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Abstract

Abstracting from a presentation of the density theorem for the hier-
archy Ct(ρ) of countable functionals over N given by Normann in [13],
we define two subcategories of limit spaces, the limit spaces with approx-
imations, and the limit spaces with general approximations, for both of
which a density theorem holds directly. We show that these categories are
cartesian closed, and we give examples of such limit spaces and of den-
sity theorems for hierarchies of functionals over them. Most of our main
proofs are within Bishop’s informal system of constructive mathematics
BISH. In a limit space with (general) approximations the approximation
functions are given beforehand as an internal part of the structure under
study. In this way limit spaces with (general) approximations form a con-
structive approach to abstract limit spaces, reflecting at the same time
the central idea of Normann’s Program of Internal Computability.

1 Introduction

In this paper we generalize Normann’s notion of the nth approximation of a
functional in the typed hierarchy Ct(ρ) over N, defining two subcategories of
the category of limit spaces Lim, the category Appr of limit spaces with approx-
imations, and the category Gappr of limit spaces with general approximations.
These limit spaces, which are studied here constructively, realize in a direct way
Normann’s notion of internal computability.

Normann formulated the distinction between internal and external com-
putability over a mathematical structure already in [12], and initiated, what
we call, a Program of Internal Computability in [13]-[16].

According to [12], “the internal concepts [of computability] must grow out
of the structure at hand, while external concepts may be inherited from com-
putability over superstructures via, for example, enumerations, domain repre-
sentations, or in other ways”. Normann’s motivation behind an internal ap-
proach in general computability is technical (see his results in [15]), conceptual
(an associate-free description of Ct(ρ)) and practical, since within a weaker
concept of computability (if an object is internally computable, then it is also
externally computable, but not necessarily the converse) “the weaker tools we
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use to obtain a result, the more extra knowledge can be obtained from the pro-
cess of obtaining the result” ([14], p.305). Normann found suitable for his study
of internal computability over a mathematical structure the framework of limit
spaces. As he mentions in [13], p.474, he finds it “useful to see how far we
can get towards constructing an effective infrastructure on such spaces without
introducing superstructures and imposing external notions of computability on
the given structures ... One way to create a useful part of an infrastructure will
be to isolate a dense subset that in some way is effectively dense.”.

As we show in this paper, such dense sets are very direct to find in limit
spaces with (general) approximations1. Although Normann is working in a
classical framework, here we study these limit spaces within Bishop’s informal
system of constructive mathematics BISH (see [1]-[3]). When a proposition is
proved with the use of non-constructive methods we write that it is in CLASS,
the classical extension of BISH. In order to fix our notation and be self-contained
we include some necessary definitions and facts.

2 Basic definitions and facts

A limit space is a structure L = (X, lim), where X is an inhabited set, and
lim ⊆ X × XN is a relation satisfying the following conditions: (i) if x ∈ X
and (x) denotes the constant sequence x, then lim(x, (x)), (ii) if S denotes the
set of all elements of the Baire space N which are strictly monotone, then2

∀α∈S(lim(x, xn) → lim(x, xα(n))), and (iii) if x ∈ X and xn ∈ XN, then
∀α∈S∃β∈S(lim(x, xα(β(n)))) → lim(x, xn). In the literature condition (iii) is
usually written as (iii)′ ¬(lim(x, xn)) → ∃α∈S∀β∈S(¬lim(x, xα(β(n)))), but we
prefer to have the intuitionistically stronger condition (iii) right from the start3.
If ∀x,y∈X∀xn∈XN(lim(x, xn) → lim(y, xn) → x = y), then the limit space has
the uniqueness property4. A limit space has the weak uniqueness property, if
∀x,y∈X(lim(x, y)→ x = y). One can show classically5, that there exists a limit
space with the weak uniqueness property which does not have the uniqueness
property.

A limit space induces a natural topology Tlim, the Birkhoff-Baer topology,
according to which a set O ⊆ X is lim-open, if ∀x∈O∀xn∈XN(lim(x, xn) →
ev(xn,O)), where, if A ⊆ X, we define ev(xn, A) :↔ ∃n0∀n≥n0(xn ∈ A). A
topological space (X, T ) induces a limit space (X, limT ), where limT (x, xn) :↔
xn

T→ x, and xn
T→ x denotes the convergence of xn to x w.r.t. the topology

T . If L is a limit space, it is direct to see that lim(x, xn) → (xn
Tlim→ x) i.e.,

1Limit spaces, as special case of weak limit spaces, have also been studied within Type-2
Theory of Effectivity (see the work of Schröder [21] and [22]), but from a non-constructive
and an external computability point of view.

2If (xn)n ∈ XN we write for simplicity lim(x, xn) instead of lim(x, (xn)n), and lim(x, x)
instead of lim(x, (x)). If it is necessary, we write limn(x, xn) to specify the convergence w.r.t.
n. Usually one finds the notation limn xn = x instead of lim(x, xn).

3Menni and Simpson in [10] also use (iii) instead of (iii)′ in the definition of a limit space.
4A limit space with the uniqueness property is what Kuratowski calls in [9] an L∗-space.
5All proofs not included here can be found in [18].
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lim ⊆ limTlim . A limit space is called topological, if lim = limTlim . It is also
direct that T ⊆ TlimT . A topological space is called sequential, if T = TlimT .

A set F ⊆ X is called lim-closed, if it is the complement of a lim-open
set, and in CLASS we have that F is lim-closed iff ∀x∈X∀xn∈XN(xn ⊆ F →
lim(x, xn) → x ∈ F ). One can show that if L is topological and the induced
topological space is 1st countable, the previous characterization of a lim-closed
set can be carried out in BISH. A similar remark holds for other classical results
within limit spaces.

