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1. CPMT: Project Summary and Goals

In this section I present a summary of my proposed ERC Starting Grant Constructive and Pred-
icative Measure Theory (CPMT). The aim of CPMT is to develop a measure theory within Bishop-style
constructive mathematics as a synthesis of the already existing impredicative Bishop-Cheng measure
theory and the predicative, but less general, earlier Bishop measure theory.

1.1. Constructive mathematics. One of the most important aspects of mathematics is computa-
tion. A fundamental example of a computation is the association of a number to a mathematical
object, like the calculation of the volume of a geometric solid. More generally, a mathematical com-
putation is an algorithm, or a routine that determines a mathematical object from given ones. Such
computations, like the Euclidean algorithm of determining the greatest common divisor of two natu-
ral numbers, are the backbone of mathematics. The development of modern, abstract mathematics
though, obscured a lot the meaning of computation.

E.g., the Dirichlet function Dir on real numbers is defined as follows:

Dir(x) :=
{

0 x is a rational number
1 x is an irrational number.

It is known that there is no algorithm that determines the above case-distinction. Although the
Dirichlet function cannot compute its output in a practicable way, it is well-defined in standard,
classical mathematics, where the computationally problematic case-distinction in its rule is justified
by the use of the logical principle of the excluded middle “P or (not P )”, where P is any mathematical
formula. Mathematics that makes no use of this principle is called constructive, and the corresponding
logic is called intuitionistic. Hence, in constructive mathematics the Dirichlet function cannot be
accepted, as its rule does not involve an efficient computation.

If α is a sequence of 0’s and 1’s, then classically, either all terms αn of the sequence α are 0, or
there is a natural number n such that αn is 1. In general, what we can practically do is to observe
one-by-one each term αn of the sequence α. If we find a term αn equal to 1, then the procedure is
terminated, but, as there is no guarantee that such a term exists, we cannot decide which one of the
two disjuncts of the above disjunction is the case. It turns out that this principle, known as the limited
principle of omniscience (LPO), is equivalent to many results of classical mathematics, like e.g., the
trichotomy law of real numbers (every real number is less than 0, or equal to 0, or larger than 0). As
expected, LPO cannot be used in constructive mathematics.

The positive aspect of avoiding in constructive mathematics all computationally inefficient princi-
ples of classical mathematics is that the computational content of mathematical practice is revealed
and preserved. Whatever we do in constructive mathematics expresses an, in principle, efficient com-
putation. The negative aspect of it is that large parts of classical mathematics cannot be accepted
as they are. The aim of a constructive mathematician is to find computational alternatives to those
classical results that lack, in their classical formulation, a computational meaning.

In the modern era the list of mathematicians that promoted constructive mathematics includes the
names of Kronecker, Baire, Borel, Lebesgue, Brouwer, Weyl, Kolmogorov, Markov, and, more recently,
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of Bishop, Martin-Löf, and of the late Fields medalist Voevodsky. As we explain next, Bishop’s system
of constructive mathematics, which is the system that we are mainly working in, has a very special
relation to classical mathematics.

1.2. Bishop-style constructive mathematics. In his seminal book Foundations of Constructive
Analysis [3] the great analyst Errett Bishop (1928-1983) reconstructed a large part of mathematical
analysis using intuitionistic logic, instead of classical logic, a new set theory, very different from the
classical Zermelo-Fraenkel set theory, and an innovative approach to the definition of mathematical
concepts, in order to be consistent with classical mathematics. Although Brouwer was the first to
develop mathematics within intuitionistic logic, to employ a new constructive set theory, the theory of
spreads and species, and to find for many classical mathematical concepts the (classically) equivalent
formulation that suits best to constructive study, it was Bishop who managed to generate a system
of informal constructive mathematics that is known as BISH, which did not contradict the informal
system of classical mathematics. Despite the fundamental differences between BISH and classical
mathematics, Bishop presented his constructive mathematics in [3] in a way remarkably friendly to
classical mathematicians, his main target group.

Large parts of mathematics have been developed within BISH the last fifty years. E.g, in [3],
and later with Bridges in [6], Bishop developed the constructive theory of metric spaces, of normed
and Banach spaces, of Hilbert spaces, of locally compact Abelian groups and of commutative Banach
algebras. In [35] and [31] general algebra and commutative algebra, respectively, are elaborated. In the
up-coming1 Handbook of Bishop Constructive Mathematics [8] the whole spectrum of the contemporary
research-activity around BISH is presented.

