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A road to TCF+

1 Hilbert (1926).
2 Gödel’s T (1958).
3 Kleene and Kreisel (1959).
4 Platek (1966).
5 Scott’s LCF (1969).
6 Plotkin’s PCF (1977).
7 The Munich logic group (mainly H. Schwichtenberg and U.

Berger, 1990-2012) developed a theory of computable
functionals, TCF, a variant of HAω (use of minimal or
intuitionistic logic), the terms of which extend both Gödel’s T
and Plotkin’s PCF.

8 TCF+ is an extension of TCF. Its object-terms are the terms
of TCF, representing the functionals, and its
approximation-terms represent their finite approximations.
In that way TCF+ is better adjusted to the common
(non-flat) Scott model than TCF.



Why TCF+?

Theorem (Kreisel 1959)

A compact (finitely generated) functional can be extended to a
total one, i.e.,

∀U∈Conρ∃x∈Tρ(U ⊆ x).

We would like to give a completely formal proof of DT revealing its
computational content.
But for that we need to express in a formal language both
functionals (ideals) and formal neighborhoods



Why TCF+?

1 A central motivation for TCF+ is the paradigm of the
point-free topology.

2 Within higher type computability this directs to an as much as
possible reconstruction of the study of the “ideal”, abstract
functionals (points) through the study of their concrete and
finite approximations (tokens and formal neighborhoods).

3 Instrumental to this will be the use of information systems
instead of abstract domains for the description of the Scott
model. An important tool of the point-free approach is the
notion of an approximable mapping, the point-free version
of a function between domains.
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Algebraic Domains and Information Systems

1 An algebraic domain (D,≤,⊥,D0) is a consistently
complete, algebraic cpo and it is the result of investigating the
structure of the domains arising in the Scott model of PCF.

2 Scott’s information system A = (A,Con,`): A are the
tokens, Con ⊆ Pfin(A) is the set of formal neighborhoods,
and `⊆ Con× A is the entailment relation, where U ` a
means “the information in U is sufficient to compute the bit
of data a”.

3

1. Con(U) → V ⊆ U → Con(V ),

2. Con({a}),
3. Con(U) → U ` a → Con(U ∪ {a}),

4. Con(U) → a ∈ U → U ` a,

5. Con(U) → Con(V ) → U ` V → V ` a → U ` a.
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Ideals of an information system

1 An ideal x ⊆ A is consistent,

U ⊆fin x → Con(U),

and deductively closed

x ⊇ U → U ` a → a ∈ x .

2 If U ∈ Con, then

U = {a ∈ A : U ` a}

is a compact ideal.

3 (|A|,⊆, |A|0, ∅) is a domain, and each domain “is” the ideals
of an information system.
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Free non-flat algebras as data types

1 The algebras ι considered here are of the form
µξ(K0, . . . ,Kl−1), where each constructor Kj is of type of the
form

~ρ → ( ~σν → ξ)ν<n → ξ.

2 B := µξ(ξ, ξ) (booleans).

3 N := µξ(ξ, ξ → ξ) (natural numbers).

4 D := µξ(ξ, ξ → ξ → ξ) (derivations).

5 O := µξ(ξ, ξ → ξ, (N → ξ) → ξ) (ordinals).

6 Types ρ, σ, τ : from algebras ι by ρ → σ, or

ρ = τ1 → ... → τn → ι.
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The set-theoretic information systems (Cρ)ρ

We simultaneously define Cι,Cρ→σ,Conι,Conρ→σ,`ι and `ρ→σ.

1 A ground-type token, a ∈ Cι, is a type correct constructor
expression Ca∗1...a

∗
n, where each a∗i is an extended token, i.e.,

a proper token or the special symbol ∗ι which carries no
information.

2 An arrow-type token, a ∈ Cρ→σ, is a pair (U, b), where
U ∈ Conρ and b ∈ Cσ.

3 A ground-type formal neighborhood, U ∈ Conι, is a finite
set of tokens in Cι starting with the same constructor
C τ1→...→τn→ι, i.e.,

U = {Ca∗(1)1...a
∗
(1)n, . . . ,Ca∗(k)1...a

∗
(k)n},

for some k ∈ N, such that, for each 1 ≤ l ≤ n,

Ul = {a∗(i)l : a∗(i)l is a proper token in Cτl
∧1 ≤ i ≤ k} ∈ Conτl

.



