
Families of Sets in Bishop Set Theory

Iosif Petrakis

München 2020





Families of Sets in Bishop Set Theory

Iosif Petrakis

Habilitationsschrift
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität
München

vorgelegt von
Iosif Petrakis

aus Glyfada, Griechenland

München, den 22.04.2020



Mentor I: Prof. Dr. Helmut Schwichtenberg

Mentor II: Prof. Dr. Douglas S. Bridges

Mentor III: Prof. Dr. Franz Merkl



Contents

1 Introduction 1

1.1 Bishop’s theory of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Bishop Set Theory (BST) and Bishop’s theory of sets . . . . . . . . . . . . . . 3

1.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals of Bishop Set Theory 9

2.1 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Totalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Non-dependent assignment routines . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The universe of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Dependent operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Partial functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Complemented subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Families of sets 37

3.1 Set-indexed families of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 The exterior union of a family of sets . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Dependent functions over a family of sets . . . . . . . . . . . . . . . . . . . . . 47

3.4 Subfamilies of families of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Families of sets over products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 The distributivity of
∏

over
∑

. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Sets of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Direct families of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Set-relevant families of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.10 Families of families of sets, an impredicative interlude . . . . . . . . . . . . . . 69

3.11 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Families of subsets 85

4.1 Set-indexed families of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 The interior union of a family of subsets . . . . . . . . . . . . . . . . . . . . . . 91

4.3 The intersection of a family of subsets . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Families of subsets over products . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 The semi-distributivity of
⋂

over
⋃

. . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 Sets of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



vi CONTENTS

4.7 Families of equivalence classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.8 Families of partial functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.9 Families of complemented subsets . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.10 Direct families of subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.11 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Proof-relevance in BISH 131
5.1 On the BHK-interpretation of BISH within BST . . . . . . . . . . . . . . . . . 131
5.2 Examples of totalities with a proof-relevant equality . . . . . . . . . . . . . . . 138
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Abstract

We develop the theory of set-indexed families of sets within the informal Bishop Set Theory
(BST), a reconstruction of Bishop’s theory of sets,. The latter is the informal theory of sets
and functions underlying Bishop-style constructive mathematics (BISH) and it is developed in
Chapter 3 of Bishop’s seminal book Foundations of Constructive Analysis [9] and in Chapter
3 of Constructive Analysis [19] that Bishop co-authored with Bridges.

In the Introduction we briefly present the relation of Bishop’s set theory to the set-theoretic
and type-theoretic foundations of mathematics, and we describe the features of BST that
“complete” Bishop’s theory of sets. These are the explicit use of the class “universe of sets”, a
clear distinction between sets and classes, the explicit use of dependent operations, and the
concrete formulation of various notions of families of sets.

In Chapter 2 we present the fundamentals of Bishop’s theory of sets, extended with the
features which form BST. The universe V0 of sets is implicit in Bishop’s work, while the
notion of a dependent operation over a non-dependent assignment routine from a set to V0 is
explicitly mentioned, although in a rough way. These concepts are necessary to a concrete
definition of a set-indexed family of sets, the main object of our study, which is only mentioned
by Bishop.

In Chapter 3 we develop the basic theory of set-indexed families of sets and of family-maps
between them. We study the exterior union of a family of sets Λ, or the

∑
-set of Λ, and

the set of dependent functions over Λ, or the
∏

-set of Λ. We prove the distributivity of∏
over

∑
for families of sets indexed by a product of sets, which is the translation of the

type-theoretic axiom of choice into BST. Sets of sets are special set-indexed families of sets
that allow “lifting” of functions on the index-set to functions on them. The direct families
of sets and the set-relevant families of sets are introduced. The index-set of the former is
a directed set, while the transport maps of the latter are more than one and appropriately
indexed. With the use of the introduced universe Vim

0 of sets and impredicative sets we study
families of families of sets, the next rung of the ladder of set-like objects in Vim

0 .

In Chapter 4 we develop the basic theory of set-indexed families of subsets and of the
corresponding family-maps between them. In contrast to set-indexed families of sets, the
properties of which are determined “externally” through their transport maps, the properties
of a set-indexed family Λ(X) of subsets of a given set X are determined “internally” through
the embeddings of the subsets of Λ(X) to X. The interior union of Λ(X) is the internal
analogue to the

∑
-set of a set-indexed family of sets Λ, and the intersection of Λ(X) is the

internal analogue to the
∏

-set of Λ. Families of sets over products, sets of subsets, and direct
families of subsets are the internal analogue to the corresponding notions for families of sets.
Set-indexed families of partial functions and set-indexed families of complemented subsets,
together with their corresponding family-maps, are studied.

In Chapter 5 a form of proof-relevance is added to BISH through BST, which is both
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separate from its standard mathematical part, and also expressible in it. The distinctive
feature of intensional Martin-Löf Type Theory (MLTT) is its proof-relevance, the fact that
proof-objects are considered as “first-class citizens”. The various kinds of moduli, like the
moduli of uniform continuity, of convergence etc., which witness that a function is uniformly
continuous, a sequence converges etc., form a trace of proof-relevance in BISH. We make the
algorithmic content of several constructive proofs explicit by defining a BHK-interpretation
of certain formulas of BISH within BST. We define the notion of a set with a proof-relevant
equality and the notion of a Martin-Löf set, which translates the first level of the identity type
of intensional MLTT. As a result, notions and facts from homotopy type theory are translated
in BISH.

In Chapter 6 we connect various notions and results from the theory of families of sets and
subsets to the theory of Bishop spaces, a function-theoretic approach to constructive topology.
Associating in an appropriate way to each set λ0(i) of an I-family of sets Λ a Bishop topology
Fi, a spectrum S(Λ) of Bishop spaces is generated. The

∑
-set and the

∏
-set of a spectrum

S(Λ) are equipped with canonical Bishop topologies. A direct spectrum of Bishop spaces is a
family of Bishop spaces associated to a direct family of sets. The direct and inverse limits
of direct spectra of Bishop spaces are studied. Direct spectra of Bishop subspaces are also
examined. Many Bishop topologies used in this chapter are defined inductively within the
extension BISH∗ of BISH with inductive definitions with rules of countably many premises.

In Chapter 7 we study the Borel and Baire sets within Bishop spaces as a constructive
counterpart to the study of Borel and Baire algebras within topological spaces. As we use the
inductively defined least Bishop topology, and as the Borel and Baire sets over a family of
F -complemented subsets are defined inductively, we work again within BISH∗. In contrast
to the classical theory, we show that the Borel and the Baire sets of a Bishop space coincide.
Finally, our reformulation within BST of the Bishop-Cheng definition of a measure space and of
an integration space, based on the notions of families of complemented subsets and of families
of partial functions, facilitates a predicative reconstruction of the originally impredicative
Bishop-Cheng measure theory.

Papers related to this Thesis. Section 3.6 is included, in a slightly different form, in [95],
most of the material of Chapter 6 is found in [96], sections 7.1 and 7.2 are included in [92],
most of Chapter 5 is found in [101], and sections 7.3−7.5 are included in [102].



Chapter 1

Introduction

Bishop’s theory of sets is Bishop’s account of the informal theory of sets and functions that
underlies Bishop-style constructive mathematics BISH. We briefly present the relation of
this theory to the set-theoretic and type-theoretic foundations of mathematics. Bishop Set
Theory (BST) is our “completion” of Bishop’s theory of sets with a universe of sets, with a
clear distinction between sets and classes, with an explicit use of dependent operations, and
with a concrete formulation of various notions of families of sets. We explain how the theory
of families of sets within BST that is elaborated in this Thesis is used, in order to reveal
proof-relevance in BISH, to develop the theory of spectra of Bishop spaces, and to reformulate
predicatively the fundamental notions of the impredicative Bishop-Cheng measure theory.

