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Abstract: Within a fairly weak formal theory of numbers and number-theoretic se-
quences we give a direct proof of the contrapositive of countable finite choice for decid-
able predicates. Our proof is at the same time a proof of a stronger form of it. In that
way we think that we improve a proof given by Diener and Schuster. Within the same
theory we prove properties of inhabited sets of naturals satisfying the general contra-
positive of countable choice. Extending our base theory with the continuity principle,
we prove that each such set is finite. In that way we generalize a result of Veldman,
who proved, actually within the same extension, the finiteness of these sets, supposing
additionally their decidability.
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1 Introduction

In this paper, we work within Veldman’s formal system of Basic Intuitionis-

tic Mathematics (BIM), presented in [Veldman 2011a]. BIM, which is similar

to the system H in [Howard and Kreisel 1966], is a minimal formal theory of

numbers and number-theoretic sequences like Kleene’s system M, studied in

[Moschovakis and Vafeiadou 2011], and the system EL of elementary analysis

[Troelstra and van Dalen 1988]. BIM can be seen as a formalization of a proper

part of Bishop’s (informal) constructive mathematics (BISH), [Bishop 1967] or

[Bishop and Bridges 1985]. Actually, all proofs within BIM can be read as proofs

within BISH.

Following [Veldman 2011a] we briefly describe BIM. The language L of BIM

is a two-sorted language of numerical variables l,m, n, ..., and number-theoretic

functions α, β, γ, ... . There are two constants in L: a numerical constant 0, and

a function constant 0 naming the constant zero sequence. The successor function

is named by S, the pairing function by J , and the projection functions by K,L,

respectively. Numerical variables and constants are terms and a new term is ob-

tained from already constructed ones and a function symbol. There is an equality

symbol, =0, for numerical terms and another one, =1, for function terms. An

equality between numerical terms or between function terms is a basic formula.

Formulas of L are obtained by using connectives, numerical quantifiers and the

function quantifiers. The logic of BIM is two-sorted intuitionistic predicate logic.

The axioms of BIM are the following:



1. Extensionality: ∀α,β(α =1 β ↔ ∀n(α(n) =0 β(n))).

2. Constants:

∀n(¬(S(n) = 0)),

∀m,n(S(m) = S(n)→ m = n),

∀n(0(n) = 0),

∀m,n,l(K(J(m,n)) = m ∧ L(J(m,n)) = n ∧ J(K(l), L(l)) = l).

3. Composition: ∀α,β∃γ∀n(γ(n) = α(β(n))).

4. Primitive Recursion:

∀α,β∃γ∀m,n(γ(m, 0) = α(m) ∧ γ(m,S(n)) = β(m,n, γ(m,n))).

5. Full induction: If ϕ is any formula of L, then

ϕ(0)→ ∀n(ϕ(n)→ ϕ(S(n)))→ ∀n(ϕ(n)).

6. Decidable Countable Choice (ACd00):

∀α(∀m∃n(α(m,n) = 0)→ ∃γ∀m(α(m, γ(m)) = 0)).

Note that α(m,n) is an abbreviation for α(J(m,n)). Addition to BIM of con-

stants for the primitive recursive functions and relations together with their

defining equations, as it is the case in Kleene’s system M, is possible, but not

necessary here.

For simplicity we shall use a more relaxed “set-theoretical” writing for our

formulas, susceptible to the following conventions. A decidable subset A of N,

A ⊆d N, is a formula ϕ(n) for which ∀n(ϕ(n) ∨ ¬ϕ(n)). We write A(n) ↔
n ∈ A ↔ ϕ(n). Such a set can also be described by some sequence α satisfying

∀n(α(n) = 0 ∨ α(n) = 1), and we write n ∈ A ↔ α(n) = 0. A subset A of

N, A ⊆ N, is a formula ϕ(n) for which we cannot, in general, decide for each

n whether ϕ(n) or ¬ϕ(n) is the case. A subset A of N is called inhabited if

∃n(n ∈ A). If A is identified to some ϕ(n), then

n = min(A)↔ ϕ(n) ∧ ∀m<n(¬ϕ(m)).