The set-theoretic information systems (Cρ)ρ

1 An arrow-type formal neighborhood, W ∈ Conρ→σ, is a
finite set of tokens in Cρ→σ, i.e., W = {(Ui , bi ) : i ∈ I}, for
some finite set I , such that

∀J⊆I (
⋃
j∈J

Uj ∈ Conρ → {bj : j ∈ J} ∈ Conσ).

2 If U = {Ca∗(1)1...a
∗
(1)n, . . . ,Ca∗(k)1...a

∗
(k)n} is a ground-type

formal neighborhood such that k ≥ 1 and C τ1→...→τn→ι is a
constructor, then

{Ca∗(1)1...a
∗
(1)n, . . . ,Ca∗(k)1...a

∗
(k)n} `ι C

′ ~a∗ ↔ C = C
′∧∀l(Ul `τl

a∗l ),

where Ul is defined as above and U ` ∗ is always true.
3 If W = {(Ui , bi ) : i ∈ I} is an arrow-type formal

neighborhood, then

W `ρ→σ (V , b) ↔ WV := {bi : V `ρ Ui} `σ b.



The set-theoretic information systems (Cρ)ρ

Theorem (H.S, I.P 2012)

The structure Cρ = (Cρ,Conρ,`ρ) is an information system, for
each type ρ.

Proof.

Since the definition of Cρ is given by recursion on the height of the
syntactic expressions involved, the proof is also given w.r.t. this
height. It is simple for the ground types, but for the arrow types it
uses simultaneous general induction in a non trivial way. Note that
WV ∈ Conσ is not obvious and has to be proved.

Proposition: The information system Cρ is coherent (U is
consistent iff each pair of its elements is consistent), for each ρ.



The starting point of TCF+

1 We want to reproduce in the syntactic level of TCF+ the
systems Cρ avoiding their set-theoretic character. First we
work with the generic algebra of derivations D defining the
syntactic information systems SCD and SCD→D.

2 In that way not only a part of set-theoretic mathematics has a
formal and constructive counterpart, but also its formalization
makes possible the implementation of all related notions and
results to a proof assistant like Minlog.

3 The main tool of this constructivization is the use of
inductive definitions in the spirit of inductive mathematics
(Brouwer, Martin-Löf, Sambin, Coquand).
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The algebra D in Minlog

1 (add-alg ”tokstar”
’(“CS” “tokstar”)
’(“CZ” “tokstar”)
’(“CC” “tokstar => tokstar => tokstar”))

2 We represent finite sets of tokens as objects of type “list
tokstar”.

3 We define membership of a token in a list as a program
constant “in”:

“a in (Nil tokstar)” “False”
“a in (b::bs)” “a=b orb a in bs”.

4 We define inclusion of one list to another one as a program
constant “InDot”:

“InDot (Nil tokstar) as” “True”
“InDot (a::as) bs” “a in bs andb InDot as bs”.
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Definition of consistency in D

First we define consistency between two tokens as the program
constant “con” of type “tokstar => tokstar => boole”

“con CS b” “True”
“con a CS” “True”
“con CZ CZ” “True”
“con CZ (CC a b)” “False”
“con (CC a b) CZ” “False”
“con (CC a b) (CC c d)” “con a c andb con b d”.



Definition of consistency in D

Next we define consistency between a token and a list as the
program constant “Altcon” of type “tokstar => list tokstar =>
boole”

“Altcon a (Nil tokstar)” “True”
“Altcon a (b::as)” “con a b andb Altcon a as”).

Finally we define the consistency of a list as the program
constant “Con” of type “list tokstar => boole”:

“Con(Nil tokstar)” “True”
“Con(a::as)” “Altcon a as andb Con(as)”.

The proof of totality of these constants is direct and makes no use
of general induction.



Properties of consistency in D

Theorem

1 Reflexivity of con: “allnc a(TotalTokstar a → con a a)”.

2 Commutativity of con: “allnc a1(TotalTokstar a1 → allnc
a2(TotalTokstar a2 → (con a1 a2) = (con a2 a1)))”.

3 Axiom2: “allnc a(TotalTokstar a → Con(a::(Nil tokstar)))”.

4 Reflexivity of Con: “allnc a(TotalTokstar a → Con(a::a::(Nil
tokstar)))”.

5 Commutativity of Con: “allnc a1(TotalTokstar a1 → allnc
a2(TotalTokstar a2 → Con(a1::a2::(Nil tokstar)) =
Con(a2::a1::(Nil tokstar))))”.