1.1 Bishop’s theory of sets

The theory of sets underlying Bishop-style constructive mathematics (BISH) was only sketched
in Chapter 3 of Bishop’s seminal book [9]. Since Bishop’s central aim in [9] was to show that
a large part of advanced mathematics can be done within a constructive and computational
framework that does not contradict the classical practice, the inclusion of a detailed account
of the set-theoretic foundations of BISH could possibly be against the effective delivery of his
message.

The Bishop-Cheng measure theory, developed in [18], was very different from the measure
theory of [9], and the inclusion of an enriched version of the former into [19], the book on
constructive analysis that Bishop co-authored with Bridges later, affected the corresponding
Chapter 3 in two main respects. First, the inductively defined notion of the set of Borel sets
generated by a given family of complemented subsets of a set X, with respect to a set of
real-valued functions on X, was excluded, as unnecessary, and, second, the operations on the
complemented subsets of a set X were defined differently, and in accordance to the needs of
the new measure theory.

Yet, in both books many issues were left untouched, a fact that often was a source of
confusion. In many occasions, especially in the measure theory of [18] and [19], the powerset
was treated as a set, while in the measure theory of [9], Bishop generally avoided the powerset
by using appropriate families of subsets instead. In later works of Bridges and Richman, like
[20] and [76], the powerset was clearly used as a set, in contrast though, to the predicative
spirit of [9].

The concept of a family of sets indexed by a (discrete) set, was asked to be defined in [9]
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(Exercise 2, p. 72), and a definition, attributed to Richman, was given in [19] (Exercise 2,
p. 78). An elaborate study though, of this concept within BISH is missing, despite its central
character in the measure theory of [9], its extensive use in the theory of Bishop spaces [88] and
in abstract constructive algebra [76]. Actually, in [76] Richman introduced the more general
notion of a family of objects of a category indexed by some set, but the categorical component
in the resulting mixture of Bishop’s set theory and category theory was not explained in
constructive terms1.

Contrary to the standard view on Bishop’s relation to formalisation, Bishop was very
interested in it. In [12], p. 60, he writes:

Another important foundational problem is to find a formal system that will
efficiently express existing predictive mathematics. I think we should keep the
formalism as primitive as possible, starting with a minimal system and enlarging
it only if the enlargement serves a genuine mathematical need. In this way the
formalism and the mathematics will hopefully interact to the advantage of both.

Actually, in [12] Bishop proposed Σ, a variant of Gödel’s T , as a formal system for BISH. In
the last two pages of [12] he sketched very briefly how Σ can be presented as a functional
programming language, like fortran and algol. In p. 72 he also added:

It would be interesting to take Σ as the point of departure for a reasonable
programming language, and to write a compiler.

Bishop’s views on a full-scale program on the foundations of mathematics are realised in a
more developed form in his, unfortunately, unpublished papers [10] and [11]. In the first,
Bishop elaborated a version of dependent type theory with one universe, in order to formalise
BISH. This was the first time that some form of type theory is used to formalise constructive
mathematics.

As Martin-Löf explains in [71], p. 13, he got access to Bishop’s book only shortly after his
own book on constructive mathematics [71] was finished. Bishop’s book [9] also motivated
his version of type theory. Martin-Löf opened his first published paper on type theory ([72],
p. 73) as follows.

The theory of types with which we shall be concerned is intended to be a full scale
system for formalizing intuitionistic mathematics as developed, for example, in the
book of Bishop.

The type-theoretic interpretation of Bishop’s set theory into the theory of setoids (see
especially the work of Palmgren [81]-[87]) has become nowadays the standard way to understand
Bishop sets (as far as I know, this is a term due to Palmgren). A setoid is a type A in a
fixed universe U equipped with a term ' : A → A → U that satisfies the properties of an
equivalence relation. The identity type of Martin-Löf’s intensional type theory (MLTT)
(see [74]), expresses, in a proof-relevant way, the existence of the least reflexive relation on
a type, a fact with no counterpart in Bishop’s set theory. As a consequence, the free setoid
on a type is definable (see [85], p. 90), and the presentation axiom in setoids is provable (see
Note 1.3.2). Moreover, in MLTT the families of types over a type I is the type I → U , which
belongs to the successor universe U ′ of U . In Bishop’s set theory though, where only one
universe of sets is implicitly used, the set-character of the totality of all families of sets indexed

1This was done e.g., in the the formulation of category theory in homotopy type theory (Chapter 9 in [124]).
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by some set I is questionable from the predicative point of view (see our comment after the
Definition 3.1.3).

The questQ of finding a formal system suitable for Bishop’s system of informal constructive
mathematics BISH dominated the foundational studies of the 1970’s. Myhill’s system CST,
introduced in [80], and later Aczel’s CZF (see [1]), Friedman’s system B, developed in [51],
and Feferman’s system of explicit mathematics T0 (see [48] and [49]), are some of the systems
related to Q, but soon developed independently from it. These systems were influenced
a lot from the classical Zermelo-Fraenkel set theory, and could be described as “top-down”
approaches to the goal of Q, as they have many “unexpected” features with respect to BISH.
Using Feferman’s terminology from [49], these formal systems are not completely faithful to
BISH. If T is a formal theory of an informal body of mathematics M , Feferman gave in [49]
the following definitions.

(i) T is adequate for M , if every concept, argument, and result of M is represented by a (basic
or defined) concept, proof, and a theorem, respectively, of T .

(ii) T is faithful to M , if every basic concept of T corresponds to a basic concept of M and
every axiom and rule of T corresponds to or is implicit in the assumptions and reasoning
followed in M (i.e., T does not go beyond M conceptually or in principle).

In [5], p. 153, Beeson called T suitable to M , if T is adequate for M and faithful to M .

Beeson’s systems S and S0 in [5], and Greenleaf’s system of liberal constructive set theory
LCST in [55] were dedicated to Q. Especially Beeson tried to find a faithful and adequate
formalisation of BISH, and, by including a serious amount of proof relevance, his systems
stand in between the set-theoretic, proof-irrelevant point of view and the type-theoretic,
proof-relevant point of view.

All aforementioned systems though, were not really “tested” with respect to BISH. Only
very small parts of BISH were actually implemented in them, and their adequacy for BISH
was mainly a claim, rather than a shown fact. The implementation of Bishop’s constructivism
within a formal system for it was taken seriously in the type-theoretic formalisations of BISH,
and especially in the work of Coquand (see e.g., [37] and [40]), Palmgren (see e.g., [62] and the
collaborative work [39]), the Nuprl research group of Constable (see e.g., [36]), and of Sambin
and Maietti within the Minimalist Foundation (see [111] and [70]).

1.2 Bishop Set Theory (BST) and Bishop’s theory of sets

Bishop set theory (BST) is an informal, constructive theory of totalities and assignment
routines that serves as a “completion” of Bishop’s theory of sets. Its first aim is to fill in the
“gaps”, or highlight the fundamental notions that were suppressed by Bishop in his account of
the set theory underlying BISH. Its second aim is to serve as an intermediate step between
Bishop’s theory of sets and a suitable, in Beeson’s sense, formalisation of BISH. To assure
faithfulness, we use concepts or principles that appear, explicitly or implicitly, in BISH. Next
we describe briefly the features of BST that “complete” Bishop’s theory of sets.

