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Abstract. We present a constructive proof of a Stone-Weierstrass theo-
rem for totally bounded metric spaces (SWtbms) which implies Bishop’s
Stone-Weierstrass theorem for compact metric spaces (BSWcms) found
in [3]. Our proof has a clear computational content, in contrast to Bishop’s
highly technical proof of BSWcms and his hard to motivate concept of
a (Bishop-)separating set of uniformly continuous functions. All corollar-
ies of BSWcms in [3] are proved directly by SWtbms. We work within
Bishop’s informal system of constructive mathematics BISH.

1 Introduction

According to the classical Stone-Weierstrass theorem (SWchts), if X is a com-
pact Hausdorff topological space and Φ is a separating subalgebra of the continu-
ous real-valued functions C(X) on X that contains a non-zero constant function,
then the uniform closure of Φ is C(X) (see [10], p.282). Recall that Φ is separat-
ing, if ∀x,y∈X(x 6= y → ∃f∈Φ(f(x) 6= f(y))).
There are some constructive versions of this theorem depending on the notion
of space under constructive study. In [1] Banaschewski and Mulvey considered
a compact, completely regular locale instead of a compact Hausdorff topological
space. In [7] Coquand gave a simple, constructive localic proof of it, replacing
the ring structure of C(X) by its lattice structure, while in [8] he studied the
usual formulation of the Stone-Weierstrass theorem in this point-free topological
framework.
For reasons which we discuss in [15], Bishop did not pursue a constructive re-
construction of abstract topology. Although he introduced two constructive al-
ternatives to the notion of topological space, the notion of neighborhood space,
see [11], [13], and the notion of function space, or Bishop space, see [4], [12]
and [15]-[17], he never elaborated them, restricting his studies to metric spaces.
In [2] and [3] Bishop formulated a theorem of Stone-Weierstrass type for compact
metric spaces (i.e., complete and totally bounded metric spaces) using the notion
of a Bishop-separating set of uniformly continuous functions1. Since Bishop’s re-
sults, as well as ours, hold for totally bounded metric spaces, we formulate all
related concepts and results for them without restricting to compact metric

1 Bishop’s original term is that of a separating set, which we avoid here in the presence
of the standard classical notion of a separating subset of C(X).
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spaces. Recall that a metric space (X, d) is totally bounded, if for every ε > 0
there exists a finite ε-approximation of X, and a set A is finite if there exists a
one-one mapping of {1, . . . , n} onto A, for some n > 0 (see [6], p.29). Hence, a
totally bounded metric space is always inhabited.

Throughout this paper (X, d) is a totally bounded metric space, Cu(X) denotes
the uniformly continuous real-valued functions on X, and Φ ⊆ Cu(X).

Definition 1. Φ is called Bishop-separating, if there is δ : R+ → R+ such that:

(Bsep1) For all ε > 0 and x0, y0 ∈ X, if d(x0, y0) ≥ ε, there exists gε,x0,y0 ∈ Φ
such that

∀z∈X(dx0
(z) ≤ δ(ε)→ |gε,x0,y0(z)| ≤ ε) and

∀z∈X(dy0(z) ≤ δ(ε)→ |gε,x0,y0(z)− 1| ≤ ε).
(Bsep2) For all ε > 0 and x0 ∈ X there exists gε,x0

∈ Φ such that

∀z∈X(dx0
(z) ≤ δ(ε)→ |gε,x0

(z)− 1| ≤ ε).

Note that in Definition 1 gε,x0,y0 and gε,x0 are just notations that do not involve
the use of some choice principle. Recall also that for every x0 ∈ X the map
dx0

: X → R, defined by x 7→ d(x0, x), is in Cu(X) with modulus of continuity
ωdx0

= idR+ . If a ∈ R, we denote by a the constant map on X with value a, and
their set by Const(X). We define

U0(X) := {dx0
| x0 ∈ X}.

U∗0 (X) := U0(X) ∪ {1}.
We call Φ positively separating, if ∀x,y∈X(x 1d y → ∃g∈Φ(g(x) 1R g(y))), where
x 1d y ↔ d(x, y) > 0, for every x, y ∈ X, and a 1R b ↔ |a − b| > 0 ↔ a <
b∨ b < a, for every a, b ∈ R, are the canonical point-point apartness relations on
X and R, respectively. The notion of a positively separating set Φ is the positive
version of the classical notion of a separating subset of C(X) for metric spaces.
Clearly, U0(X) is positively separating.

