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Abstract. We present a constructive proof of a Stone-Weierstrass theo-
rem for totally bounded metric spaces (SWtbms) which implies Bishop’s
Stone-Weierstrass theorem for compact metric spaces (BSWecms) found
in [3]. Our proof has a clear computational content, in contrast to Bishop’s
highly technical proof of BSWems and his hard to motivate concept of
a (Bishop-)separating set of uniformly continuous functions. All corollar-
ies of BSWcms in [3] are proved directly by SWtbms. We work within
Bishop’s informal system of constructive mathematics BISH.

1 Introduction

According to the classical Stone-Weierstrass theorem (SWchts), if X is a com-
pact Hausdorff topological space and @ is a separating subalgebra of the continu-
ous real-valued functions C(X) on X that contains a non-zero constant function,
then the uniform closure of @ is C'(X) (see [10], p.282). Recall that @ is separat-
ing, if Va:,yEX(-T FY— 3f€<15(f(33) # f(y)))

There are some constructive versions of this theorem depending on the notion
of space under constructive study. In [I] Banaschewski and Mulvey considered
a compact, completely regular locale instead of a compact Hausdorff topological
space. In [7] Coquand gave a simple, constructive localic proof of it, replacing
the ring structure of C(X) by its lattice structure, while in [8] he studied the
usual formulation of the Stone-Weierstrass theorem in this point-free topological
framework.

For reasons which we discuss in [I5], Bishop did not pursue a constructive re-
construction of abstract topology. Although he introduced two constructive al-
ternatives to the notion of topological space, the notion of neighborhood space,
see [II], [13], and the notion of function space, or Bishop space, see [4], [12]
and [I5]-[I7], he never elaborated them, restricting his studies to metric spaces.
In [2] and [3] Bishop formulated a theorem of Stone-Weierstrass type for compact
metric spaces (i.e., complete and totally bounded metric spaces) using the notion
of a Bishop-separating set of uniformly continuous functionsﬂ Since Bishop’s re-
sults, as well as ours, hold for totally bounded metric spaces, we formulate all
related concepts and results for them without restricting to compact metric

! Bishop’s original term is that of a separating set, which we avoid here in the presence
of the standard classical notion of a separating subset of C'(X).



spaces. Recall that a metric space (X,d) is totally bounded, if for every ¢ > 0
there exists a finite e-approximation of X, and a set A is finite if there exists a
one-one mapping of {1,...,n} onto A, for some n > 0 (see [0], p.29). Hence, a
totally bounded metric space is always inhabited.

Throughout this paper (X, d) is a totally bounded metric space, Cy,(X) denotes
the uniformly continuous real-valued functions on X, and ¢ C C,(X).

Definition 1. & is called Bishop-separating, if there is § : RT — R such that:

(Bsep;) For all € > 0 and zo,y0 € X, if d(zo,y0) > €, there exists ge z,yo € P
such that

Veex(dug(2) < 6(€) = [ge,wom0(2)] <€) and

Veex (dy, (2) < 0(€) = |ge.aomo(2) — 1] <€)
(Bsep,) For alle >0 and xg € X there exists gez, € P such that

Veex (day(2) < 0(€) = [gemo(2) — 1] <€)

Note that in Definition [I] ge 24,4, and ge,z, are just notations that do not involve
the use of some choice principle. Recall also that for every xzg € X the map
dye : X = R, defined by z — d(zg, z), is in C,(X) with modulus of continuity
wd,, = idg+. If a € R, we denote by @ the constant map on X with value a, and
their set by Const(X). We define

Uo(X) :={dy, | 0 € X}.

Uj(X) :=Uo(X) U{1}.
We call @ positively separating, if ¥y yex (x Mg y — Jgea(g(x) Mg g(y))), where
x Mgy < d(z,y) >0, for every z,y € X, and a Xg b <> |[a —b] > 0 < a <
bV b < a, for every a,b € R, are the canonical point-point apartness relations on
X and R, respectively. The notion of a positively separating set @ is the positive
version of the classical notion of a separating subset of C'(X) for metric spaces.
Clearly, Up(X) is positively separating.

