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Abstract. We present a constructive version of the classical McShane-
Whitney theorem on the extendability of real-valued Lipschitz functions
defined on a subset of a metric space. Through the introduced notion of a
McShane-Whitney pair we study some abstract properties of this exten-
sion theorem showing how the behavior of a Lipschitz function defined
on the subspace of the pair affect its McShane-Whitney extensions on
the space of the pair. As a consequence, a Lipschitz version of the theory
around the Hahn-Banach theorem is formed. We work within Bishop’s
informal system of constructive mathematics BISH.

1 Introduction

According to the classical extension theorem of McShane and Whitney that first
appeared in [13] and [20], a real-valued Lipschitz function defined on any subset
A of a metric space X is extended to a Lipschitz function defined on X. To
determine metric spaces X and Y such that a similar extension theorem for
Y -valued Lipschitz functions defined on a subset A of X holds is a non-trivial
problem under active current study (see [15], [1], [4]). Although the McShane-
Whitney theorem has a highly ineffective proof similar to the proof of the Hahn-
Banach theorem (see [18], pp.16-17), it also admits a proof based on an explicit
definition of two such extension functions. This definition, which involves the
notions of infimum and supremum of a bounded subset of reals, can be carried
out constructively only if we restrict to certain subsets A of a metric space X.

We define a McShane-Whitney subset A of a metric space X in order to
constructively realize the McShane-Whitney explicit definition of the extension
functions. A pair (X,A), where X is a metric space and A is a subset of X on
which the McShane-Whitney explicit definition is carried out constructively is
called here a McShane-Whitney pair. The importance of the McShane-Whitney
extension lies in the possibility to relate properties of a given Lipschitz function
on A to properties of its extension functions on X in such a way that a Lipschitz-
version of the theory around the Hahn-Banach theorem is formed. We present
here the first basic results in this direction. We work within Bishop’s informal
system of constructive mathematics BISH (see [2], [3], [6]). The constructive re-
construction of the general theory of Lipschitz functions is quite underdeveloped.
Some first results on constructive Lipschitz analysis are found in [9], [11], [14].
All proofs that are not included here due to space restrictions are left to the
reader.
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2 Basic notions and facts

Definition 1. Let A ⊆ R and b, l, λ,m, µ ∈ R. If A is bounded above, we define
b ≥ A :↔ ∀a∈A(b ≥ a), [A) := {b ∈ R | b ≥ A}, l = supA :↔ l ≥ A ∧
∀ε>0∃a∈A(a > l − ε), and λ = lubA :↔ λ ≥ A ∧ ∀b∈[A)(b ≥ λ). If A is bounded
below, b ≤ A, (A], m = inf A, and µ = glbA are defined in a dual way.

In [12], pp.24-25, Mandelkern gave a necessary and sufficient condition for the
existence of lubA and glbA and proved the following remark: If A ⊆ R bounded
and glbA exists, then sup(A] exists and sup(A] = glbA, while if lubA exists,
then inf[A) exists and inf[A) = lubA.

Definition 2. We denote by F(X,Y ) the set of functions of type X → Y and
by F(X) the set of functions of type X → R. If a ∈ R, then aX denotes the
constant map in F(X) with value a, and Const(X) is the set of constant maps. If
(X, d), (Y, ρ) are metric spaces, then Cu(X,Y) denotes the uniformly continuous
functions from X to Y , and Cu(X) denotes the uniformly continuous functions
from X to R, where R is equipped with its standard metric. The metric dx0

at the point x0 ∈ X is defined by dx0
(x) := d(x0, x), for every x ∈ X, and

U0(X) := {dx0
| x0 ∈ X}. The set X0 of the d-distinct pairs of X is defined by

X0 := {(x, y) ∈ X ×X | d(x, y) > 0}.

Definition 3. If A is a subset of a metric space X, x ∈ X, and ∆(x,A) :=
{d(x, a) | a ∈ A}, A is located if d(x,A) := inf ∆(x,A) exists, for every x ∈ X,
and A is colocated, if δ(x,A) := sup∆(x,A) exists, for every x ∈ X.

If A is inhabited and colocated, then A is bounded; if a0 inhabits A, then
d(a, b) ≤ d(a, a0) + d(a0, b) ≤ 2δ(a0, A), for every a, b ∈ A. Unless otherwise
stated, for the rest X and Y are equipped with metrics d and ρ, respectively.

Definition 4. The set of Lipschitz functions Lip(X,Y ) from X to Y is

Lip(X,Y ) :=
⋃
σ≥0

Lip(X,Y, σ),

Lip(X,Y, σ) := {f ∈ F(X,Y ) | ∀x,y∈X(ρ(f(x), f(y)) ≤ σd(x, y))}.
If Y = R, we use the notations Lip(X) and Lip(X,σ), respectively.

