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We develop the first steps of a constructive theory of uniformities given by
pseudometrics and study its relation to the constructive theory of Bishop topologies.
Both these concepts are constructive, function-theoretic alternatives to the notion
of a topology of open sets. After motivating the constructive study of uniformities
of pseudometrics we present their basic theory and we prove a Stone-Čech theorem
for them. We introduce the f-uniform spaces and we prove a Tychonoff embedding
theorem for them. We study the uniformity of pseudometrics generated by some
Bishop topology and the pseudo-compact Bishop topology generated by some
uniformity of pseudometrics. Defining the large uniformity on reals we prove a
“large” version of the Tychonoff embedding theorem for f-uniform spaces and
we show that the notion of morphism between uniform spaces captures Bishop
continuity. We work within BISH∗ , Bishop’s informal system of constructive
mathematics BISH extended with inductive definitions with rules of countably
many premisses.

03F60; 03F65

1 Uniformities of pseudometrics in constructive topology

A uniformity of pseudometrics was the first notion of uniformity, which was introduced
by Weil in [47] as a natural generalization of the notion of a metric. Shortly after, Tukey’s
uniformity of coverings and Bourbaki’s unifomities of entourages were introduced
in [45] and [8], respectively. Classically, these notions of uniform space are equivalent.
As it is mentioned in [22], p.43, “Weil’s original approach was rather unwieldy and
was soon replaced by (the) two others”. Despite this prevailed view, today uniformities
in the language of pseudometrics are still studied classically (see, for example, [29]).
Moreover, as this is shown in the classic book [21], the notion of uniformity which
suits better to the classical theory of C(X) is that of Weil’s. In [21], p.216, Gillman and
Jerison remark the following:

From our point of view, the most efficient approach to uniform spaces
is by way of pseudometrics, as they provide us with a large supply of
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continuous functions Accordingly, we define a uniform structure to be a
family of pseudometrics (satisfying appropriate closure conditions). This
enables us to give complete proofs relatively quickly of all the facts about
uniform spaces that are needed here.

Uniformities given by entourages have been studied extensively within the constructive
theory of apartness spaces, developed mainly by Bridges and Vı̂ţă in [13] (see also [14]
for more recent results1). This notion of uniformity is a set-theoretic one, which fits
to the set-theoretic character of the notion of an apartness space. As far as we know,
uniformities of coverings have not been studied constructively yet.

The constructive study of uniformities given by pseudometrics has a more complex
history2. Bishop defined a uniform space through pseudometrics3 in [4], pp.110-1, and
this definition was repeated in [7], pp.124-5. Although some fundamental properties
of uniform spaces were given in [4] in the form of exercises, Bishop expressed a
negative view towards the development of a constructive theory of uniformities given
by pseudometrics. In [4], pp.349-51, Bishop writes the following comment.

A uniform space at first sight appears to be a natural and fruitful concept of a
topological space. In fact, this is not the case. For instance, just to construct
a compact uniform space X , such that the assumption that X is metrizable
leads to a contradiction, seems to be a hard problem. . . . Of course,
important constructively defined uniform spaces that are not necessarily
metrizable exist: every locally convex space has a natural uniform structure.
At first glance, the concept of a locally convex space would appear to be
important for constructive mathematics, since examples exist in profusion.
However, in most cases of interest it seems to be unnecessary to make use
of any deep facts from the general theory of convex spaces.

To Bishop’s latter argument Bridges and Vı̂ţă respond in [12], p.127, saying that

. . . the development of constructive analysis (in particular, aspects of the

1Richman has also studied constructively such uniformities in his unpublished work [41].
2We confine our account to the study of uniformities of pseudometrics within Bishop-style

constructive mathematics. For the study of uniformities of pseudometrics in formal topology
we refer to [17], [19], and [24].

3Bishop’s definition is more general than the one we use here (see Definition 2.4), although
the property (D2) added here and also found in the classical literature, see for example [21],
p.217, is incorporated in Bishop’s definition of a morphism between uniform spaces, and it
corresponds to the closure of a Bishop topology of functions under uniform limits (see clause
(BS4 ) of Definition 4.2).
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theory of operators) in recent years has greatly benefited from such a
general theory4 . . . .

To justify his former argument Bishop explains in [4], p.350, why the most obvious
expected example of a non-metrizable compact uniform space i.e., the product uniform
space X = [0, 1]S , where S is an uncountable set, cannot be shown to be compact
uniform space, since it cannot be shown to be totally bounded uniform space i.e., totally
bounded with respect to all additions of the pseudometrics in the uniform structure of
X . In our view though, this problem does not necessarily imply that the concept of
a uniformity of pseudometrics is unnatural or unfruitful. Rather it forces one to find
a notion of compact uniformity of pseudometrics that does not copy the definition of
a compact metric and at the same time is reduced to it when the uniform space is a
metric one. Such an enterprise with respect to compactness has been shown fruitful
in formal topology (see [30]), and in the theory of Bishop spaces (see [36]). As we
show in [33], [38], and [39], the constructive theory of metric spaces has also benefited
from the general theory of Bishop spaces. For example, the fact that a non-zero
bounded multiplicative linear functional on C(K), where K is a compact metric space,
is determined by some point of K (Proposition 8.25, in [7], p.382) is proved in [7]
within the theory of normed spaces, while in [39] is a corollary within the theory of
Bishop spaces. Note also that in Bishop’s attempt to reconstruct some portion of general
topology constructively, found in his unpublished manuscript [6], uniform spaces of
pseudometrics play an important role, as ecclesiastical spaces, the main objects under
study, are such uniform spaces equipped with a heirarchy, an appropriate collection of
subsets of the main set.

In [13], p.178, it is commented that classical results such as, for example, that a
uniformity of entourages is induced by a family of pseudometrics, or that a uniformity
with a countable base of entourages is induced by a single pseudometric (see [9], Chapter
IX for a classical proof of these facts), are not expected to hold constructively. This
cannot be seen though as an argument against the constructive study of uniformities of
pseudometrics, since this is very often the case with constructive studies of concepts
which have already been treated classically. In [3], p.975, it is noted that the hypothesis
that the discrete uniformity L(X) = {U ⊆ X × X | ∆ ⊆ U}, where ∆(X) = {(x, x) ∈
X × X | x ∈ X}, is induced by a set of pseudometrics D on X i.e., for every U ∈ L
there exist d1, . . . dn ∈ D and ε > 0 such that

{(x, y) ∈ X × X | ∀1≤j≤n(dj(x, y) ≤ ε)} ⊆ U,

4They mean a general theory of locally convex spaces, presented in section 5.4 of [12]. See
also the Thesis [44] of Spitters for contributions in this theory.
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implies the weak limited principle of omniscience in the form ∀a,b∈R(a = b∨¬(a = b)).
Again, this fact cannot be considered as an argument against the development of
the constructive theory of uniformities of pseudometrics, since the aim of such a
theory is not to capture all classical results governing the relation between uniformities
of entourages and uniformities of pseudometrics, a relation which is based on the
fact that classically set-theoretic and function-theoretic objects are treated similarly.
In constructive mathematics, though, function-theoretic objects behave better than
set-theoretic ones.

What we want to emphasize here is that as the constructive study of uniformities of
entourages fits to the constructive study of apartness spaces, the constructive study of
uniformities of pseudometrics fits to the constructive study of Bishop spaces. As we try
to show in the rest of this paper, uniformities of pseudometrics and Bishop topologies
share the following characteristics.

(1) Both notions are function-theoretic.

(2) Their definitions have similar structure and induce similar function-theoretic
notions of morphisms.

(3) They posses an intrinsic inductive character, which is represented in the concepts
of the least uniformity generated by a given set of pseudometrics and of the least
Bishop topology generated by a given set of real-valued functions.

(4) Their theories can be developed in parallel and within the same system BISH∗ ,
Bishop’s informal system of constructive mathematics BISH (see [4], [7], [2], [10],
and [12]) extended with inductive definitions with rules of countably many
premisses.

In [28] Myhill proposed the formal theory CST of sets and functions to codify BISH.
He also took Bishop’s inductive definitions in [4] (of Borel set and of function space,
here called Bishop space) at face value and showed that the existence and disjunction
properties of CST persist in the extended with inductive definitions system CST∗ , which
can be considered as a formalization of BISH∗ . As another formalization of BISH∗ one
can consider the system CZF + REA + DC, where Aczel’s regular extension axiom
REA accommodates inductive definitions in CZF (see [26]) and DC denotes the axiom
of dependent choice (see [10], p.12). Here we describe the computational meaning
of the theory of uniformities of pseudometrics (and of Bishop topologies) within the
informal system BISH∗ .
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2 Basic notions and facts

We present some first definitions and results necessary to the rest of the paper.

Definition 2.1 A setoid is a pair (X,=X), where X is a set and =X is an equivalence
relation on X . It is called inhabited, if there is x0 ∈ X . If (X,=X), (Y,=Y ) are setoids5,
a function f from X to Y is an operation such that x =X y→ f (x) =Y f (y), for every
x, y ∈ X (see [7], p.15). We denote by F(X, Y) the set of functions from X to Y , which
is equipped with the pointwise equality, by F(X) the set of all functions from X to R,
where R is equipped with the standard equality (see [7], p.18), and by F∗(X) the set
of bounded elements of F(X). If f , g ∈ F(X), we define f ≤ g := ∀x∈X(f (x) ≤ g(x)).
If a ∈ R, we denote by aX the constant function on X with value a, and their set by
Const(X).

Within the theory of uniform spaces of pseudometrics the main objects of study are
the pseudometrics on X , while within the theory of Bishop spaces the main objects of
study are the functions of type X → R. For the rest of this paper X, Y denote inhabited
setoids.

Definition 2.2 A pseudometric on X is a mapping d : X × X → [0,+∞) such that
x = y → d(x, y) = 0, d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) + d(z, y), for every
x, y, z ∈ X . We denote by D(X) the set of all pseudometrics on X . If d is a pseudometric
on X , the pair (X, d) is called a pseudometric space. A pseudometric d on X is called
bounded, if there exists some M > 0 such that d ≤ MX×X . We denote by D∗(X) the set
of bounded pseudometrics on X . If f is a function of type X → R, the pseudometric df

induced by f is defined by

df (x, y) := dR(f (x), f (y)) = |f (x)− f (y)|,

for every x, y ∈ X . The constant function 0X×X on X×X is also a pseudometric, which
we call the zero pseudometric on X . A pseudometric d on X is called non-zero, if there
exist x0, y0 ∈ X such that d(x0, y0) > 0. If d ∈ D(X) and x0 ∈ X , the pseudodistance
at x0 with respect to d is the mapping dx0 : X → [0,∞), defined by x 7→ d(x, x0), for
every x ∈ X . A pseudometric d is called a metric, if d(x, y) = 0→ x = y, for every
x, y ∈ X , and then the structure (X, d) is called a metric space.

One could write the first definitional clause of a pseudometric as ∀x∈X(d(x, x) = 0),
avoiding in this way to mention some equality on X . Since this is required though in

5Usually we use for simplicity a single equality symbol for two setoids avoiding subscripts.
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the definition of a metric and of a separating set of pseudometrics (see Definition 3.1),
we include the setoid structure of X in Definition 2.2. If d1, d2 are two pseudometrics
on X , it is immediate to see that d1 + d2 and d1 ∨ d2 are pseudometrics on X , where
(d1∨d2)(x, y) = d1(x, y)∨d2(x, y), for every x, y ∈ X , and a∨b = max{a, b}, for every
a, b ∈ R. Addition and multiplication of real-valued functions are defined pointwisely.

Definition 2.3 If d, e ∈ D(X), ∆ ⊆ D(X), and δ, ε > 0, we define:

U(d, δ, e, ε) := ∀x,y∈X
(
d(x, y) ≤ δ → e(x, y) ≤ ε

)
.

U(∆, e) := ∀ε>0∃δ>0∃d∈∆(U(d, δ, e, ε)),

∆ := {e ∈ D(X) | U(∆, e)}.

We call ∆ the pseudometric closure of ∆, while if ∆ = ∆, we say that ∆ is
pseudometrically closed.

If (X, ρ) is a metric space, f : X → R is uniformly continuous with modulus of
continuity ωf i.e.,

∀x,y∈X
(
ρ(x, y) ≤ ωf (ε)→ |f (x)− f (y)| ≤ ε

)
,

and g is just a function of type X → R, then the condition U({df }, dg) implies the
uniform continuity of g; let ε > 0 and δ > 0 be such that U(df , δ, dg, ε). If x, y ∈ X ,
then

ρ(x, y) ≤ ωf (δ)→ |f (x)− f (y)| ≤ δ → |g(x)− g(y)| ≤ ε

i.e., ωg(ε) = ωf (δ).

