering and ⊥ ∈ P . A structure Π = (X,P,≺,≤,⊥) is called an approxi-

mation structure for X w.r.t. ≺, if (i) P (x) = P (y) → x = y, (ii) p, q ≺ x →
(∃r ≺ x)p, q ≤ r and (iii) (∀x ∈ X)⊥ ≺ x.

Due to condition (i) each x ∈ X is uniquely determined by its approximations

P (x), while condition (ii) expresses that P (x) is a directed subset of P . The

object ⊥ approximates all elements of X, therefore ⊥ ≤ p, for each p ∈ P .

We call an approximation structure Π external, if its approximation relation is

external, and in case X ∈ P we denote it by (X,P,∈,⊇, X). Also, we call an

approximation structure Π strict, if (∀p ∈ P )(∃x ∈ X)p ≺ x, i.e., if P contains

no information data irrelevant to X. An approximation structure Π can be

1 Except the definition of an approximation structure which can be found
in [Stoltenberg-Hansen 2001], all the other definitions related to approximations are
introduced here.



related to some extra structure of X. For example, if R is a binary relation on

X we say that R is compatible with Π, if

(∀x, x′, p)p ≺ x→ R(x, x′)→ p ≺ x′ .

If Π1 = (X,P1,≺1,≤1,⊥1) and Π2 = (X,P2,≺2,≤2,⊥2) are approximation

structures for the same set X satisfying a compatibility condition of the form

(∀x)(∀p1)p1 ≺1 x→ (∃p2 ≺2 x)S(p2, p1) ,

where S ⊆ P2 × P1, then we say that Π1, Π2 form a pair of approximation

structures (Π1, Π2). The strong compatibility condition of a pair (Π1, Π2) is the

following strong version of its compatibility condition

(∀x)(∀p1)p1 ≺1 x→ (∃p2 ≺2 x)(∀q2)p2 ≤2 q2 ≺2 x→ S(q2, p1) .

If R is a given binary relation on X and (Π1, Π2) is a pair of approximation

structures for X such that R is compatible with both Π1 and Π2, then we call

(Π1, Π2) an Alexandrov pair of approximation structures for X w.r.t. R. If R is

not compatible with Π1 or Π2, we call (Π1, Π2) a Scott pair of approximation

structures for X w.r.t. R.

If (X, T ) is a T0 topological space and B is a basis for T , then Π1 =

(X, T ,∈,⊇, X) and Π2 = (X,B ∪ {X},∈,⊇, X) are two external approxima-

tion structures for X. The structure Π2 is strict, while Π1 is not. Also, Π1, Π2

form a pair because of the trivial compatibility condition (∀x)(∀O)x ∈ O →
(∃B 3 x)B ⊆ O, which can be strengthened to the formula (∀x)(∀O)x ∈ O →
(∃B 3 x)(∀B′)x ∈ B′ ⊆ B → B′ ⊆ O.

If R is the set of reals and Q is the set of rationals, then the structure

Π1 = (R, {[p, q] : p, q ∈ Q, p ≤ q} ∪ {[−∞,+∞]},∈,⊇, [−∞,+∞]) is a strict and

external approximation structure for R. If QN is the set of sequences of ra-

tionals, then the relation (qn) ≺ x ↔ (qn)� x is an approximation of R by

QN, where (qn) � x denotes that x is an accumulation point of (qn) within

the standard topology of R. Also, (pn) ≤ (qn) ↔ L(pn) ⊇ L(qn), where L(pn)

denotes the set of limit points of the sequence (pn). It is direct to see that

Π2 = (R,QN,�,≤,Q) is an internal approximation structure for R, which

is not strict since the sequence qn = n, for each n, has no accumulation

points. Structures Π1, Π2 form a Scott pair of approximations for R w.r.t. <,

the standard ordering of reals, since they satisfy the compatibility condition

(∀x)(∀[p, q])x ∈ [p, q] → (∃(qn)� x)(qn) ⊆ [p, q], but < is not compatible nei-

ther with Π1 nor with Π2; if x < x′ and x ∈ [p, q] or (qn)� x, then we cannot

infer neither x′ ∈ [p, q] nor (qn)� x′.

The Scott topology S on the set of ideals |A| of an information system A has

as basis all sets

OU = {J ∈ |A| : U ⊆fin J} .



Since (|A|,S) is a T0-space, following our first example of an approxima-

tion structure we get that ΠS = (|A|,S,∈,⊇, |A|) is an external approxima-

tion structure for |A|. It is also standard (see [Stoltenberg-Hansen et.al 1994]

or [Schwichtenberg and Wainer 2012]) that O ∈ S if and only if O satisfies the

Alexandrov condition

(∀J, J ′)(∀O)J ∈ O → J ⊆ J ′ → J ′ ∈ O

and the Scott condition

(∀J)(∀O)J ∈ O → (∃U ⊆ J)U ∈ O .

Within our terminology the Alexandrov condition expresses that the ordering

⊆ of ideals is compatible with the approximation structure ΠS and is justi-

fied through a “forcing” interpretation of J ∈ O given by Smyth [Smyth 1988].

According to it, an open set O is thought of as an “observable property” and el-

ementhood J ∈ O is interpreted as J “forces” property O to hold, or J contains

enough information for property O to hold. To interpret the Scott condition in

our language we need to connect ΠS to another approximation structure for |A|.
If A is an information system then Π0 = (|A|, |A|0,⊆,a,⊥) is a strict and

internal approximation structure2 for |A|, where U ≤ V ↔ U ⊆ V ↔ U a V .

