A direct constructive proof of a Stone-Weierstrass theorem for metric spaces

Iosif Petrakis

University of Munich petrakis@math.lmu.de

Abstract. We present a constructive proof of a Stone-Weierstrass theorem for totally bounded metric spaces (SWtbms) which implies Bishop's Stone-Weierstrass theorem for compact metric spaces (BSWcms) found in [3]. Our proof has a clear computational content, in contrast to Bishop's highly technical proof of BSWcms and his hard to motivate concept of a (Bishop-)separating set of uniformly continuous functions. All corollaries of BSWcms in [3] are proved directly by SWtbms. We work within Bishop's informal system of constructive mathematics BISH.

1 Introduction

According to the classical Stone-Weierstrass theorem (**SWchts**), if X is a compact Hausdorff topological space and Φ is a separating subalgebra of the continuous real-valued functions C(X) on X that contains a non-zero constant function, then the uniform closure of Φ is C(X) (see [10], p.282). Recall that Φ is separating, if $\forall_{x,y\in X} (x \neq y \to \exists_{f\in\Phi}(f(x) \neq f(y)))$.

There are some constructive versions of this theorem depending on the notion of space under constructive study. In [1] Banaschewski and Mulvey considered a compact, completely regular locale instead of a compact Hausdorff topological space. In [7] Coquand gave a simple, constructive localic proof of it, replacing the ring structure of C(X) by its lattice structure, while in [8] he studied the usual formulation of the Stone-Weierstrass theorem in this point-free topological framework.

For reasons which we discuss in [15], Bishop did not pursue a constructive reconstruction of abstract topology. Although he introduced two constructive alternatives to the notion of topological space, the notion of *neighborhood space*, see [11], [13], and the notion of *function space*, or *Bishop space*, see [4], [12] and [15]-[17], he never elaborated them, restricting his studies to metric spaces. In [2] and [3] Bishop formulated a theorem of Stone-Weierstrass type for *compact* metric spaces (i.e., complete and totally bounded metric spaces) using the notion of a Bishop-separating set of uniformly continuous functions¹. Since Bishop's results, as well as ours, hold for totally bounded metric spaces, we formulate all related concepts and results for them without restricting to compact metric

¹ Bishop's original term is that of a separating set, which we avoid here in the presence of the standard classical notion of a separating subset of C(X).

spaces. Recall that a metric space (X, d) is *totally bounded*, if for every $\epsilon > 0$ there exists a finite ϵ -approximation of X, and a set A is *finite* if there exists a one-one mapping of $\{1, \ldots, n\}$ onto A, for some n > 0 (see [6], p.29). Hence, a totally bounded metric space is always inhabited.

Throughout this paper (X, d) is a totally bounded metric space, $C_u(X)$ denotes the uniformly continuous real-valued functions on X, and $\Phi \subseteq C_u(X)$.

Definition 1. Φ is called Bishop-separating, if there is $\delta : \mathbb{R}^+ \to \mathbb{R}^+$ such that: (Bsep₁) For all $\epsilon > 0$ and $x_0, y_0 \in X$, if $d(x_0, y_0) \ge \epsilon$, there exists $g_{\epsilon, x_0, y_0} \in \Phi$ such that

$$\begin{aligned} \forall_{z \in X} (d_{x_0}(z) \leq \delta(\epsilon) \to |g_{\epsilon, x_0, y_0}(z)| \leq \epsilon) \ and \\ \forall_{z \in X} (d_{y_0}(z) \leq \delta(\epsilon) \to |g_{\epsilon, x_0, y_0}(z) - 1| \leq \epsilon). \end{aligned}$$

(Bsep₂) For all $\epsilon > 0$ and $x_0 \in X$ there exists $g_{\epsilon,x_0} \in \Phi$ such that

$$\forall_{z \in X} (d_{x_0}(z) \le \delta(\epsilon) \to |g_{\epsilon, x_0}(z) - 1| \le \epsilon).$$

Note that in Definition 1 g_{ϵ,x_0,y_0} and g_{ϵ,x_0} are just notations that do not involve the use of some choice principle. Recall also that for every $x_0 \in X$ the map $d_{x_0}: X \to \mathbb{R}$, defined by $x \mapsto d(x_0, x)$, is in $C_u(X)$ with modulus of continuity $\omega_{d_{x_0}} = \mathrm{id}_{\mathbb{R}^+}$. If $a \in \mathbb{R}$, we denote by \overline{a} the constant map on X with value a, and their set by $\mathrm{Const}(X)$. We define

$$U_0(X) := \{ d_{x_0} \mid x_0 \in X \}.$$
$$U_0^*(X) := U_0(X) \cup \{\overline{1}\}.$$

We call Φ positively separating, if $\forall_{x,y\in X}(x \boxtimes_d y \to \exists_{g\in\Phi}(g(x) \boxtimes_{\mathbb{R}} g(y)))$, where $x \boxtimes_d y \leftrightarrow d(x,y) > 0$, for every $x, y \in X$, and $a \boxtimes_{\mathbb{R}} b \leftrightarrow |a-b| > 0 \leftrightarrow a < b \lor b < a$, for every $a, b \in \mathbb{R}$, are the canonical point-point apartness relations on X and \mathbb{R} , respectively. The notion of a positively separating set Φ is the positive version of the classical notion of a separating subset of C(X) for metric spaces. Clearly, $U_0(X)$ is positively separating.