6 Axiom1: “allnc as1(TotalList as1 → allnc as2(TotalList as2
→ Con as1 → InDot as2 as1 → Con as2))”.



Entailment in D

1 “argOne” (argTwo) is of type “list tokstar => list tokstar”:

“argOne (Nil tokstar)” “(Nil tokstar)”
“argOne (CS::as)” “argOne as”
“argOne (CZ::as)” “argOne as”
“argOne ((CC a b)::as)” “a::(argOne as)”.

2 “Comp” is of type “list tokstar => boole”:

“Comp(Nil tokstar)” “False”
“Comp(CS::as)” “Comp as”
“Comp(CZ::as)” “Comp as”
“Comp(CC a b::as)” “True”.

3 “Ent” is of type “list tokstar => tokstar => boole”:

“Ent as CS” “True”
“Ent as CZ” “CZ in as”
“Ent as (CC a b)” “Comp(as) andb Ent (argOne(as)) a andb
Ent (argTwo(as)) b”.
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Properties of entailment in D

Theorem

1 Preaxiom4: “allnc a(TotalTokstar a → allnc as(TotalList as
→ a in as → Ent as a))”.

2 Axiom4: “allnc a(TotalTokstar a → allnc as(TotalList as →
Con(as) → a in as → Ent as a))”.

3 Prepreaxiom3: “allnc as(TotalList as → allnc a(TotalTokstar
a → allnc b(TotalTokstar b → Con as → b in as → Ent as a
→ con a b)))”.

4 Preaxiom3: “allnc as(TotalList as → allnc a(TotalTokstar a
→ Con as → Ent as a → Altcon a as))”.

5 Axiom3: “allnc as(TotalList as → allnc a(TotalTokstar a →
Con as → Ent as a → Con (a::as)))”.



Properties of entailment in D

Theorem

1 “allnc as(TotalList as → allnc bs(TotalList bs → EntList as bs
→ EntList (argOne(as)) (argOne(bs))))”.

2 Preaxiom5: “allnc a(TotalTokstar a → allnc as(TotalList as
→ allnc bs(TotalList bs → EntList as bs → Ent bs a → Ent
as a)))”.

3 Axiom5: “allnc a(TotalTokstar a → allnc as(TotalList as →
allnc bs(TotalList bs → Con as → Con bs → EntList as bs
→ Ent bs a → Ent as a)))”.

Remark 1: We proved the preaxioms 4 and 5 without the
consistency hypotheses.
Remark 1: All proofs are without the use of general induction.



The algebra “list tokstar yprod tokstar”

1 The arrow-tokens are pairs w = (as, a) = (lft(w), rht(w)).

2 The finite sets of arrow-tokens are lists ws of arrow-tokens.

3 “One” is of type “list (list tokstar yprod tokstar) => list (list
tokstar)”:

“One(Nil (list tokstar yprod tokstar))” “(Nil (list tokstar))”
“One(w::ws)” “lft(w)::One(ws)”.

4 “Two” is of type “list (list tokstar yprod tokstar) => list
tokstar”:

“Two (Nil (list tokstar yprod tokstar))” “(Nil tokstar)”
“Two(w::ws)” “rht(w)::Two(ws)”
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Consistency in D → D

1 “arrcons” is of type “(list tokstar yprod tokstar) => (list
tokstar yprod tokstar) => boole”:

“arrcons u w” “(Con(lft(u)++lft(w)) imp (con rht(u)
rht(w)))”.

2 “arrAltcons” is of type “(list tokstar yprod tokstar) =>
list(list tokstar yprod tokstar) => boole”:
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“arrCons(w::ws)” “arrAltcons w ws andb arrCons(ws)”.



Consistency in D → D

1 “arrcons” is of type “(list tokstar yprod tokstar) => (list
tokstar yprod tokstar) => boole”:

“arrcons u w” “(Con(lft(u)++lft(w)) imp (con rht(u)
rht(w)))”.

2 “arrAltcons” is of type “(list tokstar yprod tokstar) =>
list(list tokstar yprod tokstar) => boole”:

“arrAltcons w (Nil (list tokstar yprod tokstar))” “True”
“arrAltcons w (u::ws)” “arrcons w u andb arrAltcons w ws”.