It is trivial that the ordering of ideals ⊆ is compatible with Π0 too. The Scott

condition is a compatibility condition between the structures ΠS and Π0, which

form an Alexandrov pair of approximation structures (ΠS , Π0) for |A| w.r.t. ⊆.

The Alexandrov condition together with the Scott condition imply the fol-

lowing strong version of the Scott condition

(∀J)(∀O)J ∈ O → (∃U ⊆ J)(∀V )[U ⊆ V ⊆ J → V ∈ O] ,

which we call the strong Scott condition. Clearly, the strong Scott condition

is the strong compatibility condition of the pair (ΠS , Π0) corresponding to its

compatibility condition given by the Scott condition. Although the strong Scott

condition trivially implies the Scott condition, the strong Scott condition does

not imply the Alexandrov condition and Scott pairs of approximation structures

for |A| w.r.t. ⊆ can be found.

2 In the same way, an approximation structure (D,D0,4,≤,⊥) corresponds to any
domain (D,4,⊥, D0). One can also show (see [Stoltenberg-Hansen 2001]) that if
(X,P,≺,≤,⊥) is an approximation structure for X such that (P,≤) is a cusl, i.e.,
a partial ordering with a least element such that if p, q are bounded elements of P ,
then p ∨ q ∈ P , an information system AP is naturally defined by it. Moreover, the
order ideals of (P,≤), i.e., its directed and downward closed subsets, are the ideals
of AP .



2 Basic properties of the topology of the strong Scott
condition

In order to be self-contained we include the following standard definitions3. A

directed set (Λ,≤) is a quasi-ordering, every pair of which has an upper bound.

If X is a non-empty set, a net in X is a function x : Λ → X, where (Λ,≤)

is a directed set, denoted by (xλ)λ∈Λ, or simply by (xλ). If (M,�) (Λ,≤) are

directed sets, a function ϕ : M → Λ is called a directed map, if (∀λ ∈ Λ)(∃µ(λ) ∈
M)(∀µ � µ(λ))ϕ(µ) ≥ λ. If (xλ)λ∈Λ, (yµ)µ∈M are nets in X, then (yµ)µ∈M is a

subnet of (xλ)λ∈Λ if there is a directed map ϕ : M → Λ such that yµ = xϕ(µ),

for each µ. We denote a subnet (yµ)µ∈M of (xλ)λ∈Λ by (xϕ(µ))µ∈M , or simply

by (xλµ). A net (xλ)λ∈Λ in X is a constant net, if there is some x ∈ X such that

xλ = x, for each λ ∈ Λ. We denote such a constant net by (x). If (X, T ) is a

topological space and (xλ)λ ⊆ X, the net (xλ)λ converges to x ∈ X, (xλ)λ
T→ x

or simply (xλ)λ → x, if (∀O 3 x)(∃λ0)(∀λ ≥ λ0)xλ ∈ O. Of course, it suffices for

O to be a basic open set. In the case of the Scott topology the above convergence

takes the form

(Iλ)λ
S→ J ↔ (∀U ⊆fin J)(∃λ0)(∀λ ≥ λ0)U ⊆ Iλ .

Consider Λ to be a fixed index set for the ideals |A| of an information system

A, and Λ0 the subset of Λ which indexes |A|0. That is, |A| = {Jλ : λ ∈ Λ} and

|A|0 = {Jλ : λ ∈ Λ0}. The sets Λ,Λ0 are ordered according to the condition

λ ≤ λ′ ↔ Jλ ⊆ Jλ′ . If J is a fixed ideal of A, the sets

Λ(J) = {λ ∈ Λ : Jλ ⊆ J} and Λ0(J) = {λ ∈ Λ0 : Jλ ⊆ J}

are directed subsets of Λ and we call the corresponding nets in |A|

(Jλ)λ∈Λ(J) and (Jλ)λ∈Λ0(J) ,

the ideal net and the compact net of J , respectively. Obviously, J =
⋃
λ∈Λ0(J)

Jλ
and each (Λ(J),≤) or (Λ0(J),≤) has the same least element λ⊥, for which

Jλ⊥ = ⊥.

Note that if J ∈ |A|0, then Λ0(J) is not necessarily a finite set. To show this

we construct an information system A, a compact ideal of which has infinite

compact sub-ideals. Let A = {a0, a1, a2, ...}, Con be the set Pfin(A) of all finite

subsets of A and the entailment relation be defined as follows: a0 ` an, for each

n, and each finite subset of A \ {a0} entails only itself. It is easy to see that

(A,Con,`) is an information system such that {a0} = A, while its sub-ideals

{ai1 , ..., ain} = {ai1 , ..., ain}, where each aik 6= a0, are infinite. Moreover, the

set A \ {a0} is a non-compact ideal of A which is included to a compact one

(A \ {a0} ⊆ A = {a0}).
3 For all the topological notions not defined here see [Dugungji 1990].