Remark 1. If Φ is Bishop-separating, then Φ is positively separating.

Proof. By the Archimedean property of R (see [5], p.57), if x0, y0 ∈ X such that
d(x0, y0) > 0, there is some natural number N > 2 such that d(x0, y0) > 1

N .
By Bsep1 we have that |g 1

N ,x0,y0(x0)| ≤ 1
N and |g 1

N ,x0,y0(y0)− 1| ≤ 1
N , for some

g 1
N ,x0,y0 ∈ Φ, therefore g 1

N ,x0,y0(x0) 1R g 1
N ,x0,y0(y0).

In [3], p.106, Bishop formulated a theorem of Stone-Weierstrass type for com-
pact metric spaces using the notion of a Bishop-separating set as the property
that corresponds to the classical notion of a separating set in the formulation
of SWchts. Bishop’s proof of this theorem is non-trivial and does not involve
the completeness property of X. Following Bishop, we denote by A(Φ) the least
subset of Cu(X) that includes Φ and it is closed with respect to addition, mul-
tiplication, and multiplication by reals. Bishop didn’t define A(Φ) inductively
but explicitly, as the set of compositions of strict real polynomials in several
variables with vectors of elements of Φ (see [3], p.105).
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Theorem 1 (Bishop’s Stone-Weierstrass theorem for totally bounded
metric spaces (BSWtbms)). If Φ is Bishop-separating, then A(Φ) is dense
in Cu(X).

The condition of Φ being Bishop-separating implies that the constant map 1
is in the closure of A(Φ) (see [3], p.106). Bishop’s formulation of BSWtbms
represents a non-trivial technical achievement, namely to find a formulation of
a theorem of Stone-Weierstrass type in the constructive theory of metric spaces
that resembles the formulation of the classical SWchts. As Coquand and Spit-
ters mention in [9], pp.339-340, constructive proofs using a concrete presenta-
tion of topological notions (e.g., the Gelfand spectrum as a lattice) are “more
direct than proofs via an encoding of topology in metric spaces, as is common
in Bishop’s constructive mathematics”.
In the next two sections we present a Stone-Weierstrass theorem for metric
spaces which avoids the concept of a Bishop-separating set, it has an informa-
tive and direct proof, it implies BSWtbms, and it proves directly all corollaries
of BSWtbms.

2 A Stone-Weierstrass theorem for totally bounded
metric spaces

Definition 2. If f, g ∈ Cu(X) and ε > 0, then f ∧ g := min{f, g}, f ∨ g :=
max{f, g}, and the uniform closure U(Φ) of Φ is defined by

U(g, f, ε) :↔ ∀x∈X(|g(x)− f(x)| ≤ ε),

U(Φ, f) :↔ ∀ε>0∃g∈Φ(U(g, f, ε)),

U(Φ) := {f ∈ Cu(X) | U(Φ, f)}.

The following remark is immediate to show.

Remark 2. If Φ is closed under addition, multiplication by reals and multiplica-
tion, then U(Φ) is closed under addition, multiplication by reals and multiplica-
tion. Moreover, if Φ is closed under |.|, then U(Φ) is closed under |.|.

The next two lemmas are proved in [3], pp.105-6 (Lemma 5.11 and Lemma 5.12).

Lemma 1. If Const(X) ⊆ Φ, and Φ is closed under addition and multiplication
(or if Φ is closed under addition, multiplication by reals, and multiplication),
then U(Φ) is closed under |.|,∨ and ∧.

Lemma 2. If Φ is closed under addition, multiplication by reals, and multiplica-
tion, and f ∈ U(Φ) such that ∀x∈X(|f(x)| ≥ c), for some c > 0, then 1

f ∈ U(Φ).