A set D ⊆ X is called lim-dense, if ∀x∈X∃dn∈DN(lim(x, dn)), while a limit
space is called lim-separable, if there is a countable lim-dense subset of it. It is
direct to show in BISH that if D is a lim-dense set, then D is dense in (X, Tlim),
while one can show in CLASS that if D is dense in (X, T ), then it is not generally
the case that D is limT -dense6.

It is also trivial within BISH that if (X, lim) and (Y, lim) are limit spaces7,
and lim((x, y), (xn, yn)) :↔ lim(x, xn) ∧ lim(y, yn), then (X × Y, lim) is a limit
space. Moreover, if (X, lim) and (Y, lim) are topological limit spaces (with the
uniqueness property), then (X × Y, lim) is a topological limit space (with the
uniqueness property).

If (X, lim) and (Y, lim) are limit spaces, a function f : X → Y is called lim-
continuous, if ∀x∈X∀xn∈XN(lim(x, xn) → lim(f(x), f(xn))). Clearly, a constant
function and the identity function are lim-continuous. Of course, lim-continuity
is closed under composition of functions. If Y ⊆ X, then (Y, limY ) is the rel-
ative limit space, where ∀y∈Y ∀yn∈Y N(limY (y, yn) :↔ lim(y, yn)). The topology
TlimY induced by the relative lim-relation includes the restriction Tlim|Y of the
topology induced by the initial lim on Y , and if f : (X, lim) → (Y, lim) is
lim-continuous, then f : (X, lim)→ (f(X), limf(X)) is lim-continuous too.

Next proposition, the version of which for Hausdorff spaces is standard (see
e.g., [5], p.140), is within BISH, if we restrict to topological limit spaces inducing
a 1st countable topology, while it is within CLASS, if we pose no restrictions on
them. The importance of proving for limit spaces with the uniqueness property
facts that hold on Hausdorff spaces is due to the following simple fact within
BISH: if (X, Tlim) is a T2-space, then (X, lim) has the uniqueness property, while
the converse doesn’t hold in general (see [4] p.485).

Proposition 1. Suppose that (X, lim) is a limit space, (Y, lim) is a limit space
with the uniqueness property, D is a lim-dense subset of X, and f, g : X → Y
are lim-continuous functions. Then the following hold:

(i) If f|D = g|D, then f = g.
(ii) If f : (D, limD) → (Y, lim) is lim-continuous, then it has at most one lim-
continuous extension to X.
(iii) The set Z(f, g) = {x ∈ X | f(x) = g(x)} is lim-closed.
(iv) The graph Gf of f is lim-closed in (X × Y, lim).
(v) If f is 1-1, then (X, lim) has the uniqueness property.

6E.g., the set of irrational numbers I is dense in (R, Tcoc), but it is not lim-dense in
(R, limTcoc ), where Tcoc is the cocountable topology on R.

7For the sake of simplicity we use the same symbol for the limit relations on X and Y .
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Proof. Straightforward.

If (X, lim) is a limit space, A ⊆ X is called a lim-retract of X, if there is a lim-
continuous function r : X → A such that r(a) = a, for each a ∈ A. Again we
get within limit spaces the standard extension property of topological retracts.

Proposition 2 (BISH). If (X, lim), (Y, lim) are limit spaces, A is a lim-retract
of X and f : (A, limA)→ (Y, lim) is lim-continuous, then f has a lim-continuous
extension F : (X, lim)→ (Y, lim).

Proof. If we define F = f ◦ r, then F is lim-continuous as a composition of
lim-continuous functions, and F (a) = f(r(a)) = f(a), for each a ∈ A.

Proposition 3 (BISH). (i) If (X, lim) and (Y, lim) are limit spaces and f :
X → Y is lim-continuous, then f : (X, Tlim)→ (Y, Tlim) is continuous.
(ii) If (X, lim) is a limit space and (Y, lim) is a topological limit space, then the
converse to (i) holds.

Proof. (i) Suppose that OY is open in Y , x ∈ f−1(OY ) and xn is a sequence in
X such that lim(x, xn). Since f is lim-continuous we get lim(f(x), f(xn)). Since
f(x) ∈ OY , ev(f(xn),OY ), therefore ev(xn, f

−1(OY )) i.e., f−1(OY ) is open.
(ii) Suppose that f : (X, Tlim) → (Y, Tlim) is continuous, and that x ∈ X,xn ∈
XN such that lim(x, xn). We show that lim(f(x), f(xn)), which, since lim =

limTlim in Y , amounts to f(xn)
Tlim→ f(x). Suppose that OY is open in Y and

that f(x) ∈ OY ; we show that ev(f(xn),OY ). Since x ∈ f−1(OY ) ∈ Tlim, the
hypothesis lim(x, xn) implies ev(xn, f

−1(OY )) i.e., ev(f(xn),OY ).

One can curry within BISH the proof of the following basic theorem8.

Theorem 4. If (X, lim) and (Y, lim) are limit spaces, then the following hold:
(i) If X → Y is the set of all lim-continuous functions f : X → Y and

lim(f, fn) :↔ ∀x∈X∀xn∈XN(lim(x, xn)→ lim(f(x), fn(xn)))

then (X → Y, lim) is a limit space.
(ii) The space (X → Y, lim) has the weak uniqueness property iff (Y, lim) has it.
(iii) The space (X → Y, lim) has the uniqueness property iff (Y, lim) has it.

Clearly,the evaluation map ω : (X → Y ) ×X → Y defined by (f, x) 7→ f(x) is
lim-continuous.