Clearly, Lip(X,Y ) ⊆ Cu(X,Y). If A ⊆ X and f ∈ Lip(X,σ), for some σ ≥ 0,
then f|A ∈ Lip(A, σ). An element of Lip(X,Y ) sends a bounded subset of X to
a bounded subset of Y , which is not generally the case for elements of Cu(X,Y);
the identity function id : N→ R, where N is equipped with the discrete metric,
is in Cu(N)\Lip(N) and id(N) = N is unbounded in R. In [14], p.370, it is shown
constructively that if X is totally bounded, then Lip(X) is uniformly dense in
Cu(X).

Proposition 1. The set Lip(X) includes the sets U0(X), Const(X), and it is
closed under addition and multiplication by reals. If every element of Cu(X) is
a bounded function, then Lip(X) is closed under multiplication.
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Definition 5. If f ∈ F(X,Y ), we define the following sets:

Λ(f) := {σ ≥ 0 | ∀x,y∈X(ρ(f(x), f(y)) ≤ σd(x, y))},

Ξ(f) := {σ ≥ 0 | ∀x,y∈X(ρ(f(x), f(y)) ≥ σd(x, y))},

M0(f) := {σx,y(f) | (x, y) ∈ X0},

σx,y(f) :=
ρ(f(x), f(y))

d(x, y)
.

Proposition 2. If f ∈ F(X,Y ), then Λ(f) = [M0(f)) and Ξ(f) = (M0(f)].

Classically one can prove that if f ∈ Lip(X,Y ) such that inf Λ(f) exists,
then supM0(f) exists and supM0(f) = inf Λ(f). The classical argument in that
proof is avoided, if supM0(f) exists.

Proposition 3. Let f ∈ Lip(X,Y ).
(i) If supM0(f) exists, then inf Λ(f) exists and inf Λ(f) = minΛ(f) = supM0(f).
(ii) If inf Λ(f) exists, then lubM0(f) exists and lubM0(f) = inf Λ(f).
(iii) If lubM0(f) exists, then inf Λ(f) exists and inf Λ(f) = lubM0(f).

In constructive analysis one usually works with the stronger notions of infima
or suprema of sets and not with greatest lower bounds or least upper bounds
of sets. An important exception is found in the work of Mandelkern (see his
comment in [12], p.24). Here we also find useful to keep both notions at work.

Definition 6. Let f ∈ Lip(X,Y ). We call f L-pseudo-normable, if supM0(f)
exists, and we write L(f) := supM0(f). We call f weakly L-pseudo-normable,
or L∗-pseudo-normable, if lubM0(f) = inf Λ(f) exists, and L∗(f) := lubM0(f).

In general a Lipschitz function need not be L-pseudo-normable. Note that in
the case of a linear function f between normed spaces X and Y the boundedness
condition is equivalent to the Lipschitz condition and the existence of its norm
||f || is equivalent to the existence of L(f). If f is L-pseudo-normable, and since
L(f) ≥M0(f), by Proposition 2 we get ∀x,y∈X(ρ(f(x), f(y)) ≤ L(f)d(x, y)), or
f ∈ Lip(X,Y, L(f)). If f is L∗-pseudo-normable, we work similarly.

Proposition 4. Let A ⊆ X and f ∈ Lip(A, Y ) such that

∃g∈F(X,Y )(g|A = f ∧ ∀σ≥0(f ∈ Lip(A, Y, σ)→ g ∈ Lip(X,Y, σ))).

(i) If f is L-pseudo-normable, g is L-pseudo-normable and L(g) = L(f).
(ii) If f is L∗-pseudo-normable, g is L∗-pseudo-normable and L∗(g) = L∗(f).

Note that if f ∈ Lip(A, Y ), g ∈ Lip(X,Y ) such that L(f), L(g) exist and
L(f) = L(g), then it is immediate that ∀σ≥0(f ∈ Lip(A, Y, σ)→ g ∈ Lip(X,Y, σ)).
Next follows the Lipschitz-version of the extendability of a uniformly continuous
function defined on a dense subset of a metric space with values in a complete
metric space.
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Proposition 5. Let D ⊆ X be dense in X, Y complete, and f ∈ Lip(D,Y ).
(i) ∃!g∈F(X,Y )(g|A = f ∧ ∀σ≥0(f ∈ Lip(D,Y, σ)→ g ∈ Lip(X,Y, σ))).
(ii) If f is L-pseudo-normable, then g is L-pseudo-normable and L(g) = L(f).
(iii) If f is L∗-pseudo-normable, g is L∗-pseudo-normable and L∗(g) = L∗(f).