Also, if J /∈ |A|0, then Λ0(J) is necessarily infinite. If J /∈ |A|0 and

Λ0(J) = {λ1, ..., λn},

for some n, i.e.,

J =

n⋃
i=1

Jλk = {a(1)1 , ..., a
(1)
m1} ∪ ... ∪ {a

(n)
1 , ..., a

(n)
mn},

then the ideal

J0 = {a(1)1 , ..., a
(1)
m1 , ..., a

(n)
1 , ..., a

(n)
mn}

belongs to |A|0, since the finite subset {a(1)1 , ..., a
(1)
m1 , ..., a

(n)
1 , ..., a

(n)
mn} of J belongs

to Con. By the deductive closure of J , J0 ⊆ J . Also, if b ∈ J , then b ∈ Jλk ,

for some k, and since Jλk ⊆ J0, b ∈ J0 too. The conclusion J = J0 though,

contradicts our hypothesis J /∈ |A|0.

It is also trivial to show that if J ∈ |A|, then

(Jλ)λ∈Λ(J)
S→ J and (Jλ)λ∈Λ0(J)

S→ J .

There are nets though, converging to J w.r.t. the Scott topology that are not

contained in the compact net of J . If I ⊇ J , then the constant net (I) converges

to J w.r.t. S and it is not contained in the compact net of J (actually {I}, the

S-closure of {I}, is equal to ↓I = {J ′ ∈ |A| : J ′ ⊆ I}). Thus, a net (Iµ)µ may

converge to some J ∈ |A| w.r.t. to S, though keeping “information distance”

from J . In other words, S-convergence permits information irrelevance, exactly

because of the Alexandrov condition.

We define a Hausdorff extension σ of the Scott topology on |A| (and in a

similar way on an abstract domain) as the induced topology of a convergence

space in net form (see [Heinze et.al 2001]). If X is a non-empty set, the pair

(X, (Nx)x∈X) is called a convergence space in net form, if for each x, Nx is a

family of nets in X such that (i) if (x) is a constant net in X, then (x) ∈ Nx
and (ii) if (xλ) is a net in X such that: (xλ) ∈ Nx, and (xλµ) is a subnet of (xλ),

then (xλµ) ∈ Nx. An O ⊆ X is called N -open if

(∀x ∈ O)(∀(xλ)λ∈Λ ∈ Nx)(∃λ0 ∈ Λ)(∀λ ≥ λ0)xλ ∈ O

i.e., if for each point x of O all nets in Nx lie eventually in O. The collection of all

N -open sets satisfies the properties of a topology N , which is called the induced

topology of a convergence space in net form. Clearly, if (X, T ) is a topological

space and (xλ) is a net inX such that (xλ) ∈ Nx ↔ (xλ)
T→ x, then (X, (Nx)x∈X)

is a convergence space in net form and its induced topology is identical to T .

Also, if Nx contains only the constant nets, then N = P(X).



To each ideal J of |A| we assign a family of nets σJ containing all subnets of

the compact net (Jλ)λ∈Λ0(J) of J and all the constant nets with value J . Then

(|A|, (σJ)J∈|A|)

is a convergence space in net form, since a subnet of a constant net (J) is also

a constant net with value J , and a subnet of a subnet of the compact net of

J is again a subnet of the compact net of J . A σ-open set O is defined by the

condition

(∀J ∈ O)(∀(Iλ)λ∈Λ ∈ σJ)(∃λ0 ∈ Λ)(∀λ ≥ λ0)Iλ ∈ O,

which is reduced to

(∀J ∈ O)(∃λ0 ∈ Λ(J))(∀λ ∈ Λ0(J))λ ≥ λ0 → Jλ ∈ O,

since if J ∈ O, all constant nets (J) are automatically included in O, and if the

whole compact net of J satisfies the initial openness condition, then each subnet

of it satisfies the openness condition too. Since the condition which characterizes

a σ-open set is the strong Scott condition we call the induced topology σ of the

convergence space in net form (|A|, (σJ)J∈|A|) the topology of the strong Scott

condition.

Theorem 1 The family of sets of ideals (J∗λ0
)λ0∈Λ0(J),J∈|A|, where

J∗λ0
= {Jλ|λ ∈ Λ0(J) ∧ λ ≥ λ0} ∪ {J},

is a basis for the topology σ on |A|. Moreover, (|A|, σ) is a totally disconnected

Hausdorff space which is not zero-dimensional.

Proof. Each set J∗λ0
is σ-open since it satisfies automatically the strong Scott

condition. Also, if J ∈ O ∈ σ, then the strong Scott condition determines some

λ0 ∈ Λ0(J) such that J ∈ J∗λ0
⊆ O.

To show that σ is Hausdorff we suppose that J1, J2 are ideals such that

there is a ∈ J1 \ J2 (the case a ∈ J2 \ J1 is treated in a similar way). Hence,

{a} = J1λ0 , for some λ0 ∈ Λ0(J1). Obviously, J1 ∈ J∗1λ0 and J2 ∈ J∗2λ⊥ , while

J∗1λ0
∩ J∗2λ⊥ = ∅, since otherwise a would belong to J2.

In order to show that (|A|, σ) is totally disconnected we remark first that if

U ∈ |A|0, then there is some λ0 ∈ Λ0(U) such that U = Uλ0 . Since {U} = U
∗
λ0

,

each {U} belongs to the above basis. Suppose that B is a set of ideals such

that B ) {J}, for some J ∈ |A|. If B contains a compact ideal U , then B is

not connected, since it can be written as the union B = {U} ∪B \ {U}, that

is, the union of disjoint open sets in B. If B contains no compact ideal, then

J∗λ⊥
∩B = {J}, therefore {J} is open in B. Again B is not connected since it is



written as B = {J} ∪B \ {J}. Thus, the connected components of (|A|, σ) are

the singletons.