1.3. Predicativity and Bishop-style constructive mathematics. The terms predicative and
non-predicative were introduced by Russell in [59], an early attempt to deal with set-theoretic para-
doxes within his logicism, and developed further by Poincaré in [57], mainly philosophically, and by
Weyl in [70], mainly mathematically. Later the term impredicative is also used for non-predicative.
Roughly speaking, a definition of a mathematical object O in a totality X is impredicative, or circular,
if it refers essentially to X. In [22], p. 29, Feferman answers the question “What is predicativity?” by
saying that “it is a concept applicable to different foundational stances given by the rejection of the
actual infinite for various domains, coupled with its possible limited acceptance for others”.

A totality X in BISH is defined through a membership-conditionMX(x), which reflects the compu-
tation to be carried out in order to show that x ∈ X. If the condition MX(x) involves quantification
over the universe V0 of (predicative) sets, then the definition of X is impredicative, and X is said to be
a class. Typical classes in BISH, other than V0 itself, are the powerset of a set and the totality of all
partial functions between two sets. A predicative standpoint within BISH would imply the avoidance
of quantification over a class in the definition of a mathematical object. Bishop’s position regarding
impredicativity is ambivalent. There are instances in Bishop’s work indicating that the powerset of
a set is treated as a (predicative) set, while other instances clearly indicate that the powerset should
be treated as a class. This phenomenon influenced crucially the development of constructive measure
theory within BISH.

1.4. Bishop-style constructive measure theory. As Bishop and Bridges acknowledge in [6],
pp. 215–6, “any constructive approach to mathematics will find a crucial test in its ability to as-
similate the intricate body of mathematical thought called measure theory, or integration theory”.
The standard approach to measure theory (see e.g., [67], [24]) is to take measure as a primitive notion,
and to define integration with respect to a given measure. An important alternative, and, as argued
by Segal in [63] and [64], a more natural approach to measure theory, is to take the integral on a
certain set of functions as a primitive notion, extend its definition to an appropriate, larger set of
functions, and then define measure at a later stage. This is the idea of the Daniell integral, defined
by Daniell in [18], which was taken further by Weil, Kolmogoroff, and Carathéodory (see [69], [29],
and [9], respectively).

In [3] Bishop developed measure theory using the predicative, or non-circular notion of a family
of complemented subsets in the definition of measure space. The general measure function is an
abstraction of the measure function A 7→ µ(A), where A is a member of a family of complemented

1The edition of this Handbook is the result of our initiative. Moreover, the Mathematics Institute of LMU, through
its Logic group, is one of the most important centers of constructive mathematics worldwide.
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subsets of a locally compact metric space X. The use of complemented subsets in order to overcome the
difficulties generated in measure theory by the use of negation and negatively defined concepts is one
of Bishop’s great conceptual achievements, while the use of the concept of a family of complemented
subsets is crucial to the predicative character of this notion of measure space. The indexing required
behind this first notion of measure space is evident in [3], and sufficiently stressed in [4].

Based on the classical Daniell integral [18], Bishop and Cheng defined in [5] first the notion of
an integrable function through the notion of an integration space, and afterwords the measure of
an integrable set. The Bishop-Cheng Measure Theory (BCMT), which was enriched in [6], was more
powerful than Bishop’s Measure Theory (BMT) in [3]. Nevertheless, it used impredicative, or circular,
concepts such as the “set” of all partial functions between two sets, a fact which hindered the extraction
of its computational content and its formalisation in a suitable formal language. Based on BCMT,
Chan developed in [10]-[15] constructive probability theory and the constructive theory of stochastic
processes.

1.5. Bishop-style constructive measure theory after Bishop. Recognising the above problem
of BCMT, Coquand, Palmgren and Spitters, in [16], [66] and [17], considered instead the algebraic,
and point-free framework of Boolean rings and vector lattices to develop measure theory. In analogy
to Segal’s notion of a probability algebra, found in [63], [64], the starting notion in [16] is a boolean
ring equipped with an apartness relation and a measure function, on which integrable and measurable
functions can be defined. One can show that the integrable sets of BCMT form such a ring. Motivated
by the work of Spitters, recently Ishihara developed in [26] a topological approach to constructive inte-
gration theory. Despite its abstract character, post-Bishop constructive measure theory is considered
conceptually and technically simpler than BCMT.