Remark 1. If Φ is Bishop-separating, then Φ is positively separating.

Proof. By the Archimedean property of \mathbb{R} (see [5], p.57), if $x_0, y_0 \in X$ such that $d(x_0, y_0) > 0$, there is some natural number N > 2 such that $d(x_0, y_0) > \frac{1}{N}$. By Bsep₁ we have that $|g_{\frac{1}{N}, x_0, y_0}(x_0)| \leq \frac{1}{N}$ and $|g_{\frac{1}{N}, x_0, y_0}(y_0) - 1| \leq \frac{1}{N}$, for some $g_{\frac{1}{N}, x_0, y_0} \in \Phi$, therefore $g_{\frac{1}{N}, x_0, y_0}(x_0) \bowtie_{\mathbb{R}} g_{\frac{1}{N}, x_0, y_0}(y_0)$.

In [3], p.106, Bishop formulated a theorem of Stone-Weierstrass type for compact metric spaces using the notion of a Bishop-separating set as the property that corresponds to the classical notion of a separating set in the formulation of **SWchts**. Bishop's proof of this theorem is non-trivial and does not involve the completeness property of X. Following Bishop, we denote by $\mathcal{A}(\Phi)$ the least subset of $C_u(X)$ that includes Φ and it is closed with respect to addition, multiplication, and multiplication by reals. Bishop didn't define $\mathcal{A}(\Phi)$ inductively but explicitly, as the set of compositions of strict real polynomials in several variables with vectors of elements of Φ (see [3], p.105). Theorem 1 (Bishop's Stone-Weierstrass theorem for totally bounded metric spaces (BSWtbms)). If Φ is Bishop-separating, then $\mathcal{A}(\Phi)$ is dense in $C_u(X)$.

The condition of Φ being Bishop-separating implies that the constant map $\overline{1}$ is in the closure of $\mathcal{A}(\Phi)$ (see [3], p.106). Bishop's formulation of **BSWtbms** represents a non-trivial technical achievement, namely to find a formulation of a theorem of Stone-Weierstrass type in the constructive theory of metric spaces that resembles the formulation of the classical **SWchts**. As Coquand and Spitters mention in [9], pp.339-340, constructive proofs using a concrete presentation of topological notions (e.g., the Gelfand spectrum as a lattice) are "more direct than proofs via an encoding of topology in metric spaces, as is common in Bishop's constructive mathematics".

In the next two sections we present a Stone-Weierstrass theorem for metric spaces which avoids the concept of a Bishop-separating set, it has an informative and direct proof, it implies **BSWtbms**, and it proves directly all corollaries of **BSWtbms**.

2 A Stone-Weierstrass theorem for totally bounded metric spaces

Definition 2. If $f, g \in C_u(X)$ and $\epsilon > 0$, then $f \wedge g := \min\{f, g\}, f \vee g := \max\{f, g\}$, and the uniform closure $\mathcal{U}(\Phi)$ of Φ is defined by

$$U(g, f, \epsilon) :\leftrightarrow \forall_{x \in X} (|g(x) - f(x)| \le \epsilon),$$
$$U(\Phi, f) :\leftrightarrow \forall_{\epsilon > 0} \exists_{g \in \Phi} (U(g, f, \epsilon)),$$
$$\mathcal{U}(\Phi) := \{ f \in C_u(X) \mid U(\Phi, f) \}.$$

The following remark is immediate to show.

Remark 2. If Φ is closed under addition, multiplication by reals and multiplication, then $\mathcal{U}(\Phi)$ is closed under addition, multiplication by reals and multiplication. Moreover, if Φ is closed under |.|, then $\mathcal{U}(\Phi)$ is closed under |.|.

The next two lemmas are proved in [3], pp.105-6 (Lemma 5.11 and Lemma 5.12).

Lemma 1. If $\text{Const}(X) \subseteq \Phi$, and Φ is closed under addition and multiplication (or if Φ is closed under addition, multiplication by reals, and multiplication), then $\mathcal{U}(\Phi)$ is closed under $|.|, \lor$ and \land .

Lemma 2. If Φ is closed under addition, multiplication by reals, and multiplication, and $f \in \mathcal{U}(\Phi)$ such that $\forall_{x \in X}(|f(x)| \ge c)$, for some c > 0, then $\frac{1}{f} \in \mathcal{U}(\Phi)$.

Corollary 1. If $x_0, y_0 \in X$ such that $d(x_0, y_0) > 0$, then $\overline{1} \in \mathcal{U}(\mathcal{A}(U_0(X)))$.