Definition 2.4 A subset D of D(X) is a uniformity D on X , if

(D0) 0X×X ∈ D.
(D1) d1, d2 ∈ D→ d1 ∨ d2 ∈ D.
(D2) e ∈ D(X)→ U(D, e)→ e ∈ D.

A uniform space is a pair D = (X,D), where D is a uniformity on X . A uniformity D
on X , or a uniform space D , are called bounded, if D ⊆ D∗(X).

Clearly, {0X×X} and D(X) are uniformities on X that we call the trivial and the discrete
uniformity on X , respectively. If D is a uniformity on X , then {0} ⊆ D ⊆ D(X). It is
immediate to see that if D1,D2 are uniformities on X , then D1 ∩ D2 is a uniformity on
X . The next proposition expresses the independence of (D1) and (D2).

Proposition 2.5 (i) There exists a ∨-closed, not pseudometrically closed ∆ ⊆ D(X).
(ii) There exist X and a pseudometrically closed ∆ ⊆ D(X) that is not ∨-closed.
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Proof (i) Let ∆ = {d}, where d is a non-zero pseudometric on X . Since d ∨ d = d ,
∆ is ∨-closed, and since U(d, ε2 , d + d, ε), for every ε > 0, we get d + d ∈ ∆ \∆.
(ii) Let X = {x1, x2, x3} be a set with three elements. Let f , g : X → R such that
f (x1) = f (x2), |g(x1)− g(x2)| = ε12 > 0, and g(x1) = g(x3), |f (x1)− f (x3)| = ε13 > 0.
By definition

df ∨ dg ∈ {df , dg} ↔ ∀ε>0∃δ>0(U(df , δ, df ∨ dg, ε) ∨ U(dg, δ, df ∨ dg, ε)).

We suppose that df ∨ dg ∈ {df , dg} and we apply the above condition on some ε > 0
such that ε < ε12 ∧ ε13 . If U(df , δ, df ∨ dg, ε) is the case, then for x1, x2 we have
that |f (x1) − f (x2)| = 0 ≤ δ and |f (x1) − f (x2)| ∨ |g(x1) − g(x2)| = ε12 ≤ ε, which
is a contradiction. If U(dg, δ, df ∨ dg, ε) is the case, then for x1, x3 we have that
|g(x1) − g(x3)| = 0 ≤ δ and |f (x1) − f (x3)| ∨ |g(x1) − g(x3)| = ε13 ≤ ε, which is a
contradiction. Hence df ∨ dg /∈ {df , dg}.

Definition 2.6 If d ∈ D(X) and a > 0 the truncation of d by a is the mapping
d ∧ aX×X , where (d ∧ aX×X)(x, y) = d(x, y) ∧ aX×X(x, y) = d(x, y) ∧ a, for every
x, y ∈ X , and a ∧ b := min{a, b}, for every a, b ∈ R.

Proposition 2.7 If D = (X,D) is a uniform space and e ∈ D(X), the following hold.
(D3) a > 0→ d ∈ D→ aX×Xd ∈ D.
(D4) e ≤ d → d ∈ D→ e ∈ D.
(D5) D is inhabited.
(D6) d1, d2 ∈ D→ d1 + d2 ∈ D.
(D7) a > 0→ d ∈ D→ d ∧ aX×X ∈ D,
(D8) If d ∈ D and x0 ∈ X , the pseudometric ddx0

on X induced by dx0 is in D.

Proof (D3) If ε > 0, x, y ∈ X , and d(x, y) ≤ ε
a , then (aX×Xd)(x, y) ≤ ε i.e.,

aX×Xd ∈ {d} ⊆ D = D.
(D4) If ε > 0 and x, y ∈ X , then if d(x, y) ≤ ε, then e(x, y) ≤ ε i.e., e ∈ {d} ⊆ D = D.
(D5) Immediately by (D0).
(D6) Since d1, d2 ≤ d1 ∨ d2 , d1 + d2 ≤ 2X×X(d1 ∨ d2), and we use (D3) and (D4).
(D7) The triangle inequality, the only less trivial condition in showing d∧aX×X ∈ D(X),
follows from the property (b + c) ∧ a = (b ∧ a) + (c ∧ a) of reals. If x, y ∈ X and
ε > 0, then d(x, y) ≤ a

2 ∧ ε→ (d ∧ aX×X)(x, y) = d(x, y) ≤ ε, and we use (D2 ).
(D8) If x1, x2 ∈ X , we have that

ddx0
(x1, x2) = |dx0(x1)− dx0(x2)| = |d(x1, x0)− d(x2, x0)| ≤ d(x1, x2),

therefore ddx0
≤ d . By (D4) we get ddx0

∈ D.
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Since d1 ∨ d2 ≤ d1 + d2 , one could replace (D1) with (D6). Moreover, (D0) is
equivalent to (D5). One can turn the definitional clauses (D0), (D1) and (D2) of a
uniformity into inductive rules and define the least uniformity generated by some given
set of pseudometrics D0 . This notion is central to the development of the constructive
study of uniformities of pseudometrics6.

Definition 2.8 If D0 ⊆ D(X), the least uniformity
∐

D0 generated by D0 is defined
by the following inductive rules:

d0 ∈ D0

d0 ∈
∐

D0
,

0X×X ∈
∐

D0
,

d1, d2 ∈
∐

D0

d1 ∨ d2 ∈
∐

D0
,

(d ∈
∐

D0 ∧ δ > 0 ∧ U(d, δ, e, ε))ε>0

e ∈
∐

D0
.

If D is a uniformity on X , D0 ⊆ D(X), and D =
∐

D0 , we call D0 a subbase for D.

The most complex inductive rule in Definition 2.8 can be replaced by the following rule

d1 ∈
∐

D0 ∧ δ1 > 0 ∧ U(d1, δ1, e, 1), d2 ∈
∐

D0 ∧ δ2 > 0 ∧ U(d2, δ2, e, 1
2 ), . . .

e ∈
∐

D0
,

which has countably many premisses. Definition 2.8 induces the following induction
principle Ind∐D0 on

∐
D0 : if P is any property on D(X), then

∀d0∈D0(P(d0))→
P(0X×X)→
∀d1,d2∈

∐
D0

(
P(d1)→ P(d2)→ P(d1 ∨ d2)

)
→

∀e∈
∐

D0

(
∀ε>0∃δ>0∃d∈

∐
D0(P(d) ∧ U(d, δ, e, ε))→ P(e)

)
→

∀d∈
∐

D0(P(d)).

Definition 2.9 A property P on D(X) is
∐

-lifted, if

∀d0∈D0

(
P(d0)→ ∀d∈

∐
D0(P(d)

)
,

while it is lifted to the closure, if for every D0 ⊆ D(X)

∀d0∈D0

(
P(d0)→ ∀d∈D0

(P(d)
)
.

6In the constructive theory of uniformities of entourages (see [13]) such a notion cannot be
defined.
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Definition 2.10 If D is a uniformity on X , a ∆ ⊆ D is called a base for D, if D ⊆ ∆.

Since ∆ ⊆ D → ∆ ⊆ D = D, we get that ∆ is a base for D if and only if D = ∆.
Note that since D is inhabited, a base ∆ for D is also inhabited, while a subbase need
not be inhabited e.g.,

∐
∅ = {0X×X}. The following two propositions are easy to show.

Proposition 2.11 If ∆ ⊆ D(X) is ∨-closed, then ∆ is ∨-closed.

Proposition 2.12 Let (X,D) be a uniform space and D0 an inhabited subbase for D.
(i) If D0 is ∨-closed, then D0 is a base for

∐
D0 .

(ii) The set ∆(D0) = {
∨n

i=1 d0i | d0i ∈ D0, 1 ≤ i ≤ n, n ∈ N} is a base7 for D.
(iii) The set of bounded pseudometrics D∗ = D ∩ D∗(X) of D is a base for D.
(iv) If ∆ is a base for D and a > 0, ∆ ∧ aX×X = {d ∧ aX×X | d ∈ ∆} is a base for D.

By Proposition 2.12(iii), although D∗ contains the zero pseudometric on X and it is ∨-
closed, it is not in general pseudometrically closed, since if it was, every uniformity on X
would be bounded, which, of course, is not the case. The fact that D∗ is not a uniformity
reveals a difference between the notion of a Bishop topology, where the bounded
elements F∗ of a Bishop topology F form a Bishop topology (see Definition 4.2), and
the notion of uniformity of pseudometrics.

Definition 2.13 If D = (X,D), E = (Y,E) are uniform spaces, a function h : X → Y is
a morphism from D to E if and only if ∀e∈E(e� h ∈ D), where the pseudo-composition
operation � of the pseudometric e and the function h is defined8 by

e� h := e ◦ h[2],

h[2](x1, x2) := (h(x1), h(x2)),

for every x1, x2 ∈ X i.e., the following diagram commutes

X × X Y × Y

[0,∞).

h[2]

D 3 e� h e ∈ E

7The generation of a base out of a subbase for Bishop spaces is more complex (see [33]).
8It is immediate to see that e� h is a pseudometric on X .
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We denote by Mor(D, E) the morphisms between D and E . If h ∈ Mor(D, E), it is
called open, if ∀d∈D∃e∈E(d = e � h), an isomorphism between D and E , if it is a
bijection and h−1 ∈ Mor(E ,D), and a set-epimorphism, if h is a surjection, while the
induced mapping H of h is the function H : E → D, defined by H(e) := e � h, for
every e ∈ E . The morphisms between uniform spaces are the arrows in the category of
uniform spaces Unif , where the identity arrow for D is the identity function idX of X .

The proof of the next proposition is straightforward.

Proposition 2.14 Suppose that D = (X,D), E = (Y,E), B = (Z,B) are uniform
spaces, h ∈ Mor(D, E), e1, e2 ∈ E , ε, δ > 0, Z ⊆ E , and Z � h := {ζ � h | ζ ∈ Z}.
(i) 0Y×Y � h = 0X×X .
(ii) (e1 ∨ e2)� h = (e1 � h) ∨ (e2 � h).
(iii) (e1 + e2)� h = (e1 � h) + (e2 � h).
(iv) U(e1, δ, e2, ε)→ U(e1 � h, δ, e2 � h, ε).
(v) If e ∈ Z , then e� h ∈ Z � h.
(vi) If h is a set-epimorphism, then h is an isomorphism if and only if h is open.
(vii) If g ∈ Mor(E ,B), then (b� g)� h = b� (g ◦ h), for every b ∈ B.
(viii) If h is a set-epimorphism and e1 � h = e2 � h, then e1 = e2 .

If (X, T) is a topological space, the set C(X) of real-valued continuous functions on X
is a ring and a lattice. To this structure of C(X) corresponds the notion of a ring and
lattice homomorphism. The algebraic and lattice structure of a uniformity D on some
X can be described by the signature(

0X×X,∨,+, (Uε,δ)ε,δ>0
)
,

where (D, 0X×X,∨) is a semi-lattice with bottom, (D,+, 0X×X) is an abelian monoid
with unit, and for every ε, δ > 0 the relation Uε,δ ⊆ D× D is defined by Uε,δ(d, e) =

U(d, δ, e, ε). To this structure of D corresponds a natural notion of homomorphism.
By Proposition 2.14 the induced mapping H of some h ∈ Mor(D, E) is such a
homomorphism.

Definition 2.15 If D = (X,D), E = (Y,E) are uniform spaces, a function Φ : D→ E
is called a uniformity homomorphism, if it preserves 0X×X , ∨, +, and

Uε,δ(d1, d2)→ Uε,δ(Φ(d1),Φ(d2)),

for every d1, d2 ∈ D and δ, ε > 0. If Φ is a bijection and Φ−1 is a uniformity
homomorphism, then Φ is called a uniformity isomorphism.
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Proposition 2.16 (
∐

-lifting of morphisms) If D = (X,D) and E = (Y,
∐

E0) are
uniform spaces, then h : X → Y ∈ Mor(D, E) if and only if ∀e0∈E0(e0 � h ∈ D),

X × X Y × Y

[0,∞).

h[2]

D 3 e0 � h e0 ∈ E0

Proof We show inductively that ∀e∈
∐

E0(e� h ∈ D). This is immediate, if e ∈ E0 , or
e = 0Y×Y . For the case e1∨ e2 we use Proposition 2.14(ii) and the inductive hypotheses
on e1 and e2 . If ε, δ > 0, the property U(e′, δ, e, ε) → U(e′ � h, δ, e � h, ε), where
e′ ∈

∐
E0 such that e′ � h ∈ D, is shown by Proposition 2.14(iv).