To prove that the space (|A|, σ) is not zero-dimensional, it suffices to show

that in general we cannot find a clopen set K such that J ∈ K ⊆ J∗λ⊥
. If there

was such an open K contained in J∗λ⊥
, it would contain a basic open set J∗λ0

,

for some λ0 ∈ Λ0(J). The closure of such a set though, may contain a non-

compact ideal I ( J , so K cannot be included to J∗λ⊥
. Let A = {a0, a1, a2, ...}

and (A,Pfin(A),`) be the information system we defined previously in order to

show that a compact ideal may contain an infinite number of compact sub-ideals.

If B is an infinite subset of A \ {a0}, then B is a non-compact ideal. Suppose

that there is a σ-clopen set K such that B ∈ K ⊆ B∗λ⊥
. Since K is σ-open there

is some λ0 ∈ Λ0(B) such that B∗λ0
⊆ K. If al ∈ B \Bλ0

, then B \ {al} is a

non-compact ideal other than B. We show that B \ {al} ∈ K = K, where K is

the σ-closure of K, therefore K cannot be contained in B∗λ⊥
. It suffices to define

a net in K that σ-converges to B \ {al}. If (M,�) is a directed set and (Iµ)µ∈M
is a net of |A|, then its σ-convergence is characterized by

(Iµ)µ
σ→ J ↔ (∀λ0 ∈ Λ(J))(∃µ0)(∀µ � µ0)Iµ ∈ J∗λ0

.

The set Γ = {U : Bλ0
⊆ U ⊆fin B \ {al}} is a net in K such that B \ {al} =⋃

Γ , since if ak ∈ B \ {al}, then Bλ0 ∪ {ak} ∈ Γ . If V ⊆fin B \ {al}, then

V ∪Bλ0 ∈ Γ and all the ideals of Γ that contain V ∪ Bλ0 also contain V ,

therefore Γ
σ→ B \ {al}.

While the last argument of the previous proof shows that the σ-open set J∗λ⊥

is not generally σ-closed, the corresponding net ideal ↓J is σ-clopen. If I ∈ ↓J ,

then each Iλ, where λ ∈ Λ(I), is included in I, therefore the whole compact net

of I is included in ↓J . The set ↓J is also σ-closed because its complement is

σ-open. If I /∈ ↓J , then there is some a ∈ I \ J , therefore I∗µ0
is included in the

complement of ↓J , for some µ0 ∈ Λ0(I) such that {a} = Iµ0
.

Note that if J /∈ |A|0, no J∗λ0
is contained in {J} and consequently {J} /∈ σ.

Hence, σ is not generally equal to the power set P(|A|). Since {U} ∈ σ, the whole

|A|0 is σ-open, as the union of σ-open sets. Also, {U} is clopen, since (|A|, σ)

is T1. Moreover, the set λ0(J) = {Jλ : λ ∈ Λ0(J) ∧ λ ≥ λ0}, where λ0 ∈ Λ0(J),

is σ-open, since λ0(J) = (|A| \ {J}) ∩ J∗λ0
. For each Jλ ∈ λ0(J), the basic open

sets containing Jλ and included in λ0(J) are the singletons {Jλ}.
The fact that {U} ∈ σ shows how “thin” a σ-open set can be, a fact in

complete contrast to the S-open sets that satisfy the Alexandrov condition.

Thus, a σ-open set satisfies the strong Scott condition but not necessarily the

Alexandrov condition. Within the terminology of the previous section the ap-

proximation structures Πσ = (|A|, σ,∈,⊇, |A|) and Π0 = (|A|, |A|0,⊆,a,⊥) for

|A| form a Scott pair of approximation structures (Πσ, Π0) for |A| w.r.t. ⊆.



The special feature of a σ-basic open set J∗λ0
is that it represents a degree

of approximation of J with no irrelevancies, since each element of J∗λ0
“contains

information” which is already in J . In contrast to the Scott topology, the topol-

ogy of the strong Scott condition permits no irrelevancies. An interpretation of

J ∈ O which justifies the strong Scott condition but not the Alexandrov condi-

tion is that of O as a “degree of nearness” or as a “degree of approximation” of

J . The Scott condition is just a compatibility condition; if O is near J , then it

must be near to some internal approximation Jλ0
of J . The strong Scott condi-

tion is then automatically satisfied; for each λ ≥ λ0, if O is near Jλ0
, then it is

already near Jλ. Regarding the Alexandrov condition though, if O is near J it

cannot be near to all ideals I ⊃ J , without distorting the notion of nearness.

Next we compare the topology of the strong Scott condition with some well

known refinements of the Scott topology. The basic open sets for the Lawson

topology L on |A| (see [Gierz et.al 2003]) are of the form G\↑{J1, ..., Jn}, where

G is a Scott-open set, ↑J = {I ∈ |A| : I ⊇ J} and ↑{J1, ..., Jn} =
⋃n
i=1 ↑Ji.

Also, the basic open sets for the strong topology Σ on |A| associated with S
(see [Gierz et.al 2003, p. 428]) are of the form G∩F , where G,F are S-open and

S-closed sets, respectively.

Theorem 2 If S,L, Σ, σ are the Scott, Lawson, strong and the topology of the

strong Scott condition on |A|, respectively, then

S ( L ( Σ ( σ,

i.e., all these are in general different refinements of the Scott topology included

in the topology of the strong Scott condition. Moreover, the basic S-open sets OU
are σ-clopen.