Proof. If $x \in X$, then $0 < d(x_0, y_0) \le d(x_0, x) + d(x, y_0) = d_{x_0}(x) + d_{y_0}(x)$ i.e., $d(x_0, y_0) \le d_{x_0} + d_{y_0} \in \mathcal{A}(U_0(X))$. By Lemma 2 we get that $\frac{1}{d_{x_0} + d_{y_0}} \in \mathcal{U}(\mathcal{A}(U_0(X)))$, therefore $\overline{1} \in \mathcal{U}(\mathcal{A}(U_0(X)))$.

The existence of $x_0, y_0 \in X$ such that $d(x_0, y_0) > 0$ is equivalent to the positivity of the diameter of (X, d) (see the footnote in the proof of Lemma 3).

Definition 3. If $\mathbb{F}(X)$ denotes the set of real-valued functions on X, the set of Lipschitz functions $\operatorname{Lip}(X)$ on (X, d) is defined by

$$\operatorname{Lip}(X,k) := \{ f \in \mathbb{F}(X) \mid \forall_{x,y \in X} (|f(x) - f(y)| \le kd(x,y)) \}$$
$$\operatorname{Lip}(X) := \bigcup_{k \ge 0} \operatorname{Lip}(X,k).$$

Remark 3. The set $\text{Lip}(X) \subseteq C_u(X)$ includes $U_0(X)$, Const(X) and it is closed under addition, multiplication by reals, and multiplication.

Proof. If $x_0 \in X$, then $|d(x_0, x) - d(x_0, y)| \leq d(x, y)$, for every $x, y \in X$, therefore $U_0(X) \subseteq \operatorname{Lip}(X, 1)$. Clearly, $\operatorname{Const}(X) \subseteq \operatorname{Lip}(X, k)$, for every $k \geq 0$. Recall that $f \cdot g = \frac{1}{2}((f+g)^2 - f^2 - g^2)$, and if $M_f > 0$ is a bound of f, it is immediate to see that

$$\begin{split} f \in \operatorname{Lip}(X, k_1) &\to g \in \operatorname{Lip}(X, k_2) \to f + g \in \operatorname{Lip}(X, k_1 + k_2) \\ f \in \operatorname{Lip}(X, k) \to \lambda \in \mathbb{R} \to \lambda f \in \operatorname{Lip}(X, |\lambda|k), \\ f \in \operatorname{Lip}(X, k) \to f^2 \in \operatorname{Lip}(X, 2M_f k). \end{split}$$

Lemma 3. If $\Phi = \mathcal{A}(U_0^*(X))$, then $\operatorname{Lip}(X) \subseteq \mathcal{U}(\Phi)$.

Proof. It suffices to show that $\operatorname{Lip}(X, 1) \subseteq \mathcal{U}(\Phi)$, since if $f \in \operatorname{Lip}(X, k)$, for some k > 0, then $\frac{1}{k} f \in \operatorname{Lip}(X, 1)$ and we have, for every $\epsilon > 0$ and $\theta \in \Phi$,

$$U(\theta,\frac{1}{k}f,\frac{\epsilon}{k}) \to U(k\theta,f,\epsilon).$$

Suppose next that $f \in \operatorname{Lip}(X, 1)$ and $\epsilon > 0$. We find $g \in \mathcal{U}(\Phi)$ such that $U(g, f, \epsilon)$, therefore $f \in \mathcal{U}(\mathcal{U}(\Phi)) = \mathcal{U}(\Phi)$. More specifically, if $\{z_1, \ldots, z_m\}$ is an $\frac{\epsilon}{2}$ -approximation of X, we find $g \in \mathcal{U}(\Phi)$ such that $g(z_i) = f(z_i)$, for every $i \in \{1, \ldots, m\}$, and $|g(x) - g(z_i)| = |g(x) - f(z_i)| \le \frac{\epsilon}{2}$, for every $x \in X$ and z_i such that $d(x, z_i) \le \frac{\epsilon}{2}$. Consequently,

$$|g(x) - f(x)| \le |g(x) - g(z_i)| + |g(z_i) - f(z_i)| + |f(z_i) - f(x)|$$

$$\le \frac{\epsilon}{2} + 0 + d(z_i, x)$$

$$\le \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

We define

$$g := \bigwedge_{k=1}^{m} (\overline{f(z_k)} + d_{z_k}).$$

Since $\overline{f(z_k)} + d_{z_k} \in \Phi$ and since by Lemma 1 $\mathcal{U}(\Phi)$ is closed under \wedge we get $g \in \mathcal{U}(\Phi)$. Moreover,

$$g(z_i) = \bigwedge_{k=1}^{m} (f(z_k) + d_{z_k}(z_i)) \le f(z_i) + d_{z_i}(z_i) = f(z_i).$$