A decidable subset A of N×N, A ⊆d N× N, is a formula ϕ(n,m), which abbre-

viates ϕ(J(m,n)), such that ∀n,m(ϕ(n,m) ∨ ¬ϕ(n,m)). A subset A of N × N,

A ⊆ N× N, is a formula ϕ(n,m) for which the previous disjunction does not

generally hold. Sets m = {0, 1, ...,m− 1} and functions f : m → K, where

K ⊆ N, are defined as appropriate subsets of N and N × N, respectively. If

f : m→ K, the notions of f being 1-1 or onto K are defined as usual. A subset

K of N is called finite, K ⊆fin N, if there is a natural number m and an 1-1



function f : m → K, which is onto K. We say that α ∈ KN, where K ⊆ N,

if ∀n(α(n) ∈ K). Sometimes we also use capital letters N,Λ to denote specific

natural numbers.

Thus, we may write ACd00 in the form

∀n∃m(A(n,m))→ ∃α∀n(A(n, α(n))),

where A ⊆d N× N. Trivially, ACd00 is equivalent to AC00!, which is AC00, general

countable choice, with (unique existence) hypothesis ∀n∃!m(A(n,m)).

In the next sections our study includes the following formulas:

1. (CCCK) ∀α∈KN∃n(A(n, α(n))) → ∃N∀i∈K(A(N, i)), where K ⊆ N and

A ⊆ N×K.

2. (CCCdK) It is like CCCK , except that A ⊆d N×K.

3. (∀PEM) ∀γ(γ 6= 0 ∨ γ = 0).

4. (str-∀PEM) ∀γ(∃n(γ(n) 6= 0) ∨ ∀n(γ(n) = 0)).

5. (LPO) ∀γ∈2N(∃n(γ(n) = 1) ∨ ∀n(γ(n) = 0)).

6. (Σ0
1 -PEM) ∃n(P (n)) ∨ ∀n(¬P (n)), where P ⊆d N.

7. (Σ0
2 -PEM) ∃n∀m(P (n,m)) ∨ ∀n(¬∀m(P (n,m))), where P ⊆d N× N.

8. (Σ0
2 -DNE) ¬¬∃n∀m(P (n,m))→ ∃n∀m(P (n,m)), where P ⊆d N× N.

The formula CCCK is the contrapositive of countable choice for K, CCCdK
is the decidable contrapositive of countable choice for K, str-∀PEM is a strong

version of the form ∀PEM of the principle of excluded middle, LPO is the lim-

ited principle of omniscience, Σ0
1 -PEM is the principle of excluded middle for

Σ0
1 -formulas, Σ0

2 -PEM is the principle of excluded middle for Σ0
2 -formulas, and

Σ0
2 -DNE is the double negation for Σ0

2 -formulas.

2 An informative direct proof of CCCd
m

Adding to BIM a generalized form of continuity principle, AC10, and the decid-

able fan theorem, FANd, we get a fragment of formal intuitionism INT (for their

exact formulations see [Veldman 2008]). Veldman, in [Veldman 1982], showed

that

BIM + AC01 + FANd ` CCC2,

and similarly

BIM + AC01 + FANd ` CCCm,



for each m ≥ 2. In the same paper, p.518, Veldman claimed that his reasoning

“also goes through in case we do not know that A is a decidable subset of N×2. If

A is, indeed, a decidable subset of N× 2, we may argue with less circumstance”.

Indeed, [Diener and Schuster 2010] proved CCCd2 through a very weak ‘form’

of the fan theorem, FANp
∆, which they also proved to be a consequence of ACd00.

What we show next is that CCCd2, or more generally CCCdm, can be proved in an

even simpler and more informative way, and no connection to the fan theorem

is necessary1. Actually, we prove a stronger form of CCCdm.

First we prove a proposition of independent interest, from which CCCdm is

derived as an immediate corollary.

Proposition 1. If A ⊆d N× N, then

BIM ` ∀m≥1∃eAm:N→m∀n∈N(A(n, eAm(n))→ A(n, 0) ∧ ... ∧A(n,m− 1)).

Proof. For m = 1 and A ⊆d N× N the proposition holds trivially. We just define

eA1 (n) = 0 for each n. Suppose now that we have defined for each m and A some

sequence eAm satisfying for each n the implication

A(n, eAm(n))→ A(n, 0) ∧ ... ∧A(n,m− 1).

Through eAm we define eAm+1 by

eAm+1(n) =

{
eAm(n) , if A(n,m)

m , if ¬A(n,m).

We show that for each n

A(n, eAm+1(n))→ A(n, 0) ∧A(n, 1) ∧ ... ∧A(n,m− 1) ∧A(n,m).