Proof. First we show that S ⊆ σ. It suffices to show that OU ∈ σ, for each S-

basic open set OU . If J ∈ OU , then there is some λ0 ∈ Λ(J) such that U = Jλ0
.

Since for each λ ≥ λ0 we have that Jλ ⊇ U , we conclude that Jλ ∈ OU . If

U = {a1, ..., an}, for some n, then OU is also σ-closed. Since OU =
⋂n
i=1O{ai},

it suffices to show that any set of the form O{a} is σ-closed. But if I ∈ |A| \ O{a},
then all the elements Iλ of its compact net are in |A| \ O{a}.

It is trivial by the definition of L that S ⊆ L and S ⊆ Σ. If J 6= ⊥, then

the set |A| \ ↑J = {I ∈ |A| : I + J} is L-open but not S-open (⊥ + J and the

Alexandrov condition would imply that J + J too), therefore S ( L.

To prove that L ⊆ Σ it suffices to show that for each J in an L-basic open

set G \ ↑{J1, ..., Jn} there is a Σ-basic open set G′ ∩ F such that J ∈ G′ ∩ F ⊆
G \ ↑{J1, ..., Jn}. Since J ∈ G, there is some U ⊆fin J such that OU ⊆ G. Since

the set ↓J is S-closed, the intersection OU ∩ ↓J contains J and is included in

G\↑{J1, ..., Jn}; if I is any ideal for which U ⊆ I ⊆ J , then I cannot be contained

in ↑{J1, ..., Jn} because if I ⊇ Jl, for some l ∈ {1, ..., n}, then J ⊇ Jl too.



Next we show that in general L ( Σ by proving the existence of a Σ-open set

which is not L-open. We remark that a singleton {U} = OU ∩ ↓U is Σ-open (and

of course, not S-open). If we consider the information system (A,Pfin(A),`),

where A = {a0, a1, a2, ...}, then by the previous remark the set {{a1}} is a Σ-

open set. In order to be L-open too it must be written in the formG\↑{J1, ..., Jn},
for some G ∈ S and J1, ..., Jn ∈ |A|. Since {a1} ∈ G \ ↑{J1, ..., Jn} each {a1, ak},
for k > 1, belongs to G and must contain some Jl, where l ∈ {1, ..., n}, in

order that {{a1}} = G \ ↑{J1, ..., Jn}. But if {a1, ak} ⊇ Jl, either Jl = {ak} or

Jl = {a1, ak}. Since there are only n ideals J1, ..., Jn, this condition cannot hold

for each k > 1, therefore {{a1}} is not L-open.

In order to show that Σ ⊆ σ we prove that each Σ-basic open set is also

σ-open. If J ∈ G ∩ F , where G,F are S-open and S-closed, respectively, then

I∗λ0
⊆ G, for some λ0 ∈ Λ(J). Since a S-closed set is a lower set, ↓J ⊆ F ,

therefore I∗λ0
⊆ F too.

To show that Σ ( σ we prove that there are σ-basic open sets which cannot

be Σ-open. Suppose J is a non-compact ideal of an information system A such

that if J ∈ G, where G ∈ S, then for each Jλ0
∈ G there exists a non-compact

ideal I such that Jλ0 ( I ( J . For example, if we consider again the information

system (A,Pfin(A),`), where A = {a0, a1, a2, ...}, the ideal A \ {a0} is such an

ideal; if some {ai1 , ..., ain} is contained in an S-open set G containing A \ {a0},
then {ai1 , ..., ain} ( A \ {a0, al} ( A \ {a0}, for each al /∈ {ai1 , ..., ain}. In this

case no set of the form G ∩ L, where G ∈ S and L is a lower set, that contains

J is included to J∗λ0
, i.e., J∗λ0

is not Σ-open. Since Jλ0 ∈ G and G is S-open,

I ∈ G, while since J ∈ L and L is a lower set, I ∈ L, i.e., I ∈ G ∩ L, therefore

G ∩ L cannot be included to a set like J∗λ0
in which the only non-compact ideal

is J .

Since L ⊂ Σ ⊂ σ the approximation structures ΠL = (|A|,L,∈,⊇, |A|) and

ΠΣ = (|A|, Σ,∈,⊇, |A|) for |A| form with Π0 the Scott pairs of approximation

structures (ΠL, Π0) and (ΠΣ , Π0) for |A| w.r.t. ⊆, respectively. With respect,

though, to the “degree of approximation”-interpretation of J ∈ O the Σ-open

sets are closer to the σ-open sets while the L-open sets are between the S-

open and the σ-open sets. If U ⊆fin J , then J belongs to the Σ-basic open set

OU ∩ ↓J = {I ∈ |A| : U ⊆ I ⊆ J} which expresses a degree of nearness of J with

no irrelevancies. The difference with the σ-approximation is that non-compact

sub-ideals of J other than J can be contained in OU ∩↓J . On the other hand, a

Lawson open set OU that contains an ideal J may contain information irrelevant

to J (for example, consider any L-open set containing {a1} in the case of the

previous proof of L ( Σ). But still the L-basic open set G\↑{J1, ..., Jn} contains

less irrelevance w.r.t. an element J of it than G itself.