For the converse inequality we suppose that $g(z_i) < f(z_i)$ and reach a contradiction (here we use the fact that $\neg(a < b) \rightarrow a \ge b$, for every $a, b \in \mathbb{R}$ (see [3], p.26)). If $a, b, c \in \mathbb{R}$, then one shows² that $a \wedge b < c \rightarrow a < c \lor b < c$. Hence

$$\bigwedge_{k=1}^{m} (f(z_k) + d_{z_k}(z_i)) < f(z_i) \to \exists_{j \in \{1, \dots, m\}} (f(z_j) + d(z_j, z_i) < f(z_i))$$
$$\to d(z_j, z_i) < f(z_i) - f(z_j) \le |f(z_i) - f(z_j)| \le d(z_j, z_i),$$

which is a contradiction. Using the equality $g(z_i) = f(z_i)$ we have that

$$g(x) = \bigwedge_{k=1}^{m} (f(z_k) + d_{z_k}(x)) \le f(z_i) + d_{z_i}(x) \to$$

$$g(x) - g(z_i) \le f(z_i) + d_{z_i}(x) - g(z_i) = f(z_i) + d_{z_i}(x) - f(z_i) = d(x, z_i) \le \frac{\epsilon}{2}.$$

If $k \in \{1, ..., m\}$, then $f(z_i) - f(z_k) \le |f(z_i) - f(z_k)| \le d(z_i, z_k) \le d(z_i, x) + d(x, z_k)$, therefore

$$\begin{aligned} \forall_{k \in \{1,\dots,m\}} (f(z_i) - d(z_i, x) &\leq f(z_k) + d(z_k, x)) \rightarrow \\ f(z_i) - d(z_i, x) &\leq \bigwedge_{k=1}^m (f(z_k) + d(z_k, x)) \leftrightarrow \\ f(z_i) - \bigwedge_{k=1}^m (f(z_k) + d(z_k, x)) &\leq d(z_i, x) \rightarrow \\ g(z_i) - g(x) &\leq d(z_i, x) \rightarrow \\ g(z_i) - g(x) &\leq \frac{\epsilon}{2}. \end{aligned}$$

From $g(x) - g(z_i) \le \frac{\epsilon}{2}$ and $g(z_i) - g(x) \le \frac{\epsilon}{2}$ we get $|g(x) - g(z_i)| \le \frac{\epsilon}{2}$.

² The proof goes as follows. By the constructive trichotomy property (see [3], p.26) either a < c or $a \wedge b < a$. In the first case we get immediately what we want to show. In the second case we get that $b \leq a$, since if b > a, we have that $a = a \wedge b < a$, which is a contradiction. Thus $a \wedge b = b$ and the hypothesis $a \wedge b < c$ becomes b < c.

Lemma 4. If $f \in C_u(X)$ and $\epsilon > 0$, there exist $\sigma > 0$ and $g, g^* \in \text{Lip}(X, \sigma)$ such that

(i) $\forall_{x \in X} (f(x) - \epsilon \leq g(x) \leq f(x) \leq g^*(x) \leq f(x) + \epsilon).$ (ii) For every $e \in \operatorname{Lip}(X, \sigma)$, if $e \leq f$, then $e \leq g$.

(iii) For every $e^* \in \operatorname{Lip}(X, \sigma)$, if $f \leq e^*$, then $g^* \leq e^*$.

Proof. (i) Let ω_f be a modulus of continuity of f and $M_f > 0$ a bound of f. We define the functions $h_x : X \to \mathbb{R}$ and $g : X \to \mathbb{R}$ by

$$\begin{aligned} h_x &:= f + \sigma d_x, \\ \sigma &:= \frac{2M_f}{\omega_f(\epsilon)} > 0, \\ g(x) &:= \inf\{h_x(y) \mid y \in X\} = \inf\{f(y) + \sigma d(x, y) \mid y \in X\} \end{aligned}$$

for every $x \in X$. Note that g(x) is well-defined, since $h_x \in C_u(X)$ and the infimum of h_x exists (see [3], p.94 and p.38). First we show that $g \in \operatorname{Lip}(X, \sigma)$. If $x_1, x_2, y \in X$ the inequality $d(x_1, y) \leq d(x_2, y) + d(x_1, x_2)$ implies that $f(y) + \sigma d(x_1, y) \leq (f(y) + \sigma d(x_2, y)) + \sigma d(x_1, x_2)$, hence $g(x_1) \leq (f(y) + \sigma d(x_2, y)) + \sigma d(x_1, x_2)$, therefore $g(x_1) \leq g(x_2) + \sigma d(x_1, x_2)$, or $g(x_1) - g(x_2) \leq \sigma d(x_1, x_2)$. Starting with the inequality $d(x_2, y) \leq d(x_1, y) + d(x_1, x_2)$ and working similarly we get that $g(x_2) - g(x_1) \leq \sigma d(x_1, x_2)$, therefore $|g(x_1) - g(x_2)| \leq \sigma d(x_1, x_2)$. Next we show that

$$\forall_{x \in X} (f(x) - \epsilon \le g(x) \le f(x)).$$

Since $f(x) = f(x) + \sigma d(x, x) = h_x(x) \ge \inf\{h_x(y) \mid y \in X\} = g(x)$, for every $x \in X$, we have that $g \le f$. Next we show that $\forall_{x \in X} (f(x) - \epsilon \le g(x))$. For that we fix $x \in X$ and we show that $\neg (f(x) - \epsilon > g(x))$. Note that if $A \subseteq \mathbb{R}, b \in \mathbb{R}$, then³ $b > \inf A \to \exists_{a \in A} (a < b)$. Therefore,

$$\begin{split} f(x) &-\epsilon > g(x) \leftrightarrow \\ f(x) &-\epsilon > \inf\{f(y) + \sigma d(x,y) \mid y \in X\} \to \\ \exists_{y \in X} (f(x) - \epsilon > f(y) + \sigma d(x,y)) \leftrightarrow \\ \exists_{y \in X} (f(x) - f(y) > \epsilon + \sigma d(x,y)). \end{split}$$