If A(n, eAm+1(n)), then by decidability of A we distinguish between two possible

cases.

If A(n,m), then eAm+1(n) = eAm(n), and by hypothesis A(n, eAm+1(n)) we get

A(n, eAm(n)). Hence, by the induction, A(n, 0)∧A(n, 1)∧ ...∧A(n,m− 1). Thus

we have shown that A(n,m)→ A(n, 0) ∧A(n, 1) ∧ ... ∧A(n,m− 1).

If ¬A(n,m), then eAm+1(n) = m, and hypothesis A(n, eAm+1(n)) becomes A(n,m),

which contradicts our supposition ¬A(n,m).

Therefore A(n,m) holds, so, by modus ponens, we obtain also A(n, 0)∧A(n, 1)∧
... ∧A(n,m− 1).

1 Just before submitting this paper Wim Veldman sent to me his pre-print
[Veldman 2011b], in which he proves CCCd

2 in a straightforward way too. Although
the nuclear idea of these independently given proofs is the same, his is elaborated
differently.



By the definition of the previous proof eA1 (n) = 0 for each A, while eA2 and

eA3 , for example, have the form

eA2 (n) =

{
0 if A(n, 1)

1 if ¬A(n, 1)

and

eA3 (n) =


0 if A(n, 1) ∧A(n, 2)

1 if ¬A(n, 1) ∧A(n, 2)

2 if ¬A(n, 2),

respectively. If we define

N(A,m) = {N ∈ N : A(N, 0) ∧A(N, 1) ∧ ... ∧A(N,m− 1)},

then the above proof shows that

{n ∈ N : A(n, eAm(n))} ⊆ N(A,m).

But N ∈ N(A,m) implies that A(N, eAm(N)), since eAm(N) ∈ {0, 1, ...m− 1}.
Therefore we get

N(A,m) = {n ∈ N : A(n, eAm(n))}.

Proposition 2. If A,B ⊆d N× N, then

BIM ` ∀m≥1(A |N×m= B |N×m→ eAm = eBm).

Proof. For m = 1 it holds trivially, since eAm = eBm = 0. Consider that the propo-

sition is true for some m > 1 and let A,B ⊆d N× N, such that A |N×(m+1) =

B |N×(m+1). Since A(n,m)↔ B(n,m), then eAm+1(n) = eBm+1(n), for each n.

Thus, if A is a decidable predicate on N×m, for some m ≥ 1, we define

eAm = eA
∗

m ,

where A∗ is any fixed decidable extension of A on N× N. By Proposition 2, eAm
is independent of the choice of A∗ extending A, and the implication

A∗(n, eA
∗

m (n))→ A∗(n, 0) ∧A∗(n, 1) ∧ ... ∧A∗(n,m− 1)

becomes

A(n, eAm(n))→ A(n, 0) ∧A(n, 1) ∧ ... ∧A(n,m− 1).

Proposition 3. BIM ` ∀m≥1(CCCdm).

Proof. Consider any m ≥ 1 and some decidable predicate A on N×m for which

the hypothesis ∀α∈mN∃n∈N(A(n, α(n))) of CCCdm holds. Applying it to eAm, there

exists some n such that A(n, eAm(n)). By Proposition 1 we get A(n, 0)∧A(n, 1)∧
... ∧A(n,m− 1).



Hence, the hypothesis of CCCdm guarantees that N(A,m) is inhabited. If

str-CCCdm is the following strong form of CCCdm

∃n(A(n, eAm(n)))→ ∃N∀i∈m(A(N, i)),

where A ⊆d N×m, then the previous proof is actually a proof of the following

proposition.

Proposition 4. BIM ` ∀m≥1(str-CCCdm).

Obviously, in order to prove the conclusion of CCCdm, it suffices to assume

that ∃n(A(n, eAm(n))), for given A ⊆d N×m. Hence, the hypothesis of CCCdm
restricted only to one sequence for each A is enough to obtain its conclusion.

Moreover, this restricted hypothesis alone proves the full hypothesis of CCCdm.

If α is any sequence in K and A ⊆d N×m, then necessarily A(N,α(N)), where

N is the natural number determined in the conclusion of CCCdm. Whatever the

value of α(N) is, we have A(N,α(N)), since α(N) ∈ m.