Corollary 1. If x0, y0 ∈ X such that d(x0, y0) > 0, then 1 ∈ U(A(U0(X))).
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Proof. If x ∈ X, then 0 < d(x0, y0) ≤ d(x0, x) + d(x, y0) = dx0
(x) + dy0(x)

i.e., d(x0, y0) ≤ dx0
+ dy0 ∈ A(U0(X)). By Lemma 2 we get that 1

dx0
+dy0

∈
U(A(U0(X))), therefore 1 ∈ U(A(U0(X))).

The existence of x0, y0 ∈ X such that d(x0, y0) > 0 is equivalent to the positivity
of the diameter of (X, d) (see the footnote in the proof of Lemma 3).

Definition 3. If F(X) denotes the set of real-valued functions on X, the set of
Lipschitz functions Lip(X) on (X, d) is defined by

Lip(X, k) := {f ∈ F(X) | ∀x,y∈X(|f(x)− f(y)| ≤ kd(x, y))},

Lip(X) :=
⋃
k≥0

Lip(X, k).

Remark 3. The set Lip(X) ⊆ Cu(X) includes U0(X), Const(X) and it is closed
under addition, multiplication by reals, and multiplication.

Proof. If x0 ∈ X, then |d(x0, x)−d(x0, y)| ≤ d(x, y), for every x, y ∈ X, therefore
U0(X) ⊆ Lip(X, 1). Clearly, Const(X) ⊆ Lip(X, k), for every k ≥ 0. Recall that
f · g = 1

2 ((f + g)2 − f2 − g2), and if Mf > 0 is a bound of f , it is immediate to
see that

f ∈ Lip(X, k1)→ g ∈ Lip(X, k2)→ f + g ∈ Lip(X, k1 + k2),

f ∈ Lip(X, k)→ λ ∈ R→ λf ∈ Lip(X, |λ|k),

f ∈ Lip(X, k)→ f2 ∈ Lip(X, 2Mfk).

Lemma 3. If Φ = A(U∗0 (X)), then Lip(X) ⊆ U(Φ).

Proof. It suffices to show that Lip(X, 1) ⊆ U(Φ), since if f ∈ Lip(X, k), for some
k > 0, then 1

kf ∈ Lip(X, 1) and we have, for every ε > 0 and θ ∈ Φ,

U(θ,
1

k
f,
ε

k
)→ U(kθ, f, ε).

Suppose next that f ∈ Lip(X, 1) and ε > 0. We find g ∈ U(Φ) such that
U(g, f, ε), therefore f ∈ U(U(Φ)) = U(Φ). More specifically, if {z1, . . . , zm} is
an ε

2 -approximation of X, we find g ∈ U(Φ) such that g(zi) = f(zi), for every
i ∈ {1, . . . ,m}, and |g(x) − g(zi)| = |g(x) − f(zi)| ≤ ε

2 , for every x ∈ X and zi
such that d(x, zi) ≤ ε

2 . Consequently,

|g(x)− f(x)| ≤ |g(x)− g(zi)|+ |g(zi)− f(zi)|+ |f(zi)− f(x)|

≤ ε

2
+ 0 + d(zi, x)

≤ ε

2
+
ε

2
= ε.



5

We define

g :=

m∧
k=1

(f(zk) + dzk).

Since f(zk) + dzk ∈ Φ and since by Lemma 1 U(Φ) is closed under ∧ we get
g ∈ U(Φ). Moreover,

g(zi) =

m∧
k=1

(f(zk) + dzk(zi)) ≤ f(zi) + dzi(zi) = f(zi).

For the converse inequality we suppose that g(zi) < f(zi) and reach a contra-
diction (here we use the fact that ¬(a < b) → a ≥ b, for every a, b ∈ R (see [3],
p.26)). If a, b, c ∈ R, then one shows2 that a ∧ b < c→ a < c ∨ b < c. Hence

m∧
k=1

(f(zk) + dzk(zi)) < f(zi)→ ∃j∈{1,...,m}(f(zj) + d(zj , zi) < f(zi))

→ d(zj , zi) < f(zi)− f(zj) ≤ |f(zi)− f(zj)| ≤ d(zj , zi),

which is a contradiction. Using the equality g(zi) = f(zi) we have that

g(x) =

m∧
k=1

(f(zk) + dzk(x)) ≤ f(zi) + dzi(x)→

g(x)− g(zi) ≤ f(zi) + dzi(x)− g(zi) = f(zi) + dzi(x)− f(zi) = d(x, zi) ≤
ε

2
.