For this y we show that $d(x,y) \leq \omega_f(\epsilon)$. If $d(x,y) > \omega_f(\epsilon)$, we have that

$$2M_f \ge f(x) + M_f \ge f(x) - f(y) > \epsilon + 2M_f \frac{d(x,y)}{\omega_f(\epsilon)} > \epsilon + 2M_f > 2M_f,$$

which is a contradiction. Hence, by the uniform continuity of f we get that $|f(x) - f(y)| \le \epsilon$, therefore the contradiction $\epsilon > \epsilon$ is reached, since

$$\epsilon \ge |f(x) - f(y)| \ge f(x) - f(y) > \epsilon + \sigma d(x, y) \ge \epsilon.$$

³ By the definition of A in [3], p.37, we have that $\forall_{\epsilon>0} \exists_{a \in A} (a < \inf A + \epsilon)$, therefore if $b > \inf A$ and $\epsilon = b - \inf A > 0$ we get that $\exists_{a \in A} (a < \inf A + (b - \inf A) = b)$.

Next we define the functions $h_x^*: X \to \mathbb{R}$ and $g^*: X \to \mathbb{R}$ by

$$h_x^* := f - \sigma d_x,$$

$$g^*(x) := \sup\{h_x^*(y) \mid y \in X\} = \sup\{f(y) - \sigma d(x, y) \mid y \in X\},\$$

for every $x \in X$, and $\sigma = \frac{2M_f}{\omega_f(\epsilon)}$. Similarly⁴ to g we get that $g^* \in \operatorname{Lip}(X, \sigma)$ and

$$\forall_{x \in X} (f(x) \le g^*(x) \le f(x) + \epsilon)$$

(ii) Let $e \in \operatorname{Lip}(X, \sigma)$ such that $e \leq f$. If we fix some $x \in X$, then for every $y \in X$ we have that $e(x) - e(y) \leq |e(x) - e(y)| \leq \sigma d(x, y)$, hence $e(x) \leq e(y) + \sigma d(x, y) \leq f(y) + \sigma d(x, y)$, therefore $e(x) \leq g(x)$.

(iii) Let $e^* \in \operatorname{Lip}(X, \sigma)$ such that $f \leq e^*$. If we fix some $x \in X$, then for every $y \in X$ we have that $e^*(y) - e^*(x) \leq |e^*(y) - e^*(x)| \leq \sigma d(x, y)$, hence $f(y) - \sigma d(x, y) \leq e^*(y) - \sigma d(x, y) \leq e^*(x)$, therefore $g^*(x) \leq e^*(x)$.

Hence g is the largest function in $\operatorname{Lip}(X, \sigma)$ which is smaller than f, and g^* is the smallest function in $\operatorname{Lip}(X, \sigma)$ which is larger than f. So, if there is some $e' \in$ $\operatorname{Lip}(X)$ such that $e' \leq f$ and g(x) < e'(x), for some $x \in X$, then $e' \in \operatorname{Lip}(X, \sigma')$, for some $\sigma' > \sigma$. It is interesting that Lemma 4 is in complete analogy to the McShane-Kirszbraun theorem. To make this clear we include a constructive version of this theorem (for a classical presentation see [18], p.6). Recall that $A \subseteq X$ is *located*, if the distance $d(x, A) := \inf\{d(x, y) \mid y \in Y\}$ exists for every $x \in X$, and that a located subset of a totally bounded metric space is totally bounded (see [3], p.95).

Proposition 1 (McShane-Kirszbraun theorem for totally bounded metric spaces). If $\sigma > 0$, $A \subseteq X$ is located, and $f : A \to \mathbb{R} \in \text{Lip}(A, \sigma)$, then there exist $g, g^* \in \text{Lip}(X, \sigma)$ such that $g_{|A} = g^*_{|A} = f$ and for every $e \in \text{Lip}(X, \sigma)$ such that $e_{|A} = f$ we have that $g^* \leq e \leq g$.

Proof. The functions g, g^* defined by $g(x) := \inf\{f(a) + \sigma d(x, a) \mid a \in A\}$, and $g^*(x) := \sup\{f(a) - \sigma d(x, a) \mid a \in A\}$, for every $x \in X$, are well-defined and satisfy the required properties.

Corollary 2. $\mathcal{U}(\operatorname{Lip}(X)) = C_u(X).$

Proof. If $\epsilon > 0$, then the functions $g, g^* \in \text{Lip}(X, \sigma)$ of Lemma 4 satisfy $U(g, f, \epsilon)$, $U(g^*, f, \epsilon)$, respectively.

Next follows our Stone-Weierstrass theorem for totally bounded metric spaces.