Proposition 5. If A ⊆d N× N, then

BIM ` ∀m≥1(A(n, eAm(n))→ eAm(n) = 0).

Proof. For m = 1 the implication follows trivially, since eA1 = 0. Suppose that

this holds for the m > 1 case and let A(n, eAm+1(n)). By Proposition 1 we have

A(n, 0) ∧ A(n, 1) ∧ ... ∧ A(n,m). Thus, by the definition of eAm+1, eAm+1(n) =

eAm(n) = 0.

Hence, we conclude that

N(A,m) = {n ∈ N : A(n, eAm(n))} ⊆ {n ∈ N : eAm(n) = 0}.

The last inclusion is not, in general, an equality. For example, if we consider

A ⊆d N× 1, where A(n, 0)↔ n = 3, then N(A, 1) = {3}, while eA1 = 0.

With respect to the proof of CCCd2 given in [Diener and Schuster 2010] we

may conclude the following:

1. The fact that Veldman, in [Veldman 1982], used the undecidable version of

the fan theorem to prove CCCm does not entail that the fan theorem, or

something similar to it, is necessary for a proof of CCCdm.

2. The introduction of the sequences eAm not only provides the inhabitedness of

N(A,m), given the hypothesis of CCCdm, but also a characterization of all

its elements. Moreover, by restricting the hypothesis of CCCdm to them, we

prove a stronger form of CCCdm.



3. An implementation of our proof of CCCdm in the interactive proof system

MINLOG has been given by Helmut Schwichtenberg (see [Min]). Although

TCF, the formal theory on which MINLOG rests, is based on minimal logic,

everything that we prove here can be proved within an appropriate fragment

of TCF.

3 An inhabited set K satisfying CCCK is finite

To prove (our main) Proposition 17, we start from two results in [Veldman 1982].

Proposition 6. (Veldman 1982) BIM ` CCCdN → str-∀PEM.

Trivially, str-∀PEM → LPO. Since LPO is a taboo for all varieties of con-

structivism, the previous result shows that CCCdN is unacceptable within BIM.

We need to add an axiom to BIM, in order to achieve the negation of CCCdN.

Let CP denote the continuity principle, according to which, if ϕ : NN → N is

a function on the intuitionistic Baire space NN, then

∀α∃n∀β(β(n) = α(n)→ ϕ(β) = ϕ(α)),

where α(n) is the initial segment of α of length n. The principle CP is not

accepted within BISH, where a rule-based notion of sequence is used. Of course,

CP is not valid in classical mathematics, while it is justified in INT through

the on-going or incomplete character of the elements of the intuitionistic Baire

space. Using CP, one gets directly the negation of ∀PEM i.e.

BIM + CP ` ¬∀PEM.

Proposition 6 and the fact that str-∀PEM → ∀PEM suffice for the proof of the

following proposition.

Proposition 7. (Veldman 1982) BIM + CP 0 CCCdN. Therefore BIM + CP 0
CCCN, and BIM 0 CCCN.

We cannot expect, though, that BIM ` ¬CCCN. For, CCCN is classically

equivalent to the contrapositive of AC00, so CLASS ` CCCN (that is classi-

cal mathematics); and BIM–just like BISH [Bridges and Richman 1987] p.2–is

consistent with CLASS.

The equivalence in the next proposition shows that Proposition 6 can be

written as

BIM ` CCCdN → Σ0
1 -PEM.

Although this is proved in [Berardi 2006], it is just a reformulation of Proposition

6.



Proposition 8. BIM ` str-∀PEM↔ Σ0
1 -PEM.

Proof. (→) Suppose P (n) is decidable. Then it is standard to define the following

sequence γ : N→ 2 by

γ(n) =

{
0 if ¬P (n)

1 if P (n).

Obviously str-∀PEM for γ implies Σ0
1 -PEM for P .

(←) If γ ∈ NN, then we define the decidable predicate P , by P (n) ↔
γ(n) 6= 0. Since ¬(γ(n) 6= 0) → γ(n) = 0, Σ0

1 -PEM for P implies str-∀PEM for

γ.

Note that if K ⊆d N and P is decidable on K, then we can prove likewise

that, within BIM, CCCK implies the corresponding Σ0
1 -PEM formula to K. For

non-decidable, inhabited sets K satisfying CCCK this is proved inside the proof

of Proposition 16.