Corollary 1. Let D ⊆ X be dense in X, let Y be complete, and g ∈ Lip(X,Y ).
If g is L∗-pseudo-normable, f = g|D is L∗-pseudo-normable and L∗(f) = L∗(g).

3 McShane-Whitney subsets and pairs

We formulate a property on the subsets of a metric space so that the McShane-
Whitney extension can be carried out on them constructively.

Definition 7. If A ⊆ X is inhabited, x ∈ X, λ ∈ R, and g ∈ Lip(A), the set
MWg(A, λ, x) is defined by

MWg(A, λ, x) := {g(a) + λd(x, a) | a ∈ A}.

The set A is called a McShane-Whitney subset of X, if for every σ > 0, g ∈
Lip(A) and x ∈ X the inf MWg(A, σ, x) exists.

A McShane-Whitney subset A of X is located, colocated and bounded. Since
{d(x, a) | a ∈ A} = MW0X

(A, 1, x), A is located. Since MW−2dx(A, 1, x) =
{−2d(x, a) + d(x, a) | a ∈ A} = {−d(x, a) | a ∈ A} = −∆(x,A), we get1

δ(x,A) = sup[−(−∆(x,A))] = − inf(−∆(x,A)) = − inf MW−2dx(A, 1, x) i.e., A
is colocated, and since A is inhabited, A is also bounded.

Proposition 6. A is a McShane-Whitney subset of X if and only if for every
σ > 0, g ∈ Lip(A) and x ∈ X the sup MWg(A,−σ, x) exists.

Proof. If σ > 0, g ∈ Lip(A) and x ∈ X, then MWg(A,−σ, x) = {g(a) −
σd(x, a) | a ∈ A} = {−(−g(a) + σd(x, a)) | a ∈ A} = −{(−g)(a) + σd(x, a) |
a ∈ A} = −MW−g(A, σ, x). Since −g ∈ Lip(A), we get sup MWg(A,−σ, x) =
sup(−MW−g(A, σ, x)) = − inf MW−g(A, σ, x). For the converse implication we
use the equality inf(−B) = − supB, where B ⊆ R such that supB exists,
and the similarly shown equality MWg(A, σ, x) = −MW−g(A,−σ, x). Hence
inf MWg(A, σ, x) = inf(−MW−g(A,−σ, x)) = − sup MW−g(A,−σ, x).

The next proposition provides examples of McShane-Whitney subsets. A lo-
cally compact (totally bounded) metric space X is one every bounded subset of
which is included in a compact (totally bounded) subset of X (see [5], p.46).

1 If B ⊆ R is bounded and inf B exists, then sup(−B) exists and sup(−B) = − inf B;
if m = inf B, then by definition m is a lower bound of B and ∀ε>0∃b∈B(b < m+ ε),
therefore−m is an upper bound of−B and ∀ε>0∃−b∈−B(−b > −m−ε). The following
constructively provable properties are used in this paper: if A,B ⊆ R are inhabited
and bounded such that supA, inf A, supB, inf B exist, then sup(A + B) exists and
sup(A + B) = supA + supB, inf(A + B) exists and inf(A + B) = inf A + inf B,
if λ > 0, then sup(λA), inf(λA) exist and sup(λA) = λ supA, inf(λA) = λ inf A, if
λ < 0, then sup(λA), inf(λA) exist and sup(λA) = λ inf A, and inf(λA) = λ supA.
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Proposition 7. Let A ⊆ X be inhabited.
(i) If A is totally bounded, then A is a McShane-Whitney subset of X.
(ii) If X is totally bounded and A is located, then A is a McShane-Whitney
subset of X.
(iii) If X is locally compact (totally bounded), then A is a McShane-Whitney
subset of X if and only if A is bounded and located.
(iv) If X = Rn, then A is a McShane-Whitney subset of Rn if and only if A is
totally bounded.

Proof. (i) If σ > 0, g ∈ Lip(A) and x ∈ X, then g+σdx ∈ Lip(A) ⊆ Cu(A), and
inf MWg(σ, x) exists, since A is totally bounded (see [3], Corollary 4.3, p.94).
(ii) A located subset of X is also totally bounded (see [3], p.95), and we use (i).
(iii) If A is bounded and located, there is compact (totally bounded) K ⊆ X
such that A ⊆ K. Since A is located in X, it is a located in K, hence A is totally
bounded, and we use (i). For the converse see our remark after Definition 7.
(iv) A is totally bounded if and only if it is located and bounded (see [3], p.95),
and Rn is locally compact as a finite product of R (see [3], p.111). The required
equivalence follows from (iii).