Proposition 5 (CLASS). If (X, lim) is a limit space with the uniqueness prop-
erty, and X is a finite set, then lim(x, xn)↔ ev(xn, {x}). Moreover, if (Y, lim)
is a limit space, then any function f : X → Y is lim-continuous.

8The proof of a necessary lemma for case (i), which is Theorem 3 in [9] p.188, rests on the
principle of dependent choices on N, which is accepted in BISH (see [2] p. 75).
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Proof. Suppose that lim(x, xn) and xn is not eventually the constant sequence
x. Hence, there is some α ∈ S such that xα(n) 6= x, for each n, and lim(x, xα(n)).
Using the infinite pigeonhole principle9 we get an element x′ ∈ (X \ {x}) ap-
pearing infinitely many times, or, in other words, there is some β ∈ S such
that xα(β(n)) = x′, for each n. Since lim(x, xα(β(n))) and lim(x′, xα(β(n))), the
uniqueness property of (X, lim) implies that x′ = x, which is absurd. Moreover,
if f : X → Y is any function, and lim(x, xn) i.e., xn is eventually x, then f(xn)
is eventually f(x), and we get lim(f(x), f(xn)).

3 Limit spaces with Approximations

Scarpellini introduced limit spaces in computability at higher types in [19],
while Hyland in [6] showed that Scarpellini’s hierarchy is identical to Kleene’s
hierarchy of countable functionals over N.

In [13], p.470, Normann presented this hierarchy using limit spaces and
the corresponding density theorem using the notion of the nth approximation
of a functional, for each n ∈ N. Here we generalize Normann’s presentation by
defining two new subcategories of limit spaces, the limit spaces with approxima-
tions, and the limit spaces with general approximations. As Scott’s information
systems have the approximation objects (formal neighborhoods) as primitive
notions, forming a constructive counterpart to abstract algebraic domains, the
approximation functions in a limit space with approximations are given before-
hand too.

A limit space with approximations is a structure A = (X, lim, (Apprn)n∈N)
such that (X, lim) is a limit space, and, for each n ∈ N the approximation
functions Apprn : X → X satisfy the following properties:

(i) Apprn is lim-continuous.
(ii) Apprn(Apprm(x)) = Apprmin(n,m)(x), for each x ∈ X.
(iii) Dn = Apprn(X) = {Apprn(x) | x ∈ X} is an inhabited finite set.
(iv) lim(x, xn)→ lim(x,Apprn(xn)), for each x ∈ X and xn ∈ XN.

Condition (ii) can also be written as the conjunction of the following two clauses:

(iia) n ≤ m→ Apprn(Apprm(x)) = Apprn(x),

(iib) m < n→ Apprn(Apprm(x)) = Apprm(x),

which express a natural compatibility between the approximations; the approx-
imation of a bigger approximation is the initial one (iia), while the bigger ap-
proximation of a smaller one cannot add new information to it (iib). Of course,
condition (ii) implies

(iic) Apprn(Apprn(x)) = Apprn(x).

9A proof that the infinite pigeonhole principle is equivalent to the limited principle of
omniscience over Veldman’s very weak system BIM can be found in [17].
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A direct consequence of condition (ii) is the following:

(iid) n < m→ Dn ⊆ Dm,

since, if y ∈ Apprn(X), there exists some x ∈ X such that y = Apprn(x),
therefore y = Apprm(Apprn(x)) i.e., y ∈ Apprm(X). It is direct from (iid)
that the set B = {Dn | n ∈ N} is a countable filter base on X, since by their
definition Dn are inhabited10, and Dn ∩Dm = Dmin(n,m).

If a structure A satisfies condition (iic) (iii) and (iv), but not necessarily
conditions (i) and (ii), then we call it a limit space with general approximations.
A significant property of limit spaces with (general) approximations, and a
central reason for their study, is that a density theorem holds for them in a
direct way.

Proposition 6 (density theorem, BISH). If A is a limit space with (general)
approximations and x ∈ X, then lim(x,Apprn(x)). Moreover, the set

D =
⋃
n∈N

Dn

is an enumerable dense subset of (X, Tlim).

Proof. By condition (iv), considering the constant sequence (x), we get directly
lim(x, x) → lim(x,Apprn(x)) i.e., D is a lim-dense subset of X. Therefore, by
a remark of section 2 we have that D is a dense subset of (X, Tlim). Of course,
D is enumerable as a countable union of finite sets.

Note that in the previous proof we only used conditions (iii) and (iv) of limit
spaces with approximations. A limit space which is not lim-separable, like
(X, limdi), where X is an uncountable set, and limdi is the limit relation gener-
ating the discrete topology on X, cannot be a limit space with approximations.

A special extension theorem holds also directly for the limit spaces with
approximations; for each function f defined on D there is a sequence of lim-
continuous functions which extend uniformly arbitrary big “parts” of f .

Proposition 7 (extension theorem, BISH). If A is a limit space with approxi-
mations, then each set Dn is a lim-retract of X. If (Y, lim) is a limit space, any
lim-continuous function fn : (Dn, limDn) → (Y, lim) has a lim-continuous ex-
tension Fn : (X, lim) → (Y, lim). If f : (D, limD) → (Y, lim) is lim-continuous,
then there is a sequence (Fn)n of lim-continuous functions Fn : X → Y such
that Fn|Dn = f|Dn and Fn+1|Dn = Fn|Dn , for each n.