Proposition 9. BIM ` CCCdN → Σ0
2 -PEM.

Proof. By Propositions 6 and 8, it suffices to show that the predicate

Q(n)↔ ∀m(P (n,m))

is decidable. By the decidable predicate P (n,m) we define again the sequence

αn(m) =

{
1 if ¬P (n,m)

0 if P (n,m).

By str-∀PEM, either there is some m such that αn(m) = 1–i.e. ¬P (n,m) and

hence ¬(∀m(P (n,m)))–or else ∀m(αn(m) = 0)–i.e. ∀m(P (n,m)).

We can give another proof of a result of [Ishihara and Schuster 2011], us-

ing Proposition 9. The left implication of the next equivalence is proved in

[Berardi 2006], while the right one is proved in [Ishihara and Schuster 2011] dif-

ferently, within the formal system EL, and for quantifier-free predicates P .

Proposition 10. BIM ` CCCdN ↔ Σ0
2 -DNE.

Proof. (←) Let A be a decidable subset of N2 such that ∀α∃n(A(n, α(n))). It

suffices to show that ¬¬(∃N∀i(A(N, i))). If we suppose that ¬(∃N∀i(A(N, i))),

then ∀N (¬(∀i(A(N, i))). This implies that ∀N (¬¬(∃i(¬A(N, i)))) and by the

implication Σ0
2 -DNE → Σ0

1 -DNE we conclude that ∀N∃i(¬A(N, i)). By ACd00

we get ∃α∀n(¬A(n, α(n))), a fact which contradicts the hypothesis of CCCN(A)

for the sequence α.

(→) Suppose that P is a decidable predicate such that ¬¬(∃n∀m(P (n,m))).

In view of Proposition 9, we rule out the possibility that ∀n(¬(∀m(P (n,m)))).

But the latter implies that ¬(∃n∀m(P (n,m))), which contradicts our initial sup-

position.



The next three propositions show that CCCK partially replaces decidability

for an inhabited set K.

Proposition 11. Suppose that K is an inhabited subset of N satisfying CCCK .

Then

BIM ` ∃n(n = min(K)).

Proof. Suppose that k0 ∈ K. We define A ⊆ N×K by

A(n, k)↔ n ∈ K ∧ n ≤ k.

Obviously A is decidable only if K is decidable. We show that A satisfies the

premiss of CCCK . If α ∈ KN, we define the sequence α∗ = (αn(k0))∞n=1,

where α0(k0) = k0, and αn+1(k0) = α(αn(k0)). Thus,2 there exists an in-

dex i ≤ α∗(0) = k0 such that αi(k0) ≤ αi+1(k0) = α(αi(k0)). Obviously,

A(αi(k0), α(αi(k0))). Hence, A satisfies the premiss of CCCK . The conclusion

of CCCK , ∃N∀i∈K(A(N, i)), expresses exactly that N is the minimum of K.

Proposition 12. If K ⊆ N, k0, k1 ∈ K and k0 6= k1, then

BIM ` CCCK → CCCK\{k0}.

Proof. Let B ⊆ N× (K \ {k0}) satisfy

∀β∈(K\{k0})N∃n(B(n, β(n))),

the hypothesis of CCCK\{k0}. Define a predicate A ⊆ N×K by

A = B ∪ {(n, k0) : n ∈ N}.

We show that A satisfies the hypothesis of CCCK . If α ∈ KN, then we define

through α a sequence β ∈ (K \ {k0})N by

β(n) =

{
α(n) if α(n) 6= k0

k1 if α(n) = k0.

By the hypothesis of CCCK\{k0} we know that ∃n(B(n, β(n))). For this specific

n we split cases. If α(n) 6= k0, then β(n) = α(n), and by the definition of A,

B(n, β(n)) is written as A(n, α(n)). If α(n) = k0, then we get automatically

A(n, α(n)). The conclusion of CCCK provides N such that A(N, i) for each

i ∈ K. Therefore B(N, j) holds for each j ∈ K \ {k0}.
2 Here we use the simplest case of Dickson’s lemma, that is, for any γ : N → N there

exists i ≤ γ(0) such that γ(i) ≤ γ(i+ 1). Within BIM this has a simple inductive
proof on the value of the term γ(0).



We define K ⊆ N to be weakly decidable, wd(K), if K has a minimum k0 and

∀k∈N\{k0}(k ∈ K → ∀l∈N(k0 < l < k → l ∈ K ∨ l /∈ K)).