Definition 8. Let A ⊆ X. We call (X,A) a McShane-Whitney pair, if for all
σ > 0 and g ∈ Lip(A, σ) the functions g∗, ∗g : X → R, the smallest and largest
McShane-Whitney extension of g, defined by

g∗(x) = inf Mg(A, σ, x), ∗g(x) = supMg(A,−σ, x),

for every x ∈ X, are well-defined and satisfy the following properties:
(i) g∗, ∗g ∈ Lip(X,σ).
(ii) g∗|A = (∗g)|A = g.
(iii) ∀f∈Lip(A,σ)(f|A = g → g∗ ≤ f ≤ ∗g).

The extensions g∗, ∗g of g are unique. Let h∗, ∗h satisfy conditions (i)-(iii) of
Definition 8. Since h∗|A = (∗h)|A = g, g∗ ≤ h∗ ≤ ∗g and g∗ ≤ ∗h ≤ ∗g. Since
g∗|A = (∗g)|A = g, h∗ ≤ g∗ ≤ ∗h and h∗ ≤ ∗g ≤ ∗h, hence h∗ = g∗ and ∗h = ∗g.

Theorem 1 (McShane-Whitney). If A is a McShane-Whitney subset of X,
then (X,A) is a McShane-Whitney pair.

Proof. By Proposition 6, the functions ∗g, g∗ are well-defined. First we show
that ∗g extends g. If a0 ∈ A, then ∗g(a0) = inf{g(a) + σd(a0, a) | a ∈ A} ≤
g(a0)+σd(a0, a0) = g(a0). If a ∈ A, then g(a0)−g(a) ≤ |g(a0)−g(a)| ≤ σd(a0, a),
hence g(a) + σd(a0, a) ≥ g(a0). Since a is arbitrary, ∗g(a0) ≥ g(a0). To show
∗g ∈ Lip(X,σ) let x1, x2 ∈ X and a ∈ A. Then d(x1, a) ≤ d(x2, a) + d(x2, x1)
and σd(x1, a) ≤ σd(x2, a) + σd(x1, x2), therefore

g(a) + σd(x1, a) ≤ (g(a) + σd(x2, a)) + σd(x1, x2)→
∗g(x1) ≤ (g(a) + σd(x2, a)) + σd(x1, x2)→
∗g(x1)− σd(x1, x2) ≤ g(a) + σd(x2, a)→
∗g(x1)− σd(x1, x2) ≤ ∗g(x2)→
∗g(x1)− ∗g(x2) ≤ σd(x1, x2).
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If we start from the inequality d(x2, a) ≤ d(x1, a) +d(x2, x1) and work as above,
we get ∗g(x2) − ∗g(x1) ≤ σd(x1, x2), therefore |∗g(x1) − ∗g(x2)| ≤ σd(x1, x2).
Working similarly we get that g∗ is an extension of g which is in Lip(X,σ). If
f ∈ Lip(X,σ) such that f|A = g, x ∈ X and a ∈ A we have that

f(x)− g(a) = f(x)− f(a) ≤ |f(x)− f(a)| ≤ σd(x, a)→
f(x) ≤ g(a) + σd(a, x)→
f(x) ≤ ∗g(x),

g(a)− f(x) = f(a)− f(x) ≤ |f(a)− f(x)| ≤ σd(x, a)→
g(a)− σd(a, x) ≤ f(x)→
g∗(x) ≤ f(x).

Proposition 8. Let (X,A) be a McShane-Whitney pair and g ∈ Lip(A, σ).
(i) The set A is located.
(ii) If inf g and sup g exist, then inf ∗g, sup g∗ exist and

inf
x∈X

∗g = inf
a∈A

g, sup
x∈X

g∗ = sup
a∈A

g.

Proof. (i) Let r ∈ R and σ > 0. Since rA ∈ Lip(A, σ), by hypothesis ∗rA is well-
defined, where ∗rA(x) = inf{r+σd(x, a) | a ∈ A}, for every x ∈ X. If x ∈ X and
a ∈ A, then d(x, a) = 1

σ (r + σd(x, a)− r), and ∆(x,A) = { 1σ (r + σd(x, a)− r) |
a ∈ A}. Hence d(x,A) = inf{ 1σ (r + σd(x, a)− r) | a ∈ A} = 1

σ (inf{r + σd(x, a) |
a ∈ A} − r) = 1

σ (∗rA(x)− r).
(ii) We show that m := inf{g(a) | a ∈ A} satisfies the properties of inf{∗g(x) |
x ∈ X}. It suffices to show that m ≤ ∗g(X), since the other definitional condition
of inf follows immediately; if ε > 0, then there exists a ∈ A ⊆ X such that
g(a) = ∗g(a) < m + ε. If x ∈ A, then m ≤ g(x) = ∗g(x), since m = inf g. Since
A is located, the set −A := {x ∈ X | d(x,A) > 0} is well-defined. If x ∈ −A,
then d(x, a) ≥ d(x,A) > 0, for every a ∈ A. Hence

g(a) + σd(x, a) > g(a) ≥ inf
a∈A

g → inf
a∈A

(g(a) + σd(x, a)) ≥ inf
a∈A

g ↔ ∗g(x) ≥ m.