Remark 1. If @ is Bishop-separating, then @ is positively separating.

Proof. By the Archimedean property of R (see [5], p.57), if 2o, yo € X such that
d(zg,y0) > 0, there is some natural number N > 2 such that d(zg,y0) > %
By Bsep, we have that [g1 ., . (%0)] < + and 192 w00 (W0) — 1] < +, for some

g%ﬂco,yo € @, therefore 9%7330790 (xo) MR g%ﬂcmyo (yo)

In [3], p.106, Bishop formulated a theorem of Stone-Weierstrass type for com-
pact metric spaces using the notion of a Bishop-separating set as the property
that corresponds to the classical notion of a separating set in the formulation
of SWchts. Bishop’s proof of this theorem is non-trivial and does not involve
the completeness property of X. Following Bishop, we denote by A(®P) the least
subset of C,(X) that includes @ and it is closed with respect to addition, mul-
tiplication, and multiplication by reals. Bishop didn’t define A(®) inductively
but explicitly, as the set of compositions of strict real polynomials in several
variables with vectors of elements of @ (see [3], p.105).



Theorem 1 (Bishop’s Stone-Weierstrass theorem for totally bounded
metric spaces (BSWtbms)). If ¢ is Bishop-separating, then A(P) is dense
in Cy(X).

The condition of & being Bishop-separating implies that the constant map 1
is in the closure of A(®) (see [3], p.106). Bishop’s formulation of BSWtbms
represents a non-trivial technical achievement, namely to find a formulation of
a theorem of Stone-Weierstrass type in the constructive theory of metric spaces
that resembles the formulation of the classical SWchts. As Coquand and Spit-
ters mention in [9], pp.339-340, constructive proofs using a concrete presenta-
tion of topological notions (e.g., the Gelfand spectrum as a lattice) are “more
direct than proofs via an encoding of topology in metric spaces, as is common
in Bishop’s constructive mathematics”.

In the next two sections we present a Stone-Weierstrass theorem for metric
spaces which avoids the concept of a Bishop-separating set, it has an informa-
tive and direct proof, it implies BSWtbms, and it proves directly all corollaries
of BSWtbms.

2 A Stone-Weierstrass theorem for totally bounded
metric spaces

Definition 2. If f,g € C,(X) and € > 0, then f A g := min{f,g},f Vg =
max{f, g}, and the uniform closure U(P) of ® is defined by

Ulg, f,€) = Vaex (lg(z) — f(2)] <€),
U(q)7 f) R4 v6>03g64’(U(gv f7 6))7
UP) = {f € Cu(X) | U2, )}
The following remark is immediate to show.
Remark 2. If @ is closed under addition, multiplication by reals and multiplica-
tion, then U (P) is closed under addition, multiplication by reals and multiplica-
tion. Moreover, if @ is closed under |.|, then U(®) is closed under |.|.

The next two lemmas are proved in [3], pp.105-6 (Lemma 5.11 and Lemma 5.12).

Lemma 1. If Const(X) C @, and D is closed under addition and multiplication
(or if @ is closed under addition, multiplication by reals, and multiplication),
then U(P) is closed under |.|,V and A.

Lemma 2. If® is closed under addition, multiplication by reals, and multiplica-
tion, and f € U(P) such that Veex (|f(x)] > ¢), for some ¢ > 0, then % eU(D).

Corollary 1. If xg,yo € X such that d(xg,yo) > 0, then 1 € U(A(Up(X))).



Proof. If x € X, then 0 < d(zo,y0) < d(zo,x) + d(z,y0) = dg, () + dy, ()
ie., d(zo,y0) < dgc(J +dy,, € A(Up(X)). By Lemma [2| we get that L
)

dugtdyg
U(A(Up(X))), therefore 1T € U(A(Ug(X))).

The existence of xg, yo € X such that d(zo,yo) > 0 is equivalent to the positivity
of the diameter of (X, d) (see the footnote in the proof of Lemma [3)).

m

Definition 3. If F(X) denotes the set of real-valued functions on X, the set of
Lipschitz functions Lip(X) on (X,d) is defined by

Lip(X, k) == {f € F(X) | Vayex (|f(z) = f(y)| < kd(z,y))},
Lip(X) := | J Lip(X, k).
k>0

Remark 8. The set Lip(X) C C,(X) includes Up(X), Const(X) and it is closed
under addition, multiplication by reals, and multiplication.