If k ∈ {1, . . . ,m}, then f(zi) − f(zk) ≤ |f(zi) − f(zk)| ≤ d(zi, zk) ≤ d(zi, x) +
d(x, zk), therefore

∀k∈{1,...,m}(f(zi)− d(zi, x) ≤ f(zk) + d(zk, x))→

f(zi)− d(zi, x) ≤
m∧
k=1

(f(zk) + d(zk, x))↔

f(zi)−
m∧
k=1

(f(zk) + d(zk, x)) ≤ d(zi, x)→

g(zi)− g(x) ≤ d(zi, x)→

g(zi)− g(x) ≤ ε

2
.

From g(x)− g(zi) ≤ ε
2 and g(zi)− g(x) ≤ ε

2 we get |g(x)− g(zi)| ≤ ε
2 .

2 The proof goes as follows. By the constructive trichotomy property (see [3], p.26)
either a < c or a∧ b < a. In the first case we get immediately what we want to show.
In the second case we get that b ≤ a, since if b > a, we have that a = a ∧ b < a,
which is a contradiction. Thus a∧ b = b and the hypothesis a∧ b < c becomes b < c.
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Lemma 4. If f ∈ Cu(X) and ε > 0, there exist σ > 0 and g, g∗ ∈ Lip(X,σ)
such that
(i) ∀x∈X(f(x)− ε ≤ g(x) ≤ f(x) ≤ g∗(x) ≤ f(x) + ε).
(ii) For every e ∈ Lip(X,σ), if e ≤ f , then e ≤ g.
(iii) For every e∗ ∈ Lip(X,σ), if f ≤ e∗, then g∗ ≤ e∗.

Proof. (i) Let ωf be a modulus of continuity of f and Mf > 0 a bound of f . We
define the functions hx : X → R and g : X → R by

hx := f + σdx,

σ :=
2Mf

ωf (ε)
> 0,

g(x) := inf{hx(y) | y ∈ X} = inf{f(y) + σd(x, y) | y ∈ X},

for every x ∈ X. Note that g(x) is well-defined, since hx ∈ Cu(X) and the
infimum of hx exists (see [3], p.94 and p.38). First we show that g ∈ Lip(X,σ).
If x1, x2, y ∈ X the inequality d(x1, y) ≤ d(x2, y) + d(x1, x2) implies that f(y) +
σd(x1, y) ≤ (f(y) + σd(x2, y)) + σd(x1, x2), hence g(x1) ≤ (f(y) + σd(x2, y)) +
σd(x1, x2), therefore g(x1) ≤ g(x2) + σd(x1, x2), or g(x1) − g(x2) ≤ σd(x1, x2).
Starting with the inequality d(x2, y) ≤ d(x1, y)+d(x1, x2) and working similarly
we get that g(x2) − g(x1) ≤ σd(x1, x2), therefore |g(x1) − g(x2)| ≤ σd(x1, x2).
Next we show that

∀x∈X(f(x)− ε ≤ g(x) ≤ f(x)).

Since f(x) = f(x) + σd(x, x) = hx(x) ≥ inf{hx(y) | y ∈ X} = g(x), for every
x ∈ X, we have that g ≤ f . Next we show that ∀x∈X(f(x)− ε ≤ g(x)). For that
we fix x ∈ X and we show that ¬(f(x)− ε > g(x)). Note that if A ⊆ R, b ∈ R,
then3 b > inf A→ ∃a∈A(a < b). Therefore,

f(x)− ε > g(x)↔
f(x)− ε > inf{f(y) + σd(x, y) | y ∈ X} →
∃y∈X(f(x)− ε > f(y) + σd(x, y))↔
∃y∈X(f(x)− f(y) > ε+ σd(x, y)).