Proof. Since each function Apprn : (X, lim) → (X, lim) is lim-continuous, each
function Apprn : (X, lim) → (Dn, limDn) is lim-continuous too. Since any
a ∈ Apprn(X) has the form Apprn(x), for some x ∈ X, we get that Apprn(a) =
Apprn(Apprn(x)) = a. By Proposition 2 we get that a lim-continuous function

10Although in [1], p.124, the elements of a filter are defined to be non-void, we prefer to
consider them as inhabited sets.
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fn : (Dn, limDn)→ (Y, lim) has a lim-continuous extension F . By (i) fn = f|Dn
is extended to a lim-continuous function Fn : X → Y , and since by (iid) Dn ⊆
Dn+1 we get that Fn+1|Dn = Fn|Dn , for each n.

Note that in the previous proof we used not only condition (iic), but also condi-
tion (i) of our definition and condition (iid), therefore A cannot be a limit space
with general approximations. Since Dn is finite we know classically (Proposi-
tion 5) that any function f : (Dn, limDn)→ (Y, lim) is lim-continuous, therefore
it is extendable to X. The extension theorem, though, is independent from the
cardinalities of Dn.

Remark 8 (BISH). There exists a limit space with approximations which does
not have the uniqueness property.

Proof. If X is a finite set of more than two elements and lim = X×XN, we define
Apprn(x) = x, for each n ∈ N. Trivially, the approximations functions Apprn
are lim-continuous, and satisfy condition (ii). By definition, Apprn(X) is a finite
set, and condition (iv) also follows trivially. Since any sequence converges to
any point of X, this limit space doesn’t have the uniqueness property.

The next two results express that the categories Appr and Gappr are cartesian
closed (the morphisms are the lim-continuous functions, and the terminal object
is excluded).

Proposition 9 (BISH). If (X, lim, (Apprn)n∈N) and (Y, lim, (Apprn)n∈N) are
limit spaces with (general) approximations, and if we define on X × Y

Apprn(x, y) := (Apprn(x),Apprn(y)),

for each n, then (X×Y, lim, (Apprn)n∈N) is a limit space with (general) approx-
imations, where lim is the already defined lim-relation on X × Y .

Proof. Continuity of Apprn on X×Y is reduced to the continuity of the approx-
imation functions on X and Y . Condition (ii) (or (iic) follows directly by the
definition of Apprn(x, y) and the corresponding properties on X and Y . The
range Apprn(X×Y ) is finite as a subset of the finite set Apprn(X)×Apprn(Y ),
while condition (iv) follows directly from the definition of lim on X×Y and the
corresponding properties on X and Y .

Theorem 10 (BISH). If (X, lim, (Apprn)n∈N) and (Y, lim, (Apprn)n∈N) are
limit spaces with (general) approximations, and if we define, for each n and
f ∈ X → Y ,

f 7→ Apprn(f),

Apprn(f)(x) := Apprn(f(Apprn(x))),

for each x ∈ X, then (X → Y, lim, (Apprn)n∈N) is a limit space with (general)
approximations, where lim is the already defined lim-relation on X → Y .
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Proof. (i) If n ∈ N, we need to show that limk(f, fk)→ limk(Apprn(f),Apprn(fk)),
where, by definition, the hypothesis amounts to

∀x∈X∀xk∈XN(lim
k

(x, xk)→ lim
k

(f(x), fk(xk))),

and the conclusion to

∀x∈X∀xk∈XN(lim
k

(x, xk)→ lim
k

(Apprn(f)(x),Apprn(fk)(xk))).

We fix x ∈ X and xk ∈ XN such that lim(x, xk). Since the corresponding
approximation function Apprn on X is lim-continuous, we get

lim
k

(x, xk)→ lim
k

(Apprn(x),Apprn(xk)).

If we apply the definition of lim(f, fk) on x′ = Apprn(x) and x′k = Apprn(xk),
we get

lim
k

(f(Apprn(x)), fk(Apprn(xk))).

Since the corresponding approximation function Apprn on Y is continuous, we
get

lim
k

(Apprn(f(Apprn(x))),Apprn(fk(Apprn(xk))))↔

↔ lim
k

(Apprn(f)(x),Apprn(fk(xk))).

(ii) It suffices to show that

∀x∈X(Apprn(Apprm(f))(x) = Apprmin(n,m)(f)(x)).

If we fix some x ∈ X, then

Apprn(Apprm(f))(x)
def
= Apprn(Apprm(f)(Apprn(x)))

def
= Apprn(Apprm(f(Apprm(Apprn(x)))))

(∗)
= Apprn(Apprm(f(Apprmin(n,m)(x))))

(∗∗)
= Apprmin(n,m)(f(Apprmin(n,m)(x)))

def
= Apprmin(n,m)(f)(x),

where equality
(∗)
= is justified by the condition (ii) of a limit space with approx-

imations on X, and equality
(∗∗)
= is justified by the condition (ii) on Y 11.

11If we had used conditions (iia) and (iib) instead of (ii), then (iia) in X → Y requires (iia)
in X and (iib) in Y , while (iib) in X → Y requires (iib) in X and (iia) in Y .
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Condition (iic) alone is satisfied in the same way i.e.,

Apprn(Apprn(f))(x) = Apprn(Apprn(f)(Apprn(x)))

= Apprn(Apprn(f(Apprn(Apprn(x)))))

= Apprn(Apprn(f(Apprn(x))))

= Apprn(f(Apprn(x)))

= Apprn(f)(x)

(iii) First we show that if Apprn(Y ) in inhabited, then Apprn(X → Y ) is also
inhabited. If y ∈ Y , then for the constant function ŷ we have that

Apprn(ŷ)(x) = Apprn(ŷ(Apprn(x)))

= Apprn(y).