1.6. CPMT: goals and central questions. My general aim is to formulate and develop the Con-
structive and Predicative Measure Theory (CPMT), a synthesis of the Bishop Measure Theory BMT
and of the Bishop-Cheng Measure Theory BCMT, in order to combine the predicative character of
the former with the richness in results and the generality of the latter. More specifically, I want to
address the following central research questions:

(Q1) Which are the main theoretical tools in the formulation and the development of CPMT?
(Q2) Is it possible to develop a corresponding to CPMT topological measure theory?
(Q3) Is it possible to formalise CPMT?

1.7. Originality and significance of CPMT. In the general framework of computable mathematics
outside BISH there are many approaches to measure and probability theory. There is an extended
literature in intuitionistic measure theory (see e.g., [25]), in measure theory within the computability
framework of Type-2 Theory of Effectivity (see e.g., [19]), in Russian constructivism (especially in
the work of Šanin [60] and Demuth [7]), in Type Theory, where the main interest lies in the creation
of probabilistic programming (see e.g., [2]), and recently also in Homotopy Type Theory (HoTT)
(see [20]), where univalent techniques are applied to probabilistic programming. The revival of BMT,
and the development of a constructive measure theory from BMT and BCMT is, to our knowledge, a
completely original approach to the subject.

The significance of a predicative, Bishop-style, constructive measure theory is twofold. First, it will
include important measure-theoretic notions and results from BMT and BCMT, two highly signifi-
cant approaches to constructive measure theory. The post-Bishop approach to the subject, despite its
elegance, is not a direct constructive version of the classical theory, and not as elaborated as BCMT.
Second, and in relation to question (Q3), the elimination of the impredicative elements of BCMT will
facilitate its formalisation, as well as the interaction between CPMT and the aforementioned approaches
to computational measure theory outside BISH.

Regarding (Q2): In the classical study of measure and integration, topological considerations arise
very often (see e.g., [36]). The construction of Lebesgue measure on R, the notion of compact ap-
proximation, the general Radon measure, the probabilistic applications of weak convergence theory,
are examples of notions and results that depend on topologically based ideas. The constructive ap-
proach to these topics requires a degree of compatibility between the under development measure



4 IOSIF PETRAKIS

theory CPMT and constructive topology, before a genuine constructive topological measure theory can
be elaborated. As we explain in the next section, question (Q2) is particularly related to our research
on constructive topology. In a series of papers, [42]-[48] and [50]-[51], we elaborate the theory of
Bishop spaces, a function-theoretic approach to constructive topology. The possible development of
the measure theory of Bishop spaces will be a significant new enrichment of the theory of Bishop spaces.

Regarding (Q3): The formalisation of CPMT is expected to be carried out through a computer software,
a so-called proof assistant. A proof assistant allows users to practice mathematical activities on the
computer by declaring axioms, defining functions, computing values, stating and proving theorems,
and so on. In order to make use of a proof assistant, users have to write down their mathematical
ideas following a strict syntax that the proof assistant employs so that the machine can read and
interpret them. Such a rigorous writing-down process is called a formalisation. The main advantage
of such a formalisation is that the computer guides users to do all related activities correctly, as the
correctness of each single reasoning step is mechanically checked. An expected remarkable outcome
concerning correctness in CPMT is predicativity, since any inadvertent use of impredicativity will be
cleared out through the help of the machine. As it was explained in section 1.1, the lack of an efficient
computation concerning the formula of LPO

∀n∈N(αn = 0) or ∃n∈N(αn = 1),
suggests that a formula in constructive mathematics poses (or is) a computational problem; this is
exactly the idea of Kolmogorov in his interpretation of intuitionistic logic, given in [28]. As already
suggested, a constructive proof contains a computational interpretation, or a “solution” to the problem
which the proved formula specifies. Program extraction is a procedure of translating a proof into
an executable program code, which moreover is provably a solution of the corresponding formula.
Obviously, program extraction is hard to manually practice for pen and paper proofs, but it is fully
automatised by some proof assistant. It opens broad possibilities of applications of constructive
mathematics in fields other than logic and mathematics. To answer (Q3) means to practice program
extraction in CPMT. In order to accomplish this task, it is crucial to have a constructive and predicative
measure theory formalised in a proof assistant, something which has not been done so far.

2. Development of CPMT

Next I describe my research work related to questions (Q1)-(Q2).