Lemma 2.17 (Well-definability lemma) Let h : X → Y be a surjection, Z ⊆ D(Y),
and d ∈ D(X). If d ∈ Z � h, the function d# : Y × Y → R, defined by

d#(y1, y2) = d#(h(x1), h(x2)) := d(x1, x2),

X × X Y × Y

[0,∞)

h[2]

d d#

for every y1, y2 ∈ Y , is a well-defined pseudometric on Y i.e.,

∀x1,x2,x3,x4∈X
(
h(x1) = h(x3)→ h(x2) = h(x4)→ d(x1, x2) = d(x3, x4)

)
.

Proof Let x1, x2, x3, x4 ∈ X with h(x1) = h(x3) = y1 and h(x2) = h(x4) = y2 . Since
d ∈ Z � h, for every ε > 0 there are δ > 0 and ζ ∈ Z such that U(ζ � h, δ, d, ε) i.e.,

∀x,x′∈X
(
ζ(h(x), h(x′)) ≤ δ → d(x, x′) ≤ ε

)
.

Let ε > 0. There exist δ > 0 and ζ ∈ Z such that ∀x,x′∈X
(
ζ(h(x), h(x′)) ≤ δ →

d(x, x′) ≤ ε
2

)
. Since by hypothesis ζ(h(x1), h(x3)) = ζ(h(x2), h(x4)) = 0, we get

d(x1, x3) ≤ ε
2 and d(x2, x4) ≤ ε

2 . Hence

|d(x1, x2)− d(x3, x4)| ≤ d(x1, x3) + d(x2, x4) ≤ ε

2
+
ε

2
= ε.

Since ε > 0 is arbitrary, we get |d(x1, x2)− d(x3, x4)| = 0. That d# is a pseudometric
on Y follows by the fact that d is a pseudometric on X and the surjectivity of h.
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Proposition 2.18 (i) If h : X → Y is a surjection, ∆ ⊆ D(X), and Z ⊆ D(Y), then

∀d∈∆∃ζ∈Z(d = ζ � h)→ ∀e∈∆∃ζ∗∈Z(e = ζ∗ � h).

(ii) Let D = (X,D), E = (Y,E) be uniform spaces, h ∈ Mor(D, E) a surjection, and let
∆ be a base for D.

(a) (Lifting of openness to the closure of a base) If ∀d∈∆∃e∈E(d = e� h), then h is
open and H−1(∆) is a base for E .

(b) (
∐

-lifting of openness) If D0 is a subbase for D such that ∀d0∈D0∃e∈E(d0 = e� h),
then ∀d∈D∃e∈E(d = e� h).

Proof (i) If e ∈ ∆ and ε >, there exist d ∈ ∆ and δ > 0 such that U(d, δ, e, ε). Since
∆ ⊆ Z � h, we have that e ∈ ∆ ⊆ Z � h, by the well-definability lemma we have that
e# ∈ D(Y) and e = e# � h. If ζ ∈ Z such that d = ζ � h, then

U(d, δ, e, ε)↔ U(ζ � h, δ, e# � h, ε).

Since h is onto Y , we get U(ζ, δ, e#, ε). Since ε > 0 is arbitrary, e# is in Z i.e., the
required element ζ∗ of Z is e# .
(ii) (a) This lifting follows from (i) for Z = E . If e ∈ E , then e � h ∈ D, and since
∆ is a base for D, if ε > 0, there are δ > 0, d ∈ ∆ such that U(d, δ, e � h, ε). By
hypothesis there is e′ ∈ E with d = e′�h, hence U(e′�h, δ, e�h, ε), and consequently
U(e′, δ, e, ε). Since e′ ∈ H−1(∆) and ε > 0 is arbitrary, H−1(∆) is a base for E .
(b) This lifting follows from (a) and the fact that for every element

∨n
i=1 d0i of the base

∆(D0) for D (Proposition 2.12)(ii) there exist e1, . . . , en ∈ E such that
n∨

i=1

d0i =

n∨
i=1

(ei � h) =

( n∨
i=1

ei

)
� h.

The
∐

-lifting of openness is used in the proof of Theorems 3.15 and 6.6.

Definition 2.19 If D = (X,D) and E = (Y,E) are uniform spaces, the product uniform
space is the pair D × E = (X × Y,D× E), where

D× E :=
∐[
{d � π1 | d ∈ D} ∪ {e� π2 | e ∈ E}

]
=:

e∈E∐
d∈D

d � π1, e� π2,

π1 is the projection map of X× Y on X and π2 is the projection map of X× Y on Y . If
A ⊆ X is inhabited, the relative uniform space on A is the pair D|A = (A,D|A), where

D|A :=
∐
{d|A×A | d ∈ D} =:

∐
d∈D

d|A×A.

An isomorphism h between D and E|h(X) is called a uniform embedding of D into E .
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According to Beeson [2], p.44, if A is a rule which associates to every element i of a
set I a set Ai , the infinite product

∏
i∈I Ai is defined by∏

i∈I

Ai :=
{

f ∈ F(I,
⋃
i∈I

A(i)) | ∀i∈I(f (i) ∈ A(i))
}
,

where the exterior union
⋃

i∈I Ai is defined by Richman (see Ex. 2 in [7], p.78). If A
associates to every element of I the set X , we denote the product

∏
i∈I X by XI . Since

XI = F(I,X), the exterior union is avoided in this case.

Definition 2.20 If X is a rule which associates to every element i of a set I a setoid
(Xi,=i), and D is a rule which associates to every element i of I a set Di ⊆ D(Xi), such
that Di = (Xi,Di) is a uniform space, the I -product of the uniform spaces Di is the pair∏

i∈I

Di :=
(∏

i∈I

Xi,

i∈I∐
d∈Di

d �$i

)
,

where $i is the i-th projection function from
∏

i∈I Xi to Xi i.e., $i(f ) = f (i), for every
f ∈

∏
i∈I Xi and every i ∈ I . If D = (X,D) is a uniform space and to each element of I

the sets X and D are associated, we denote the I -product of D by

DI :=
(

XI,
i∈I∐

d∈D

d �$i

)
.

It is easy to see that D × E is the least uniformity on X × Y such that π1, π2 are
in Mor(D × E ,D) and in Mor(D × E , E), respectively, and that D × E satisfies the
universal property of the product. The following two propositions are easy to show.

Proposition 2.21 If D0 ⊆ D(X) and E0 ⊆ D(Y), and A ⊆ X inhabited, then∐
D0 ×

∐
E0 =

∐[
{d0 � π1 | d0 ∈ D0} ∪ {e0 � π2 | e0 ∈ E0}

]
=:

e0∈E0∐
d0∈D0

d0 � π1, e0 � π2,

(∐
D0

)
|A

=
∐
{d0|A×A | d0 ∈ D0} =:

∐
d0∈D0

d0|A×A.

Proposition 2.22 Let D = (X,D) be a uniform space, x0 ∈ X , and d ∈ D(X).
(i) The mappings x0 i : X → X × X and ix0 : X → X × X , defined by x 7→ (x, x0), and
x 7→ (x0, x) for every x ∈ X , respectively, are uniform embeddings of D into D ×D .
(ii) If d � π1 ∈ D× D, or if d � π2 ∈ D× D, then d ∈ D.
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It is easy to see that the previous equalities hold for the I -product of uniform spaces too.
The next fact is also immediate to show.

Proposition 2.23 Let D = (X,D) and E = (Y,E) be uniform spaces and h : X → Y .
(i) h ∈ Mor(D, E) if and only if h ∈ Mor(D, Eh(X)).
(ii) If h is an open morphism from D to E , h is open as a morphism from D to E|h(X) .

If h ∈ Mor(D, E|h(X)) is open, it is not necessarily open as an element of Mor(D, E);
if d ∈ D and e′ ∈ E|h(X) with d = e′ � h, it is not necessary that e′ = e|h(X)×h(X) , for
some e ∈ E .

Definition 2.24 If (X, ρ) is a metric space, we call the uniformity

D(ρ) =
∐
{ρ} :=

∐
ρ

on X the metric uniformity on X generated by ρ, and D(ρ) = (X,D(ρ)) the metric
uniform space generated by ρ. The uniform space

R =
(
R,D(dR)

)
is the uniform space of reals. An I -product RI of R is called a Euclidean uniform
space.

If I = n := {1, . . . , n}, then by Proposition 2.21 we have that

D(dR)n =
(∐

dR

)n
=
∐

dR � π1, . . . , dR � πn =
∐

dπ1 , . . . , dπn ,

since dR�πi = dπi , for every i ∈ n. In the classical literature, see e.g., [21], p.224, and
in the constructive one, see [7], p.124, an element of Mor(D, E) is called a uniformly
continuous function. Because of Proposition 2.25(ii) the notion of a morphism between
uniform spaces is a generalization of a uniformly continuous function between metric
spaces. As we show though in Theorem 6.9, the notion of morphism between uniform
spaces can also be reduced to other notions of continuity, like Bishop continuity. Next
proposition has an immediate proof.

Proposition 2.25 Let (X, ρ), (Y, σ) be metric spaces and h : X → Y .
(i)
∐
ρ = {ρ}.

(ii) h ∈ Mor(D(ρ),D(σ)) if and only if h is uniformly continuous.

Definition 2.26 If D = (X,D) is a uniform space, we denote by M(D) the set
Mor(D,R) and by M∗(D) the bounded elements of Mor(D,R).
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The next fact follows easily.

Proposition 2.27 Let D = (X,D) be a uniform space and h : X → R.
(i) h ∈M(D)↔ dh ∈ D.
(ii) D is bounded if and only if M(D) =M∗(D).

By Proposition 2.27(i), the fact that daX = 0X×X , for (3), and (D8), for (4), we get

(1) M(D) = {h ∈ F(X) | dh ∈ D},

(2) M∗(D) = {h ∈ F∗(X) | dh ∈ D},

(3) Const(X × X) ⊆M∗(D),

(4) {dx | d ∈ D, x ∈ X} ⊆ M(D).

The next result, which is found as an exercise in [21], p.237, and is included here for
the sake of completeness, has its analogue in the theory of Bishop spaces, namely that a
Bishop topology is the set of Bishop morphisms from the Bishop space to the Bishop
space of reals (see footnote in Definition 4.2). Its proof is straightforward.

Proposition 2.28 Let D = (X,D) be a uniform space and e ∈ D(X).
(i) e ∈ D if and only if e ∈M(D ×D).
(ii) e ∈ D∗ if and only if e ∈M∗(D ×D).

The hypothesis e ∈ D(X) in the formulation of Proposition 2.28 is used in the proof of
both implications of case (i), and it is also necessary, since the constant maps are in
M∗(D×D), but, except from 0X×X , they don’t satisfy the properties of a pseudometric.

Definition 2.29 If h : X × X → R and x0 ∈ X , we define the functions h∆, hx0 ,x0 h :
X → R, by h∆(x) := h(x, x), hx0(x) := h(x0, x),x0 h(x) := h(x, x0), for every x ∈ X ,
respectively. If g : X → Y , we define g[2] : X × X → Y × Y by g[2](x1, x2) =

(g(x1), g(x2)), for every x1, x2 ∈ X .

The next proposition follows easily.

Proposition 2.30 Let D = (X,D), E = (Y,E) be uniform spaces and x0 ∈ X .
(i) If h : X×X → R such that h ∈M(D×D), the maps h∆, hx0 and x0h are inM(D).
(ii) If g : X → Y , then g ∈ Mor(D, E) if and only if g[2] ∈ Mor(D2, E2).
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3 Separating uniformities

Definition 3.1 If D is a uniformity on X , its canonical point-point apartness relation
1D on X is defined, for every x, y ∈ X by

x 1D y := ∃d∈D(d(x, y) > 0).

If 1D is tight9, then D is called a tight uniformity. A subset ∆ of D(X) is a separating
set of pseudometrics, if

∀x,y∈X
(
∀d∈∆(d(x, y) = 0)→ x = y

)
.

If D is separating, we call D separated by D, or simply separated.

Next characterization of tightness follows immediately, while the easy to show Proposi-
tion 3.3 implies that a metric uniformity D(ρ) is separating.

Proposition 3.2 If D is a uniformity on X , then D is tight if and only D is separating.

Proposition 3.3 If D0 is a subbase of a uniformity D on X , then D is separating if
and only if ∀x,y∈X(∀d0∈D0(d0(x, y) = 0)→ x = y).