Proof. It xg € X, then |d(xg, z)—d(x0,y)| < d(x,y), for every x,y € X, therefore
Up(X) C Lip(X, 1). Clearly, Const(X) C Lip(X, k), for every k > 0. Recall that
fg= %((f +g)% — f2 —g¢%), and if My > 0 is a bound of f, it is immediate to
see that

f eLip(X, k1) — g € Lip(X,ks) = f+g € Lip(X, k1 + ko),
feLlip(X,k) = A€ R — Af € Lip(X, |\|k),
f € Lip(X,k) — f? € Lip(X,2Mk).
Lemma 3. If & = A(Uj(X)), then Lip(X) C U(P).
Proof. Tt suffices to show that Lip(X, 1) C U(P), since if f € Lip(X, k), for some
k > 0, then %f € Lip(X, 1) and we have, for every € > 0 and 0 € P,

1., €
U(ea Ef7 %) — U(k@,f, 6)'

Suppose next that f € Lip(X,1) and ¢ > 0. We find g € U(P) such that
Ul(g, f,€), therefore f € UU(P)) = U(P). More specifically, if {z1,...,2m,} is
an §-approximation of X, we find g € U(®) such that g(z;) = f(z), for every
ie{l,...,m}, and |g(x) — g(z:)| = [g9(x) — f(2:)| < §, for every x € X and z

such that d(z, z;) < §. Consequently,

l9(x) = f(2)] < lg(x) — g(zi)| + |g(zi) — f(20)] + [f(z:) — f ()]

< S +0+d(z,a)
€ €
<

22
€.



We define

g:= /\ (f(2k> + de)
k=1

Since f(zx) + d,, € ® and since by Lemma (1| U/(P) is closed under A we get
g € U(P). Moreover,

9(zi) = \ (f(zr) + do (2:) < flzi) + dzy (20) = f(20)

=

k=1

For the converse inequality we suppose that g(z;) < f(z;) and reach a contra-
diction (here we use the fact that =(a < b) — a > b, for every a,b € R (see [3],
p.26)). If a,b, c € R, then one showsE| that a Ab<c— a <cVb<c Hence

m

(f(zr) +dz (21) < f(2i) = Fjeqr,..my (f(25) +d(z5,2:) < f(2))
k=1

= d(z5,2:) < f(zi) = fz) < [f(z0) = f(z5)] < d(z),2),
which is a contradiction. Using the equality g(z;) = f(z;) we have that

g(x) = N\ (f(zk) + dz (2)) < f(20) + doy () —
k=1
9(x) — g(z:) < f(zi) +dz(2) — 9(z) = f(z) + dz, () — f2:) = d(z, ) < %
If ke {1,...,m}, then f(z) — f(zx) < |f(2i) — f(z)| < d(zi, 21) < d(2i,2) +

d(zx, 1), therefore

k=1
P = N\ () + d(er, ) < d(zi2) =
k=1
9(z1) — 9(2) < d(z1,2) =
9(z) = g(a) < 5.

From g(z) — g(z;) < 5 and g(2;) — g(z) < 5 we get |g(z) — g(2;)| < 5.

2 The proof goes as follows. By the constructive trichotomy property (see [3], p.26)
either a < cor a Ab < a. In the first case we get immediately what we want to show.
In the second case we get that b < a, since if b > a, we have that a = a A b < a,
which is a contradiction. Thus a A b = b and the hypothesis a Ab < ¢ becomes b < c.



Lemma 4. If f € Cy(X) and € > 0, there exist o > 0 and g,9* € Lip(X,0)
such that

(i) Veex (F(2) — ¢ < g(x) < [(@) < °(x) < f(2) +e).

(ii) For every e € Lip(X,0), ife < f, then e < g.

(iii) For every e* € Lip(X, o), if f < e*, then g* < e*.