Theorem 2 (Stone-Weierstrass theorem for totally bounded metric spaces (SWtbms)). If $\Phi = \mathcal{A}(U_0^*(X))$, then $C_u(X) = \mathcal{U}(\Phi)$.

Proof. First we show that $C_u(X) \subseteq \mathcal{U}(\Phi)$. If $f \in C_u(X)$ and $\epsilon > 0$, then by Corollary 2 there exists $h \in \operatorname{Lip}(X)$ such that $U(h, f, \frac{\epsilon}{2})$, while by Lemma 3 there exists $g \in \Phi$ such that $U(g, h, \frac{\epsilon}{2})$. Consequently, $U(g, f, \epsilon)$. The converse inclusion follows from the immediate fact that all elements of $\mathcal{U}(\Phi)$ are in $C_u(X)$.

⁴ To show that $\neg(g^*(x) > f(x) + \epsilon)$ we just use the fact that if $A \subseteq \mathbb{R}, b \in \mathbb{R}$, then sup $A > b \rightarrow \exists_{a \in A} (a > b)$. The function g^* is mentioned in [19], where nonconstructive properties of the classical $(\mathbb{R}, <)$ are used.

3 Corollaries of SWtbms

Proposition 2. SWtbms implies BSWtbms

Proof. The proof follows immediately by inspection of the proof of **BSWtbms** in [3], pp.106-8. Bishop shows there that if Φ is Bishop-separating, then $\overline{1} \in \mathcal{U}(\mathcal{A}(\Phi))$, and by his Lemma 5.14.1 one shows that $U_0(X) \subseteq \mathcal{U}(\mathcal{A}(\Phi))$ - this is a slight simplification of the final part of Bishop's proof that $C_u(X) \subseteq \mathcal{U}(\mathcal{A}(\Phi))$. Since $U_0^*(X) \subseteq \mathcal{U}(\mathcal{A}(\Phi))$, then by Remark 2 $\mathcal{A}(U_0^*(X)) \subseteq \mathcal{U}(\mathcal{A}(\Phi))$, therefore $C_u(X) = \mathcal{U}(\mathcal{A}(U_0^*(X))) \subseteq \mathcal{U}(\mathcal{U}(\mathcal{A}(\Phi))) = \mathcal{U}(\mathcal{A}(\Phi))$.

In the proof of Corollary 5.16 in [3], pp.108-9, it is shown that if (X, d) has positive diameter, then $\mathcal{A}(U_0(X))$ is a Bishop-separating set, therefore by **BSWtbms** we get that $\mathcal{U}(\mathcal{A}(U_0(X))) = C_u(X)$. Hence **SWtbms** is only "slightly" stronger than **BSWtbms**. If we use **SWtbms**, we get immediately the same result.

Corollary 3. If (X, d) has positive diameter, then $\mathcal{U}(\mathcal{A}(U_0(X))) = C_u(X)$.

Proof. The hypothesis of positive diameter implies the hypothesis of Corollary 1, therefore $\overline{1} \in \mathcal{U}(\mathcal{A}(U_0(X))) \subseteq C_u(X)$. Hence $U_0^*(X) \subseteq \mathcal{U}(\mathcal{A}(U_0(X)))$, and by Remark 2 we get that $\mathcal{A}(U_0^*(X)) \subseteq \mathcal{A}(\mathcal{U}(\mathcal{A}(U_0(X)))) = \mathcal{U}(\mathcal{A}(U_0(X)))$. Thus $C_u(X) = \mathcal{U}(\mathcal{A}(U_0^*(X))) \subseteq \mathcal{U}(\mathcal{U}(\mathcal{A}(U_0(X)))) = \mathcal{U}(\mathcal{A}(U_0(X)))$.

Next we prove Corollary 5.15 in [3], p.108 and its finite version using **SWtbms**. If $(X, d), (Y, \rho)$ are totally bounded, then $(X \times Y, \sigma)$ is totally bounded, where $\sigma((x_1, y_1), (x_2, y_2)) := d(x_1, x_2) + \rho(y_1, y_2)$, for every $x_1, x_2 \in X$ and $y_1, y_2 \in Y$; if $A = \{x_1, \ldots, x_n\}$ is an $\frac{\epsilon}{2}$ -approximation of X and $B = \{y_1, \ldots, y_m\}$ is an $\frac{\epsilon}{2}$ -approximation of X × Y. We denote by π_1 the projection of $X \times Y$ onto X and by π_2 its projection onto Y.