Corollary 3.4 If (D = (X,D) is a uniform space and ∆ is a base for D, then D is
separating if and only if ∆ is separating.

Next proposition is also easy to show.

Proposition 3.5 Let D = (X,D) and E = (Y,E) be uniform spaces.
(i) If h is an isomorphism between D , E and D is separating, then E is separating.
(ii) If A ⊆ X is inhabited and D is separating, then D|A is separating.
(iii) D× E is separating if and only if D,E are separating.

Definition 3.6 If D = (X,D) is a uniform space and φ : X → Y is a surjection, the
quotient uniformity Dφ on Y with respect to φ is defined by

Dφ := {e ∈ D(Y) | e� φ ∈ D},

and the quotient uniform space with respect to φ is the pair Dφ = (Y,Dφ).

9A point-point apartness relation 1 on X is called tight, if ∀x,y∈X(¬(x 1 y)→ x = y). The
equivalent formulation of the tightness of 1D , given in Proposition 3.2, is part of Bishop’s
definition of an equalizing family of pseudometrics found in [6]. In the classical literature, see
e.g., [21], the term Hausdorff uniformity is used instead. Here we use similar terms for the
corresponding notions within the theory of Bishop spaces (see Definition 4.2).
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That Dφ is a uniformity on Y is shown through Proposition 2.14(i), (ii) and (iv), since
for these equalities h need not be a morphism, just a function from X to Y .

Proposition 3.7 Suppose that D = (X,D), B = (Z,B) are uniform spaces, E is a
uniformity on Y , and φ : X → Y is a surjection.
(i) Dφ is the largest uniformity on Y with respect to which φ is a morphism.
(ii) A function h : Y → Z is in Mor(Dφ,B) if and only if h ◦ φ ∈ Mor(D,B).
(iii) If φ is an open morphism with respect to D and E , then E = Dφ .

Proof (i) This is immediate from the definition of a morphism between uniform spaces.
(ii) By Proposition 2.14(vii) we have that

h ∈ Mor(Dφ,B)↔ ∀b∈B(b� h ∈ Dφ)

↔ ∀b∈B((b� h)� φ ∈ D)

↔ ∀b∈B(b� (h ◦ φ) ∈ D)

↔ h ◦ φ ∈ Mor(D,B).

(iii) Since φ ∈ Mor(D, E), by (i) we get E ⊆ Dφ . If d ∈ Dφ i.e., d � φ ∈ D, then
by the supposed openness of φ there is some e ∈ E such that d � φ = e � φ. By
Proposition 2.14(viii) we get d = e, and hence Dφ ⊆ E .

Proposition 3.8 If D = (X,D) is a uniform space, we define

x1 ∼ x2 := ∀d∈D(d(x1, x2) = 0),

for every x1, x2 ∈ X . Let X/∼ be the set of all equivalence classes of the equivalence
relation ∼, let π : X → X/∼ be the map defined by x 7→ [x]∼ , for every x ∈ X , and
D∼ = (X/∼,Dπ) the quotient uniform space with respect to π .
(i) For every d ∈ D, the mapping d̃ : X/∼× X/∼ → R, defined by d̃([x1]∼, [x2]∼) =

d(x1, x2), for every x1, x2 ∈ X , is a well-defined pseudometric on X/∼ that is in Dπ .
(ii) π is an open morphism from D to D∼ .
(iii) The map ∼: D → Dπ , defined by d 7→ d̃ , for every d ∈ D, is a uniformity
epimorphism.

Proof (i) and (ii) If d ∈ D, d̃ is well-defined; if x1, x2, x3, x4 ∈ X with x1 ∼ x3 and
x2 ∼ x4 , then |d(x1, x2)−d(x3, x4)| ≤ d(x1, x3)+d(x2, x4) = 0, hence d̃([x1]∼, [x2]∼) =

d(x1, x2) = d(x3, x4 = d̃([x3]∼, [x4]∼). The fact that d̃ is a pseudometric on X/∼ is
trivial. Since (d̃ � π)(x1, x2) = d̃(π(x1), π(x2)) = d(x1, x2), for every x1, x2 ∈ X , we
get d̃ � π = d , therefore d̃ ∈ Dπ . The last equality shows that π is an open morphism.
(iii) First we show that it is a surjection; if e ∈ Dπ i.e., e � π ∈ D, then ẽ� π = e,
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since (ẽ� π)([x1]∼, [x2]∼) = (e� π)(x1, x2) = e([x1]∼, [x2]∼), for every x1, x2 ∈ X .
The properties of a uniformity homomorphism follow immediately for ∼ .

The next result shows that it suffices to work with uniform spaces with separating
uniformities. Its proof is a translation of the classical Stone-Čech theorem for topological
spaces, which expresses a similar sufficiency of the completely regular topological
spaces (see [46], p.6). Note that in [21], p.219, a different result motivated the sufficiency
of uniform spaces with a separating uniformity.

Theorem 3.9 (Stone-Čech theorem for uniform spaces) If D = (X,D) is a uniform
space, there exists a uniform space ρD = (ρX, ρD) and a mapping τX : X → ρX ∈
Mor(D, ρD) such that the following hold.
(i) The uniformity ρD is separating.
(ii) The induced mapping TX : ρD→ D of τX is a uniformity isomorphism.
(iii) If d ∈ D, there is a unique ρd ∈ ρD such that the following diagram commutes

X × X ρX × ρX

R.

τX
[2]

d ρd

Proof Let ρX := X/∼, ρD := Dπ and τX = π , where ∼ is defined in Proposition 3.8.
(i) By Proposition 3.8, if x1, x2 ∈ D, we have that

∀d̃∈Dπ (d̃([x1]∼, [x2]∼) = 0)↔ ∀d∈D(d(x1, x2) = 0)↔ x1 ∼ x2 ↔ [x1]∼ = [x2]∼.

(ii) By Proposition 3.8(iii) every element of Dπ is of the form d̃ , for some d ∈ D,
hence the induced mapping Π of π is defined by Π(d̃) = d̃ � π = d . The fact that
Π is a uniformity homomorphism follows immediately. Its inverse is the uniformity
homomorphism ∼ , defined in Proposition 3.8(iii), since d ∼7→ d̃ Π7→ d and d̃ Π7→ d ∼7→ d̃ ,
for every d ∈ D. We define TX = Π.
(iii) It follows immediately, if we define ρd = d̃ .

Proposition 3.10 Let D = (X,D) be a uniform space.
(i) If D0 is a subbase for D, then ρD0 = {ρd0 | d0 ∈ D0} is a subbase for ρD.
(ii) If ∆ is a base D, then ρ∆ = {ρd | d ∈ ∆} is a base for ρD.

Proof (i) We show that ρ
∐

D0 =
∐
ρD0 . Since ρd0 ∈ ρD, for every d0 ∈ D0 ,∐

ρD0 ⊆ ρD. By a simple induction on
∐

D0 we get {ρd | d ∈
∐

D0} ⊆
∐
ρD0 .
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(ii) If d ∈ D and ε > 0, there are δ > 0, d′ ∈ ∆ with U(d′, δ, d, ε). Since
ρd′([x1]∼, [x2]∼) = d′(x1, x2) and ρd([x1]∼, [x2]∼) = d(x1, x2), for every x1, x2 ∈ X ,
we get U(ρd′, δ, ρd, ε).

Definition 3.11 We call Φ ⊆ F(X) separating, if

∀x,y∈X(∀f∈Φ(f (x) = f (y))→ x = y).

The set Φ induces the equivalence relation ≈ on X defined by x1 ≈ x2 := ∀f∈Φ(f (x) =

f (y)), for every x1, x2 ∈ X . If f ∈ Φ, the map ρf : X/≈ → R, defined by ρf ([x]≈) =

f (x), is, by the definition of ≈, well-defined. Moreover, we define ρΦ := {ρf | f ∈ Φ}.

Definition 3.12 A uniform space D = (X,D) is called functionally determined, or an
f-uniform space, and D is called an f-uniformity, if there exists Φ ⊆ F(X) such that

D =
∐
f∈Φ

df .

In this case we say that Φ determines D, or that Φ is a determining family for D. We
denote by f-Unif the full subcategory10 of f-uniform spaces of Unif .

If Φ ⊆ F(X) and ∼ is the equivalence relation on X generated by the family of
pseudometrics {df | f ∈ Φ}, then for every x1, x2 ∈ X we have that

x1 ∼ x2 := ∀f∈Φ(df (x, y) = 0)

↔ ∀f∈Φ(|f (x)− f (y)| = 0)

↔ ∀f∈Φ(f (x) = f (y))

:= x1 ≈ x2

Proposition 3.13 Let D = (X,
∐

f∈Φ df ), E = (Y,
∐

g∈Θ dg) be f-uniform spaces.
(i) The product D × E is an f-uniform space.
(ii) If A ⊆ X is inhabited, the relative space D|A is an f-uniform space.
(iii)

∐
f∈Φ df is separating if and only if Φ is separating.

Proof (i) and (ii) Since Φ ⊆ F(X) and Θ ⊆ F(Y), if we define the the sets

Φ ◦ π1 := {f ◦ π1 | f ∈ Φ} ⊆ F(X × Y),

Θ ◦ π2 := {g ◦ π2 | g ∈ Θ} ⊆ F(X × Y),

Φ|A := {f|A | f ∈ Φ} ⊆ F(A),

10For all categorical notions mentioned here we refer to [1], or [27].
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(∐
f∈Φ

df

)
×
(∐

g∈Θ

dg

)
=

g∈Θ∐
f∈Φ

df � π1, dg � π2

=

g∈Θ∐
f∈Φ

df◦π1 , dg◦π2

=

g′∈Θ◦π2∐
f ′∈Φ◦π1

df ′ , dg′ ,

(∐
f∈Φ

df

)
|A

=
∐
f∈Φ

(df )|A×A =
∐
f∈Φ

d(f|A) =
∐

f ′′∈Φ|A

df ′′ .

(iii) By Proposition 3.3 and the equivalences ∀f∈Φ(df (x, y) = 0)↔ ∀f∈Φ(|f (x)− f (y)| =
0)↔ ∀f∈Φ(f (x) = f (y)).

Proposition 3.14 Let D = (X,D), E = (Y,E) be f-uniform spaces.
(i) ρD is an f-uniform space.
(ii) ρ(D × E) = ρD × ρE .
(iii) If A ⊆ X is inhabited, then ρ(D|A) = (ρD)|A .

Proof Let D =
∐

f∈Φ df and E =
∐

g∈Θ dg , x1, x2, x3, x4 ∈ X , and f ∈ Φ.
(i) Working as in the proof of Proposition 3.10(i) we get ρ

∐
f∈Φ df =

∐
f∈Φ ρdf . Since

(ρdf )([x1]∼, [x2]∼) = df (x1, x2)

= |f (x1)− f (x2)|
= |(ρf )([x1]∼)

= (ρf )([x2]∼)|
= dρf ([x1]∼, [x2]∼),

we get ρdf = dρf , for every f ∈ Φ, hence ρ
∐

f∈Φ df =
∐

f∈Φ ρdf =
∐
ρf∈ρΦ dρf .

(ii) We have that

ρ(df � π1)(([x1]∼, [x2]∼), ([x3]∼, [x4]∼)) = ρdf◦π1(([x1]∼, [x2]∼), ([x3]∼, [x4]∼))

= df◦π1((x1, x2), (x3, x4))

= |f (x1)− f (x3)|
= df (x1, x3)

= ρdf ([x1]∼, [x3]∼)

= (ρdf � π1)(([x1]∼, [x2]∼), ([x3]∼, [x4]∼))
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i.e., ρ(df � π1) = ρdf � π1 . Similarly we get ρ(dg � π2) = ρdg � π2 . Using (i) we get

ρ(D× E) = ρ

( g∈Θ∐
f∈Φ

df � π1, dg � π2

)

=

g∈Θ∐
f∈Φ

ρ(df � π1), ρ(dg � π2)

=

g∈Θ∐
f∈Φ

ρdf � π1, ρdg � π2

=

(∐
f∈Φ

ρdf

)
×
(∐

g∈Θ

ρdg

)
= ρD× ρE.

(iii) If a1, a2 ∈ A, then

ρd(f|A)([a1]∼, [a2]∼) = d(f|A)(a1, a2)

= |f (a1)− f (a2)|
= df (a1, a2)

= ρdf ([a1]∼, [a2]∼)

= (ρdf )|A×A([a1]∼, [a2]∼)

i.e., ρd(f|A) = (ρdf )|A×A . Hence by Proposition 3.13(ii) we have that

ρ(D|A) = ρ

(∐
f∈Φ

d(f|A)

)
=
∐
f∈Φ

ρd(f|A) =
∐
f∈Φ

(ρdf )|A×A =

(∐
f∈Φ

ρdf

)
|A

= (ρD)|A.