Hence,

Apprn(ŷ) = ̂Apprn(y)

i.e., the nth approximation of a constant function ŷ is the constant function
Apprn(y). If y inhabits Apprn(Y ), then the constant function Apprn(ŷ) =
̂Apprn(y) = ŷ inhabits Apprn(X → Y ). I.e., in this case the nth approximation

of ŷ is identical to it.
To prove the finiteness of Apprn(X → Y ) we show that the nth-approximation
of a function in the function limit space acts equally on its input and on the
nth-approximation of it i.e.,

(v) Apprn(f)(Apprn(x)) = Apprn(f)(x),

since

Apprn(f)(Apprn(x)) = Apprn(f(Apprn(Apprn(x))))

iic
= Apprn(f(Apprn(x)))

= Apprn(f)(x).

Now it is obvious why Apprn(X → Y ) = {Apprn(f) | f ∈ X → Y } is a
finite set: because of (v) the function Apprn(f) : X → Y is determined by its
restriction

Apprn(f)|Apprn(X) : Apprn(X)→ Apprn(Y )

i.e.,

Apprn(f)|Apprn(X) = Apprn(g)|Apprn(X) → Apprn(f) = Apprn(g).

But then
|Apprn(X → Y )| ≤ |Apprn(Y )Apprn(X)|.

(iv) If we fix f ∈ X → Y and fn ∈ (X → Y )N we show that limn(f, fn) →
limn(f,Apprn(fn)), where the hypothesis, by definition, amounts to

∀x∈X∀xn∈XN(lim(x, xn)→ lim(f(x), fn(xn)))
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and the conclusion to

∀x∈X∀xn∈XN(lim(x, xn)→ lim(f(x),Apprn(fn)(xn))).

We fix x ∈ X and xn ∈ XN such that lim(x, xn). By condition (iv) on X we
get that lim(x, xn) → lim(x,Apprn(xn)), while by the definition of lim(f, fn)
on x and the sequence Apprn(xn) we have that lim(f(x), fn(Apprn(xn))). By
condition (iv) on Y we get that

lim(f(x),Apprn(fn(Apprn(xn))))↔ lim(f(x),Apprn(fn)(xn)).

Note that the category Gappr is cartesian closed, since in the proof of condition
(iii) we used only condition (iic) on X. Next result is proved similarly, and
explains why the functions Apprn in the arrow case are defined as above.

Proposition 11 (BISH). If (X, lim, (Apprn)n∈N) is a limit space with approx-
imations and (Y, lim) is a limit space, and if for each n we define on X → Y

f 7→ Apprn
′(f) and Apprn

′(f)(x) := f(Apprn(x)),

then (X → Y, lim, (Apprn
′)n∈N) is a limit space with approximation functions

satisfying conditions (i), (ii) and (iv), where lim is the already defined lim-
relation on X → Y .

Although (X → Y, lim, (Apprn
′)n∈N) satisfies condition (v), what we conclude

is that |Apprn(X → Y )| ≤ |Y Apprn(X)|, therefore, we cannot form a cartesian
closed category of limit spaces using the approximation functions Apprn

′.

4 Examples

The prime example of a hierarchy of limit spaces with approximations, on which
the definition of Appr was actually based, is the hierarchy CtN(ρ) of countable
functionals over N. If our type system is ι = N | ρ → σ, then we define the
following hierarchy of limit spaces:

Ct(ι) := (N, lim
Tdi

),

Ct(ρ→ σ) := (Ct(ρ)→ Ct(σ), lim
ρ→σ

),

where Tdi is the discrete topology on N, and limρ→σ is defined as in the case of
a function limit space. To each limit space (Ct(ρ), limρ) the following approxi-
mation functions are added:

Apprn,ι(m) = min(n,m),

while if F ∈ Ct(ρ→ σ) and f ∈ Ct(ρ) we define

F 7→ Apprn,ρ→σ(F ),

Apprn,ρ→σ(F )(f) = Apprn,σ(F (Apprn,ρ(f))).
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Corollary 12 (BISH). The structure Aρ = (Ct(ρ), limρ, (Apprn,ρ)n∈N) is a
limit space with approximations, for each ρ. Moreover, there exists an enumer-
able dense subset Dρ in (Ct(ρ), Tlimρ), for each ρ.

Proof. In case ρ = ι it is direct that (Ct(ι), limι, (Apprn,ι)n∈N) is a limit space
with approximations: Apprn is limTdi-continuous i.e., limTdi(m,ml) implies that
limTdi

(Apprn(m),Apprn(ml)), since the hypothesis amounts to the sequence ml

being eventually the constant sequence m, therefore the sequence Apprn(ml) is
eventually the constant sequence Apprn(m). Condition (ii) holds automatically,
while for condition (iii) we see that Apprn(N) = {0, 1, . . . , n}. Condition (iv) is
written as limTdi

(m,ml) → limTdi(m,Apprl(ml)). Since the premiss says that
the sequence ml is after some index l0 constantly m, then for l ≥ max(l0,m)
we get that the sequence Apprl(ml) is constantly m. The fact that (Ct(ρ →
σ), limρ→σ, (Apprn,ρ→σ)n∈N) is a limit space with approximations is a direct
consequence of Theorem 10. Moreover, as a consequence of Proposition 6 we
get that the set Dρ =

⋃
n∈N Apprn(Ct(ρ)) is an enumerable dense subset of

(Ct(ρ), Tlimρ), for each ρ.