3 “arrCons” is of type “list (list tokstar yprod tokstar) =>
boole”:

“arrCons(Nil (list tokstar yprod tokstar))” “True”
“arrCons(w::ws)” “arrAltcons w ws andb arrCons(ws)”.



Properties of consistency in D → D

Theorem

1 Reflexivity of arrcons.

2 Commutativity of arrcons.

3 arrAxiom2.

4 Reflexivity of arrCons.

5 Commutativity of arrCons.

6 arrAxiom1: “allnc ws1(TotalList ws1 → allnc ws2(TotalList
ws2 → arrCons ws1 → arrInDot ws2 ws1 → arrCons ws2))”.



A generalization

Theorem

If s is a total function of type α => α => boole, such that s is
reflexive and commutative, then

1 Alts, of type α => list α => boole defined by
Alts(a,Nil α) = tt,
Alts(a, (b :: as) = s(a, b) ∧B Alts(a, as)
is total, reflexive, commutative and

Alts(a, as) ↔ ∀b∈̇as(s(a, b)).

2 If S is of type list α => boole defined by
S(Nil α) = tt,
S(a :: as) = Alts(a, as) ∧B S(as) then ,

(i) ∀as(S(as) ↔ ∀a,b∈̇as(s(a, b))).

(ii) ∀as1, as2(S(as1) → as2⊆̇as1 → S(as2)).



The Parallel-True-Sublist

“PTS” is of type “list boole => list tokstar => list tokstar” and
from a given list of booleans and a list of tokens outputs the terms
of the latter which correspond to the appearance of “True” in the
former.

“PTS (Nil boole) as” “(Nil tokstar)”
“PTS As (Nil tokstar)” “(Nil tokstar)”
“PTS (True::As) (a::as)” “a::(PTS As as)”
“PTS (False::As) (a::as)” “PTS As as”.



Entailment in D → D

1 “AltEntList” is of type “list tokstar => list (list tokstar) =>
list boole”:

“AltEntList as (Nil (list tokstar))” “(Nil boole)”
“AltEntList as (bs::ass)” “(EntList as bs)::(AltEntList as
ass)”.

2 “App” is of type “list (list tokstar yprod tokstar) => list
tokstar => list tokstar”:

“App ws as” “PTS (AltEntList as (One(ws))) (Two(ws))”.

3 “arrEnt” is of type “list (list tokstar yprod tokstar) => list
tokstar yprod tokstar => boole”:

“arrEnt ws w” “Ent (App ws (lft(w))) (rht(w))”.



Entailment in D → D

1 “AltEntList” is of type “list tokstar => list (list tokstar) =>
list boole”:

“AltEntList as (Nil (list tokstar))” “(Nil boole)”
“AltEntList as (bs::ass)” “(EntList as bs)::(AltEntList as
ass)”.

2 “App” is of type “list (list tokstar yprod tokstar) => list
tokstar => list tokstar”:

“App ws as” “PTS (AltEntList as (One(ws))) (Two(ws))”.

3 “arrEnt” is of type “list (list tokstar yprod tokstar) => list
tokstar yprod tokstar => boole”:

“arrEnt ws w” “Ent (App ws (lft(w))) (rht(w))”.



Entailment in D → D

1 “AltEntList” is of type “list tokstar => list (list tokstar) =>
list boole”:

“AltEntList as (Nil (list tokstar))” “(Nil boole)”
“AltEntList as (bs::ass)” “(EntList as bs)::(AltEntList as
ass)”.

2 “App” is of type “list (list tokstar yprod tokstar) => list
tokstar => list tokstar”:

“App ws as” “PTS (AltEntList as (One(ws))) (Two(ws))”.

3 “arrEnt” is of type “list (list tokstar yprod tokstar) => list
tokstar yprod tokstar => boole”:

“arrEnt ws w” “Ent (App ws (lft(w))) (rht(w))”.



Properties of entailment in D → D

Theorem

1 Prearraxiom4: “allnc ws(TotalList ws → allnc w(TotalYprod
w → w arrin ws → arrEnt ws w))”.

2 “allnc bs1(TotalList bs1 → allnc bs2(TotalList bs2 → allnc
ws(TotalList ws → allnc a(TotalTokstar a → EntList bs1 bs2
→ Ent (App ws bs2) a → Ent (App ws bs1) a))))”.