Theorem 3.15 (Tychonoff embedding theorem for f-uniform spaces) If D =

(X,
∐

f∈Φ df ) is an f-uniform space, then D is separated if and only if D is uni-
formly embedded into the Euclidean uniform space RΦ .

Proof By Proposition 3.13(iii) D is separated if and only if Φ is separating. If D is
separated, we define the mapping εX : X → RΦ

x 7→ x̂,

x̂(f ) := f (x),
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for every x ∈ X and f ∈ Φ. By Proposition 2.21 for a Φ-product we get

D(dR)Φ =
(∐

dR

)Φ
=
∐
f∈Φ

dR �$f =
∐
f∈Φ

d$f ,

(
D(dR)Φ

)
|εX(X) =

∐
f∈Φ

(d$f )|εX(X)×εX(X).

If x, y ∈ X such that εX(x) = εX(y) ↔ ∀f∈Φ(f (x) = f (y), then x = y, since Φ is
separating. By the

∐
-lifting of morphisms we have that

εX ∈ Mor(D,RΦ
|εX(X))↔ ∀f∈Φ

(
(d$f )|εX(X)×εX(X) � εX ∈

∐
f∈Φ

df

)
,

which holds, since

(d$f )|εX(X)×εX(X) � εX = d$f � εX = df ,

for every f ∈ Φ; if x, y ∈ X ,

(d$f�εX)(x, y) = d$f (x̂, ŷ) = |$f (x̂)−$f (ŷ)| = |x̂(f )−ŷ(f )| = |f (x)−f (y)| = df (x, y).

Since df = (d$f )|εX(X)×εX(X) � εX , for every f ∈ Φ, by the
∐

-lifting of openness εX is
an open morphism from D to (RΦ)|εX(X) i.e., a uniform embedding of D into RΦ .

In the previous theorem we avoided the exterior union of sets. If X = Rn , then
D(dR)n =

∐
dπ1 , . . . , dπn i.e., Φ = {π1, . . . , πn} determines D(dR)n . If ~x ∈ Rn , for

the embedding εRn we have that ~̂x(πi) = πi(~x) = xi i.e., if we identify Φ with n, then
εRn is identified with the identity function on Rn . Next corollaries are translations of
the corresponding results for topological spaces (see [46], pp.6-7).

Corollary 3.16 If D = (X,D) is a uniform space, E = (Y,
∐

g∈Θ dg) is a separated f-
uniform space and h ∈ Mor(D, E), there exists a mapping ρh : ρX → Y ∈ Mor(ρD, E)
such that the following diagram commutes

X ρX

Y .

τX

h ρh

Proof If eY is the Tychonoff embedding of E into RΘ , we define µ : ρX → RΘ by

[x]∼ 7→ εY (h(x)) = ĥ(x),
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ĥ(x)(g) = g(h(x)),

Since D(dR)Θ =
∐

g∈Θ d$g , by the
∐

-lifting of morphisms µ ∈ Mor(ρD,RΘ) ↔
∀g∈Θ(d$g � µ ∈ ρD). By Theorem 3.9 we have that

ρ(dg � h) ◦ τ [2]
X = dg ◦ h[2],

and if x1, x2 ∈ X and g ∈ Θ, we have that

(d$g � µ)([x1]∼, [x2]∼) = d$g(ĥ(x1), ĥ(x2))

= |$g(ĥ(x1))−$g(ĥ(x2))|

= |ĥ(x1)(g)− ĥ(x2)(g)|
= |g(h(x1))− g(h(x2))|
= (dg � h)(x1, x2)

=
(
ρ(dg � h)

)
([x1]∼, [x2]∼)

i.e., d$g � µ = ρ(dg � h) ∈ ρD. We define ρh := ε−1
Y ◦ µ, and if x ∈ X , then

(ε−1
Y ◦ µ)([x]∼) = ε−1

Y (εY (h(x)) = h(x).

Corollary 3.17 If D = (X,D) is a uniform space, E = (Y,
∐

g∈Θ dg) is an f-uniform
space, h ∈ Mor(D, E), then there exists a mapping ρh : ρX → ρY ∈ Mor(ρD, ρE)
such that the following diagram commutes

X Y

ρX ρY .

h

τX τY

ρh

Proof By Proposition 3.14(i) ρE is an f-uniform space. Since τY ◦ h ∈ Mor(D, ρE),
as a composition of morphisms, by Corollary 3.16 we have that

ρ(τY ◦ h) ◦ τX = τY ◦ h,

therefore ρh := ρ(τY ◦ h) is the required mapping.

Proposition 3.18 The full subcategory f-Unif of Unif is reflective in Unif .

Proof If D = (X,D) is in Unif , we take the f-uniform space f-D = (X,
∐

h∈M(D) dh).
By Proposition 2.27(i)

∐
h∈M(D) dh ⊆ D. The identity function idX : X → X is in

Mor(D, f-D), since if h ∈ M(D), dh � idX = dh ∈ D. If E = (Y,
∐

f∈Φ df ) is an
f-uniform space and θ ∈ Mor(D, E), then u = θ is the unique mapping which makes
the following diagram to commute
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(X,D) (X,
∐

h∈M(D) dh)

(Y,
∐

f∈Φ df ).

idX

θ u

It remains to show (see [27], p.91) that u ∈ Mor(f-D, E) i.e., ∀f∈Φ(df � u ∈∐
h∈M(D) dh). If f ∈ Φ, then f ◦ u = f ◦ θ , and since θ ∈ Mor(D, E), df � θ = df◦θ =

df◦u = df �u ∈ D, therefore f ◦u ∈M(D). Consequently, df �u ∈
∐

h∈M(D) dh .

One can show similarly that the correspondence λ(X,D) = (X,
∐

h∈M(D) dh) and
λ(θ) = θ , for every θ ∈ Mor(D, E), is a covariant functor from Unif to f-Unif .

Theorem 3.19 If D = (X,D) is a separated uniform space, E = (Y,E) is a uniform
space, and τ ∈ Mor(D, E), the following are equivalent:
(i) τ is open.
(ii) The induced mapping T : E → D of τ is onto D.
(iii) τ is a uniform embedding of D into E such that

Eτ (X) = {e|τ (X)×τ (X) | e ∈ E}.

Proof The equivalence between (i) and (ii) is immediate. We suppose that τ is open,
and we show first that τ is an injection. If x1, x2 ∈ X such that τ (x1) = τ (x2), we
show that ∀d∈D(d((x1, x2) = 0), so that, since D is separating, x1 = x2 . If d ∈ D, by
hypothesis there exists e ∈ E such that d = e� τ , hence d(x1, x2) = (e� τ )(x1, x2) =

e(τ (x1), τ (x2)) = 0. Since τ is open as a morphism from D to E , by Proposition 2.23(ii)
it is open as a morphism from D onto E|τ (X) i.e., it is a uniform embedding from D
into E . Clearly, {e|τ (X)×τ (X) | e ∈ E} ⊆ Eτ (X) . The inclusion∐

e∈E

e|τ (X)×τ (X) ⊆ {e|τ (X)×τ (X) | e ∈ E}

follows immediately by showing that {e|τ (X)×τ (X) | e ∈ E} is a uniformity. Clearly,
0 = 0|τ (X)×τ (X) . If e1, e2 ∈ E , then

e1|τ (X)×τ (X) ∨ e2|τ (X)×τ (X) = (e1 ∨ e2)|τ (X)×τ (X).

If e ∈ E and e′ ∈ D(τ (X)) such that U(e|τ (X)×τ (X), δ, e′, ε), then U(e� τ, δ, e′ � τ, ε).
Since this is the case for every ε > 0, we get e′ � τ ∈ D. By hypothesis there exists
e′′ ∈ E such that e′ � τ = e′′ � τ = e′′|τ (X)×τ (X) � τ , hence by Proposition 2.14(viii)
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e′ = e′′|τ (X)×τ (X) i.e., e′ ∈ {e|τ (X)×τ (X) | e ∈ E}. For the converse implication, since τ is
an isomorphism between D and Eτ (X) , if d ∈ D, there exists e′ ∈ {e|τ (X)×τ (X) | e ∈ E}
such that d = e′ � τ i.e., there exists e ∈ E such that d = e|τ (X)×τ (X) � τ = e� τ i.e.,
τ is open as a morphism from D to E .

4 From Bishop spaces to uniform spaces

In this section we study the relationship between a Bishop space and its generated
uniform space. First we give a definition that corresponds to Definition 2.3 using the
letter U for both relations U(d, δ, e, ε) and U(g, f , ε) to stress the similarity in the
development of the theories of uniformities of pseudometrics and of Bishop topologies.

Definition 4.1 If f , g ∈ F(X), Φ ⊆ F(X), and ε > 0, the uniform closure Φ of Φ is

Φ := {f ∈ F(X) | U(Φ, f )},

U(Φ, f ) := ∀ε>0∃g∈Φ(U(g, f , ε)),

U(g, f , ε) := ∀x∈X(|f (x)− g(x)| ≤ ε).

We denote by B(R) the set of all Bishop continuous functions of type R→ R i.e., those
which are uniformly continuous one every bounded subset B of R with a modulus of
continuity ωφ,B(ε), for every ε > 0 i.e.,

∀x,y∈B
(
|x− y| ≤ ωφ,B(ε)→ |φ(x)− φ(y)| ≤ ε

)
.

Definition 4.2 A Bishop space is a pair (X,F), where F ⊆ F(X) is a Bishop topology
of functions on X satisfying the following conditions:

(BS1 ) a ∈ R→ aX ∈ F .
(BS2 ) f , g ∈ F → f + g ∈ F .
(BS3 ) f ∈ F → φ ∈ B(R)→ φ ◦ f ∈ F .
(BS4 ) F = F .

If G = (Y,G) is a Bishop space, a function h : X → Y is a Bishop morphism, if

∀g∈G(g ◦ h ∈ F),

X Y

R.

h

F 3 g ◦ h g ∈ G
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We denote by Mor(F ,G) the set of all Bishop morphisms from F to G . The Bishop
morphisms are the arrows in the category of Bishop spaces Bis. The Bishop space

R := (R,B(R))

is called the Bishop space of reals11, and B∗(R) denotes the set of bounded elements
of B(R). We use the notations M(F) for Mor(F ,R) and M∗(F) for the bounded
elements of M(F ). A topology F is called pseudo-compact, if every element of F is a
bounded function. We denote by F∗ the topology of bounded elements of F .

It is immediate to see that Const(X) and F(X) are topologies on X , which we call the
trivial and the discrete topology on X , respectively, and that if F is a topology on X ,
then Const(X) ⊆ F ⊆ F(X). Moreover, if F is a topology on X , F∗ = F ∩ F∗(X) is a
topology on X . A Bishop topology F is a ring and a lattice; since |idR| ∈ B(R), where
idR is the identity function on R, by BS3 we get that if f ∈ F then |f | ∈ F . By BS2

and BS3 we also get that if f , g ∈ F , then f ·g, f ∨ g, f ∧ g ∈ F (see [7], p.77).

Definition 4.3 The Bishop closure of F0 , or the least topology
∨

F0 generated by
some F0 ⊆ F(X), is defined by the following inductive rules:

f0 ∈ F0

f0 ∈
∨

F0
,

a ∈ R
aX ∈

∨
F0

,
f , g ∈

∨
F0

f + g ∈
∨

F0
,

f ∈
∨

F0, φ ∈ B(R)
φ ◦ f ∈

∨
F0

,
(g ∈

∨
F0, U(g, f , ε))ε>0

f ∈
∨

F0
.

We call F0 a subbase of
∨

F0 , and we also call
∨

F0 the Bishop closure of F0 .

Note that if F0 is inhabited, then the rule of the inclusion of the constant functions
is redundant to the rule of closure under composition with B(R). The most complex
inductive rule above can be replaced by the rule

g1 ∈
∨

F0 ∧ U(g1, f , 1
2 ), g2 ∈

∨
F0 ∧ U(g2, f , 1

22 ), . . .

f ∈
∨

F0
.