2.1. My work regarding (Q1). The main theoretical tool in the formulation and the development
of CPMT is going to be the theory of set-indexed families of sets. The notion of a set-indexed family
of sets avoids the use of the powerset as a set, and it has already used by Bishop in BMT, in some
specific cases, in exactly this way. As Bishop acknowledges though in [4], p. 67, the use of appropriate
set-indexed families of sets, where the index-set is also equipped with operations that are lifted to the
sets themselves, explains how “all of the material in [3], appropriately modified, can be comfortably
formalised”.
• In my recent work [49], and in great detail in my submitted Habilitation Thesis Families of Sets
in Bishop Set Theory [50], I elaborate the various notions of set-indexed families of sets that are
found in Bishop’s set theory and are used in BISH. For that, I develop Bishop Set Theory (BST), an
informal, constructive theory of totalities and assignment routines that serves as a “completion” of
Bishop’s theory of sets found in [3], chapter 3. Its first aim is to fill in the “gaps” in Bishop’s account
of the powerset, or highlight the fundamental notions, like dependent assignment routines, that were
somehow suppressed by Bishop. Its second aim is to serve as an intermediate step between Bishop’s
theory of sets and an adequate and faithful, in Fefereman’s sense [21], formalisation of BISH. To
assure faithfulness, we use concepts or principles that appear, explicitly or implicitly, in BISH.

The features of BST that “complete” Bishop’s account of set theory in [3] are:
(1) The explicit use of a universe of (predicative) sets (Bishop used such a universe only implicitly).
(2) A clear distinction between sets and classes.
(3) The explicit use of dependent operations.

• In my submitted work [52] I use BST in order to make explicit the algorithmic content of several
constructive proofs by defining a Brouwer-Heyting-Kolmogorov-interpretation of certain formulas of
BISH within BST. Through the notion of a set with a proof-relevant equality the first level of the
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identity type of intensional Martin-Löf Type Theory is translated into BISH. Moreover, several notions
and facts from Homotopy Type Theory are interpreted in BISH.
• In my submitted work [48] I apply the notion of a family of sets indexed by a directed set and its
corresponding dependent sums and products to the theory of Bishop spaces. The successful treatment
of spectra of Bishop spaces and their limits in the framework of indexed families of sets paved the way
for a similar application of set-indexed families of sets in measure theory.
• In his Master Thesis [71], and working under my supervision, Zeuner translated results from BCMT
avoiding the use of impredicative concepts2. The Bishop-Cheng definition of the “set” L1 (or Lp,
where p ≥ 1) of integrable functions is also impredicative, as it rests on the use of the totality of
strongly extensional, real-valued partial functions on a set X (Definition (2.1) in [6], p. 222). In [71],
pp. 49–60, the pre-integration space L1 of canonically integrable functions is studied instead within
BST, as the completion of an integration space. The set L1 is predicatively defined in [3], p. 190, as an
integrable function is an appropriate measurable function, which is defined using quantification over
the set-indexed family of integrable sets in a Bishop measure space.
• In [54] and in [55], the notions of a pre-measure space and of a pre-integration space are introduced.
Roughly speaking, a pre-measure space is a structure (I,∧,∨,∼, µ), where ∧,∨,∼ are operations on I
and µ : I → [0,+∞) such that certain axioms are satisfied, which guarantee that a measure function
can be defined on a family of complemented3 subsets of a set X, if it is indexed on I. The definition
of a pre-integration space follows the same pattern. By considering set-indexed families of partial
functions and certain operations on the index-set4, Bishop’s use of the class of all partial functions
between two sets is avoided.
• In our joint work in preparation [56], Zeuner and I are elaborating Zeuner’s predicative definition of
the set of integrable functions L1 that was introduced in [71].

2.2. My work regarding (Q2). Working constructively has a dramatic effect on general topology.
For example, the complement of a closed set, like the singleton {0} of R, is not open, as that would
imply that a non-zero real number is “apart” from 0 i.e., either larger than 0 or smaller than 0,
something that cannot be captured computationally. Hence, the fundamental notion of a topological
space is not suitable to constructive, or computational, study.
• In my PhD Thesis and in a series of papers [42]-[48] and [50]-[51] I develop the theory of Bishop
spaces, a constructive, function-theoretic approach to general topology. This notion was introduced
by Bishop in his seminal book [3], but it was never really developed. A Bishop topology on a set X
is a set of functions F of type X → R such that F includes the constant functions and it is closed
under addition, composition with the Bishop-continuous functions from R to R, and uniform limits.
The pair F := (X,F ) is called then a Bishop space. This notion of topology is in analogy to Spanier’s
quasi-topology and to Grothendieck’s topology on a category. The fundamental idea behind all these
notions is that continuity comes first and the notion of space is defined later. Every Bishop space
generates a (completely regular) topological space.