Since A is located, the set A∪ (−A) is dense in X (see [3], p.88). If x ∈ X, there

is some sequence (dn)n∈N ⊆ A∪ (−A) such that dn
n→ x. By the continuity of ∗g

we have that ∗g(dn)
n→ ∗g(x). Suppose that ∗g(x) < m. Since ∗g(dn) ≥ m, for

every n ∈ N, if ε := (m− ∗g(x)) > 0, there is some n0 such that for every n ≥ n0
we have that |∗g(dn) − ∗g(x)| = ∗g(dn) − ∗g(x) < m − ∗g(x) ↔ ∗g(dn) < m,
which is a contradiction. Hence ∗g(x) ≥ m. For the existence of sup g∗ and the
equality supx∈X g

∗ = supa∈A g we work similarly.

If g = rA and σ > 0, then r∗A = rA−σdA and ∗rA = rA+σdA. If g ∈ Lip(A, 0),
it is immediate that g = rA, for some r ∈ R, and ∗g = g∗ = rX . If D is dense
in X and (X,D) is a McShane-Whitney pair, then by Proposition 5 there is a
unique σ-Lipschitz extension on X of some g ∈ Lip(D), hence ∗g = g∗, a fact
which is also shown by the definition of ∗g and g∗. A weaker property on A
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that suffices for the McShane-Whitney extension is that for every σ > 0, g ∈
Lip(A, σ) and x ∈ X the inf MWg(A, σ, x) exists, but since all our examples of
McShane-Whitney subsets satisfy the stronger property of Definition 7, we avoid
it. The next proposition expresses a “step-invariance” of the McShane-Whitney
extension. If A ⊆ B ⊆ X such that (X,A), (X,B), (B,A) are McShane-Whitney
pairs and g ∈ Lip(A), then g∗X is the (A−X) extension of g, g∗B∗X is the (B−X)
extension of the (A−B) extension g∗B of g, and similarly for ∗Xg and ∗X∗Bg.

Proposition 9. If A ⊆ B ⊆ X such that (X,A), (X,B), (B,A) are McShane-
Whitney pairs and g ∈ Lip(A, σ), for some σ > 0, then

g∗X = g∗B∗X , ∗Xg = ∗X∗Bg.

Proof. We show only the first equality and for the second we work similarly. By
definition g∗B : B → R ∈ Lip(B, σ) and g∗B (b) = sup{g(a) − σd(b, a) | a ∈ A},
for every b ∈ B. Moreover, g∗B∗X : X → R ∈ Lip(X,σ) and g∗B∗X (x) =
sup{g∗B (b)−σd(x, b) | b ∈ B}, for every x ∈ X. For the (A−X) extension of g we
have that g∗X : X → R ∈ Lip(X,σ) and g∗X (x) = sup{g(a)− σd(x, a) | a ∈ A},
for every x ∈ X. Since (g∗B∗X )|B = g∗B , we have that (g∗B∗X )|A = (g∗B )|A = g.
Therefore g∗X ≤ g∗B∗X ≤ ∗Xg, and (g∗X )|B ≤ (g∗B∗X )|B = g∗B ≤ (∗Xg)|B .
Since (g∗X )|A = g, we get that ((g∗X )|B)|A = g, therefore g∗B ≤ ((g∗X )|B) ≤
∗Bg. Since (g∗X )|B ≤ g∗B and g∗B ≤ (g∗X )|B , we get (g∗X )|B = g∗B . Hence
g∗B∗X ≤ g∗X ≤ ∗X∗Bg i.e., we have shown both g∗X ≤ g∗B∗X and g∗B∗X ≤ g∗X .

Proposition 10. Let (X,A) be a McShane-Whitney pair and g ∈ Lip(A) such
that L(g) exists.
(i) g ∈ Lip(A,L(g)).
(ii) If f is an L(g)-Lipschitz extension of g, then L(f) exists and L(f) = L(g).
(iii) L(∗g), L(g∗) exist and L(∗g) = L(g) = L(g∗).