11We use for simplicity the same symbol R for the uniform space of reals and for the Bishop
space for reals, as the meaning of the symbol is going to be clear in every context. What
corresponds to Proposition 2.28(i) is that if F is a topology on X , then F = Mor(F ,R).
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The above rules induce the following induction principle IndF on
∨

F0 :

∀f0∈F0(P(f0))→
∀a∈R(P(aX))→
∀f ,g∈

∨
F0(P(f )→ P(g)→ P(f + g))→

∀f∈
∨

F0∀φ∈B(R)(P(f )→ P(φ ◦ f ))→
∀f∈

∨
F0(∀ε>0∃g∈

∨
F0(P(g) ∧ U(g, f , ε))→ P(f ))→

∀f∈
∨

F0(P(f )),

where P is any property on F(X). Through IndF one shows the
∨

-lifting of Bishop
morphisms: a function h : X → Y ∈ Mor(F ,G0) if and only if

∀g0∈G0(g0 ◦ h ∈ F),

X Y

R.

h

F 3 g0 ◦ h g0 ∈ G0

Definition 4.4 If F is a topology on X an F0 ⊆ F such that F =
∨

F0 is called a
subbase for F . A Φ ⊆ F such that Φ = F , is called Φ a base for F . A topology F
is called tight, if the canonical point-point apartness relation induced by F defined by
x 1F y :↔ ∀f∈F(f (x) = f (y)), for every x, y ∈ X , is tight. A Bishop space with a tight
topology is called a separated Bishop space.

As expected, a topology F is tight if and only if F it is separating (Definition 3.11).

Definition 4.5 Let F = (X,F),G = (Y,G) be Bishop spaces, A ⊆ X is inhabited, and
φ : X → Y is onto Y . The product Bishop space F × G = (X × Y,F × G) of F and
G , relative Bishop space F|A = (A,F|A) on A, and the quotient topology Gφ on Y are
defined, respectively, by

F × G :=
∨[
{f ◦ π1, | f ∈ F} ∪ {g ◦ π2 | g ∈ G}

]
=:

g∈G∨
f∈F

f ◦ π1, g ◦ π2

F|A =
∨
{f|A | f ∈ F} =:

∨
f∈F

f|A.

Fφ := {g ∈ F(Y) | g ◦ φ ∈ F}.
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As in the case of uniform spaces one shows inductively that∨
F0 ×

∨
G0 :=

∨[
{f0 ◦ π1, | f0 ∈ F0} ∪ {g0 ◦ π2 | g0 ∈ G0}

]
=:

g0∈G0∨
f0∈F0

f0 ◦ π1, g0 ◦ π2,

(∨
F0
)
|A =

∨
{f0|A | f0 ∈ F0} =:

∨
f0∈F0

f0|A.

Next proposition, the proof of which is omitted as straightforward, shows the relation
between the elements of F(X) and their induced pseudometrics.

Proposition 4.6 Suppose that f , g ∈ F(X), a, c > 0, b ∈ R, and φ ∈ B(R).
(i) daX = 0X×X .
(ii) df +g ≤ df + dg .
(iii) df +bX

= df .
(iv) daXh = aXdh .
(v) U(g, f , ε3 )→ U(dg,

ε
3 , df , ε).

(vi) If f is bounded, then U(df , ωφ,f (X)(ε), dφ◦f , ε).
(vii) If |f | ≥ cX , then d 1

f
≤ 1

c2 df .

Next proposition describes the “canonical” uniform space of pseudometrics generated
by some Bishop space and it has a categorical formulation.

Proposition 4.7 Let F = (X,F) and G = (Y,G) be Bishop spaces. The uniform
space generated by F is the pair D(F) = (X,D(F)), where

D(F) :=
∐
{df | f ∈ F} =:

∐
f∈F

df .

(i) The mapping τ which sends F to τ (F) = D(F) and a function h ∈ Mor(F ,G) to
τ (h) = h ∈ Mor(τ (F), τ (G)) is a covariant functor from Bis to f-Unif .
(ii) D(Const(X)) = {0X×X}, and D(F(X)) =

∐
f∈F(X) df .

(iii) F is separating if and only if D(F) is separating.

Proof (i) If h ∈ Mor(F ,G), then h ∈ Mor(τ (F), τ (G)) ↔ ∀g∈G(dg � h ∈ D(F)).
If g ∈ G, and since dg = dR � g, by Proposition 2.14(vii) we have that dg � h =

(dR�g)�g = dR�(g◦h) = dg◦h. Since h ∈ Mor(F ,G), g◦h ∈ F , hence dg◦h ∈ D(F).
It is immediate that τ (idX) = idτ (X) and if h ∈ Mor(F ,G), h′ ∈ Mor(G,H), where
H = (Z,H) is a Bishop space, then τ (h′ ◦ h) = τ (h′) ◦ τ (h).
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(ii) This is immediate by Proposition 4.6(i) and by the definition of D(F).
(iii) By Proposition 3.3 D(F) is separating if and only if ∀x,y∈X(∀f∈F(df (x, y) = 0)→
x = y)↔ ∀x,y∈X(∀f∈F(f (x) = f (y))→ x = y), the separating property of F .

Proposition 4.8 If F0 is a subbase of a pseudo-compact topology F on X , then

D(
∨

F0) =
∐

f0∈F0

df0 .

Proof It suffices to show that
∐

f∈F df ⊆
∐

f0∈F0
df0 . This we show using induction

on
∨

F0 . For the cases f = aX , where a ∈ R, f = f1 + f2 , and U(g, f , ε3 ) we use
the inductive hypotheses, the basic properties of a uniformity and Proposition 4.6(i),
(ii), and (iii), respectively. If f = φ ◦ g, where φ ∈ B(R) and g ∈

∨
F0 such that

dg ∈
∐

f0∈F0
df0 , then by Proposition 4.6(iv) we get U(dg, ωφ,g(X)(ε), dφ◦g, ε), and since

ε > 0 is arbitrary we conclude that dφ◦g ∈
∐

f0∈F0
df0 .

Corollary 4.9 (i) If τ is restricted to the full subcategory of pseudo-compact Bishop
spaces Bis∗ of Bis, then τ preserves products and subspaces.
(ii) If F = (X,F) is a Bishop space and Fφ = (Y,Fφ) is the quotient Bishop space
with respect to the surjection φ : X → Y , then D(Fφ) ⊆ D(F)φ .

Proof (i) Let F = (X,F),G = (Y,G) be in Bis∗ and A ⊆ X inhabited. Since
boundedness of functions is a lifted property from a subbase for a Bishop topology to the
topology itself, F ×G and F|A are in Bis∗ . Since df �π1 = df◦π1 and dg�π2 = dg◦π2 ,

D(F × G) =

g∈G∐
f∈F

df◦π1 , dg◦π2

=

g∈G∐
f∈F

df � π1, dg � π2

=

(∐
f∈F

df � π1

)
×
(∐

g∈G

dg � π2

)
= D(F)× D(G),

Since d(f|A) = (df )|(A×A) , we have that

D(F|A) =
∐
f∈F

d(f|A) =
∐
f∈F

(df )|(A×A) = D(F)|A.
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(ii) By definition
D(Fφ) =

∐
g∈Fφ

dg =
∐

g∈F(Y),g◦φ∈F

dg,

D(F)φ = {e ∈ D(Y) | e� φ ∈ D(F)}.

If g ∈ F(Y) with g ◦ φ ∈ F , then dg � φ = dg◦φ ∈
∐

f∈F df = D(F).

Corollary 4.10 Let F = (X,F) be a separated Bishop space.
(i) The uniform space τ (F) is embedded into the Euclidean uniform space RF .
(ii) If F0 is a subbase for F , τ (F ) is embedded into the Euclidean uniform space RF0 .

Proof (i) By Proposition 4.7(iii) τ (F) is separated, and we use Theorem 3.15.
(ii) By Proposition 4.8 D(F) =

∐
f0∈F0

df0 . It is easy to show that F is separating if and
only if F0 is separating, and then we use Theorem 3.15.

Proposition 4.11 Let (X,F) be a Bishop space, f , f ′ ∈ F , and h ∈ F(X) a positively
non-constant function i.e., h(x0) 1R h(y0)↔ |h(x0)− h(y0)| > 0, for some x0, y0 ∈ X .
(i) If dh = df , then h ∈ F .
(ii) If dh = df ∨ df ′ , then h ∈ F .

Proof Let g := h− h(x0)X .
(i) Since |g| =

∣∣h− h(x0)X
∣∣ =

∣∣f − f (x0)X

∣∣ ∈ F , |g|2 = g2 ∈ F . Moreover,

g−g(y0)X = (h−h(x0)X)−h(y0)− h(x0)X = h−h(x0)X−h(y0)X +h(x0)X = h−h(y0)X.

Hence ∣∣g− g(y0)X

∣∣ =
∣∣h− h(y0)X

∣∣ =
∣∣f − f (y0)X

∣∣ ∈ F,

|g− g(y0)X|2 =
(
g− g(y0)X

)2
= g2 − 2gg(y0)X + g(y0)2

X ∈ F.

Since g2, g(y0)2
X ∈ F , we get −2gg(y0)X ∈ F . Since g(y0) = (h(y0)− h(x0)) 1R 0, we

get g ∈ F , hence h ∈ F .
(ii) Since |g| =

∣∣h− h(x0)X
∣∣ =

∣∣f − f (x0)X

∣∣ ∨ ∣∣g− g(x0)X

∣∣ ∈ F , we work as in (i).

As in the case of uniform spaces one can show that any Bishop topology F on some
X is isomorphic as an algebra and a lattice to a separating topology ρF on ρX . If we
define the equivalence relation x1 ≈ x2 ↔ ∀f∈F(f (x1) = f (x2)), for every x1, x2 ∈ X
(Definition 3.11), and if τ = π : X → X/≈, where x 7→ [x]≈ , then if ρX = X/≈
is endowed with the quotient Bishop topology ρF = {ρf | f ∈ F} = Gπ , where
(ρf )([x]≈) = f (x), for every [x]≈ ∈ ρX , the following theorem is proved (see also [32]).
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Theorem 4.12 (Stone-Čech theorem for Bishop spaces) If F = (X,F) is a Bishop
space, there is a Bishop space ρF = (ρX, ρF) and a mapping τX : X → ρX ∈
Mor(F , ρF) such that the following hold.
(i) The topology ρF is separating.
(ii) The induced mapping TX : ρF → F of τX is an algebra and lattice isomorphism.
(iii) If ∈ F , there is a unique ρf ∈ ρF such that the following diagram commutes

X ρX

R.

τX

f ρf

Proposition 4.13 If F = (X,F) is a Bishop space, then ρD(F) = D(ρF).

Proof By definition ρD(F) = (ρX, ρD(F)) and D(ρF) = (ρX,D(ρF)), where since
∀f∈F(f (x1) = f (x2))↔ ∀f∈F(df (x1, x2) = 0), for every x1, x2 ∈ X , the carrier sets ρX
in both structures are the same and therefore the same notation is justified. Moreover,
(ρdf )([x1]≈, [x2]≈) = df (x1, x2) = |f (x1) − f (x2)| = |(ρf )([x1]≈) = (ρf )([x2]≈)| =

dρf ([x1]≈, [x2]≈) i.e., ρdf = dρf , for every f ∈ F . By Proposition 3.14(i) we get

ρD(F) = ρ

(∐
f∈F

df

)
=
∐
f∈F

ρdf =
∐
f∈F

dρf = D({ρf | f ∈ F}) = D(ρF).

Defining the notion of topological embedding of a Bishop spaces into another, and
the notion of a Euclidean Bishop space RI in the obvious way, the same embedding
eX : X → RF together with the corresponding

∨
-lifting of openness for Bishop

morphisms show the Tychonoff embedding theorem for Bishop spaces (see [32]).

Theorem 4.14 (Tychonoff embedding theorem for Bishop spaces) If F = (X,F) is
a Bishop space, F is separating if and only if F is topologically embedded into the
Euclidean Bishop space RF .

Proposition 4.15 If F = (X,F) is a Bishop space, the following diagram commutes

F (RF)εX(X)

D
(
F
)

D((RF)εX(X)).

εX

τ τ

εX
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Proof By definition and by our remark after Definition 4.5 we have that

(B(R)F)εX(X) =
∨
f∈F

($f )|εX(X),

while by Proposition 4.8 we have that

D((B(R)F)εX(X)) =
∐
f∈F

d[($f )|εX (X)].

Since d[($f )|εX (X)] = (d$f )|εX(X)×εX(X) , we get that D((B(R)F)εX(X)) = (RF)|εX(X) .

5 From uniform spaces to Bishop spaces

In this section we study a pseudo-compact Bishop topology generated by a uniformity.