Proposition 13. Suppose that K is an inhabited subset of N satisfying CCCK .

Then

BIM ` wd(K).

Proof. Since by Proposition 11 we know that K has a minimum k0, we prove

wd(K) by finding all the elements of K between k0 and k, the natural number

which inhabits K.

If k0 = k, the conclusion is derived in a trivial way. If k0 6= k, as in the hypothesis

of wd(K), then by Proposition 12 we get that the inhabited set K \{k0} satisfies

CCCK\{k0}. Therefore there is a minimum k1 of K\{k0}. If k1 = k, then k0, k are

all the elements of K between k0 and k, while, if k1 6= k, we go on as previously.

Obviously this procedure, if repeated at most k-number of times, provides all

the required elements of K.

Veldman, in [Veldman 1982], called a subset K of N transparent, tr(K), if

∀Λ∈N(∀k∈K(k ≤ Λ) ∨ ∃k∈K(k > Λ)).

Veldman proved that, within BIM, a decidable set K satisfying CCCK is trans-

parent. Here, following his argument, we replace decidability of K with inhabit-

edness of K.

Proposition 14. Suppose that K is an inhabited subset of N satisfying CCCK .

Then

BIM ` tr(K).

Proof. For each Λ ∈ N we define the predicate AΛ ⊆ K2 by

AΛ(k,m)↔ k > Λ ∨ m ≤ Λ.

If k0 inhabits K and α ∈ KN, we prove the hypothesis of CCCK . If α(k0) ≤ Λ,

then A(k0, α(k0)). If α(k0) > Λ, then A(α(k0), α(α(k0))). Therefore there is

some N ∈ K such that A(N, k) for each k ∈ K. If N > Λ, then Λ is less than

an element of K, while if N ≤ Λ, then Λ is an upper bound for K.

Proposition 15. Suppose that K is an inhabited subset of N satisfying CCCK .

Then

BIM ` ¬(K ⊆fin N)→ CCCN.



Proof. It suffices to show that K is an infinite countable set, i.e. a set for which

there is some e : N → K, which is 1-1 and onto K. Then, it is trivial to see

that the hypothesis CCCK is automatically translatable to CCCN. We prove

countability of K as follows:

By Proposition 11, we can find k0 = minK. By Proposition 13, we can find

all elements of K between k0 and k. Let

[k0, k] = {min(K) = k0, k1, . . . , kn−1 = k}

be this set. The next step is to show that hypothesis of CCCK , taken with the

assumption that K is infinite, entail the (strong) existence of an element N of K

not belonging to [k0, k]. If that is proved, then for each n we repeat the previous

procedure so many times until we find a unique element of K corresponding to

n. Of course, every element of K is eventually found. Then, by AC00! we obtain

the existence of e.

In order to find such an N we define A ⊆ N×K by

A = {(ki, kj) : i, j ∈ {0, 1, ..., n− 1}} ∪ {(n, k) : n ∈ K \ [k0, k]}.

To show that A satisfies the premiss of CCCK let α ∈ KN. We consider the values

α(k0), ..., α(kn−1). Either α(ki) ∈ [k0, k] and therefore A(ki, α(ki)) holds, or else

α(ki) /∈ [k0, k]. In that case we get A(α(ki), α(α(ki))), since α(ki) ∈ K \ [k0, k].

By the conclusion of CCCK there is some N such that A(N, k) for each k ∈ K.

Then N /∈ [k0, k], since each element ki of [k0, k] satisfies A(ki, k) only for the

finitely many elements of [k0, k], and N ∈ [k0, k] would mean that K = [k0, k],

i.e. K is finite, which contradicts the hypothesis that K is infinite. Therefore N

is a new element of K.

Hence, the hypothesis that the inhabited set K satisfying CCCK is infinite

turns out to be also a taboo within BIM, therefore unacceptable. As in the case

of CCCN, it will be CP again which will provide its negation. Firstly, we prove

another proposition within BIM.

According to [Escardó 2011], a subset K of N is called an omniscience set,

omn(K), if it satisfies the omniscience principle (OP), according to which

∀γ∈2K (∃n(γ(n) = 1) ∨ ∀n(γ(n) = 0)).

If K = N, then OP becomes LPO.

Proposition 16. Suppose that K is an inhabited subset of N satisfying CCCK .