1. Explicit use of a universe of sets. Bishop used a universe of sets only implicitly. E.g.,
he “roughly” describes in [9], p. 72, a set-indexed family of sets as

. . . a rule which assigns to each t in a discrete set T a set λ(t).
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Every other rule, or assignment routine mentioned by Bishop is from one given totality, the
domain of the rule, to some other totality, its codomain. The only way to make the rule of
a family of sets compatible with this pattern is to employ a totality of sets. In [10] Bishop
explicitly used a universe in his type theory. Here we use the totality V0 of sets, which is
defined in an open-ended way, and it contains the primitive set N and all defined sets. V0 itself
is not a set, but a class. It is a notion instrumental to the definition of dependent operations,
and of a set-indexed family of sets.

2. Clear distinction between sets and classes. A class is a totality defined through a
membership condition in which a quantification over V0 occurs. The powerset P(X) of a set
X, the totality PKJ(X) of complemented subsets of a set X, and the totality F(X,Y ) of partial
functions from a set X to a set Y are characteristic examples of classes. A class is never used
here as the domain of an assignment routine, only as a codomain of an assignment routine.

3. Explicit use of dependent operations. The standard view, even among practicioners
of Bishop-style constructive mathematicians, is that dependency is not necessary to BISH.
Dependent functions though, do appear explicitly in Bishop’s definition of the intersection⋂
t∈T λ(t) of a family λ of subsets of some set X indexed by an inhabited set T (see [9], p. 65,

and [19], p. 70). We show that the elaboration of dependency within BISH is only fruitful
to it. Dependent functions are not only necessary to the definition of products of families
of sets indexed by an arbitrary set, but as we show throughout this Thesis in many areas
of constructive mathematics. Some form of dependency is also formulated in Bishop’s type
theory [10]. The somewhat “silent” role of dependency within Bishop’s set theory is replaced
by a central role within BST.

4. Elaboration of the theory of families of sets. With the use of the universe V0, of
the notion of a non-dependent assignment routine λ0 from an index-set I to V0, and of a
certain dependent operation λ1, we define explicitly in Definition 3.1.1 the notion of a family
of sets indexed by I. Although an I-family of sets is a certain function-like object, it can be
understood also as an object of a one level higher than that of a set. The corresponding notion
of a “function” from an I-family Λ to an I-family M is that of a family-map. Operations
between sets generate operations between families of sets and their family-maps. If the
index-set I is a directed set, the corresponding notion of a family of sets over it is that of a
direct family of sets. The constructions for families of sets can be generalised appropriately
for families of families of sets (see Section 3.10). Families of subsets of a given set X over
an index-set I are special I-families that deserve an independent treatment. Families of
equivalence classes, families of partial functions, families of complemented subsets and direct
families of subsets are some of the variations of set-indexed families of subsets that are studied
here and have many applications in constructive mathematics.

Here we apply the general theory of families of sets, in order:

I. To reveal proof-relevance in BISH. Classical mathematics is proof-irrelevant, as it is
indifferent to objects that “witness” a relation or a more complex formula. On the other
extreme, Martin-Löf type theory is proof-relevant, as every element of a type A is a proof of the
“proposition” A. Bishop’s presentation of BISH was on purpose closer to the proof-irrelevance
of classical mathematics, although a form of proof-relevance was evident in the use of several
notions of moduli (of convergence, of uniform continuity, of uniform differentiability etc.).
Focusing on membership and equality conditions for sets given by appropriate existential
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formulas we define certain families of proof-sets that provide a BHK-interpretation within
BST of formulas that correspond to the standard atomic formulas of a first order theory. With
the machinery of the general theory of families of sets this BHK-interpretation within BST is
extended to complex formulas. Consequently, we can associate to many formulas φ of BISH a
set Prf(φ) of “proofs” or witnesses of φ. Abstracting from several examples of totalities in
BISH we define the notion of a set with a proof-relevant equality, and of a Martin-Löf set, a
special case of the former, the equality of which corresponds to the identity type of a type
in intensional MLTT. Through the concepts and results of BST notions and facts of MLTT
and its extensions (either with the axiom of function extensionality, or with Vooevodsky’s
axiom of univalence) can be translated into BISH. While Bishop’s theory of sets is standardly
understood through its translation to MLTT (see e.g., [39]), the development of BST offers a
(partial) translation in the converse direction.

II. To develop the theory of spectra of Bishop spaces. A Bishop space is a constructive,
function-theoretic alternative to the notion of a topological space. A Bishop topology F on a
set X is a subset of the real-valued function F(X) on X that includes the constant functions
and it is closed under addition, composition with Bishop continuous functions Bic(R) from R
to R, and uniform limits. Hence, in contrast to topological spaces, continuity of real-valued
functions is a primitive notion and a concept of open set comes a posteriori. A Bishop topology
on a set can be seen as an abstract and constructive approach to the ring of continuous
functions C(X) of a topological space X. Associating appropriately a Bishop topology to the
set λ0(i) of a family of sets over a set I, for every i ∈ I, the notion of a spectrum of Bishop
spaces is defined. If I is a directed set, we get a direct spectrum. The theory of direct spectra
of Bishop spaces and their limits is developed in Chapter 6, in analogy to the classical theory
of spectra of topological spaces and their limits. The constructive theory of spectra of other
structures, like groups, or rings, or modules, can be developed along the same lines.

III. To reformulate predicatively the basics of Bishop-Cheng measure theory. The
standard approach to measure theory (see e.g., [123], [57]) is to take measure as a primitive
notion, and to define integration with respect to a given measure. An important alternative,
and, as argued by Segal in [118] and [119], a more natural approach to measure theory, is
to take the integral on a certain set of functions as a primitive notion, extend its definition
to an appropriate, larger set of functions, and then define measure at a later stage. This is
the idea of the Daniell integral, defined by Daniell in [43], which was taken further by Weil,
Kolmogoroff, and Carathéodory (see [127], [67], and [29], respectively).

In the general framework of constructive-computable mathematics, there are many ap-
proaches to measure and probability theory. There is an extended literature in intuitionistic
measure theory (see e.g., [59]), in measure theory within the computability framework of
Type-2 Theory of Effectivity (see e.g., [46]), in Russian constructivism (especially in the work
of Šanin [112] and Demuth [21]), in type theory, where the main interest lies in the creation of
probabilistic programming (see e.g., [8]), and recently also in homotopy type theory (see [47]),
where homotopy type theory (see [124]) is applied to probabilistic programming.

Within BISH, measure and probability theory have taken two main directions. The first
direction, developed by Bishop and Cheng in [18] and by Chan in [30]−[34], is based on the
notion of integration space, a constructive version of the Daniell integral, as a starting point
of constructive measure theory. Following the aforementioned spirit of classical algebraic
integration theory, Bishop and Cheng defined first the notion of an integrable function through
the notion of an integration space, and afterwords the measure of an integrable set. In their
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definition of integration space though, Bishop and Cheng used the impredicative concept
F(X) of all partial functions from a set X to R. Such a notion makes the extraction of
the computational content of CMT and the implementation of CMT in some programming
language impossible. The second direction to constructive measure theory, developed by
Coquand, Palmgren and Spitters in [38], [121] and [41], is based on the recognition of the
above problem of the Bishop-Cheng theory and of the advantages of working within the
abstract, algebraic, and point-free framework of Boolean rings or of vector lattices. In analogy
to Segal’s notion of a probability algebra, the starting notion is a boolean ring equipped with
an inequality and a measure function, which is called a measure ring, on which integrable and
measurable functions can be defined. One can show that the integrable sets of Bishop-Cheng
form a measure ring. In general, the second direction to constructive measure theory is
considered technically and conceptually simpler.