Proposition 5.1 Let D = (X,D) be a uniform space.
(i) a ∈ R→ aX ∈M(D).
(ii) h1, h2 ∈M(D)→ h1 + h2 ∈M(D).
(iii) M(D) =M(D), where M(D) is the uniform closure of M(D).
(iv) If h ∈M(D) and a > 0, then aXh ∈M(D).
(v) If h ∈M(D) and c > 0 such that |h| ≥ cX , then 1

h ∈M(D).
(vi) If h ∈M∗(D)→ φ ∈ B(R)→ φ ◦ h ∈M∗(D).
(vii) M∗(D) is a pseudo-compact Bishop topology on X .

Proof (i)-(vi) follow immediately by Proposition 4.6, by Proposition 2.27(i) and by
Proposition 2.7. Case (vii) follows immediately from (i)-(vi).

Proposition 5.2 Let D = (X,D) and E = (Y,E) be uniform spaces. The pseudo-
compact Bishop space generated by D is the pair F(D) = (X,F(D)), where

F(D) :=M∗(D).

(i) The mapping ν which sends D to ν(D) = F(D) and a function h ∈ Mor(D, E) to
ν(h) = h ∈ Mor(ν(D), ν(E)) is a covariant functor from Unif to Bis∗ .
(ii) F({0X×X}) = Const(X), and F(D(X)) = F∗(X).
(iii) D is separating if and only if F(D) is separating.

Proof (i) If h ∈ Mor(D, E) i.e, if ∀e∈E(e� h ∈ D), then

h ∈ Mor(ν(D), ν(E))↔ ∀g∈M∗(E))(g ◦ h ∈M∗(D))

↔ ∀g∈F∗(Y)(dg ∈ E → dg◦h ∈ D),
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which is the case, since dg◦h = dg � h. It is immediate that ν(idX) = idν(X) and
if h ∈ Mor(D, E), h′ ∈ Mor(E ,B), where B = (Z,B) is a uniform space, then
ν(h′ ◦ h) = ν(h′) ◦ ν(h).
(ii) Since h ∈ M∗(X, {0X×X})↔ dh = 0X×X , we show dh = 0X×X ↔ h ∈ Const(X).
The less trivial implication is dh = 0X×X → h ∈ Const(X). If x0 inhabits X , and if
h(x0) = a, then h = aX , since if x ∈ X , then dh(x, x0) = 0↔ h(x) = h(x0) = a. For
the second equality we have that a bounded function h : X → R is in M∗(X,D(X)) if
and only if dh ∈ D(X) if and only if h ∈ F∗(X).
(iii) Let x, y ∈ X . Suppose that D is separating and ∀h∈M∗(D)(h(x) = h(y)). It suffices
to show ∀d∈D(d(x, y) = 0). If d ∈ D and a > 0, then by (D7) the truncation d∧aX×X of
d by a is in D∗ . By (D8) we have that d(d∧aX×X)x ∈ D, therefore (d∧aX×X)x ∈M∗(D).
Note that (d ∧ aX×X)x ∈ F∗(X), since d ∧ aX×X ∈ D∗ . By our hypothesis

0 = (d ∧ aX×X)x(x) = (d ∧ aX×X)x(y) = (d ∧ aX×X)(x, y),

therefore d(x, y) = 0. If F(D) is separating, by Proposition 2.27(i) we get ∀d∈D(d(x, y) =

0)→ ∀h∈M∗(D)(dh(x, y) = 0)↔ ∀h∈M∗(D)(h(x) = h(y))→ x = y.

Proposition 5.3 If D = (X,D) is a uniform space, then ρF(D) = F(ρD).

Proof By definition we have that

ρF(D) = ρ(X,M∗(D)) = (ρX, ρM∗(D)),

F(ρD) = F(ρX, ρD) = (ρX,M∗(ρD)),

ρM∗(D) = {ρh | h ∈M∗(D)} = {ρh | h ∈ F∗(X), dh ∈ D},

M∗(ρD) = {h ∈ F∗(ρX) | dh ∈ ρD}.

Note that by the proof of Proposition 5.2(iii) if x, y ∈ X , then ∀h∈M∗(D)(h(x) = h(y))↔
∀d∈D(d(x, y) = 0), therefore the two equivalence relations x ≈ y↔ ∀h∈M∗(D)(h(x) =

h(y)) and x ∼ y ↔ ∀d∈D(d(x, y) = 0) are equal, and ρX is the same set, either
if ρX is the carrier set of (ρX, ρM∗(D)), or of (ρX,M∗(ρD)). First we show that
ρM∗(D) ⊆M∗(ρD). Let h ∈ F∗(X) such that dh ∈ D. Since (ρh)([x]∼) = h(x), for
every [x]∼ ∈ ρX , we get ρh ∈ F∗(X). We need to show that dρh ∈ ρD = {ρd | d ∈ D}.
If [x]∼, [y]∼ ∈ ρX , we have that

dρh([x]∼, [y]∼) = |(ρh)([x]∼)− (ρh)([y]∼)|
= |h(x)− h(y)|
= dh(x, y)

= (ρdh)([x]∼, [y]∼)
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i.e., dρh = ρdh ∈ ρD, since by hypothesis dh ∈ D. Next we show that M∗(ρD) ⊆
ρM∗(D). Let h′ ∈ F∗(ρX) such that dh′ ∈ ρD i.e., dh′ = ρd , for some d ∈ D. We
define h : X → R by h(x) := h′([x]∼), for every x ∈ X . Clearly, h ∈ F∗(X), since
h′ ∈ F∗(ρX). If x, y ∈ X , we have that

dh(x, y) = |h(x)− h(y)|
= |h′([x]∼)− h′([y]∼)|
= dh′([x]∼, [y]∼)

= (ρd)([x]∼, [y]∼)

= d(x, y)

i.e., dh = d ∈ D, hence h ∈ M∗(D). Moreover, if [x]∼ ∈ ρX , we have that
(ρh)([x]∼) = h(x) = h′([x]∼) i.e., h′ = ρh ∈ ρM∗(D).

Proposition 5.4 Let D = (X,D), E = (Y,E) be uniform spaces.
(i) M∗(D)×M∗(E) ⊆M∗(D × E).
(ii) If A ⊆ X is inhabited, M∗(D)|A ⊆M∗(D|A).
(iii) If D0 ⊆ D(X) and M∗[D0] := {f0 ∈ F∗(X) | df0 ∈ D0},

∨
M∗[D0] ⊆ F(

∐
D0).

Proof (i) By definition M∗(D) = {f ∗ ∈ F∗(X) | df ∗ ∈ D}, M∗(E) = {g∗ ∈ F∗(Y) |
dg∗ ∈ E}, and

M∗(D)×M∗(E) =

dg∗∈E∐
df∗∈D

f ∗ ◦ π1, g∗ ◦ π2.

Since
M∗(D × E) = {h ∈ F∗(X × Y) | dh ∈ D× E},

df ∗ ∈ D→ df ∗ � π1 = df ∗◦π1 ∈ D× E, dg∗ ∈ E → dg∗ � π2 = dg∗◦π2 ∈ D× E,

we get {f ∗ ◦ π1 | df ∗ ∈ D} ∪ {g∗ ◦ π2 | dg∗ ∈ E} ⊆ M∗(D × E).
(ii) By definition

M∗(D)|A =

h∈F∗(X)∨
dh∈D

h|A,

M∗(D|A) =

{
g ∈ F∗(A) | dg ∈ D|A =

∐
d∈D

d|A×A

}
.

If h ∈ M∗(D), then dh ∈ D and d(h|A) = (dh)|A×A , hence h|A ∈ M∗(D|A). Conse-
quently, {h|A | h ∈ F∗(X), dh ∈ D} ⊆ M∗(D|A).
(iii) By Proposition 2.27(i) we have that

f ∈ F
(∐

D0
)

= M∗
(∐

D0
)
↔ df ∈

∐
D0.
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If f0 ∈ M∗[D0], then df0 ∈ D0 ⊆
∐

D0 , hence f0 ∈ M∗
(∐

D0
)

i.e., M∗[D0] ⊆
M∗
(∐

D0
)

, and
∨

M∗[D0] ⊆ M∗
(∐

D0
)

.

Next proposition has an immediate proof.

Proposition 5.5 Let D = (X,D), E = (Y,E) be uniform spaces, and h ∈ F∗(X × Y).
(i) If d ∈ D and dh = d � π1 , then h ∈M∗(D)×M∗(E).
(ii) If e ∈ E and dh = e� π2 , then h ∈M∗(D)×M∗(E).

Next we relate a Bishop space F to ν(τ (F)) and a uniform space D to τ (ν(D)).

Proposition 5.6 Let F = (X,F) be a Bishop space and D = (X,D) a uniform space.
(i) F∗ ⊆M∗(

∐
f∈F df ).

(ii)
∐

h∈M∗(D) dh ⊆ D.
(iii) If Φ ⊆ F∗(X), then ∐

h∈M∗
(∐

f∈Φ df

) dh =
∐
f∈Φ

df .

Proof (i) If g ∈ F∗ , then dg ∈
∐

f∈F df , and g ∈M∗(
∐

f∈F df ).
(ii) If h ∈M∗(D), then dh ∈ D, and the inclusion follows.
(iii) If g ∈ Φ ⊆ F∗(X), then dg ∈

∐
f∈Φ df , hence g ∈ M∗(

∐
f∈Φ df ) and dg ∈∐

h∈M∗
(∐

f∈Φ df

) dh . Consequently,∐
f∈Φ

df ⊆
∐

h∈M∗(
∐

f∈Φ df )

dh.

The converse inclusion follows from (ii).

6 The large uniform space of reals

Definition 6.1 The pair τ (R) = (R,D(B(R))), where according to Proposition 4.7

D(B(R)) =
∐

φ∈B(R)

dφ,

is called the large uniform space of reals, and D(B(R)) the large uniformity on reals.
An I -product τ (R)I of τ (R) is called a large Euclidean uniform space.

Proposition 6.2 The large uniformity D(B(R)) on R is strictly larger than the metric
uniformity D(dR) and it is also separating.

Proof Since12 idR ∈ B(R) and dR = d(idR) , we get D(dR) ⊆ D(B(R)) i.e., D(B(R)) is
12It is immediate to see that B(R) =

∨
{idR} .
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larger uniformity on R than D(dR). Since a larger uniformity of a separating one is
separating, we conclude that D(B(R)) is separating. To show that D(B(R)) is strictly
larger we use the fact that there are elements of B(R) which are not in Cu(R), the set of
real-valued functions that are uniformly continuous on R, like the map φ0 : R → R
defined by φ0(x) = sin(x2), for every x ∈ R. Hence dφ0 ∈ D(B(R)) but not in D(dR),
since if dφ0 ∈ D(dR), by Proposition 2.27(i) we get φ0 ∈M(R) = Mor(D(dR),D(dR))
and by Proposition 2.25(ii) φ0 is uniformly continuous.

Definition 6.3 If D = (X,D) is a uniform space, we define

Mτ (D) := Mor(D, τ (R)) = {h ∈ F(X) | ∀φ∈B(R)(dφ � h = dφ◦h ∈ D)},
M∗τ (D) := Mor∗(D, τ (R)).

Proposition 6.4 Let D = (X,D) be a uniform space.
(i) Mτ (D) ⊆M(D) and M∗τ (D) ⊆M∗(D).
(ii) a ∈ R→ aX ∈Mτ (D).
(iii) If h ∈Mτ (D)→ φ ∈ B(R)→ φ ◦ h ∈Mτ (D).

Proof (i) If h ∈Mτ (D), then for φ = idR we get dh ∈ D and by Proposition 2.27(i)
h ∈M(D). The inclusion M∗τ (D) ⊆M∗(D) follows now immediately.
(ii) It is immediate from φ ◦ aX = φ(a)X and dφ(a)X

= 0X×X .
(iii) If θ ∈ B(R), then dθ � (φ ◦ h) = dθ◦(φ◦h) = d(θ◦φ)◦h = dθ◦φ � h ∈ D, since
θ ◦ φ ∈ B(R) and h ∈Mτ (D).

Proposition 6.5 M(R×R) is strictly larger than Mτ (R×R).

Proof By Proposition 2.28(i) dR ∈M(R×R). We show that dR does not belong in
Mτ (R×R). If that was the case, then

∀φ∈B(R)(dφ◦dR ∈ D(dR)× D(dR)).