For this y we show that d(x, y) ≤ ωf (ε). If d(x, y) > ωf (ε), we have that

2Mf ≥ f(x) +Mf ≥ f(x)− f(y) > ε+ 2Mf
d(x, y)

ωf (ε)
> ε+ 2Mf > 2Mf ,

which is a contradiction. Hence, by the uniform continuity of f we get that
|f(x)− f(y)| ≤ ε, therefore the contradiction ε > ε is reached, since

ε ≥ |f(x)− f(y)| ≥ f(x)− f(y) > ε+ σd(x, y) ≥ ε.
3 By the definition of inf A in [3], p.37, we have that ∀ε>0∃a∈A(a < inf A+ε), therefore

if b > inf A and ε = b− inf A > 0 we get that ∃a∈A(a < inf A+ (b− inf A) = b).
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Next we define the functions h∗x : X → R and g∗ : X → R by

h∗x := f − σdx,

g∗(x) := sup{h∗x(y) | y ∈ X} = sup{f(y)− σd(x, y) | y ∈ X},
for every x ∈ X, and σ =

2Mf

ωf (ε)
. Similarly4 to g we get that g∗ ∈ Lip(X,σ) and

∀x∈X(f(x) ≤ g∗(x) ≤ f(x) + ε).

(ii) Let e ∈ Lip(X,σ) such that e ≤ f . If we fix some x ∈ X, then for every y ∈ X
we have that e(x)−e(y) ≤ |e(x)−e(y)| ≤ σd(x, y), hence e(x) ≤ e(y)+σd(x, y) ≤
f(y) + σd(x, y), therefore e(x) ≤ g(x).
(iii) Let e∗ ∈ Lip(X,σ) such that f ≤ e∗. If we fix some x ∈ X, then for
every y ∈ X we have that e∗(y) − e∗(x) ≤ |e∗(y) − e∗(x)| ≤ σd(x, y), hence
f(y)− σd(x, y) ≤ e∗(y)− σd(x, y) ≤ e∗(x), therefore g∗(x) ≤ e∗(x).

Hence g is the largest function in Lip(X,σ) which is smaller than f , and g∗ is
the smallest function in Lip(X,σ) which is larger than f . So, if there is some e′ ∈
Lip(X) such that e′ ≤ f and g(x) < e′(x), for some x ∈ X, then e′ ∈ Lip(X,σ′),
for some σ′ > σ. It is interesting that Lemma 4 is in complete analogy to
the McShane-Kirszbraun theorem. To make this clear we include a constructive
version of this theorem (for a classical presentation see [18], p.6). Recall that
A ⊆ X is located, if the distance d(x,A) := inf{d(x, y) | y ∈ Y } exists for every
x ∈ X, and that a located subset of a totally bounded metric space is totally
bounded (see [3], p.95).

Proposition 1 (McShane-Kirszbraun theorem for totally bounded met-
ric spaces). If σ > 0, A ⊆ X is located, and f : A→ R ∈ Lip(A, σ), then there
exist g, g∗ ∈ Lip(X,σ) such that g|A = g∗|A = f and for every e ∈ Lip(X,σ) such
that e|A = f we have that g∗ ≤ e ≤ g.

Proof. The functions g, g∗ defined by g(x) := inf{f(a) + σd(x, a) | a ∈ A}, and
g∗(x) := sup{f(a) − σd(x, a) | a ∈ A}, for every x ∈ X, are well-defined and
satisfy the required properties.

Corollary 2. U(Lip(X)) = Cu(X).

Proof. If ε > 0, then the functions g, g∗ ∈ Lip(X,σ) of Lemma 4 satisfy U(g, f, ε),
U(g∗, f, ε), respectively.

Next follows our Stone-Weierstrass theorem for totally bounded metric spaces.

Theorem 2 (Stone-Weierstrass theorem for totally bounded metric
spaces (SWtbms)). If Φ = A(U∗0 (X)), then Cu(X) = U(Φ).

Proof. First we show that Cu(X) ⊆ U(Φ). If f ∈ Cu(X) and ε > 0, then by
Corollary 2 there exists h ∈ Lip(X) such that U(h, f, ε2 ), while by Lemma 3
there exists g ∈ Φ such that U(g, h, ε2 ). Consequently, U(g, f, ε). The converse
inclusion follows from the immediate fact that all elements of U(Φ) are in Cu(X).