Proof. (i) Let wy be a modulus of continuity of f and My > 0 a bound of f. We
define the functions h, : X - Rand g: X — R by

hy = f 4+ od,,

2 M
wy(e)
g(z) == inf{h,(y) |y € X} = inf{f(y) + od(z,y) | y € X},

for every z € X. Note that g(z) is well-defined, since h, € C,(X) and the
infimum of h, exists (see [3], p.94 and p.38). First we show that g € Lip(X, o).
If £1, 22,y € X the inequality d(z1,y) < d(z2,y) + d(z1,x2) implies that f(y) +
od(z1,y) < (f(y) + od(x2,y)) + od(z1,22), hence g(x1) < (f(y) + od(z2,y)) +
od(z1,x2), therefore g(x1) < g(x2) + od(x1, x2), or g(z1) — g(x2) < od(w1, 22).
Starting with the inequality d(z2,y) < d(z1,y)+d(x1, x2) and working similarly
we get that g(z2) — g(x1) < od(x1, z2), therefore |g(x1) — g(x2)| < od(z1,x2).
Next we show that

)

Vaex (f(2) —e < g(z) < f()).

Since f(x) = f(z) + od(z,x) = hy(z) > inf{h,(y) | y € X} = g(z), for every
x € X, we have that g < f. Next we show that Vyex (f(x) — e < g(x)). For that
we fix © € X and we show that —(f(z) — € > g(x)). Note that if A C R,b € R,
therﬂ b > inf A — Jca(a < b). Therefore,

f(x) —e>g(x) &

fl@)—e>nf{f(y) +od(z,y) |y € X} —
yex (f(z) —e> f(y) + od(z,y)) &

Fyex (f(z) — f(y) > e+ od(z,y)).

For this y we show that d(z,y) < wys(e). If d(x,y) > wy(e), we have that

d(z,y)
we(€)

which is a contradiction. Hence, by the uniform continuity of f we get that
|f(z) — f(y)] < e, therefore the contradiction € > € is reached, since

e>|f(x) = fy) > f(x) = fly) > e+ od(z,y) > e

3 By the definition of inf A in [3], p.37, we have that Vcs0J3aca(a < inf A+¢), therefore
if b>inf A and e = b — inf A > 0 we get that Joeca(a < inf A+ (b —inf A) = b).

2Mf2f(:c)+MfZf(x)ff(y)>e+2Mf >€+2Mf>2Mf,



Next we define the functions A} : X — R and ¢* : X — R by
hy = f—od,

g*(x) :=sup{hy(y) | y € X} =sup{f(y) — od(z,y) | y € X},

for every x € X, and 0 = 5%5 Similarl to g we get that g* € Lip(X, o) and

Veex (f(2) < g7 () < f(2) +6).

(ii) Let e € Lip(X, o) such that e < f. If we fix some x € X, then for every y € X
we have that e(z)—e(y) < |e(z)—e(y)| < od(z,y), hence e(x) < e(y)+od(z,y) <
f(y) + od(x,y), therefore e(z) < g(z).

(iii) Let e* € Lip(X,o) such that f < e*. If we fix some z € X, then for
every y € X we have that e*(y) — e*(z) < |e*(y) — e*(z)|] < od(x,y), hence
1(9) - 0d(z,y) < e*(y) — 0d(z,y) < e*(x), therefore g*(z) < e*(2).

Hence g is the largest function in Lip(X, o) which is smaller than f, and g* is
the smallest function in Lip(X, o) which is larger than f. So, if there is some ¢’ €
Lip(X) such that ¢’ < f and g(z) < €'(z), for some z € X, then ¢’ € Lip(X, o’),
for some o/ > o. It is interesting that Lemma [ is in complete analogy to
the McShane-Kirszbraun theorem. To make this clear we include a constructive
version of this theorem (for a classical presentation see [18], p.6). Recall that
A C X is located, if the distance d(z, A) := inf{d(z,y) | y € Y} exists for every
x € X, and that a located subset of a totally bounded metric space is totally
bounded (see [3], p.95).