Then

1. BIM ` ∃k∈K(P (k)) ∨ ∀k∈K(¬P (k)), where P (k) is a decidable predicate on

K. As a consequence we get omn(K).



2. BIM ` ∃k∀m(P (k,m)) ∨ ∀k(¬∀m(P (k,m))), where P (k,m) is a decidable

predicate on K2.

3. BIM ` ¬¬∃k∀m(P (k,m)) → ∃k∀m(P (k,m)), where P (k,m) is a decidable

predicate on K2.

Proof. We adjust previous results on N to K.

1. We define A ⊆ K2 by

A(k,m)↔ ∃l≤k(P (l)) ∨ ∀l≤m(¬P (l)).

We prove that A satisfies ∀α∈KN∃n(A(n, α(n))), the hypothesis of CCCK .

Let k ∈ K, and fix α ∈ KN. If P (α(k)), then A(α(k), α(α(k))). If ¬P (α(k)),

then by the weak decidability of K we can find all elements min(K) = k0 <

k1 < ... < kn−1 = α(k) in K. If ¬P (k0), ...,¬P (kn−2), then again A(k, α(k)).

If there is an i ∈ {0, 1, ..., n− 2} such that P (ki), then A(ki, α(ki)). Hence

there is some Λ ∈ K such that A(Λ, k) for each k ∈ K. Testing P on the

elements of K less or equal than Λ, either we find a witness of P , or there is

no witness of P in K.

To prove omn(K) from 1, we consider the predicate defined, for each γ ∈ 2K ,

by P γ(k)↔ γ(k) = 1.

2. Because of 1, it suffices to show again that Q(k)↔ ∀m(P (k,m)) is decidable

on K. If we fix k, then R(m) ↔ ¬P (k,m) is a decidable predicate on K.

By 1, if ∃m∈K(R(m)), then for that m we get ¬P (k,m), therefore ¬Q(k).

If ∀m∈K(¬R(m)), then ∀m∈K(¬¬P (k,m)), and by the decidability of P we

get ∀m∈K(P (k,m)), i.e. Q(k).

3. We use 2 exactly as in the proof of Proposition 10.

We call a subset K of N weakly finite, K ⊆wfin N, if it satisfies the following

Σ0
2 -formula

∃Λ∈K∀k∈K(k ≤ Λ).

Proposition 17. Suppose that K is an inhabited subset of N satisfying CCCK .

Then

BIM + CP ` K ⊆fin N.

Proof. Since BIM ` ¬[K ⊆fin N]→ CCCN, and by Proposition 7, BIM + CP `
CCCN → ⊥, we get

BIM + CP ` ¬¬(K ⊆fin N).

Trivially, K ⊆fin N→ K ⊆wfin N. Therefore

¬¬(K ⊆fin N)→ ¬¬(K ⊆wfin N).



Thus, we get

BIM + CP ` ¬¬(K ⊆wfin N).

Also, by 3 of Proposition 16 we get

BIM ` ¬¬(K ⊆wfin N)→ K ⊆wfin N,

which can be written also as

BIM + CP ` ¬¬(K ⊆wfin N)→ K ⊆wfin N.

But then we derive

BIM + CP ` K ⊆wfin N.

Since we have proved within BIM that K is weakly decidable, we can find all its

elements up to its maximum Λ. Therefore K is a finite subset of N.

This proposition is a generalization of a result of [Veldman 1982], which can

be stated again as BIM + CP ` K ⊆fin N, where K is not only an inhabited

subset of N satisfying CCCK , but it is also decidable.

Because of the weak decidability of an inhabited set K satisfying CCCK ,

Veldman’s original proof can also be turned into a proof of Proposition 17.

Veldman’s justification that a transparent set K is properly bounded by some

natural Λ remains in our setting almost exactly as it is, and it is here where CP

is used. While Veldman determines the bounded set K by its decidability, we

can use its weak decidability and its transparency for that. The number Λ − 1

is necessarily a bound for K, while Λ− 2 is either a bound or is less than some

element of K. In the last case Λ−1 belongs to K and is necessarily the maximum

of K. Then by the weak decidability of K, we can find all its elements. In the

first case we repeat the same transparency argument with Λ−3. This procedure

terminates exactly because K is inhabited. Hence the maximum of K is found

in any case, and consequently, by the weak decidability of K, all its elements are

found too.
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