4 To show that ¬(g∗(x) > f(x) + ε) we just use the fact that if A ⊆ R, b ∈ R, then
supA > b → ∃a∈A(a > b). The function g∗ is mentioned in [19], where non-
constructive properties of the classical (R, <) are used.
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3 Corollaries of SWtbms

Proposition 2. SWtbms implies BSWtbms

Proof. The proof follows immediately by inspection of the proof of BSWtbms
in [3], pp.106-8. Bishop shows there that if Φ is Bishop-separating, then 1 ∈
U(A(Φ)), and by his Lemma 5.14.1 one shows that U0(X) ⊆ U(A(Φ)) - this is a
slight simplification of the final part of Bishop’s proof that Cu(X) ⊆ U(A(Φ)).
Since U∗0 (X) ⊆ U(A(Φ)), then by Remark 2 A(U∗0 (X)) ⊆ U(A(Φ)), therefore
Cu(X) = U(A(U∗0 (X))) ⊆ U(U(A(Φ))) = U(A(Φ)).

In the proof of Corollary 5.16 in [3], pp.108-9, it is shown that if (X, d) has posi-
tive diameter, thenA(U0(X)) is a Bishop-separating set, therefore by BSWtbms
we get that U(A(U0(X))) = Cu(X). Hence SWtbms is only “slightly” stronger
than BSWtbms. If we use SWtbms, we get immediately the same result.

Corollary 3. If (X, d) has positive diameter, then U(A(U0(X))) = Cu(X).

Proof. The hypothesis of positive diameter implies the hypothesis of Corollary 1,
therefore 1 ∈ U(A(U0(X))) ⊆ Cu(X). Hence U∗0 (X) ⊆ U(A(U0(X))), and by
Remark 2 we get that A(U∗0 (X)) ⊆ A(U(A(U0(X)))) = U(A(U0(X))). Thus
Cu(X) = U(A(U∗0 (X))) ⊆ U(U(A(U0(X)))) = U(A(U0(X))).

Next we prove Corollary 5.15 in [3], p.108 and its finite version using SWtbms.
If (X, d), (Y, ρ) are totally bounded, then (X × Y, σ) is totally bounded, where
σ((x1, y1), (x2, y2)) := d(x1, x2) + ρ(y1, y2), for every x1, x2 ∈ X and y1, y2 ∈ Y ;
if A = {x1, . . . , xn} is an ε

2 -approximation of X and B = {y1, . . . , ym} is an
ε
2 -approximation of Y , then A×B is an ε-approximation of X × Y . We denote
by π1 the projection of X × Y onto X and by π2 its projection onto Y .

Corollary 4. If (X, d), (Y, ρ) are totally bounded metric spaces and

Φ := {
n∑
i=1

(fi ◦ π1)(gi ◦ π2) | fi ∈ Cu(X), gi ∈ Cu(Y ), 1 ≤ i ≤ n, n ∈ N},

then U(Φ) = Cu(X × Y ).

Proof. Clearly, Φ ⊆ Cu(X×Y ), Φ is an algebra (actually, Φ = A((Cu(X)◦π1)∪
(Cu(Y )◦π2)), where Cu(X)◦π1 = {f ◦π1 | f ∈ Cu(X)} and Cu(Y )◦π2 = {g◦π2 |
g ∈ Cu(Y )}), and U(Φ) ⊆ Cu(X × Y ). The constant 1 on X × Y is equal to (1 ◦
π1)(1◦π2). If x0, x ∈ X and y0, y ∈ Y , then σ(x0,y0)((x, y)) = σ((x0, y0), (x, y)) =
d(x0, x) + ρ(y0, y) = dx0

(x) + ρy0(y) = (dx0
◦ π1)((x, y)) + (ρy0 ◦ π2)((x, y)),

therefore σ(x0,y0) = (dx0◦π1)+(ρy0◦π2) = (dx0◦π1)(1◦π2)+(1◦π1)(ρy0◦π2) ∈ Φ.
Since U∗0 (X × Y ) ⊆ U(Φ), by SWtbms we get that Cu(X × Y ) ⊆ U(Φ).