A refinement of the Lawson topology on a cpo (D,≤) can be defined in the

following way (see [Gierz et.al 2003]). If (dj)j is a net in D and e ∈ D, then e is



an eventual lower bound of (dj)j , if (∃j0)(∀j � j0)e ≤ dj . The element d of D is

the liminf of a net (dj)j , d = lim(dj), if (i) d is the supremum of all eventual lower

bounds of (dj)j , and (ii) there is some directed set F of eventual lower bounds of

(dj)j such that d =
∨
F . Obviously, if (d) is a constant net, then d = lim(d), and

if (dj)j is a monotone net (i.e., (∀j, j′)j � j′ → dj ≤ dj′), then lim(dj) = sup(dj).

In [Gierz et.al 2003, p. 231], it is proved that d is the liminf of all subnets of (dj)j
if and only if d = lim(dj) and (∀c)[(∀j)(∃j′ � j)c ≤ dj′ ] → c ≤ d. In case one

of these two equivalent conditions holds for a pair (d, (dj)j) we say that the

pair (d, (dj)j) satisfies the ξ-condition. A set O ⊆ D is called ξ-open or open

w.r.t. the liminf topology ξ on D, if for each d ∈ O and for each pair (d, (dj)j)

satisfying the ξ-condition, the net (dj)j is eventually in O.

Theorem 3 If ξ is the liminf topology on the set of ideals |A| of an information

system A, then the topology of the strong Scott condition σ is generally a proper

refinement of ξ, in symbols, ξ ( σ.

Proof. If J ∈ |A|, then the pair (J, (Jλ)λ∈Λ0(J)) satisfies the ξ-condition, since

the net Λ0(J) is monotone and J is the supremum of (Jλ)λ∈Λ0(J) and of all its

subnets. If O is a ξ-open set, the net (Jλ)λ∈Λ0(J) is eventually in O, therefore O
is also σ-open.

To show that ξ ( σ we consider the information system A = (A,Pfin(A),`),

where A is an uncountable infinite set and each finite subset of A entails itself.

Obviously, each subset of A is an ideal. The set Γ of all countable subsets of A

is a directed set, which we also write as a net (Γµ)µ, where µ � µ′ ↔ Γµ ⊆ Γµ′

w.r.t. a fixed indexing of the ideals of A. Since (Γµ)µ is a monotone net, we

get that lim(Γµ) = sup(Γµ) = A, since an upper bound of Γ includes each

singleton in A, therefore it is equal to A. Also, the condition (∀B)[(∀µ)(∃µ′ �
µ)B ⊆ Γµ′ ]→ B ⊆ A is trivially satisfied. Thus, the pair (A, (Γµ)µ) satisfies the

ξ-condition, A ∈ A∗λ⊥
, but the net (Γµ)µ cannot be eventually in the σ-open set

A∗λ⊥
. The set A∗λ⊥

contains A and all the finite subsets of A, while for each µ

there is some µ′ � µ such that Γµ′ is an infinite, proper subset of A. Hence, A∗λ⊥

is not a ξ-open set.

We define the extended compact net (Jλ)λ∈Λ+
0 (J) of J as the set of all ideals

Jλ, where Λ+
0 (J) = Λ0(J) ∪ {λJ} and JλJ = J, w.r.t. the fixed indexing of the

ideals of A. Obviously, (Λ+
0 (J),≤) is a directed set with a minimum, λ⊥, and a

maximum, λJ , element.

Theorem 4 Suppose (J) is a constant net with value J , (Jλν ) is a subnet of

the compact net of J , and (Iµ)µ∈M is a net of |A| converging to J with respect

to σ. Then (J) and (Jλν ) converge to J with respect to σ, (Iµ)µ∈M is eventually

a constant net with value J , if J ∈ |A|0, and (Iµ)µ∈M is eventually a subnet of

the extended compact net of J , if J /∈ |A|0.



Proof. The constant net (J) trivially σ-converges to J . If (Jλν ) is a subnet of

the compact net of J , ϕ is the corresponding directed map and λ0 ∈ Λ0(J)

is fixed, then there is some ν0 such that, for each ν ≥ ν0, ϕ(ν) ≥ λ0 and

Jλν = Jϕ(ν) ⊇ Jλ0
. Hence, the subnet (Jλν ) σ-converges to J .

If J ∈ |A|0 and (Iµ)µ∈M
σ→ J , applying the definition of σ-convergence for

the σ-open set {J} of J we get that (Iµ)µ∈M is eventually a constant net with

value J .

If J /∈ |A|0 and (Iµ)µ∈M
σ→ J , applying the definition of σ-convergence for the

σ-open set J∗λ⊥
= {Jλ|λ ∈ Λ+

0 (J)}, we get some µ0, such that for each µ ≥ µ0,

Iµ ∈ J∗λ⊥
, i.e., all these elements of (Iµ)µ∈M belong to the extended compact

net of J . If M0 = {µ ∈M : µ � µ0}, then (M0,�) is also a directed set. The

condition of σ-convergence says exactly that the map ϕ : (M0,�)→ (Λ+
0 (J),≤)

defined by ϕ(µ) = λ0, if Iµ = Jλ0
, while ϕ(µ) = λJ , if Iµ = J , is a directed map.

By its definition though, Iµ = Jϕ(µ), for each µ � µ0, therefore (Iµ)µ∈M0
is a

subnet of the extended compact net of J .