3 Preprearraxiom5: “allnc ws1(TotalList ws1 → allnc
ws2(TotalList ws2 → allnc as(TotalList as → arrEntList ws1
ws2 → EntList (App ws1 as) (App ws2 as))))”.

4 Prearraxiom5: “allnc ws1(TotalList ws1 → allnc
ws2(TotalList ws2 → allnc w(TotalYprod w → arrEntList ws1
ws2 → arrEnt ws2 w → arrEnt ws1 w)))”.



Properties of entailment in D → D

Theorem

1 “allnc bs(TotalList bs → allnc As(TotalList As → allnc
b(TotalTokstar b → b in (PTS As bs) → exr n(TotalNat n ∧
(n thof As) = True ∧ (n thof bs) = b))))”.

2 “allnc ws(TotalList ws → allnc as(TotalList as → arrCons ws
→ Con as → Con(App ws as)))”.

3 arrprepreaxiom3: “allnc u(TotalYprod u → allnc
ws(TotalList ws → allnc as(TotalList as → u arrin ws → rht u
in (App ws(as ++lft u)))))”.

4 arrpreAxiom3: “allnc ws(TotalList ws → allnc w(TotalYprod
w → arrCons ws → arrEnt ws w → arrAltcons w ws))”.

5 arrAxiom3: “allnc ws(TotalList ws → allnc w(TotalYprod w
→ arrCons ws → arrEnt ws w → arrCons (w ::ws)))”.



Split information systems

The entailment relation of a split information system is a subset of
Pfin(A)× A (i.e., U is not necessarily consistent in U ` a)
satisfying axioms 1-3 of an information system and

4′. a ∈ U → U ` a,

5′. U ` V → V ` a → U ` a.

Theorem (I.P, H.S 2012)

The systems Cρ are split information systems, for each type ρ.

Proof.

Simplified version of the proof that Cρ is an information
system.



Decidable ideals of D

1 “I” is a variable of type “tokstar => boole”.

2 “In” is of type “tokstar => (tokstar => boole) => boole”:

“a In I” “I a”.
3 “Indot” s of type “list tokstar => (tokstar => boole) =>

boole”))”

“Indot (Nil tokstar) I” “True”
“Indot (a::as) I” “a In I andb Indot as I”.

4 “Ideal” is of type “(tokstar => boole) => list tokstar =>
tokstar => boole”:

“Ideal I as a” “((Indot as I) imp (Con as)) andb ((Indot as I
andb Ent as a) imp (a In I))”.

Theorem

“allnc as(TotalList as → Con as → allnc bs(TotalList bs → allnc
a(TotalTokstar a → Ideal (Ent as) bs a)))”.
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Theorem

“allnc as(TotalList as → Con as → allnc bs(TotalList bs → allnc
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Theorem
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51 “I” is a variable of type “tokstar => boole”.
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Decidable ideals of D

51 “I” is a variable of type “tokstar => boole”.
2 “In” is of type “tokstar => (tokstar => boole) => boole”:

“a In I” “I a”.
3 “Indot” s of type “list tokstar => (tokstar => boole) =>

boole”))”

“Indot (Nil tokstar) I” “True”
“Indot (a::as) I” “a In I andb Indot as I”.

4 “Ideal” is of type “(tokstar => boole) => list tokstar =>
tokstar => boole”:

“Ideal I as a” “((Indot as I) imp (Con as)) andb ((Indot as I
andb Ent as a) imp (a In I))”.

Theorem

“allnc as(TotalList as → Con as → allnc bs(TotalList bs → allnc
a(TotalTokstar a → Ideal (Ent as) bs a)))”.



Total tokens of D

51 “totalTokstar” is of type “tokstar => boole”:

“totalTokstar CS” “False”
“totalTokstar CZ” “True”
“totalTokstar (CC a b)” “totalTokstar a andb totalTokstar b”.

2 “Onetotalization” is of type “tokstar => tokstar”:

“Onetotalization CS” “CZ”
“Onetotalization CZ” “CZ”
“Onetotalization (CC a b)” “CC (Onetotalization a)
(Onetotalization b)”.

3 “sup” is of type “tokstar => tokstar => tokstar”:

“sup CS b” “b” and “sup b CS” “b”
“sup CZ CZ” “CZ”
“sup CZ (CC a b)” “CS”
“sup (CC a b) CZ” “CS”
“sup (CC a b) (CC c d)” “CC (sup a c) (sup b d)”.