Proof. (i) Since L(g) = supM0(g), we have that L(g) ≥M0(g) and by Proposi-
tion 2 we get L(g) ∈ Λ(g), therefore g ∈ Lip(A,L(g)).
(ii) Since f ∈ Lip(X,L(g)), we get L(g) ∈ Λ(f) and L(g) ≥ M0(f). Let
ε > 0. Since L(g) = supM0(g), there exists (a, b) ∈ A0 ⊆ X0 such that
σa,b(g) > L(g)− ε. Since f extends g, σa,b(g) = σa,b(f).
(iii) By definition ∗g, g∗ ∈ Lip(X,L(g)) and they extend g. Hence we use (ii).

Definition 9. Let (X, ||.||) be a normed space. A subset C of X is called convex,
if ∀x,y∈C∀λ∈(0,1)(λx+ (1− λ)y ∈ C). If C ⊆ X is convex, a function g : C → R
is called convex, if ∀x,y∈C∀λ∈(0,1)(g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)), and
g is called concave, if ∀x,y∈C∀λ∈(0,1)(g(λx + (1 − λ)y) ≥ λg(x) + (1 − λ)g(y)).
A function f : X → R is called sublinear if it is subadditive and positive homo-
geneous i.e., if f(x + y) ≤ f(x) + f(y), and f(λx) = λf(x), for every x, y ∈ X
and λ > 0, respectively. Similarly, f is called superlinear, if it is superadditive
i.e., if f(x+ y) ≥ f(x) + f(y), for every x, y ∈ X, and positive homogeneous.

Proposition 11. Let (X, ||.||) be a normed space, C ⊆ X convex and inhabited,
(X,C) a McShane-Whitney pair, and g ∈ Lip(C, σ), for some σ > 0.
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(i) If g is convex, then ∗g is convex.
(ii) If g is concave, then g∗ is concave.

Proof. We show only (i), and for (ii) we work similarly. Let x, y ∈ X, and
λ ∈ (0, 1). If we consider the sets Cx = {λ(g(c) + σ||x − c||) | c ∈ C} and
Cy = {(1 − λ)(g(c) + σ||y − c||) | c ∈ C}, an element of Cx + Cy has the form
λ(g(c) + σ||x− c||) + (1− λ)(g(d) + σ||y − d||), for some c, d ∈ C. We show that
∗g(λx+(1−λ)y) ≤ λ(g(c)+σ||x−c||)+(1−λ)(g(d)+σ||y−d||), where c, d ∈ C.
Since C is convex, c′ := λc+ (1− λ)d ∈ C, and by the convexity of g we get

∗g(λx+ (1− λ)y) ≤ g(c′) + σ||λx+ (1− λ)y − c′||
≤ λg(c) + (1− λ)g(d) + λσ||x− c||+ (1− λ)σ||y − d||
= λ(g(c) + σ||x− c||) + (1− λ)(g(d) + σ||y − d||).

Since the element of Cx + Cy considered is arbitrary, we get that ∗g(λx + (1 −
λ)y) ≤ inf(Cx + Cy) = inf Cx + inf Cy = λ∗g(x) + (1− λ)∗g(y).

Proposition 12. Let (X,A) be McShane-Whitney pair, g1 ∈ Lip(A, σ1), g2 ∈
Lip(A, σ2) and g ∈ Lip(A, σ), for some σ1, σ2, σ > 0.
(i) (g1 + g2)∗ ≤ g∗1 + g∗2 and ∗(g1 + g2) ≥ ∗g1 + ∗g2.
(ii) If λ > 0, then (λg)∗ = λg∗ and ∗(λg) = λ∗g.
(iii) If λ < 0, then (λg)∗ = λ∗g and ∗(λg) = λg∗.

Proof. In each case we show only one of the two facts.
(i) We have that g1 + g2 ∈ Lip(A, σ1 + σ2) and

(g1 + g2)∗(x) = sup{g1(a) + g2(a)− (σ1 + σ2)d(x, a) | a ∈ A}
= sup{(g1(a)− σ1d(x, a)) + (g2(a)− σ2d(x, a)) | a ∈ A}
≤ sup{g1(a)− σ1d(x, a) | a ∈ A}+ sup{g2(a)− σ2d(x, a) | a ∈ A}
= g∗1(x) + g∗2(x).

(ii) If λ ∈ R, then λg ∈ Lip(A, |λ|σ) and if λ > 0, then

(λg)∗(x) = sup{λg(a)− |λ|σd(x, a) | a ∈ A}
= λ sup{g(a)− σd(x, a) | a ∈ A}
= λg∗(x).