3 σ-Continuity

If A,B are information systems and f : |A| → |B|, then

(see [Stoltenberg-Hansen et.al 1994] or [Schwichtenberg and Wainer 2012])

f is continuous with respect to S, if and only if f is monotone and commutes

with direct unions, i.e., for every directed set F ⊆ |A|

f(
⋃
J∈F

J) =
⋃
J∈F

f(J) ,

if and only if f is monotone and satisfies the principle of finite support

b ∈ f(J)→ (∃U ⊆fin J)b ∈ f(U) .

If f is monotone and satisfies the principle of finite support, then f satisfies what

we call the strong principle of finite support

b ∈ f(J)→ (∃U ⊆fin J)(∀V )[U ⊆ V ⊆ J → b ∈ f(V )] .

As the σ-open sets satisfy the strong Scott condition but not in general the

Alexandrov condition, the σ-continuous functions satisfy the strong principle of

finite support without being, in general, monotone. If f : (|A|, σA) → (|B|, σB),

where σA, σB are the topologies of the strong Scott condition on |A|, |B| re-

spectively, then the condition of continuity of f through nets is (Iµ)µ
σA→ J →

(f(Iµ))µ
σB→ f(J), where (Iµ)µ is any net in |A|. If we consider the compact net

of J as a net σ-converging to J , then we get (Jλ)λ
σA→ J → (f(Iλ))λ

σB→ f(J). If

b ∈ f(J), then {b} = f(J)µ0
, for some µ0 ∈ Λ0(f(J)). From the convergence

(f(Jλ))λ → f(J) though, (∃λ0 ∈ Λ0(J))(∀λ ≥ λ0)f(Jλ) ∈ f(J)∗µ0
. Since, for



each such λ, f(Jλ) ⊇ {b}, this means that f satisfies the strong principle of

finite support

b ∈ f(J)→ (∃λ0 ∈ Λ0(J))(∀λ ≥ λ0)b ∈ f(Jλ) ,

without being necessarily monotone.

Next we give a simple example of a σ-continuous function which is not S-

continuous. If B⊥ = {tt, ff,⊥} is the flat boolean set ordered by the relation

≤ = {(tt, tt), (ff, ff), (⊥, tt), (⊥, ff)}, then B = ((B⊥,≤) is a domain with B0 = B⊥.

The S-topology on B⊥ is {∅, {tt}, {ff}, {tt, ff},B⊥}, i.e., S is T0 but not T1. Any

T1 topology on B⊥ though, like the σ-topology, turns B⊥ to a discrete space

(the singletons {tt}, {ff} are closed and so is their union {tt, ff}, therefore {⊥}
is σ-open). Hence, any function f : B⊥ → B⊥ is σ-continuous, while it cannot

be S-continuous, if it is not monotone (consider for example, the function f =

{(ff, ff), (tt,⊥), (⊥, tt)}).

Theorem 5 Suppose f : (|A|, TA) → (|B|, TB) is a continuous function, where

T is any refinement of the Scott topology such that each T -open set satisfies the

Scott condition. Then f is continuous with respect to the corresponding Scott

topologies on |A|, |B| if and only if f is monotone.

Proof. The monotonicity of an S-continuous function is directly implied by the

characterization of S-continuity. For the converse it suffices to show that if f

is monotone and T -continuous, then f−1(OU ) is SA-open, for each basic open

set OU in SB. Suppose that OU is such a fixed set. Since S ⊂ T , OU is T -open

too. By the T -continuity of f , f−1(OU ) is TA-open, therefore f−1(OU ) satisfies

the Scott condition. It remains to show that f−1(OU ) satisfies the Alexandrov

condition. If J ∈ f−1(OU ), that is, if f(J) ⊇ U , and if I ⊇ J , then by the

monotonicity of f we get that f(I) ⊇ f(J) ⊇ U . Hence, I ∈ f−1(OU ) too.

If CS(|A|, |B|) and Cσ(|A|, |B|) are the sets of S and σ-continuous functions

between the sets of ideals of two information systems A and B respectively, the

next proposition shows that CS(|A|, |B|) ⊂ Cσ(|A|, |B|).

Theorem 6 If f : (|A|,SA)→ (|B|,SB) is continuous, then f is also continuous

with respect to the corresponding σ-topologies on |A|, |B|.

Proof. Suppose that f : (|A|,SA) → (|B|,SB) is continuous. In order to show

that f is also σ-continuous it suffices to show that f−1(J∗λ0
) ∈ σA, for each

σB-basic open set J∗λ0
.

First we consider the case where the σB-basic open set is of the form {U},
where U = {b1, ..., bn} ∈ ConB. If I ∈ f−1({U}), i.e., f(I) = U , then by the



principle of finite support for f there are sets V1, ..., Vn ⊆fin I such that b1 ∈
f(V1), ..., bn ∈ f(Vn). But then the following implication holds

n⋃
i=1

Vi = Iµ0
→ U ⊆ f(Iµ0

) ,

where µ0 ∈ Λ0(I) is the index corresponding to the ideal
⋃n
i=1 Vi of I. To show

this implication we use the monotonicity of f ; Vi ⊆ Iµ0
→ f(Vi) ⊆ f(Iµ0

), for

each i ∈ {1, ..., n}. Consequently,
⋃n
i=1 f(Vi) ⊆ f(Iµ0

), and the inclusions U ⊆⋃n
i=1 f(Vi) ⊆ f(Iµ0) imply that U ⊆ f(Iµ0). For each µ ≥ µ0 the monotonicity

of f implies that U ⊆ f(Iµ0) ⊆ f(Iµ) ⊆ f(I) = U , which means that f(Iµ) = U ,

for each such µ. This proves though, that the compact net of I is eventually in

f−1({U}), i.e., f−1({U}) is a σ-open set.