Corollary 4. If $(X, d), (Y, \rho)$ are totally bounded metric spaces and

$$\Phi := \{ \sum_{i=1}^{n} (f_i \circ \pi_1) (g_i \circ \pi_2) \mid f_i \in C_u(X), g_i \in C_u(Y), 1 \le i \le n, n \in \mathbb{N} \},\$$

then $\mathcal{U}(\Phi) = C_u(X \times Y).$

Proof. Clearly, $\Phi \subseteq C_u(X \times Y)$, Φ is an algebra (actually, $\Phi = \mathcal{A}((C_u(X) \circ \pi_1) \cup (C_u(Y) \circ \pi_2))$, where $C_u(X) \circ \pi_1 = \{f \circ \pi_1 \mid f \in C_u(X)\}$ and $C_u(Y) \circ \pi_2 = \{g \circ \pi_2 \mid g \in C_u(Y)\}$), and $\mathcal{U}(\Phi) \subseteq C_u(X \times Y)$. The constant $\overline{1}$ on $X \times Y$ is equal to $(\overline{1} \circ \pi_1)(\overline{1} \circ \pi_2)$. If $x_0, x \in X$ and $y_0, y \in Y$, then $\sigma_{(x_0,y_0)}((x,y)) = \sigma((x_0,y_0),(x,y)) = d(x_0,x) + \rho(y_0,y) = d_{x_0}(x) + \rho_{y_0}(y) = (d_{x_0} \circ \pi_1)(\overline{1} \circ \pi_2) + (\overline{1} \circ \pi_1)(\rho_{y_0} \circ \pi_2)((x,y))$, therefore $\sigma_{(x_0,y_0)} = (d_{x_0} \circ \pi_1) + (\rho_{y_0} \circ \pi_2) = (d_{x_0} \circ \pi_1)(\overline{1} \circ \pi_2) + (\overline{1} \circ \pi_1)(\rho_{y_0} \circ \pi_2) \in \Phi$. Since $U_0^*(X \times Y) \subseteq \mathcal{U}(\Phi)$, by **SWtbms** we get that $C_u(X \times Y) \subseteq \mathcal{U}(\Phi)$.

If (X_n, d_n) is totally bounded, where without loss of generality $d_n \leq \overline{1}$, for every $n \in \mathbb{N}$, then (X, σ_{∞}) , where $X = \prod_{n=1}^{\infty} X_n$ and $\sigma_{\infty}((x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}) :=$ $\sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n}$, is totally bounded; if $A(X_n, \epsilon)$ is an ϵ -approximation of X_n and $x_{0,n}$ inhabits X_n , then $A(X, \epsilon) = \prod_{k=1}^{n_0} A(X_k, \frac{2^{k-1}\epsilon}{n_0}) \times \prod_{k=n_0+1}^{\infty} \{x_{0,k}\}$ is an ϵ -approximation of X, where $n_0 \in \mathbb{N}$ such that $\sum_{k=n_0+1}^{\infty} \frac{1}{2^k} \leq \frac{\epsilon}{2}$. **Corollary 5.** If (X, σ_{∞}) is the product of a sequence $(X_n, d_n)_{n=1}^{\infty}$ of totally bounded metric spaces, then $\mathcal{U}(\Phi) = C_u(X)$, where

$$\Phi_0 := \{ \prod_{i=1}^n (f_i \circ \pi_i) \mid f_i \in C_u(X_i), 1 \le i \le n, n \in \mathbb{N} \},\$$
$$\Phi := \{ \sum_{k=1}^n h_k \mid h_k \in \Phi_0, 1 \le k \le n, n \in \mathbb{N} \}.$$

Proof. Without loss of generality let $d_n \leq \overline{1}$, for every $n \in \mathbb{N}$. The only difference with the proof of Corollary 4 is treated as follows. If $(x_n^0)_{n=1}^{\infty} \in X$ and $\epsilon > 0$, let

$$g := \sum_{k=1}^{n_0} \frac{d_{k,x_k^0} \circ \pi_k}{2^k} = \sum_{k=1}^{n_0} (\frac{d_{k,x_k^0}}{2^k}) \circ \pi_k \in \Phi,$$

where $n_0 \in \mathbb{N}$ such that $\sum_{k=n_0+1}^{\infty} \frac{1}{2^k} \leq \epsilon$. We get $U(g, \sigma_{\infty, (x_n^0)_{n=1}^{\infty}}, \epsilon)$, since

$$|g((y_n)_{n=1}^{\infty}) - \sigma_{\infty,(x_n^0)_{n=1}^{\infty}}((y_n)_{n=1}^{\infty})| = |\sum_{k=n_0+1}^{\infty} \frac{d_{k,x_k^0}(y_k)}{2^k}| \le \sum_{k=n_0+1}^{\infty} |\frac{d_k(x_k^0, y_k)}{2^k}| \le \epsilon.$$

Recall that a totally bounded metric space is separable (see [3], p.94). The separability of $C_u(X)$ follows by the next corollary.

Corollary 6. If $Q = \{q_n \mid n \in \mathbb{N}\}$ is dense in (X, d), $U_0(Q) := \{d_{q_n} \mid n \in \mathbb{N}\}$, and $\Phi_0^* = \mathcal{A}(U_0(Q) \cup \{\overline{1}\})$, then $\mathcal{U}(\Phi_0^*) = C_u(X)$.