In Chapter 7 we reconstruct the Bishop-Cheng notion of measure space within BST,
where a set of measurable sets is not an appropriate set of complemented subsets, as it is
usually understood, but an appropriate set-indexed family of complemented subsets. This
fact is acknowledged by Bishop in [12], but it is completely suppressed later by him and his
collaborators (Cheng and Chan). A similar indexing appears in a predicative formulation of
the Bishop-Cheng notion of an integration space.

The notions of a set-indexed family of sets and of a set-indexed family of subsets of a given
set are shown here to be important tools in the precise formulation of abstract notions in
constructive mathematics. Avoiding them, makes the reading of constructive mathematics
easier and very close to the reading of classical mathematics. Using them, makes the writing
of constructive mathematics more precise, and seriously enriches its content.

As the fundamental notion of a family of sets can be described both in categorical and
type-theoretic terms, many notions and constructions from category theory and dependent type
theory are represented in BST. While category theory and standard set-theory, or dependent
type theory and standard set-theory do not match perfectly, large parts of category theory
and dependent type theory are reflected naturally in Bishop Set Theory (see also section 8.1).

1.3 Notes

Note 1.3.1. Regarding the exact time that Bishop’s unpublished papers [10] and [11] were
written, it was difficult to find an answer. Bishop’s scheme of presenting a formal system
for BISH and of elaborating its implementation in some functional programming language is
found both in [12] and in Bishop’s unpublished papers. The first is Bishop’s contribution to
the proceedings of the Buffalo meeting in 1968 that were published in [66]. As Per Martin-
Löf informed me, Bishop was not present at the meeting. The presentation of the formal
system Σ and its presentation as a programming language in [12] is very sketchy. Instead,
the presentation of the type theory for BISH in [10], and its presentation as a programming
language in [11] is an elaborated enterprise. I have heard a story of an unsuccessful effort of
Bishop to publish [10], due to some parallels between [10] and de Bruijn’s work. According to
that story, Bishop was unwilling to pursue the publication of his type-theoretic formalism after
that rejection. In any event, Bishop’s unpublished papers must have been written between
1967 and 1970. Maybe, the period between 1968 and 1969 is a better estimation. In October
1970 Bishop and Cheng sent to the editors of the Memoirs of the American Mathematical
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Society their short monograph [18], a work that deviates a lot from the predicative character
of [9]. In my view, the papers [10] and [11] do not fit to Bishop’s period after 1970.

Note 1.3.2 (The presentation axiom for setoids). If A : U , then, by Martin-Löf’s J-rule, =A

is the least reflexive relation on A, and εA := (A,=A) is the free setoid on A. According
to the universal property of a free setoid, for every setoid B := (B,∼B) and every function
f : A→ B, there is a setoid-map εf : A→ B such that the following left diagram commutes

A

A B A B.

P

εfidA

f

h

f

g

To show this, let (εf)(a) := f(a), and since =B is the least reflexive relation on B, we get
a =A a

′ ⇒ (εf)(a) =B (εf)(a′), hence f(a) ∼B f(a′). A setoid A is a choice setoid, if every
f : X � A, has a right inverse i.e., there g : A→ X such that f ◦ g = idA. With the use of
the type-theoretic axiom of choice (see [124], section 1.6) one can show that the free setoid
(A,=A) is a choice setoid. Using the identity map, every setoid A is the quotient of the free
setoid on A, hence every setoid is the quotient of a choice setoid. If C is a category, an object
P of C is called projective, if for every objects A,B of C and every arrow f : A � B and
g : P → B, there is h : P → A such that the above right diagram commutes. A category C
satisfies the presentation axiom, if for every object C in C there is f : P � C, where P is
projective. For the relation between the presentation axiom and various choice principles
see [103]. It is immediate to show that a projective setoid is a choice setoid. For the converse,
and following [39], p. 74, let (P,∼P ) be a choice setoid. To show that it is a projective, we
need to define a setoid-map h, given setoid maps f and g as above. Let

Q :=
∑

(a,p):A×P

f(a) =B g(p),

and let the projections p1 : Q→ A,, where p1(a, p, e) := a, and p2 : Q→ P , where p2(a, p, e) :=
p. By the definition of Q we get f ◦ p1 = g ◦ p2. Since p2 : Q� P and P is a choice set, there
is k : P → Q such that p2 ◦ k = idP . If h := p1 ◦ k, then

P

A B

QP

f

g
h

p2

p1

k

f ◦ (p1 ◦ k) = (f ◦ p1) ◦ k = (g ◦ p2) ◦ k = g ◦ (p2 ◦ k) = g ◦ idP = g. Consequently, every setoid
is the surjective image of a choice setoid, hence of a projective setoid.

Note 1.3.3. A very first and short presentation of BST is found in [95], where there we
write CSFT instead of BST. In [95] we also expressed dependency through the universe of
functions V1 i.e., the totality of triplets (A,B, f), where A,B are sets and f is a function from
A to B. Since dependent operations are explicitly used by Bishop e.g., in the definition of
the intersection

⋂
t∈T λ(t) of a T -family of subsets (λ(t))t∈T of a set X, while V1 is neither

explicitly, nor implicitly, mentioned, we use here the former concept.
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Note 1.3.4. As it is noted by Palmgren in [82], p. 35, in ZF, and also in its constructive
version CZF, a family of sets is represented by the fibers of a function λ : B → I, where the
fibers λi := {b ∈ B | λ(b) = i} of λ, for every i ∈ I, represent the sets of the family. Hence the
notion of a family of sets is reduced to that of a set. As this reduction rests on the replacement
scheme, such a reduction is not possible neither in MLTT nor in BST.



Chapter 2

Fundamentals of Bishop Set Theory

We present the basic elements of BST, a reconstruction of Bishop’s informal theory of sets, as
this is developed in chapters 3 of [9] and [19]. The main new features of BST, with respect
to Bishop’s account, are the explicit use of the universe V0 of sets and the elaboration of the
study of dependent operations over a non-dependent assignment routines from a set to V0.
The first notion is implicit in Bishop’s work, while the second is explicitly mentioned, although
in a rough way. These concepts are necessary to the concrete definition of a set-indexed family
of sets, the main object of our study, which is only roughly mentioned by Bishop. The various
notions of families of sets introduced later, depend on the various notions of sets, subsets and
assignment routines developed in this chapter.

2.1 Primitives

The logical framework of BST is first-order intuitionistic logic with equality (see [116], chapter
1). This primitive equality between terms is denoted by s := t, and it is understood as a
definitional, or logical, equality. I.e., we read the equality s := t as “the term s is by definition
equal to the term t”. If φ is an appropriate formula, for the standard axiom for equality
[a := b & φ(a)]⇒ φ(b) we use the notation [a := b & φ(a)] :⇒ φ(b). The equivalence notation
:⇔ is understood in the same way. The set (N =N, 6=N) of natural numbers, where its canonical
equality is given by m =N n :⇔ m := n, and its canonical inequality by m 6=N n :⇔ ¬(m =N n),
is primitive. The standard Peano-axioms are associated to N.