An immediate consequence of the previous case is that if J ∈ |B|, the inverse

image f−1(λ0(J)) of the σB-open set λ0(J) is a σA-open set. Since λ0(J) =

{Jλ : λ ∈ Λ0(J) ∧ λ ≥ λ0} =
⋃
λ≥λ0

{Jλ} ∈ σB,

f−1(λ0(J)) = f−1(
⋃
λ≥λ0

{Jλ}) =
⋃
λ≥λ0

f−1({Jλ}) ,

i.e., f−1(λ0(J)) is σ-open as the union of the σ-opens sets f−1({Jλ}).
Next we consider the general case, i.e., the inverse image of a σB-basic open

set J∗λ0
. If J ∈ |B|0, then J∗λ0

= λ0(J), therefore this case is reduced to the

previous one.

If J /∈ |B|0 and since f commutes with direct unions,

I ∈ f−1(J∗λ0
)↔ f(I) = f(

⋃
µ∈Λ0(I)

Iµ) =
⋃

µ∈Λ0(I)

f(Iµ) = Jλ ,

for some λ ≥ λ0 and λ ∈ Λ+
0 (J). If λ 6= λJ , then f(I) is a compact ideal and

by the first case the compact net of I is eventually in f−1({Jλ}), therefore in

f−1(J∗λ0
).

If λ = λJ , i.e., if f(I) = J , then we distinguish again two cases. If there

is some µ0 ∈ Λ0(I) such that f(Iµ0
) = J , then by the monotonicity of f we

get that f(Iµ) = J , for each µ ≥ µ0, i.e., the compact net of I is eventually in

f−1(J∗λ0
).

Suppose that f(Iµ) ( J , for each µ ∈ Λ0(I). Since Jλ0
= U = {b1, ..., bn}, for

some {b1, ..., bn} ∈ ConB, and f(I) = J , then {b1, ..., bn} ⊆ f(I). By the principle

of finite support for f we consider again a compact sub-ideal
⋃n
i=1 Vi = Iµ0 of

I, for some µ0 ∈ Λ0(I), for which f(Iµ0
) ⊇ Jλ0

. Hence, by monotonicity of f

Iµ ⊇ Iµ0
→ f(Iµ) ⊇ f(Iµ0

) ⊇ Jλ0
,

for each µ ≥ µ0. Therefore, the compact net of I is eventually in f−1(J∗λ0
).



One can show that the set CS(|A|, |B|) acquires a structure of a domain ei-

ther by identifying it with the set of ideals of a new information system A → B
(see [Stoltenberg-Hansen et.al 1994] or [Schwichtenberg and Wainer 2012]), or

by showing that the partial ordering (CS(|A|, |B|),≤), where f ≤ g ↔
(∀J)f(J) ⊆ g(J), satisfies an appropriate criterion of Eršov (see [Berger 1993]).

The Scott topology on the domain CS(|A|, |B|) is proved to be the topology of

the pointwise convergence.

Theorem 7 If (fµ)µ is a net in CS(|A|, |B|) and f ∈ Cσ(|A|, |B|), such that

(fµ)
p→ f , i.e., (fµ(J))

σ→ f(J), for each J ∈ |A|, then f ∈ CS(|A|, |B|).

Proof. If (fµ)
p→ f , then in order to show that f ∈ CS(|A|, |B|) it suffices to

show by Theorem 5 that f is monotone. Suppose that J1, J2 ∈ |A| and J1 ⊆ J2.

We show b ∈ f(J1) = I1 → b ∈ f(J2) = I2. Since b ∈ I1, {b} = I1λ0 , for some

λ0 ∈ Λ0(I1). Since

(fµ(J1))
σ→ I1,

there is some µ0 such that, for each µ ≥ µ0, fµ(J1) ∈ I∗1λ0 , i.e., fµ(J1) ⊇ {b}.
By monotonicity of each function fµ we get that b ∈ fµ(J1)→ b ∈ fµ(J2). Since

(fµ(J2))
σ→ I2,

there is some µ′0 such that, for each µ ≥ µ′0, fµ(J2) ∈ I∗2ν⊥
, where ν⊥ is the

minimum of Λ0(I2). Hence, for each such µ, I2 ⊇ fµ(J2) ⊇ ⊥. If we consider

µ′′0 ≥ µ0, µ
′
0, then, for each µ ≥ µ′′0 , we get I2 ⊇ fµ(J2) 3 b, i.e., b ∈ I2 = f(J2).

These are some first basic results on σ-continuity. In subsequent work we

intend to study the extendability of a function f0 : |A|0 → |B|, where A,B are

given information systems, to a σ-continuous function f̂0 : |A| → |B|. Note that

the set of compact ideals |A|0 is dense w.r.t. all topologies mentioned here. In the

case of the Scott topology the criterion for the existence of such an extension is

the monotonicity of f0, while in the case of the other finer topologies mentioned

here more general notions of “monotonicity” need to be studied. Also, the char-

acterization of the ordering structure (Cσ(|A|, |B|),≤), where ≤ is the pointwise

ordering of functions in Cσ(|A|, |B|), and its relation to the corresponding space

of continuous functions w.r.t. the other refinements of the Scott topology, are

some of the many related open questions.
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