Although for our next example we could work with any compact subset of N ,
which is the body of a fan on N, we work with the simplest such subset, the
Cantor space C = 2N. As it is well-known, the family

B(α(k)) = {β ∈ C | β(k) = α(k)} = {β ∈ C | α(k) ≺ β},

where u ≺ α means that the sequence α extends u ∈ 2<N and α(k) is the k-
initial segment of α, is a countable base of a topology T on C. The space (C, T )
is a T1, compact space with a countable base of clopen sets, and without isolated
points12. Consequently, we have that

lim
T

(α, αn)↔ ∀k∃n0
∀n≥n0

(αn(k) = α(k))

↔ ∀k∃n0∀n≥n0(αn(k) = α(k)),

for each α ∈ C and αn ∈ CN. We define the approximation functions Apprn :
C → C by

α 7→ Apprn(α),

Apprn(α)(i) =

{
α(i) , if i ≤ n
0 , if i > n

i.e.,
Apprn(α) = α(n+ 1) ∗ 0,

where 0 denotes the constant sequence 0, and u ∗ α denotes the concatenation
of the finite sequence u and the infinite sequence α.

Proposition 13 (BISH). The structure A = (C, limT , (Apprn)n∈N) is a limit
space with approximations.

12As shown by Brouwer, these properties characterize the topological space (C, T ).
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Proof. (i) We fix some k ∈ N and we show that limn(α, αn) implies that
limn(Apprk(α),Apprk(αn)). If we take n0 the index for which all sequences
αn, for n ≥ n0, have the same (k + 1)-initial segment with α, then for all such
n, by the definition of Apprk, we get that Apprk(α) = Apprk(αn), and then the
conclusion limn(Apprk(α),Apprk(αn)) follows automatically.
(ii) We consider first n ≤ m. We have that

Apprn(Apprm(α)) = Apprm(α)(n+ 1) ∗ 0

= α(m+ 1) ∗ 0(n+ 1) ∗ 0

= α(n+ 1) ∗ 0

= Apprn(α).

If n > m we have that

Apprn(Apprm(α)) = Apprm(α)(n+ 1) ∗ 0

= α(m+ 1) ∗ 0(n+ 1) ∗ 0

= α(m+ 1) ∗ 0

= Apprm(α).

(iii) For each n the set Apprn(C) is finite, since it is equipollent to the finite set
of the nodes of the Cantor tree 2<N of length n+ 1.
(iv) We fix α ∈ C, αn ∈ CN and we show that lim(α, αn)→ lim(α,Apprn(αn)),
where the conclusion amounts to ∀k∃n0∀n≥n0(Apprn(αn)(k) = α(k)). We fix
some k ∈ N. For that k we know by the definition of the premiss that

∃n0(k)∀n≥n0(k)(αn(k) = α(k)).

We define n0 = max(n0(k), k) and we consider some n ≥ n0. Then

Apprn(αn) = (αn)(n+ 1) ∗ 0 = (αn(0), . . . , αn(k), . . . , αn(n)) ∗ 0,

hence Apprn(αn)(k) = α(k).

Proposition 6 guarantees that the set D =
⋃
n∈N Apprn(C) is an enumerable

dense subset of C, a fact already known, of course, by the study of the initial
topology T on C. What our general study of Appr adds is that, if our type
system is ι = C | ρ→ σ, and if we define the following hierarchy of limit spaces

C(ι) := (C, lim
T

),

C(ρ→ σ) := (C(ρ)→ C(σ), lim
ρ→σ

),

and supply these spaces with the approximation functions Apprn,ι as defined
above, and the arrow functions Apprn,ρ→σ, we get directly the following corol-
lary:

12



Corollary 14 (BISH). The structure Aρ = (C(ρ), limρ, (Apprn,ρ)n∈N) is a limit
space with approximations, for each ρ. Moreover, there exists an enumerable
dense subset Dρ in (C(ρ), Tlimρ), for each ρ.

Note that we can prove similarly to Proposition 13 that the Baire spaceN can be
seen as a limit space with approximations, except that Apprn(N ) is countable,
and hence the density theorem cannot be applied directly in the hierarchy over
N (enumerability of the dense set is lost, but not its existence, since density
relies only on conditions (iii) and (iv)). It is direct to see classically that the
topological space (C, T ) is sequential, although by the metrizability of C this is
a special case of Remark 18.

Next we use the notion of a limit space with general approximations to
describe a compact metric space X. This is a natural step from C, since every
such space X is the quotient of C. Actually we are going to use a lemma proved
within BISH in [3], p.105, in order to define the approximation functions on the
limit space generated by the metric structure of X. This lemma is necessary to
show constructively the existence of a uniform quotient map from C onto X.

Following [3], p.28, if (X, d) is a metric space, a set Y ⊆ X is called an ε-
approximation to X, if ∀x∈X∃y∈Y (d(x, y) < ε). A metric space (X, d) is totally
bounded, if for each ε > 0 there exists some Y ⊆ X such that Y is a finite
ε-approximation to X, while it is compact, if it is complete and totally bounded.

Lemma 15 (BISH). If (X, d) is an inhabited compact metric space and r ∈
(0, 12 ], there exist sequences (xu)u∈2<N and γ ∈ S such that, for each n ≥ 1, we
have that

(i) {xu | |u| = γ(n)} is an rn-approximation to X.

(ii) |u| = γ(n)→ ∀w∈2<N(d(xu, xu∗w) < rn−2

1−r ).

(iii) |u| = γ(n)→ d(x, xu) < rn−1 − rn+1 →

→ ∃w∈2<N(|u ∗ w| = γ(n+ 1) ∧ d(x, xu∗w) < rn+1).

(iv) |u| = γ(n)→ |u ∗ w| < γ(n+ 1)→ xu∗w = xu.

Note that u ∗ w denotes the concatenation of the finite sequences u,w, and
that the proof of the above lemma uses for the definition of γ the principle of
dependent choices on N. The next proposition and the subsequent corollary are
in BISH, if there is a way to decide whether x ∈ Apprn(X) or not.