The main advantage of working with this notion of space is that it is function-theoretic, in contrast
to other constructive, set-theoretic approaches to the notion of topological space. Experience has
shown that function-theoretic objects suit better to computational study and to implementation in a
programming language. As in the case of categorical topology, the main target in the development of
point-function topology of Bishop spaces is the reconstruction of the standard set-based topological
notions in a function-theoretic framework that will facilitate the extraction of algorithms from proofs.
A source of concepts and ideas for the success of this program was the classical theory of the rings of
continuous functions (see e.g., the classic book [23]), where properties of the rings C(X) and C∗(X)
that determine the topological space X are studied).

2These first steps towards CPMT were announced at the conference “Mathematical Logic and Constructivity”, at the
Department of Mathematics of Stockholm University, 20-23.08.2019, where I was invited speaker, and Zeuner gave a
contributed talk. Zeuner is now a PhD student at the the Department of Mathematics of Stockholm University.

3The notion of a complemented subset, defined in [3], p. 66, is one of the most important positive notions introduced
by Bishop to overcome the difficulties that negatively defined concepts generate in constructive mathematics.

4The use of appropriate operations on the index-set help us also to avoid the principle of countable choice in Bishop’s
proofs. For the significance of practicing constructive mathematics without countable choice see [58] and [62]).
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• In my recent work [46] I study the Borel sets and the Baire sets generated by a Bishop topology
F on a set X. These are inductively defined sets of F -complemented subsets of X. Because of the
constructive definition of the Borel sets of F , and in contrast to classical topology, I showed that the
two families, the Borel and the Baire sets of F , are equal.
• In my recent work [51] I extended [46] with the study of Baire one functions over a Bishop topology.
• In my work in progress [53], which is in the synthetic spirit of CPMT, I define the notion of an
integration algebra in a Bishop topology F , in order to generalise concepts and results from the
integration theory of locally compact metric spaces to the integration theory of general Bishop spaces.
An integration algebra Φ in a Bishop topology F is a subalgebra and a sublattice of F , while an
integral on Φ is a certain linear map µ : Φ→ R. Abstracting from the properties of the functions with
compact support on a locally compact metric space, I define the notion of an algebra of test functions
in F . These notions and the results related to them corroborate my conjecture that BMT and BCMT
can eventually be synthesised.

Next I describe my planned research work related to question (Q3).

2.3. My planned work regarding (Q3). I plan to work on the formal aspects of CPMT by translating
some of my basic notions and results into Martin-Löf Type Theory (MLTT) (see [32], [33], [34]),
through the translation of a Bishop set as a setoid in MLTT and the translation of a set-indexed family
of sets as a setoid-indexed family of setoids (see [41]). The type-theoretic translation of Bishop’s set
theory in the theory of setoids (see the work of Palmgren [37]-[41]) has become nowadays the standard
way to understand Bishop sets. The identity type of MLTT expresses though, in a proof-relevant way,
the existence of the least reflexive relation on a type, a fact that has no counterpart in Bishop’s set
theory. As a consequence, the free setoid on a type is definable (see [39], p. 90), and the presentation
axiom for setoids can be shown. Because of these unexpected, from the Bishop set theory point of
view, consequences of the identity type in intensional MLTT, an extensional version of MLTT seems
more suitable as a formal framework of CPMT. At present, the use of univalent techniques of [68] in the
formalisation of CPMT seems less clear. I need to explore first the possibility of employing univalent
concepts in the theory of setoids, and then to examine their application to the translation of CPMT
into the theory of setoids. The use of univalent techniques is though more expected, if the theory of
setoids that is going to be adopted is intentional rather than extensional.

The role of Dr. Kenji Miyamoto, a member of the Logic group of the Mathematics Institute of
LMU, regarding (Q3), is going to be crucial. His research task will be to formalise several theoretical
results of CPMT in a suitable proof assistant, so that the formalised proofs are mechanically checked
and certified to be logically correct and also predicative. It may be required to improve the proof
assistant itself, so that both proof checking and program extraction are carried out for CPMT.
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