Proof. If $(x_n)_{n=1}^{\infty} \in X^{\mathbb{N}}$ converges pointwise to x, then $(d_{x_n})_{n=1}^{\infty}$ converges uniformly to d_x [i.e., if $\forall_{\epsilon>0} \exists_{n_0} \forall_{n\geq n_0} (d(x_n, x) \leq \epsilon)$, then $\forall_{\epsilon>0} \exists_{n_0} \forall_{n\geq n_0} \forall_{y\in X} (|d(x_n, y) - d(x, y)| \leq \epsilon)]$. If $\epsilon > 0$ and $n \geq n_0$, then $d(x_n, y) \leq d(x_n, x) + d(x, y) \rightarrow d(x_n, y) - d(x, y) \leq d(x_n, x) \leq \epsilon$, and similarly $d(x, y) - d(x_n, y) \leq d(x_n, x) \leq \epsilon$. By **SWtbms** it suffices to show that $U_0(X) \subseteq \mathcal{U}(\mathcal{A}(U_0(Q)))$. If $d_x \in U_0(X)$, for some $x \in X$, and $(q_{k_n})_{n=1}^{\infty}$ is a subsequence of Q that converges pointwise to x, then $(d_{q_{k_n}})_{n=1}^{\infty}$ converges uniformly to d_x , therefore $d_x \in \mathcal{U}(\mathcal{A}(U_0(Q)))$.

4 Concluding comments

We presented a direct constructive proof of **SWtbms** with a clear computational content. Its translation to Type Theory and its implementation to a proof assistant like Coq are expected to be straightforward. Although **SWtbms** does not look like a theorem of Stone-Weierstrass type, as **BSWtbms** does, it has certain advantages over it. Its proof is "natural", in comparison to Bishop's technical proof and his difficult to motivate concept of a Bishop-separating set. As we explained, **SWtbms** implies **BSWtbms**, and all applications of **BSWtbms** in [3] are proved directly by **SWtbms**. We know of no application of **BSWtbms** which cannot be derived by **SWtbms** (in [3] we found only one application of Corollary 4 and one of the Weierstrass approximation theorem⁵).

An interesting question related to Corollary 2 is if for (X, d) totally bounded and (Y, ρ) complete metric space, the set of Lipschitz functions Lip(X, Y) between them is a dense subset of the uniformly continuous functions $C_u(X, Y)$ between them. A similar classical result, see [14], requires a Lipschitz extension property, which indicates that the correlation of Lemma 4 to the McShane-Kirszbraun theorem may not be accidental.

References

- 1. B. Banaschewski and C. J. Mulvey: A constructive proof of the Stone-Weierstrass theorem, Journal of Pure and Applied Algebra 116, 1997, 25-40.
- 2. E. Bishop: Foundations of Constructive Analysis, McGraw-Hill, 1967.
- E. Bishop and D. Bridges: Constructive Analysis, Grundlehren der Math. Wissenschaften 279, Springer-Verlag, Heidelberg-Berlin-New York, 1985.
- D. S. Bridges: Reflections on function spaces, Annals of Pure and Applied Logic 163, 2012, 101-110.
- D. S. Bridges and L. S. Vîţă: *Techniques of Constructive Analysis*, in: Universitext, Springer, New York, 2006.
- D. S. Bridges and F. Richman: Varieties of Constructive Mathematics, Cambridge University Press, 1987.
- 7. T. Coquand: A Constructive Analysis of the Stone-Weierstrass Theorem, manuscript, 2001.
- T. Coquand: About Stone's notion of spectrum, Journal of Pure and Applied Algebra 197, 2005, 141-158.
- T. Coquand and B. A. W. Spitters: Constructive Gelfand duality for C*-algebras, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 147, 2009, No. 2, 339-344.
- 10. J. Dugundji: Topology, Wm. C. Brown Publishers, 1989.
- 11. H. Ishihara: Two subcategories of apartness spaces, Annals of Pure and Applied Logic 163, 2013, 132-139.
- H. Ishihara: Relating Bishop's function spaces to neighborhood spaces, Annals of Pure and Applied Logic 164, 2013, 482-490.
- H. Ishihara, R. Mines, P. Schuster and L. S. Vîţă: Quasi-apartness and neighborhood spaces, Annals of Pure and Applied Logic 141, 2006, 296-306.
- R. Miculescu: Approximations by Lipschitz functions generated by extensions, Real Analysis Exchange, Vol. 28(1), 2002/2003, 33-40.
- I. Petrakis: Constructive Topology of Bishop Spaces, PhD Thesis, Ludwig-Maximilians-Universität, München, 2015.
- I. Petrakis: Completely Regular Bishop Spaces, in A. Beckmann, V. Mitrana and M. Soskova (Eds.): Evolving Computability, CiE 2015, LNCS 9136, 2015, 302-312.
- I. Petrakis: The Urysohn Extension Theorem for Bishop Spaces, in S. Artemov and A. Nerode (Eds.) Symposium on Logical Foundations in Computer Science 2016, LNCS 9537, Springer, 2016, 299-316.
- 18. H. Tuominen: Analysis in Metric Spaces, Lecture notes, 2014.
- 19. http://math.stackexchange.com/questions/665587/

10

⁵ The first, in p.414, is the uniform approximation of a test function f(x, y) on $G \times G$, where G is a locally compact group, by finite sums of the form $\sum_i f_i(x)g_i(y)$, and the second, in p.375, is a density theorem in the theory of Hilbert spaces.