Proposition 16. If (X, d) is an inhabited compact metric space, limd is the
limit relation induced by its metric d, and Apprn : X → X is defined, for each
n, by

Apprn(x) =

{
xmin≺{u∈2<N|xu∈Apprn(X) ∧ d(x,xu)<rn} , if x /∈ Apprn(X)
x , if x ∈ Apprn(X),

where ≺ is any fixed total ordering on 2<N, and

Apprn(X) = {xu | |u| = γ(n)}

13



and the sequences (xu)u∈2<N and γ ∈ S are determined in Lemma 15, then the
structure A = (X, limd, (Apprn)n∈N) is a limit space with general approxima-
tions.

Proof. The property Apprn(Apprn(x)) = Apprn(x) follows automatically by
the definition of Apprn(x). The fact that Apprn(X) is finite follows by the
finiteness of the set of nodes in 2<N of fixed length γ(n). Finally we show that
limd(x, xn) → limd(x,Apprn(xn)). The premiss is ∀ε>0∃n0

∀n≥n0
(d(x, xn) <

ε), while the conclusion amounts to ∀ε>0∃n0
∀n≥n0

(d(x,Apprn(xn)) < ε). We
fix some ε > 0, and by the unfolding of the premiss we find n0( ε2 ) such that
d(x, xn) < ε

2 , for each n ≥ n0( ε2 ). Also, there is some n1 such that rn < ε
2 , for

each n ≥ n1. For each n ≥ max(n0( ε2 ), n1) we have that

d(x,Apprn(xn)) ≤ d(x, xn) + d(xn,Apprn(xn))

<
ε

2
+ rn

<
ε

2
+
ε

2
.

Thus, if our type system is ι = X | ρ → σ, and if we define the following
hierarchy of limit spaces over a fixed inhabited compact metric space (X, d)

X(ι) := (X, lim
d

),

X(ρ→ σ) := (X(ρ)→ X(σ), lim
ρ→σ

),

and add to these spaces the approximation functions Apprn,ι as defined above,
and the arrow functions Apprn,ρ→σ, we get directly by the fact that Gappr is
cartesian closed the following corollary.

Corollary 17. The structure Aρ = (X(ρ), limρ, (Apprn,ρ)n∈N) is a limit space
with general approximations, for each ρ. Moreover, there exists an enumerable
dense subset Dρ in (X(ρ), Tlimρ), for each ρ.

Of course, we could use a type system where the base types are determined by
more than one compact metric spaces and have a result similar to Corollary 17.

Remark 18 (CLASS). A metric space (X, d) is a sequential space.

Proof. It suffices to prove that Tlimd ⊆ T . By definition O ∈ Tlimd if and only if
∀x∈X∀xn∈XN(limd(x, xn)→ ev(xn,O)). In order to show that O is in the metric
topology we fix some x ∈ O and we prove the existence of some n ∈ N such that
B(x, 1

n ) ⊆ O. If the converse is the case i.e., if ∃x∈O∀n∃y∈B(x, 1n )(y /∈ O), then

by the appropriate choice principle we get a sequence xn such that xn ∈ B(x, 1
n ),

and xn /∈ O, for each n. But then limd(x, xn), while xn is always outside O.

Kisyński’s theorem (proved in [8]) suffices to prove that all limit spaces in the
above (or mixed) hierarchies are topological, since all of them satisfy the unique-
ness property (Theorem 4(iii)).
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Theorem 19 (Kisyński 1960 (CLASS)). If a limit space satisfies the uniqueness
property, then it is topological.

Of course, there are topological limit spaces, like the trivial limit space (X,X×
XN), which do not have the uniqueness property. Note that Hyland in [6], p.59,
proved that if a limit space induces a Hausdorff space, then it is topological; a
result, because of a remark in Section 2, weaker than Kisyński’s theorem and of
a much simpler proof. This shows that the transition of a result on a Hausdorff
space to a limit space with the uniqueness property is not in general trivial. Next
simple corollary of Kisyński’s theorem is proved (directly) also in [4], p.484.

Corollary 20 (CLASS). (i) If f : (X, TlimX ) → (Y, TlimY ) is continuous and
(Y, limY ) has the uniqueness property, then f : (X, limX) → (Y, limY ) is lim-
continuous.
(ii) If (X, lim) is a limit space and (Y, limY ) has the uniqueness property, then
C(X,Y ) = X → Y , where C(X,Y ) denotes the set of continuous functions from
X to Y w.r.t. the topologies induced by the corresponding limits.

Proof. (i) By Kisyński’s theorem the limit space (Y, limY ) is topological, there-
fore by Proposition 3(ii) f is also lim-continuous.
(ii) This is derived directly from (i) and Proposition 3(i).

Of course, part (ii) of the previous corollary applies to each function space
appearing in the above hierarchies of limit spaces. Next proposition reveals
the similarities between the induced topology of an abstract limit space with
approximations and the topology of Cantor space.

Proposition 21. If (X, lim, (Apprn)n∈N) is a limit space with approximations
satisfying the uniqueness property, then the following hold:

(i) (CLASS) The set Z(Apprn, e) = {x ∈ X | Apprn(x) = e} is lim-clopen, for
each n ∈ N and e ∈ Apprn(X).
(ii) (CLASS) If X is a compact metric space and lim, (Apprn)n∈N are defined
as above, then the functions Apprn are not in general lim-continuous.
(iii) (BISH) The sets of the form Z(Apprn, e) form a countable basis for a
topology TZ on X which is included in Tlim.
(iv) (CLASS) The topological space (X, TZ) is T1 and 2nd countable.