Proposition 1 (McShane-Kirszbraun theorem for totally bounded met-
ric spaces). If o > 0, A C X is located, and f : A — R € Lip(A, o), then there
exist g,g* € Lip(X, o) such that g4 = g‘*A = f and for every e € Lip(X, o) such
that e| 4 = f we have that g* < e < g.

Proof. The functions g, ¢* defined by g(z) := inf{f(a) + od(z,a) | a € A}, and
g (x) := sup{f(a) — od(z,a) | a € A}, for every x € X, are well-defined and
satisfy the required properties.

Corollary 2. U(Lip(X)) = C,(X).

Proof. If € > 0, then the functions g, g* € Lip(X, o) of Lemmasatisfy Ulg, f,e€),
Ul(g*, f,€), respectively.

Next follows our Stone-Weierstrass theorem for totally bounded metric spaces.
Theorem 2 (Stone-Weierstrass theorem for totally bounded metric
spaces (SWtbms)). If & = A(Uj(X)), then C(X) =U(D).

Proof. First we show that Cy(X) C U(P). If f € Cp(X) and € > 0, then by
Corollary [2| there exists h € Lip(X) such that U(h, f, 5), while by Lemma
there exists g € @ such that U(g, h, §). Consequently, U(g, f,¢). The converse
inclusion follows from the immediate fact that all elements of U (®P) are in C\, (X).

* To show that —(g*(x) > f(z) + €) we just use the fact that if A C R,b € R, then
supA > b — FJaea(a > b). The function g* is mentioned in [I9], where non-
constructive properties of the classical (R, <) are used.



8

3 Corollaries of SWtbms

Proposition 2. SWtbms implies BSWtbms

Proof. The proof follows immediately by inspection of the proof of BSWtbms
in [3], pp.106-8. Bishop shows there that if @ is Bishop-separating, then 1 €
U(A(D)), and by his Lemma 5.14.1 one shows that Uy(X) C U(A(P)) - this is a
slight simplification of the final part of Bishop’s proof that C,(X) C U(A(P)).
Since U (X) C U(A(P)), then by Remark [2] A(Ug (X)) C U(A(P)), therefore
Cu(X) =U(AU5 (X)) SUU(A(D))) = U(A(D)).

In the proof of Corollary 5.16 in [3], pp.108-9, it is shown that if (X, d) has posi-
tive diameter, then A(Uy (X)) is a Bishop-separating set, therefore by BSWtbms
we get that U(A(Up(X))) = C(X). Hence SWtbms is only “slightly” stronger
than BSWtbms. If we use SWtbms, we get immediately the same result.

Corollary 3. If (X,d) has positive diameter, then U(A(Uy(X))) = Cu(X).

Proof. The hypothesis of positive diameter implies the hypothesis of Corollary [T}
therefore 1 € U(A(Up(X))) C Cu(X). Hence Ui (X) C U(A(Up(X))), and by
Remark |2| we get that A(Uj(X)) € AU(AU(X)))) = U(A(Up(X))). Thus
Cu(X) = U(AU; (X)) SUU(AUNX)))) = U(AUp(X)))-

Next we prove Corollary 5.15 in [3], p.108 and its finite version using SWtbms.
If (X,d),(Y,p) are totally bounded, then (X X Y, o) is totally bounded, where
o((z1,y1), (x2,92)) := d(z1,22) + p(y1,%2), for every x1, 20 € X and y1,y2 € Y;
if A= {x1,...,2,} is an §S-approximation of X and B = {y1,...,ym} is an
5-approximation of Y, then A x B is an e-approximation of X x Y. We denote
by m; the projection of X x Y onto X and by w9 its projection onto Y.

Corollary 4. If (X, d), (Y, p) are totally bounded metric spaces and

n

G :={) (fiom)(gioma) | fi € Cu(X),9; € Cu(Y),1 <i <n,n €N},

i=1
then U(P) = Cp (X x Y).