Total tokens of D

1 “totalTokstar” is of type “tokstar => boole”:

“totalTokstar CS” “False”
“totalTokstar CZ” “True”
“totalTokstar (CC a b)” “totalTokstar a andb totalTokstar b”.

2 “Onetotalization” is of type “tokstar => tokstar”:

“Onetotalization CS” “CZ”
“Onetotalization CZ” “CZ”
“Onetotalization (CC a b)” “CC (Onetotalization a)
(Onetotalization b)”.

3 “sup” is of type “tokstar => tokstar => tokstar”:

“sup CS b” “b” and “sup b CS” “b”
“sup CZ CZ” “CZ”
“sup CZ (CC a b)” “CS”
“sup (CC a b) CZ” “CS”
“sup (CC a b) (CC c d)” “CC (sup a c) (sup b d)”.



Total tokens of D

1 “totalTokstar” is of type “tokstar => boole”:

“totalTokstar CS” “False”
“totalTokstar CZ” “True”
“totalTokstar (CC a b)” “totalTokstar a andb totalTokstar b”.

2 “Onetotalization” is of type “tokstar => tokstar”:

“Onetotalization CS” “CZ”
“Onetotalization CZ” “CZ”
“Onetotalization (CC a b)” “CC (Onetotalization a)
(Onetotalization b)”.

3 “sup” is of type “tokstar => tokstar => tokstar”:

“sup CS b” “b” and “sup b CS” “b”
“sup CZ CZ” “CZ”
“sup CZ (CC a b)” “CS”
“sup (CC a b) CZ” “CS”
“sup (CC a b) (CC c d)” “CC (sup a c) (sup b d)”.



Basic lemma

Lemma

1 “allnc a(TotalTokstar a → Ent (Onetotalization a ::(Nil
tokstar)) a)”.

2 “allnc a(TotalTokstar a → allnc b(TotalTokstar b → con a b
→ Ent (sup a b ::(Nil tokstar)) a))”.

3 “allnc a(TotalTokstar a → allnc b(TotalTokstar b → con a b
→ Ent (sup a b ::(Nil tokstar)) b))”.

4 “allnc a(TotalTokstar a → allnc b(TotalTokstar b → allnc
c(TotalTokstar c → con a b → con b c → con a c → con
(sup a b) (sup b c))))”.



The program constant Sup

“Sup” is of type “tokstar => list tokstar => tokstar”:

“Sup a (Nil tokstar)” “a”
“Sup a (b::bs)” “sup (sup a b) (Sup a bs)”.

Theorem

“allnc as(TotalList as → allnc a(TotalTokstar a → allnc
b(TotalTokstar b → Con (a::b::as) → con (sup a b) (Sup a as))))”.



Density theorem in D

Theorem

1 Prepredensity: “allnc bs(TotalList bs → allnc a(TotalTokstar
a → Con (a::bs) → EntList ((Sup a bs)::(Nil tokstar))
(a::bs)))”.

2 Predensity: “allnc as(TotalList as → Con as → exr
a(TotalTokstar a ∧ totalTokstar a ∧ EntList (a::(Nil tokstar))
as))”.

3 Density: “allnc as(TotalList as → Con as → exr
a(TotalTokstar a ∧ totalTokstar a ∧ Indot as (Ent (a::(Nil
tokstar)))))”.

Proof.

(2) is proved by (1), if we take a = Onetotalization(Sup b bs),
for a non-empty list b::bs.



Conclusions

1 A non-trivial portion of mathematics within the set-theoretic
Scott-model admits a constructive and formalizable treatment.

2 The implementation enterprise can reveal unexpected
analogies. E.g., the analogies in the proofs of SCD and
SCD→D being information systems, which lead to more
general results.

3 The implementation can produce new stronger versions of
some propositions. E.g., SCD and SCD→D are split
information systems.

4 The implementation enterprise can reveal an expliciteness not
always found outside the implementation point of view. E.g.,
we have a complete description of the total decidable ideal
extending a formal neighborhood of D.

5 Our implementation choices and results are applicable to any
specific finitary algebra.



Next steps

1 To elaborate the implementation of a decidable approximable
mapping R in order

2 To complete the implementation of density theorem in
D → D, which is a larger enterprise than the corresponding
implementation in D.

3 To generalize the above implementations to an abstract
ground algebra (non-trivial).

4 To test TCF+ with respect to other case studies (e.g., general
form of Plotkin’s definability theorem).
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