A global operation (·, ·) of pairing is also considered primitive. I.e., if s, t are terms, their pair
(s, t) is a new term. The corresponding equality axiom is (s, t) := (s′, t′) :⇔ s := s′ & t := t′.
The n-tuples of given terms, for every n larger than 2, are definable. The global projection
routines pr1(s, t) := s and pr2(s, t) := t are also considered primitive. The corresponding
global projection routines for any n-tuples are definable.

An undefined notion of mathematical construction, or algorithm, or of finite routine is
considered as primitive. The main primitive objects of BST are totalities and assignment
routines. Sets are special totalities and functions are special assignment routines, where an
assignment routine is a a special finite routine. All other equalities in BST are equalities on
totalities defined though an equality condition. A predicate on a set X is a bounded formula
P (x) with x a free variable ranging over X, where a formula is bounded, if every quantifier
occurring in it is over a given set.
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2.2 Totalities

Definition 2.2.1. (i) A primitive set A is a totality with a given membership x ∈ A, and a
given equality x =A y, that satisfies axiomatically the properties of an equivalence relation.
The set N of natural numbers is the only primitive set considered here.

(ii) A (non-inductive)defined totality X is defined by a membership condition x ∈ X :⇔MX(x),
whereMX is a formula with x as a free variable. If X,Y are defined totalities with membership
conditions MX and MY , respectively, we define X := Y :⇔

[
MX(x) :⇔MY (x)

]
, and in this

case we say that X and Y are definitionally equal.

(iii) There is a special “open-ended” defined totality V0, which is called the universe of sets.
V0 is not defined through a membership-condition, but in an open-ended way. When we say
that a defined totality X is considered to be a set we “introduce” X as an element of V0. We
do not add the corresponding induction, or elimination principle, as we want to leave open the
possibility of adding new sets in V0.

(iv) A defined preset X, or simply, a preset, is a defined totality X the membership condition
MX of which expresses a construction that can, in principle, be carried out in a finite time.
Formally this is expressed by the requirement that no quantification over V0 occurs in MX .

(v) A defined totality X with equality, or simply, a totality X with equality is a defined
totality X equipped with an equality condition x =X y :⇔ EX(x, y), where EX(x, y) is a
formula with free variables x and y that satisfies the conditions of an equivalence relation
i.e., EX(x, x) and EX(x, y) ⇒ EX(y, x), and [EX(x, y) & EX(y, z)] ⇒ EX(x, y). Two defined
totalities with equality (X,=X) and (Y,=Y ) are definitionally equal, if MX(x) :⇔MY (x) and
EX(x, y) :⇔ EY (x, y).

(vi) A defined set is a preset with a given equality.

(vii) A set is either a primitive set, or a defined set.

(viii) A totality is a class, if it is the universe V0, or if quantification over V0 occurs in its
membership condition.

Definition 2.2.2. If X,Y are sets, their product X × Y is the defined totality with equality

(x, y) ∈ X × Y :⇔ x ∈ A & y ∈ B,

z ∈ X × Y :⇔ ∃x∈A∃y∈B
(
z := (x, y)

)
.

X ×Y is considered to be a set, and its membership condition is written simpler as follows:

(x, y) =X×Y (x′, y′) :⇔ x =X x′ & y =Y y′.

Definition 2.2.3. A bounded formula on a set X is called an extensional property on X, if

∀x,y∈X
(
[x =X y & P (x)]⇒ P (y)

)
.

The totality XP generated by P (x) is defined by x ∈ XP :⇔ x ∈ X & P (x),

x ∈ XP :⇔ x ∈ X & P (x),

and the equality of XP is inherited from the equality of X. We also write XP := {x ∈ X | P (x)}.
The totality XP is considered to be a set, and it is called the extensional subset of X generated
by P .
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Using the properties of an equivalence relation, it is immediate to show that an equality
condition EX(x, y) on a totality X is an extensional property on the product X × X i.e.,
[(x, y) =X×Y (x′, y′) & x =X y]⇒ x′ =X y′. Let the following extensional subsets of N:

1 := {x ∈ N | x =N 0} := {0},

2 := {x ∈ N | x =N 0 ∨ x =N 1} := {0, 1}.

Since n =N m :⇔ n := m, the property P (x) :⇔ x =N 0 ∨ x =N 1 is extensional.

Definition 2.2.4. If (X,=X) is a set, its diagonal is the extensional subset of X ×X

D(X,=X) := {(x, y) ∈ X ×X | x =X y}.

If =X is clear from the context, we just write D(X).

Definition 2.2.5. Let X be a set. An inequality on X, or an apartness relation on X, is a
relation x 6=X y such that the following conditions are satisfied:

(Ap1) ∀x,y∈X
(
x =X y & x 6=X y ⇒ ⊥

)
.

(Ap2) ∀x,y∈X
(
x 6=X y ⇒ y 6=X x

)
.

(Ap3) ∀x,y∈X
(
x 6=X y ⇒ ∀z∈X(z 6=X x ∨ z 6=X y)

)
.

We write (X,=X , 6=X) to denote the equality-inequality structure of a set X, and for simplicity
we refer the set (X,=X , 6=X). The set (X,=X , 6=X) is called discrete, if

∀x,y∈X
(
x =X y ∨ x 6=X y

)
.

An inequality 6=X on X is called tight, if ¬(x 6=X y)⇒ x =X y, for every x, y ∈ X.

Remark 2.2.6. An inequality relation x 6=X y is extensional on X ×X.

Proof. We show that if x, y ∈ X such that x 6= y, and if x′, y′ ∈ X such that x′ =X x and
y′ =X y, then x′ 6= y′. By Ap3 we have that x′ 6= x, which is excluded from Ap1, or x′ 6= y,
which has to be the case. Hence, y′ 6= x′, or y′ 6= y. Since the last option is excluded similarly,
we conclude that y′ 6= x′, hence x′ 6= y′.

If 6=X is an inequality on X, and P (x) is an extensional property on X, then XP inherits
the inequality from X. Since n 6=N m :⇔ ¬(n =N m), the sets N, 1, and 2 are discrete. Clearly,
if (X,=X , 6=X) is discrete, then 6=X is tight.

Remark 2.2.7. Let the sets (X,=X , 6=X) and (Y,=Y , 6=Y ).

(i) The canonical inequality on X × Y induced by 6=X and 6=Y , which is defined by

(x, y) 6=X×Y (x′, y′) :⇔ x 6=X x′ ∨ y 6=Y y′,

for every (x, y) and (x′, y′) ∈ X × Y , is an inequality on X × Y .

(ii) If (X,=X , 6=X) and (Y,=Y , 6=Y ) are discrete, then (X × Y,=X×Y , 6=X×Y ) is discrete.

Proof. The proof of (i) is immediate. To show (ii), let (x, y), (x′, y′) ∈ X × Y . By our
hypothesis x =X x′ ∨ x 6=X x′ and y =Y y′ ∨ y 6=Y y′. If x =X x′ and y =Y y′, then
(x, y) =X×Y (x′, y′). In any other case we get (x, y) 6=X×Y (x′, y′).
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Uniqueness of an element of a set X with respect to some property P (x) on X means that
all elements of X having this property are =X -equal. We use the following abbreviation:

∃!x∈XP (x) :⇔ ∃x∈X
(
P (x) & ∀z∈X

(
P (z)⇒ z =X x

))
.

Definition 2.2.8. Let (X,=X) be a set.

(i) X is inhabited, if ∃x∈X
(
x =X x

)
.