Let φ0(x) = sin(x2), for every x ∈ R, for which we know that dφ0 ∈ D(B(R)) \ D(dR).
If dφ0◦dR ∈ D(dR)× D(dR), then, since by Proposition 2.22(i) the mapping 0i : R→
R × R, defined by a 7→ (a, 0), for every a ∈ R, is in Mor(R,R × R), therefore
dφ0◦dR � 0i ∈ D(dR). If a, b ∈ R though, we have that

[dφ0◦dR � 0i](a, b) = dφ0◦dR((a, 0), (b, 0))

= |φ0(|a− 0|)− φ0(|b− 0|)|
= | sin(|a|2)− sin(|b|2)|
= | sin(a2)− sin(b2)|
= dφ0(a, b)

i.e., dφ0◦dR � 0i = dφ0 ∈ D(dR), which is a contradiction.
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Next follows the “large” version of Theorem 3.15.

Theorem 6.6 If D = (X,
∐

f∈Φ df ) is an f-uniform space such that its determining
family Φ is closed under composition with B(R), then D is separated if and only if D
is uniformly embedded into the large Euclidean uniform space τ (R)Φ .

Proof If D is separated, the mapping εX : X → RΦ , defined in the proof of
Theorem 3.15, is an injection. By Proposition 2.21 we get

D(B(R))Φ =
( ∐
φ∈B(R)

dφ
)Φ

=

f∈Φ∐
φ∈B(R)

dφ �$f =

f∈Φ∐
φ∈B(R)

dφ◦$f ,

(
D(B(R))Φ

)
|εX(X) =

f∈Φ∐
φ∈B(R)

(dφ◦$f )|εX(X)×εX(X).

By the
∐

-lifting of morphisms we have that

εX ∈ Mor(D, (τ (R)Φ)|εX(X))↔ ∀f∈Φ∀φ∈B(R)

(
(dφ◦$f )|εX(X)×εX(X) � εX ∈

∐
f∈Φ

df

)
.

If f ∈ Φ and φ ∈ B(R), then φ ◦ f ∈ Θ and

(dφ◦$f )|εX(X)×εX(X) � εX = dφ◦$f � εX = dφ◦f ,

since

[(dφ◦$f )|εX(X)×εX(X) � εX](x, y) = dφ◦$f (x̂, ŷ)

= |φ($f (x̂))− φ($f (ŷ))|
= |φ(x̂(f ))− φ(ŷ(f ))|
= |φ(f (x))− φ(f (y))|
= dφ◦f (x, y)

for every x, y ∈ X . By the above equality we also get

df = didR◦f = didR◦$f � εX = (didR◦$f )|εX(X)×εX(X) � εX,

for every f ∈ Φ. By the
∐

-lifting of openness εX is an open morphism from D onto
(τ (R)Φ)|εX(X) i.e., εX is a uniform embedding of D into τ (R)Φ . The converse follows
immediately from Proposition 3.5 and the fact that D(B(R)) is separating.

Since a Bishop topology is closed under composition with B(R), we get the following.



38 I Petrakis

Corollary 6.7 If F = (X,F) is a separated Bishop space, then D(F) is uniformly
embedded into the large Euclidean uniform space τ (R)F .

One can show that the remaining properties of a Bishop topology hold for M∗τ (D).
AlthoughM∗τ (D) looks smaller thanM∗(D), it turns out that the two Bishop topologies
are equal, therefore we lose no bounded morphisms of type X → R, if we replace the
metric uniformity D(dR) on R by the strictly larger uniformity D(B(R)).

Proposition 6.8 If D = (X,D) is a uniform space, then M∗τ (D) =M∗(D).

Proof It suffices to show M∗(D) ⊆M∗τ (D). By definition M∗(D) = {h ∈ F∗(X) |
dh ∈ D}. Since B(R) =

∨
{idR} and dh = dR � h = didR � h, the hypothesis

h ∈M∗(D) means that h satisfies the required property dφ � h ∈ D for the subbase
idR of the topology B(R). If a ∈ R, then daX � h = 0X×X � h = 0X×X ∈ D. Suppose
next that φ1, φ2 ∈ B(R) such that dφ1 � h ∈ D and dφ2 � h ∈ D. By Proposition 4.6(ii),
property (D6) and the inductive hypotheses we have that

dφ1+φ2 � h = d(φ1+φ2)◦h = d(φ1◦h)+(φ2◦h) ≤ dφ1◦h + dφ2◦h ∈ D,

and by (D4) we get dφ1+φ2 � h ∈ D. If θ, φ ∈ B(R) and dφ � h ∈ D, then
dθ◦φ � h = d(θ◦φ)◦h = dθ◦(φ◦h) . Since h is bounded, φ ◦ h is also bounded; h(X)
is bounded, therefore by local compactness of (R, dR) there is a compact subset K
of R such that h(X) ⊆ K . Since φ is uniformly continuous on K we have that
φ(h(X)) ⊆ φ(K) ⊆ [−M,M], for some M > 0. By Proposition 4.6(iv) we get

U
(
dφ◦h, ωθ,(φ◦h)(X)(ε), dθ◦(φ◦h), ε

)
.

Since ε > 0 is arbitrary we get dθ◦(φ◦h) = dθ� (φ◦h) ∈ D. Finally, if φ, θ ∈ B(R) such
that U(φ, θ, ε3 ) and dφ� h ∈ D, by Proposition 4.6(iii) we get U(dφ, ε3 , dθ, ε), therefore
U(dφ � h, ε3 , dθ � h, ε). Since ε > 0 is arbitrary, we conclude that dθ � h ∈ D.

Next result shows that the morphism between uniform spaces “captures” Bishop
continuity when the large uniform space of reals replaces the uniform space of reals.

Theorem 6.9 M(τ (R)) = B(R) and M∗(τ (R)) = B∗(R).

Proof By definition we have that

M(τ (R)) = {h ∈ F(R) | dh ∈
∐

φ∈B(R)

dφ}.
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First we show B(R) ⊆Mτ (τ (R)); if φ ∈ B(R), then trivially dφ ∈
∐
φ∈B(R) dφ . Next

we show that M(τ (R)) ⊆ B(R). We fix some bounded B ⊆ R and some ε > 0. Since
dh ∈

∐
φ∈B(R) dφ , there exist δ > 0, n ∈ N and φ1, . . . , φn ∈ B(R) such that(

dφ1 ∨ . . . ∨ dφn

)
(x, y) ≤ δ → dh(x, y) ≤ ε,

for every x, y ∈ X . If we define

ωh,B(ε) = ωφ1,B(δ) ∧ . . . ∧ ωφ1,B(δ),

then, if x, y ∈ B such that |x− y| ≤ ωh,B(ε), we get

|φ1(x)− φ1(y)| ≤ δ, . . . , |φn(x)− φn(y)| ≤ δ,

therefore
(
dφ1 ∨ . . . ∨ dφn

)
(x, y) ≤ δ . Hence we get dh(x, y) = |h(x)− h(y)| ≤ ε. The

equality M∗(τ (R)) = B∗(R) follows from the equality M(τ (R)) = B(R).

7 Open questions and future work

In this paper we developed the first steps of a constructive theory of uniformities given
by pseudometrics and studied its relation to the constructive theory of Bishop topologies.
The interplay between the theory of constructive uniform spaces of pseudometrics and
the theory of Bishop topologies is analogous to the interplay between the classical
theory of uniform spaces of pseudometrics and the theory of C(X) (see [21], Chapter
15). The following are some of the many problems and open questions that we want to
address in future work.

1. There are more than one ways to associate a Bishop topology to a given uniformity of
pseudometrics. If d ∈ D(X) and D is a uniformity on X , we may define the following
Bishop topologies on X

F0(d) :=
∨
x∈X

dx, F0(D) :=
d∈D∨
x∈X

dx, F∗0 (D) :=
d∈D∗∨
x∈X

dx.

Their study is a natural continuation of Section 5.

2. If F = (X,F) is a Bishop space, an element d of D(X) is called F-continuous, if
d ∈ M(F × F). This notion corresponds to that of a continuous pseudometric on a
topological space. We denote by CD(F) the set of F -continuous pseudometrics on X .
By the

∨
-lifting of Bishop morphisms we get d ∈M(F ×F )↔ idR ◦ d = d ∈ F×F .

Moreover, if f ∈ F , then df ∈ CD(F); since F is an algebra and closed under |.| we get

df = |(f ◦ π1)− (f ◦ π2)| ∈ F × F.
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It would be interesting to study the algebraic and analytic properties of CD(F).

3. To find a function-theoretic notion of complete uniform space of pseudometrics and
to determine those uniform spaces which have a completion.

4. To find a function-theoretic notion of compact uniform space and to connect it to
already known notions of compact Bishop spaces found in [36] and [39].

5. To study constructively extension theorems for pseudometrics, like the classical result
that a bounded element of a relative uniformity is extended to a bounded pseudometric
in the uniformity of the whole space.

6. To study the uniformities of seminorms and search for appropriate notions of locally
convex Bishop spaces.

We would like to thank the anonymous referees for their instructive comments and
suggestions.
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[20] M. Fréchet: Sur quelques points du calcul functionnel, Rend. Circ. Mat. di Palermo 22
(1906).

[21] L. Gillman and M. Jerison: Rings of Continuous Functions, Van Nostrand (1960).

[22] N. R. Howes: Modern Analysis and Topology, Springer-Verlag (1995).

[23] H. Ishihara: Relating Bishop’s function spaces to neighborhood spaces, Annals of Pure
and Applied Logic 164, 482-490 (2013).

[24] T. Kawai: Localic completion of uniform spaces, Logical Methods in Computer Science,
September 13, 2017, Volume 13, Issue 3.

[25] A. Kino, J. Myhill and R.E. Vesley (Eds.): Intuitionism and Proof Theory, North-Holland
(1970).

[26] R. S. Lubarsky, and M. Rathjen: On the regular extension axiom and its variants,
Mathematical Logic Quarterly 49 (5), 511-518, 2003.

[27] S. Mac Lane: Categories for the working mathematician, Springer-Verlag (1998).

[28] J. Myhill: Constructive Set Theory, J. Symbolic Logic 40, 347-382 (1975).

[29] J. Pachl: Uniform Spaces and Measures, Fields Institute Monographs 30, Springer
Science+Business Media New York (2013).

[30] E. Palmgren: A constructive and functorial embedding of locally compact metric spaces
into locales, Topology Appl., 154, 2007, 1854-1880.

[31] I. Petrakis: Bishop spaces: constructive point-function topology, in ‘Mathematisches
Forschungsinstitut Oberwolfach Report” No. 52/2014, Mathematical Logic: Proof
Theory, Constructive Mathematics, pp.26-27.



42 I Petrakis

[32] I. Petrakis: Completely Regular Bishop Spaces, in A. Beckmann, V. Mitrana and M.
Soskova (Eds.): Evolving Computability, CiE 2015, LNCS 9136, Springer, 302-312
(2015).

[33] I. Petrakis: Constructive Topology of Bishop Spaces, PhD Thesis, Ludwig-Maximilians-
Universität, München (2015).

[34] I. Petrakis: The Urysohn Extension Theorem for Bishop Spaces, in S. Artemov and A.
Nerode (Eds.) Symposium on Logical Foundations of Computer Science 2016, LNCS
9537, Springer, 299-316 (2016).

[35] I. Petrakis: A direct constructive proof of a Stone-Weierstrass theorem for metric spaces,
in A. Beckmann, L. Bienvenu and N. Jonoska (Eds.) Pursuit of the Universal, CiE 2016,
LNCS 9709, 364-374.

[36] I. Petrakis: A constructive function-theoretic approach to topological compactness,
Proceedings of the 31st Annual ACM-IEEEE Symposium on Logic in Computer Science
(LICS 2016), July 5-8, 2016, NYC, USA, 605-614.

[37] I. Petrakis: Embeddings of Bishop spaces, submitted, 2016.

[38] I. Petrakis: A constructive theory of C∗(X); part I, in preparation, 2018.

[39] I. Petrakis: A constructive theory of C∗(X); part II, in preparation, 2018.

[40] F. Richman: Constructive mathematics without choice, in [42], pp.199-205.

[41] F. Richman: Uniform space, Unpublished note, 8 July, 2002.

[42] P. Schuster, U. Berger and H. Osswald (eds.): Reuniting the Antipodes Constructive
and Nonstandard Views of the Continuum, Proc. 1999 Venice Symposium, Dordrecht:
Kluwer (2001).

[43] E. Spanier: Quasi-topologies, Duke Math. J. Volume 30, Number 1, 1-14 (1963).

[44] B. Spitters: Constructive and intuitionistic integration theory and functional analysis.
PhD Thesis, University of Nijmegen, 2002.

[45] J. W. Tukey: Convergence and uniformity in general topology, Annals of Mathematical
Studies, Princeton (1940).
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