If (Xn, dn) is totally bounded, where without loss of generality dn ≤ 1, for
every n ∈ N, then (X,σ∞), where X =

∏∞
n=1Xn and σ∞((xn)∞n=1, (yn)∞n=1) :=∑∞

n=1
dn(xn,yn)

2n , is totally bounded; if A(Xn, ε) is an ε-approximation of Xn and

x0,n inhabits Xn, then A(X, ε) =
∏n0

k=1A(Xk,
2k−1ε
n0

) ×
∏∞
k=n0+1{x0,k} is an

ε-approximation of X, where n0 ∈ N such that
∑∞
k=n0+1

1
2k
≤ ε

2 .
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Corollary 5. If (X,σ∞) is the product of a sequence (Xn, dn)∞n=1 of totally
bounded metric spaces, then U(Φ) = Cu(X), where

Φ0 := {
n∏
i=1

(fi ◦ πi) | fi ∈ Cu(Xi), 1 ≤ i ≤ n, n ∈ N},

Φ := {
n∑
k=1

hk | hk ∈ Φ0, 1 ≤ k ≤ n, n ∈ N}.

Proof. Without loss of generality let dn ≤ 1, for every n ∈ N. The only difference
with the proof of Corollary 4 is treated as follows. If (x0n)∞n=1 ∈ X and ε > 0, let

g :=

n0∑
k=1

dk,x0
k
◦ πk

2k
=

n0∑
k=1

(
dk,x0

k

2k
) ◦ πk ∈ Φ,

where n0 ∈ N such that
∑∞
k=n0+1

1
2k
≤ ε. We get U(g, σ∞,(x0

n)
∞
n=1

, ε), since

|g((yn)∞n=1)−σ∞,(x0
n)
∞
n=1

((yn)∞n=1)| = |
∞∑

k=n0+1

dk,x0
k
(yk)

2k
| ≤

∞∑
k=n0+1

|dk(x0k, yk)

2k
| ≤ ε.

Recall that a totally bounded metric space is separable (see [3], p.94). The
separability of Cu(X) follows by the next corollary.

Corollary 6. If Q = {qn | n ∈ N} is dense in (X, d), U0(Q) := {dqn | n ∈ N},
and Φ∗0 = A(U0(Q) ∪ {1}), then U(Φ∗0) = Cu(X).

Proof. If (xn)∞n=1 ∈ XN converges pointwise to x, then (dxn
)∞n=1 converges uni-

formly to dx [i.e., if ∀ε>0∃n0
∀n≥n0

(d(xn, x) ≤ ε), then ∀ε>0∃n0
∀n≥n0

∀y∈X(|d(xn, y)−
d(x, y)| ≤ ε)]. If ε > 0 and n ≥ n0, then d(xn, y) ≤ d(xn, x) + d(x, y) →
d(xn, y)− d(x, y) ≤ d(xn, x) ≤ ε, and similarly d(x, y)− d(xn, y) ≤ d(xn, x) ≤ ε.
By SWtbms it suffices to show that U0(X) ⊆ U(A(U0(Q))). If dx ∈ U0(X), for
some x ∈ X, and (qkn)∞n=1 is a subsequence of Q that converges pointwise to x,
then (dqkn

)∞n=1 converges uniformly to dx, therefore dx ∈ U(A(U0(Q))).

4 Concluding comments

We presented a direct constructive proof of SWtbms with a clear computa-
tional content. Its translation to Type Theory and its implementation to a proof
assistant like Coq are expected to be straightforward. Although SWtbms does
not look like a theorem of Stone-Weierstrass type, as BSWtbms does, it has
certain advantages over it. Its proof is “natural”, in comparison to Bishop’s tech-
nical proof and his difficult to motivate concept of a Bishop-separating set. As
we explained, SWtbms implies BSWtbms, and all applications of BSWtbms
in [3] are proved directly by SWtbms. We know of no application of BSWtbms
which cannot be derived by SWtbms (in [3] we found only one application of
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Corollary 4 and one of the Weierstrass approximation theorem5).
An interesting question related to Corollary 2 is if for (X, d) totally bounded and
(Y, ρ) complete metric space, the set of Lipschitz functions Lip(X,Y ) between
them is a dense subset of the uniformly continuous functions Cu(X,Y ) between
them. A similar classical result, see [14], requires a Lipschitz extension property,
which indicates that the correlation of Lemma 4 to the McShane-Kirszbraun
theorem may not be accidental.
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