(ii) X is a singleton, or contractible, or a (−2)-set, if ∃x0∈X∀x∈X
(
x0 =X x

)
. In this case, x0

is called a centre of contraction for X.

(iii) X is a subsingleton, or a mere proposition, or a (−1)-set, if ∀x,y∈X
(
x =X y

)
.

(iv) The truncation of (X,=X) is the set (X, ||=X ||), where

x ||=X || y :⇔ x =X x & y =X y.

We use the symbol ||X|| to denote that the set X is equipped with the truncated equality ||=X ||.

Clearly, x ||=X || y, for every x, y ∈ X, and (X, ||=X ||) is a subsingleton.

2.3 Non-dependent assignment routines

Definition 2.3.1. Let X,Y be totalities. A non-dependent assignment routine f from X to
Y , in symbols f : X  Y , is a finite routine that assigns an element y of Y to each given
element x of X. In this case we write f(x) := y. If g : X  Y , let

f := g :⇔ ∀x∈X
(
f(x) := g(x)

)
.

If f := g, we say that f and g are definitionally equal. If (X,=X) and (Y,=Y ) are sets, an
operation from X to Y is a non-dependent assignment routine from X to Y , while a function
from X to Y , in symbols f : X → Y , is an operation from X to Y that respects equality i.e.,

∀x,x′∈X
(
x =X x′ ⇒ f(x) =Y f(x′)

)
.

If f : X  Y is a function from X to Y , we say that f is a function, without mentioning the
expression “from X to Y ”. A function f : X → Y is an embedding, in symbols f : X ↪→ Y , if

∀x,x′∈X
(
f(x) =Y f(x′)⇒ x =X x′).

Let the sets (X,=X , 6=X) and (Y,=Y , 6=Y ). A function f : X → Y is strongly extensional, if

∀x,x′∈X
(
f(x) 6=Y f(x′)⇒ x 6=X x′

)
.

If 'X is another equality on X, we use a new symbol e.g., X∗, for the same totality X. When
we write f : X∗ → Y , then f is a function from X, equipped with the equality 'X , to Y .

If X is a set, the identity map idX on X is the operation idX : X  X, defined by
idX(x) := x, for every x ∈ X. Clearly, idX is an embedding, which is strongly extensional, if
6=X is a given inequality on X. If Y is also a set, the projection maps prX and prY on X and
Y , respectively, are the operations prX : X × Y  X and prY : X × Y  Y , where

prX(x, y) := pr1(x, y) := x & prY (x, y) := pr2(x, y) := y; (x, y) ∈ X × Y.
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Clearly, the operations prX and prY are functions, which are strongly extensional, if 6=X , 6=Y

are inequalities on X,Y , and 6=X×Y is the canonical inequality on X × Y induced from
them. After introducing the universe V0 of sets in section 2.4, we shall define non-dependent
assignment routines from a set to a totality, like V0, which is not considered to be a set. In most
of the cases the non-dependent assignment routines defined here have a set as a domain.There
are cases though, see e.g., Definitions 2.6.5 2.6.6, 4.2.1, and 4.3.1, where a non-dependent
assignment routine is defined on a totality, before showing that this totality is a set. We never
define a non-dependent assignment routine from a class to a totality.

Let the operation m∗ : R Q, defined by m∗(a) := qm, where a real number a is a regular
sequence of rational numbers (qn)n (see [19], p. 18), and qm is the m-term of this sequence.
for some fixed m. The operation m∗ is an example of an operation, which is not a function,
since unequal real numbers, with respect to the definition of =R in [19], p. 18, may have equal
m-terms in Q. To define a function f : X → Y , first we define the operation f : X  Y , and
afterwords we prove that f is a function (from X to Y ).

The composition g ◦ f of the operations f : X  Y and g : Y  Z is the operation
g ◦ f : X  Z, defined by (g ◦ f)(x) := g(f(x)), for every x ∈ X. Clearly, g ◦ f is a function,
if f and g are functions. If h : Z  W , notice the following definitional equalities

f ◦ idX := f, idY ◦ f := f, h ◦ (g ◦ f) := (h ◦ g) ◦ f.

A diagram commutes always with respect to the equalities of the related sets. E.g., the
commutativity of the following diagram is the equality e(f(x)) =W g(h(x)), for every x ∈ X.

Z W .

YX

g

f

h e

Definition 2.3.2. Let X,Y be sets, and 6=Y an inequality on Y . The totality O(X,Y ) of
operations from X to Y is equipped with the following canonical equality and inequality:

f =O(X,Y ) g :⇔ ∀x∈X
(
f(x) =Y f(x)

)
,

f 6=O(X,Y ) g :⇔ ∃x∈X
(
f(x) 6=Y f(x)

)
.

The totality O(X,Y ) is considered to be a set. The set F(X,Y ) of functions from X to Y
is defined by separation on O(X,Y ) through the extensional property P (f) :⇔ ∀x,x′∈X

(
x =X

x′ ⇒ f(x) =Y f(x′)
)
. The equality =F(X,Y ) and the inequality 6=F(X,Y ) are inherited from

=O(X,Y ) and 6=O(X,Y ), respectively.

Remark 2.3.3. Let the sets (X =X) and (Y,=Y , 6=Y ). If f : X → Y , let x1 6=f
X x2 :⇔

f(x1) 6=Y f(x2), for every x1, x2 ∈ X.

(i) x1 6=f
X x2 is an inequality on X.

(ii) If (Y,=Y , 6=Y ) is discrete, then (X =X , 6=f
X) is discrete if and only if f is an embedding.

(ii) If 6=Y is tight, then 6=f
X is tight if and only if f is an embedding.
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Proof. (i) Conditions (Ap1)-(Ap3) for 6=f
X are reduced to conditions (Ap1)-(Ap3) for 6=Y .

(ii) If (X =X , 6=f
X) is discrete, let f(x1) =X f(x2), for some x1, x2 ∈ X. Since the possibility

x1 6=f
X x2 :⇔ f(x1) 6=Y f(x2) is impossible, we conclude that x1 =X x2. If f is an embedding,

and since f(x1) =X f(x2) or f(x1) 6=Y f(x2), either x1 =X x2, or x1 6=f
X x2.

(iii) If 6=f
X is tight, and f(x1) =X f(x2), then ¬(x1 6=f

X x2), hence x1 =X x2. If f is an

embedding and ¬(x1 6=f
X x2)⇔ ¬

(
f(x1) 6=Y f(x2)

)
, then f(x1) =X f(x2), and x1 =X x2.

Definition 2.3.4. A function f : X → Y is called surjective, if ∀y∈Y ∃x∈X
(
f(x) =Y y

)
. A

function g : Y → X is called a modulus of surjectivity for f , if the following diagram commutes

Y X Y .
g f

idY

If g is a modulus of surjectivity for f , we also say that f is a retraction and Y is a retract of
X. If y ∈ Y , the fiber fibf (y) of f at y is the following extensional subset of X

fibf (y) := {x ∈ X | f(x) =Y y}.

A function f : X → Y is contractible, if fibf (y) is contractible, for every y ∈ Y . If 6=Y is an
inequality on Y , the cofiber cofibf (y) of f at y is the following extensional subset of X

cofibf (y) := {x ∈ X | f(x) 6=Y y}.