Proof. (i) Since Apprn is lim-continuous, and so is the function ê : X → X
with the constant value e, we get by Proposition 1(iii) that Z(Apprn, e) =
Z(Apprn, ê) is lim-closed. To prove that Z(Apprn, e) is a lim-open set we fix
some x ∈ Apprn(X) and some xm ⊆ X such that lim(x, xm), and we show
that eventually Apprn(xm) = Apprn(x) = e. Of course, if Apprn(X) = {e}, we
get directly what we want. Suppose next that Apprn(X) = {e1, . . . , ei−1, ei =
e, ei+1, . . . , ek}, and also that the sequence Apprn(xm) is not eventually constant
e i.e., there are infinite terms of Apprn(xm) other than e. By the infinite pi-
geonhole principle there exists ej 6= e, and α ∈ S such that Apprn(xα(m)) = ej ,
for each m, which implies lim(ej ,Apprn(xα(m))). On the other hand, the lim-
continuity of Apprn implies lim(Apprn(x),Apprn(xm)) ↔ lim(e,Apprn(xm)),
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while by condition (ii) of limit spaces we get lim(e,Apprn(xα(m))). The unique-
ness property of the limit space implies that ej = e, which is absurd.
(ii) It is clear that Z(Apprn, e) 6= ∅, since by its definition e ∈ Apprn(X) ↔
∃x∈X(Apprn(x) = e)→ ∃x∈X(x ∈ Z(Apprn, e)). Also, if {e} ( Apprn(X), then
Z(Apprn, e) ( X. Since (i) rests on the lim-continuity of the approximation
functions Apprn, if that was the case for these functions in the case of a compact
metric space, then (i) would hold. But there are compact metric spaces, like
the connected unit interval [0, 1], which have no non-trivial clopen sets.
(iii) It is clear that each x ∈ X is in Z(Apprn,Apprn(x)), for each n. Next we
show that if x ∈ Z(Apprn, en) ∩ Z(Apprm, em), then

Z(Apprn, en) ∩ Z(Apprm, em) = Z(Apprmax(n,m), emax(n,m)).

We suppose that n < m, and we show that Z(Apprm, em) ⊆ Z(Apprn, en). By
our hypothesis Apprn(x) = en and Apprm(x) = em. Next we suppose that
Apprm(y) = em and we show that Apprn(y) = en:

Apprn(y) = Apprn(Apprm(y))

= Apprn(em)

= Apprn(Apprm(x))

= Apprn(x)

= en.

The family of all sets of the form Z(Apprn, e) is countable, as a countable union
of finite sets. Since each set Z(Apprn, e) is lim-open, the topology TZ having
them as a basis is included in Tlim.
(iv) Consider x ∈ X and some y ∈ X \ {x}. Since x 6= y, there exists
n ∈ N such that Apprn(x) 6= Apprn(y); if ∀n(Apprn(x) = Apprn(y)), then
lim(x,Apprn(x)), lim(y,Apprn(y)), and the uniqueness property of X imply
x = y. Thus, y ∈ Z(Apprn,Apprn(y)) ⊆ (X \ {x}). The 2nd countability of TZ
is due to the countability of the base (Z(Apprn, e))n,e.

One could ask if Tlim ⊆ TZ . For example, in the base case we have that n ∈
Apprn+1(X) and

Z(Apprn+1, n) = {x ∈ N | Apprn+1(x) = n}
= {x ∈ N | min(n+ 1, x) = n}
= {n}.

A result of Hyland shows that this is not the case.

Proposition 22 (CLASS). (i) Ct(k) is not 1st countable, for each k > 1.
(ii) If (X, lim, (Apprn)n) is a limit space with approximations, then TZ ( Tlim.
(iii) If (X, lim, (Apprn)n) is a limit space with approximations, then the converse
to condition (iv) of the definition of a limit space with approximations i.e.,
lim(x,Apprn(xn))→ lim(x, xn), does not hold in general.
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Proof. (i) See [6] p.64, or [11] p.54.
(ii) If the two topologies were equal, then Ct(k) would be 2nd countable, some-
thing which contradicts (i).
(iii) We show that the converse to condition (iv) implies that Tlim ⊆ TZ i.e.,
for each lim-open set O and x ∈ O there is some Z(Apprn, e) such that x ∈
Z(Apprn, e) ⊆ O. If this is not the case, there is a sequence yn ⊆ X such
that Apprn(yn) = Apprn(x) and yn /∈ O, for each n. Since lim(x,Apprn(x))↔
lim(x,Apprn(yn)), the converse implication would imply that lim(x, yn), there-
fore yn would be eventually in O, which is absurd.

5 Future work

Our aim was to show that Normann’s notion of the nth approximation of a
countable functional is fruitful and also compatible to a general constructive
point of view.

A natural question is whether limit spaces with general approximations can
include separable, non-compact metric spaces, since Lemma 15 is extended
within BISH to a separable metric space and the Baire space N instead of
C. In that way the study of the hierarchy CtR(ρ) of functionals over R would be
similar to that of CtN(ρ) (the two hierarchies have a different treatment in [13]).

In a forthcoming work we show that there is a strong connection between
Normann’s notion of a probabilisitic projection, introduced in [14], and a limit
space with general approximations. Namely, if we add the property of positivity
to Normann’s notion of probabilistic projection, and it is easy to see that the
probabilistic projections proved by Normann to exist are actually positive, we
show that a positive probabilistic selection induces a limit space with general
approximations.

Although there are constructive approaches to external computability at
higher types (see e.g., the theory of computable functionals TCF in [20]), we
find equally interesting the development of a constructive approach to internal
computability. That combines an as much as possible constructive reconstruc-
tion of the theory of limit spaces with a possible parallel interpretation of Gödel’s
T , typed µ-recursion and the Kleene schemes.

I would like to thank one of the reviewers for his instructive comments and
suggestions.
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