(iii) If λ < 0, then

(λg)∗(x) = sup{λg(a)− |λ|σd(x, a) | a ∈ A}
= sup{λg(a)− (−λ)σd(x, a) | a ∈ A}
= sup{λ(g(a) + σd(x, a)) | a ∈ A}
= λ inf{g(a) + σd(x, a) | a ∈ A}
= λ∗g(x).
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Proposition 13. Let (X, ||.||) be a normed space, A a non-trivial subspace of
X such that (X,A) is a McShane-Whitney pair, and let g ∈ Lip(A, σ), for some
σ > 0, be linear. Moreover, let x1, x2, x ∈ X and λ ∈ R.
(i) g∗(x1 + x2) ≥ g∗(x1) + g∗(x2) and ∗g(x1 + x2) ≤ ∗g(x1) + ∗g(x2).
(ii) If λ > 0, then g∗(λx) = λg∗(x) and ∗g(λx) = λ∗g(x).
(iii) If λ < 0, then g∗(λx) = λ∗g(x) and ∗g(λx) = λg∗(x).

Proof. In each case we show only one of the two facts.
(i) If a1, a2 ∈ A, then

∗g(x1 + x2) = inf{g(a) + σ||(x1 + x2)− a|| | a ∈ A}
≤ g(a1 + a2) + σ||x1 + x2 − (a1 + a2)||
≤ g(a1) + σ||x1 − a1||+ g(a2) + σ||x2 − a2||,

therefore

∗g(x1 + x2) ≤ inf{g(a1) + σ||x1 − a1||+ g(a2) + σ||x2 − a2|| | a1, a2 ∈ A}
= inf{g(a1) + σ||x1 − a1|| | a1 ∈ A}+ inf{g(a2) + σ||x2 − a2|| | a2 ∈ A}
= ∗g(x1) + ∗g(x2).

(ii) First we show that ∗g(λx) ≤ λ∗g(x). If a ∈ A, then

∗g(λx) = inf{g(a) + σ||λx− a|| | a ∈ A}
≤ g(λa) + σ||λx− λa||
= λg(a) + |λ|σ||x− a||
= λ(g(a) + σ||x− a||),

therefore

∗g(λx) ≤ inf{λ(g(a) + σ||x− a||) | a ∈ A}
= λ inf{g(a) + σ||x− a|| | a ∈ A}
= λ∗g(x).

For the inclusion ∗g(λx) ≥ λ∗g(x) we work as follows.

λ∗g(x) = λ inf{g(a) + σ||x− a|| | a ∈ A}

≤ λ(g(
1

λ
a) + σ||x− 1

λ
a||)

= g(a) + σ|λ|||x− 1

λ
a||

= g(a) + σ||λ(x− 1

λ
a)||

= g(a) + σ||λx− a||,

therefore

λ∗g(x) ≤ inf{g(a) + σ||λx− a|| | a ∈ A} = ∗g(λx).
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(iii) First we show that ∗g(λx) ≤ λg∗(x). If a ∈ A, then

∗g(λx) = inf{g(a) + σ||λx− a|| | a ∈ A}
≤ g(λa) + σ||λx− λa||
= λg(a) + |λ|σ||x− a||
= λ(g(a)− σ||x− a||),

therefore

∗g(λx) ≤ inf{λ(g(a)− σ||x− a||) | a ∈ A}
= λ sup{g(a)− σ||x− a|| | a ∈ A}
= λg∗(x).

For the inclusion ∗g(λx) ≥ λg∗(x) we work as follows. Since

g∗(x) = sup{g(a)− σ||x− a|| | a ∈ A}

≥ g(
1

λ
a)− σ||x− 1

λ
a||

and λ < 0, we get

λg∗(x) ≤ λ(g(
1

λ
a)− σ||x− 1

λ
a||)

= g(a)− λσ||x− 1

λ
a||

= g(a) + σ|λ|||x− 1

λ
a||

= g(a) + σ||λ(x− 1

λ
a)||

= g(a) + σ||λx− a||,

therefore

λg∗(x) ≤ inf{g(a) + σ||λx− a|| | a ∈ A} = ∗g(λx).

Proposition 13 says that ∗g is sublinear and g∗ is superlinear. If X is a normed
space and x0 ∈ X, then it is not generally the case that Rx0 := {λx0 | λ ∈ R} is
a located subset of X. If X = R, this is equivalent to LPO, the limited principle
of omniscience2 (see [3], p.122). Things change, if ||x0|| > 0. In this case Rx0
is a 1-dimensional subspace of X i.e., a closed and located linear subset of X
of dimension one (see [3], p.307). Of course, Rx0 is a convex subset of X. A
standard corollary of the classical Hahn-Banach theorem is that if x0 6= 0, there
is a bounded linear functional u on X such that ||u|| = 1 and u(x0) = ||x0||. Its
proof is based on the extension of the obvious linear map on Rx0 to X through
the Hahn-Banach theorem. Next follows a first approach to the translation of
this corollary in Lipschitz analysis. First we need a simple lemma.