2.4 The universe of sets

The totality of all sets is the universe V0 of sets, equipped with the canonical equality

X =V0 Y :⇔ ∃f∈F(X,Y )∃g∈F(Y,X)

(
g ◦ f = idX & f ◦ g = idY

)

X Y X Y .
f g

f

idX

idY

In this case we write (f, g) : X =V0 Y . If X,Y ∈ V0 such that X =V0 Y , we define the set

PrfEql0(X,Y ) :=
{

(f, g) ∈ F(X,Y )× F(Y,X) | (f, g) : X =V0 Y
}

of all objects that “witness”, or “realise”, or prove the equality X =V0 Y . The equal-
ity of PrfEql0(X,Y ) is the canonical one i.e., (f, g) =PrfEql0(X,Y ) (f ′, g′) :⇔ f =F(X,Y )

f ′ & g =F(Y,X) g
′. Notice that, in general, not all elements of PrfEql0(X,Y ) are equal. As

in [124], Example 3.1.9, if X := Y := 2 := {0, 1}, then (id2, id2) ∈ PrfEql0(2, 2), and if
sw2 : 2→ 2 maps 0 to 1 and 1 to 0, then (sw2, sw2) ∈ PrfEql0(2,2), while sw2 6= id2.

It is expected that the proof-terms in PrfEql0(X,Y ) are compatible with the properties of
the equivalence relation X =V0 Y . This means that we can define a distinguished proof-term
refl(X) ∈ PrfEql0(X,X) that proves the reflexivity of X =V0 Y , an operation −1, such
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that if (f, g) : X =V0 Y , then (f, g)−1 : Y =V0 X, and an operation of “composition” ∗ of
proof-terms, such that if (f, g) : X =V0 Y and (h, k) : Y =V0 Z, then (f, g) ∗ (h, k) : X =V0 Z.
If h ∈ F(Y,W ) and k ∈ F(W,Y ), let

refl(X) :=
(
idX , idX

)
& (f, g)−1 := (g, f) & (f, g) ∗ (h, k) := (h ◦ f, g ◦ k).

It is immediate to see that these operations satisfy the groupoid laws:

(i) refl(X) ∗ (f, g) =PrfEql0(X,Y ) (f, g) and (f, g) ∗ refl(Y ) =PrfEql0(X,Y ) (f, g).

(ii) (f, g) ∗ (f, g)−1 =PrfEql0(X,X) refl(X) and (f, g)−1 ∗ (f, g) =PrfEql0(Y,Y ) refl(Y ).

(iii)
(
(f, g) ∗ (h, k)

)
∗ (s, t) =PrfEql0(X,W ) (f, g) ∗

(
(h, k) ∗ (s, t)

)
.

Moreover, the following compatibility condition is satisfied:

(iv) If (f, g), (f ′, g′) ∈ PrfEql0(X,Y ) and (h, k), (h′, k′) ∈ PrfEql0(Y,Z), then if (f, g) =PrfEql0(X,Y )

(f ′, g′) and (h, k) =PrfEql0(Y,Z) (h′, k′), then (f, g) ∗ (h, k) =PrfEql0(X,Z) (f ′, g′) ∗ (h′, k′).

Proposition 2.4.1. Let X,Y be sets, f ∈ F(X,Y ) and g ∈ F(Y,X). If (f, g) : X =V0 Y , then
the set fibf (y) is contractible, for every y ∈ Y .

Proof. If y ∈ Y , then g(y) ∈ fibf (y), as f(g(y)) =Y idY (y) := y. If x ∈ X, x ∈ fibf (y) :⇔
f(x) =Y y, and x =X g(f(x)) =X g(y) i.e., g(y) is a centre of contraction for fibf (y).

Definition 2.4.2. Let X,Y be sets. The evaluation map evX,Y : F(X,Y )×X  Y is defined
by evX,Y (f, x) := f(x), for every f ∈ F(X,Y ) and x ∈ X.

Proposition 2.4.3. Let X,Y, Z be sets.

(i) The evaluation map evX,Y is a function from F(X,Y )×X to Y .

(ii) For every function h : Z ×X → Y , there is a unique function ĥ : Z → F(X,Y ) such that
for every z ∈ Z and x ∈ X evX,Y

(
ĥ(z), x

)
=Y h(z, x).

Proof. (i) By definition (f, x) =F(X,Y )×X (f ′, x′) if and only if f =F(X,Y ) f
′ and x =X x′.

Hence evX,Y (f, x) := f(x) =Y f ′(x) =Y f ′(x′) := evX,Y (f ′, x′).

(ii) For every z ∈ Z, we define the assignment routine ĥ from Z to F(X,Y ) by z 7→ ĥ(z), where
ĥ(z) is the assignment routine from X to Y , defined by ĥ(z)(x) := h(z, x), for every x ∈ X.
First we show that ĥ(z) is a function from X to Y ; if x =X x′, then (z, x) =Z×X (z, x′), hence
ĥ(z)(x) := h(z, x) =Y h(z, x′) := ĥ(z)(x′). Next we show that the assignment routine ĥ is a
function from Z to F(X,Y ); if z =Z z

′, then, if x ∈ X, and since then (z, x) =Z×X (z′, x), we
have that ĥ(z)(x) := h(z, x) =Y h(z′, x) := ĥ(z′)(x). Since x ∈ X is arbitrary, we conclude
that ĥ(z) =F(X,Y ) ĥ(z′). Since evX,Y

(
ĥ(z), x

)
:= ĥ(z)(x) := h(z, x), we get the strong from

of the required equality evX,Y ◦ (ĥ × 1X) := h. If g : Z → F(X,Y ) satisfying the required
equality, and if z ∈ Z, then, for every x ∈ X we have that g(z)(x) := evX,Y

(
g(z), x

)
=Y

h(z, x) =Y evX,Y
(
ĥ(z), x

)
:= ĥ(z)(x), hence g(z) =F(X,Y ) ĥ(z).

2.5 Dependent operations

Definition 2.5.1. Let I be a set and λ0 : I  V0 a non-dependent assignment routine from I
to V0. A dependent operation Φ over λ0, in symbols

Φ:
k

i∈I
λ0(i),
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is an assignment routine that assigns to each element i in I an element Φ(i) in the set λ0(i).
If i ∈ I, we call Φ(i) the i-component of Φ, and we also use the notation Φi := Φ(i). An
assignment routine is either a non-dependent assignment routine, or a dependent operation
over some non-dependent assignment routine from a set to the universe. If Ψ:

c
i∈I λ0(i), let

Φ := Ψ :⇔ ∀i∈I
(
Φi := Ψi

)
. If Φ := Ψ, we say that Φ and Ψ are definitionally equal.

Let the non-dependent assignment routines λ0 : I  V0, µ0 : I  V0, ν0 : I  V0 and
κ0 : I  V0. Let F(λ0, µ0) : I  V0 be defined by F(λ0, µ0)(i) := F(λ0(i), µ0(i), for every i ∈ I.
The identity operation Idλ0 over λ0 is the dependent operation

Idλ0 :
k

i∈I
F(λ0(i), µ0(i)) Idλ0(i) := idλ0(i); i ∈ I.

Let Ψ:
c
i∈I F(µ0(i), ν0(i)) and Φ:

c
i∈I F(λ0(i), µ0(i)). Their composition Ψ ◦Φ is defined by

Ψ ◦ Φ:
k

i∈I
F(λ0(i), ν0(i)) (Ψ ◦ Φ)i := Ψi ◦ Φi; i ∈ I.