Proof. Clearly, ® C C,(X xY), @ is an algebra (actually, ® = A((Cy,(X)om)U
(Cu(Y)oms)), where Cy(X)om = {fom; | f € Cyp(X)} and C(Y)omg = {goms |
g € Cu(Y)}), and U(P) C Cy(X X Y). The constant 1 on X X Y is equal to (1o
m1)(Lomy). If 20,2 € X and yo,y € Y, then o4, 40\ (7, ) = o((20,%0), (x,y)) =
d(l‘o,l‘) + p(y07y) = dwo(x) + pyo(y) = (dio ° Wl)g(x’y)) "t (pyo © Wg)((l‘,y) )
therefore oz, yo) = (dzo0m1)+(py, 072) = (duyom)(Loma)+ (Lo )(py,0m2) € P.
Since U (X x Y) CU(P), by SWtbms we get that C\,(X xY) CU(D).

If (X,,d,) is totally bounded, where without loss of generality d,, < 1, for
every n € N, then (X, 04), where X = [[77, X,, and 000 ()52 1, (yn)02,) =
S dn(@nyn) g totally bounded; if A(Xp,€) is an e-approximation of X,, and

n=1 2n

To, inhabits X, then A(X,e) = [72, A(Xy, 2 ley o [1Z 41170k} is an

no

e-approximation of X, where ng € N such that ZZ’;”OH 2% <3.



Corollary 5. If (X,0) is the product of a sequence (X,,dn)52, of totally
bounded metric spaces, then U(P) = C(X), where

Dy = {H(fi om) | fi € Cu(Xi), 1 <i<n,neN}

=1

@ :={> hi|hy€ Py, 1 <k<nneN}.
k=1

Proof. Without loss of generality let d,, < 1, for every n € N. The only difference
with the proof of Corollary is treated as follows. If (z9)%°; € X and € > 0, let

o Dkt Ok R g

QizzT:Z( ok Jomy €D,

k=1 k=1

where ng € N such that ZZ’;M_H 2% <e We get U(g,000,(20) ,€), since

o I = dk,mg (yr) = dy, Z‘O,yk)
()30 iy (i)l = | Y0 A o s )

n=1
k=no+1 k=no+1

Recall that a totally bounded metric space is separable (see [3], p.94). The
separability of C, (X) follows by the next corollary.

Corollary 6. If Q = {g, | n € N} is dense in (X, d), Up(Q) := {dq, | n € N},
and & = A(Up(Q) U{1}), then U(DF) = Cu(X).

Proof. 1f (z,)2%; € X~ converges pointwise to x, then (d,, )5, converges uni-
formly to d, [i-e., if Ves0Tn, Visne (A(2n, ) <€), then Ves03n, Vi>n, Vyex (|d(@n, y)—
d(z,y)] < €)]. If € > 0 and n > ng, then d(z,,y) < d(Tn,z) + d(z,y) —
d(xnay) - d(l’,y) < d(‘rnax) < €, and Simﬂarly d(I, y) - d(IEn,y) < d(xnax) <e
By SWtbimns it suffices to show that Uy(X) CU(A(Up(Q))). If dy € Up(X), for
some x € X, and (qx, )%, is a subsequence of @ that converges pointwise to z,

n=1

then (dg, ), converges uniformly to d, therefore d, € U(A(Up(Q))).

4 Concluding comments

We presented a direct constructive proof of SWtbms with a clear computa-
tional content. Its translation to Type Theory and its implementation to a proof
assistant like Coq are expected to be straightforward. Although SWtbms does
not look like a theorem of Stone-Weierstrass type, as BSWtbms does, it has
certain advantages over it. Its proof is “natural”, in comparison to Bishop’s tech-
nical proof and his difficult to motivate concept of a Bishop-separating set. As
we explained, SWtbms implies BSWtbms, and all applications of BSWtbms
in [3] are proved directly by SWtbms. We know of no application of BSWtbms
which cannot be derived by SWtbms (in [3] we found only one application of
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Corollary 4| and one of the Weierstrass approximation theorenﬂ.

An interesting question related to Corollaryis if for (X, d) totally bounded and
(Y, p) complete metric space, the set of Lipschitz functions Lip(X,Y") between
them is a dense subset of the uniformly continuous functions Cy,(X,Y") between
them. A similar classical result, see [I4], requires a Lipschitz extension property,
which indicates that the correlation of Lemma [ to the McShane-Kirszbraun
theorem may not be accidental.
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