2 From this we can explain why it is not constructively acceptable that any pair (X,A)
is McShane-Whitney. If x0 ∈ R and (R,Rx0) is a McShane-Whitney pair, then by
Proposition 8(i) we have that Rx0 is located, which implies LPO.
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Lemma 1. If (X, ||.||) is a normed space and x0 ∈ X such that ||x0|| > 0, then
Ix0 := {λx0 | λ ∈ [−1, 1]} is a compact subset of X.

Proposition 14. If (X, ||.||) is a normed space and x0 ∈ X such that ||x0|| > 0,
there exists f ∈ Lip(X) such that f(x0) = ||x0|| and L(f) = 1.

Proof. The function g : Ix0 → R, defined by g(λx0) = λ||x0||, for every λ ∈
[−1, 1], is in Lip(Ix0) and L(g) = 1; if λ, µ ∈ [−1, 1], then |g(λx0) − g(µx0)| =
|λ||x0|| − µ||x0||| = |λ− µ|||x0|| = ||(λ− µ)x0|| = ||λx0 − µx0||, and since

M0(g) = {σλx0,µx0
(g) =

|g(λx0)− g(µx0)|
||λx0 − µx0||

= 1 | (λ, µ) ∈ [−1, 1]0},

we get that L(g) = supM0(g) = 1. Since Ix0 is inhabited and totally bounded,
since by Lemma 1 it is compact, by Proposition 7(i) and Theorem 1 the extension
∗g of g is in Lip(X), while by Proposition 10 we have that L(∗g) = L(g) = 1.

Theorem 2. Let (X, ||.||) be a normed space and x0 ∈ X such that ||x0|| > 0. If
(X,Rx0) is a McShane-Whitney pair, there exist a sublinear Lipschitz function f
on X such that f(x0) = ||x0|| and L(f) = 1, and a superlinear Lipschitz function
h on X such that h(x0) = ||x0|| and L(h) = 1.

Proof. As in the proof of Proposition 14 the function g : Rx0 → R, defined by
g(λx0) = λ||x0||, for every λ ∈ R, is in Lip(Rx0) and L(g) = 1. Since (X,Rx0)
is a McShane-Whitney pair, the extension ∗g of g is a Lipschitz function, and
by Proposition 10 L(∗g) = L(g) = 1. Since g is linear, by Proposition 13 we get
that ∗g is sublinear. Similarly, the extension g∗ of g is a Lipschitz function, and
by Proposition 10 L(g∗) = L(g) = 1. Since g is linear, by Proposition 13 we get
that g∗ is superlinear.

4 Concluding remarks

Similarly to Theorem 1, one can prove an extension theorem for Hölder contin-
uous functions, or for functions which are continuous with respect to a given
modulus of continuity λ i.e., a function of type [0,+∞) → [0,+∞), which is
subadditive, strictly increasing, uniformly continuous on every bounded subset
of [0,+∞), and λ(0) = 0 (see also [3], p.102). Note that one could have de-
fined a McShane-Whitney pair such that the functions g∗ and ∗g are given by
g∗(x) = glbMg(A, σ, x) and ∗g(x) = lubMg(A,−σ, x), for every x ∈ X, respec-
tively, since only the properties of glb and lub are used in the proof of Theorem 1.

Some open problems related to the material presented here are the following:

a. To find necessary and sufficient conditions on X,Y and f ∈ Lip(X,Y ) for the
L-pseudo-normability of f .
b. To find conditions on (X, ||.||) under which one can show constructively that
(X,Rx0) is a McShane-Whitney pair, if ||x0|| > 0. A similar attitude is taken by
Ishihara in his constructive proof of the Hahn-Banach theorem, where the prop-
erty of Gâteaux differentiability of the norm is added (see [8], and [5], p.126).
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c. To elaborate the Lipschitz version of the theory of the Hahn-Banach theorem.
d. If (Rn, A) is a McShane-Whitney pair and g ∈ Lip(A,Rm, σ), then by The-
orem 1 there are extensions g∗ and ∗g of g in Lip(Rn,Rm,

√
mσ). According to

the classical Kirszbraun theorem there is an extension of g in Lip(Rn,Rm, σ)
(see [10], [16], [17], and [19]). The constructive study of the Kirszbraun theorem
is a non-trivial enterprise.
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