If Ξ:
c
i∈I F(ν0(i), κ0(i)), notice the following definitional equalities

Φ ◦ Idλ0 := Φ, Idµ0 ◦ Φ := Φ, Ξ ◦ (Ψ ◦ Φ) := (Ξ ◦Ψ) ◦ Φ.

Definition 2.5.2. If I is a set and λ0 : I  V0, let A(I, λ0) be the totality of dependent
operations over λ0, equipped with the canonical equality:

Φ =A(I,λ0) Ψ :⇔ ∀i∈I
(
Φi =λ0(i) Ψi

)
.

The totality A(I, λ0) is considered to be a set. If 6=λ0(i) is an inequality on λ0(i), for every i ∈ I,
the canonical inequality 6=A(I,λ0) on A(I, λ0) is defined by Φ 6=A(I,λ0) Ψ :⇔ ∃i∈I

(
Φi 6=λ0(i) Ψi

)
.

Clearly, Φ =A(I,λ0) Ψ is an equivalence relation, and Φ 6=A(I,λ0) Ψ is an inequality relation.

If i ∈ I, the i-projection map on A(I, λ0) is the operation prλ0
i : A(I, λ0) λ0(i), defined by

prλ0
i (Φ) := Φi, for every i ∈ I. The operation prλ0

i is a function. If Φ:
c
i∈I F(λ0(i), µ0(i)),

a modulus of surjectivity for Φ is a dependent operation Ψ:
c
i∈I F(µ0(i), λ0(i) such that

Φ ◦Ψ =A(I,F(λ0,λ0) Idλ0 . In this case, Ψi is a modulus of surjectivity for Φ, for every i ∈ I. If

f : X → Y , let fibf : Y  V0 be defined by y 7→ fibf (y), for every y ∈ Y . If f is contractible,
then by Definition 2.3.4 every fiber fibf (y) of f is contractible. A modulus of centres of
contraction for a contractible function f is a dependent operation centref :

c
y∈Y fibf (y),

such that centrefy := centref (y) is a centre of contraction for f .

2.6 Subsets

Definition 2.6.1. Let X be a set. A subset of X is a pair (A, iXA ), where A is a set and
ıXA : A ↪→ X is an embedding of A into X. If (A, iXA ) and (B, iXB ) are subsets of X, then A
is a subset of B, in symbols (A, iXA ) ⊆ (B, iXB ), or simpler A ⊆ B, if there is f : A→ B such
that the following diagram commutes

A B

X.

f

iXA iXB
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In this case we use the notation f : A ⊆ B. Usually we write A instead of (A, iXA ). The totality
of the subsets of X is the powerset P(X) of X, and it is equipped with the equality

(A, iXA ) =P(X) (B, iXB ) :⇔ A ⊆ B & B ⊆ A.

If f : A ⊆ B and g : B ⊆ A, we write (f, g) : A =P(X) B.

Since the membership condition for P(X) requires quantification over V0, the totality P(X)
is a class. Clearly, (X, idX) ⊆ X. If XP is an extensional subset of X (see Definition 2.2.3),
then (XP , i

X
P ) ⊆ X, where iXP : XP  X is defined by iXP (x) := x, for every x ∈ XP .

Proposition 2.6.2. If A,B ⊆ X, and f, g : A ⊆ B, then f is an embedding, and f =F(A,B) h

A B

X.

f

h

iXA iXB

Proof. If a, a′ ∈ A such that f(a) =B f(a′), then iXB (f(a)) =X iXB (f(a′))⇔ iXA (a) =X iXA (a′),
which implies a =A a

′. Moreover, if iXB (f(a)) =X iXA (a) =X iXB (h(a)), then f(a) = h(a).

The “internal” equality of subsets implies their “external” equality as sets i.e., (f, g) :
A =P(X) B ⇒ (f, g) : A =V0 B. If a ∈ A, then iXA (g(f(a))) =X iXB (f(a)) = iXA (a), hence
g(f(a)) =A a, and then g ◦ f =F(A,A) idA. Similarly we get f ◦ g =F(B,B) idB. Let the set

PrfEql0(A,B) :=
{

(f, g) ∈ F(A,B)× F(B,A) | f : A ⊆ B & g : B ⊆ A
}
,

equipped with the canonical equality of pairs as in the case of PrfEql0(X,Y ). Because of the
Proposition 2.6.2, the set PrfEql0(A,B) is a subsingleton i.e.,

(f, g) : A =P(X) B & (f ′, g′) : A =P(X) B ⇒ (f, g) = (f ′, g′).

If f ∈ F(A,B), g ∈ F(B,A), h ∈ F(B,C), and k ∈ F(C,B), let refl(A) :=
(
idA, idA

)
and

(f, g)−1 := (g, f), and (f, g)∗(h, k) := (h◦f, g◦k), and the properties (i)-(iv) for PrfEql0(A,B)
hold by the equality of all their elements.

Corollary 2.6.3. Let the set (X,=X , 6=X) and
(
A,=A, i

X
A , 6=

iXA
A

)
⊆ X, where the canonical

inequality 6=iXA
A on A is given by a 6=iXA

A a′ :⇔ iXA (a) 6=X iXA (a′), for every a, a′ ∈ A. If

(X,=X , 6=X) is discrete, then
(
A,=A, i

X
A , 6=

iXA
A

)
is discrete, and if 6=X is tight, 6=iXA

A is tight.

Proof. Since iXA is an embedding, it follows immediately from Remark 2.3.3.

Remark 2.6.4. If P,Q are extensional properties on the set X, then

XP =P(X) XQ ⇔ ∀x∈X
(
P (x)⇔ Q(x)

)
.
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Proof. The implication (⇐) is immediate to show, since the corresponding identity maps
witness the equality XP =P(X) XQ. For the converse implication, let (f, g) : XP =P(X) XQ.
Let x ∈ X such that P (x). By the commutativity of the following outer diagram

XP XQ

X

f

g

iXP iXQ

we get f(x) := iXQ (f(x)) =X iXP (x) := x, and by the extensionality of Q and the fact that
Q(f(x)) holds we get Q(x). By the commutativity of the above inner diagram and the
extensionality of P we get similarly the inverse implication.

Definition 2.6.5. If (A, iXA ), (B, iXB ) ⊆ X, their union A ∪B is the totality defined by

z ∈ A ∪B :⇔ z ∈ A ∨ z ∈ B,

equipped with the non-dependent assignment routine1 iXA∪B : A ∪B  X, defined by

iXA∪B(z) :=


iXA (z) , z ∈ A

iXB (z) , z ∈ B.

If z, w ∈ A ∪B, we define z =A∪B w :⇔ iXA∪B(z) =X iXA∪B(w).

Clearly, =A∪B is an equality on A∪B, which is considered to be a set, iXA∪B is an embedding
of A∪B into X, and the pair

(
A∪B, iXA∪B

)
is a subset of X. Note that if P,Q are extensional

properties on X, then XP ∪XQ := XP∨Q, since z ∈ XP∨Q :⇔ (P ∨Q)(z) :⇔ P (z) or Q(z)⇔:
z ∈ XP ∪ XQ, and the inclusion map i : XP ∪ XQ ↪→ X is the identity, as it is for XP∨Q
(see Definition 2.2.1). If 6=X is a given inequality on X, the canonical inequality on A ∪B is
determined in Corollary 2.6.3.

Definition 2.6.6. If (A, iXA ), (B, iXB ) ⊆ X, their intersection A ∩B is the totality defined by
separation on A×B as follows:

A ∩B := {(a, b) ∈ A×B | iXA (a) =X iXB (b)}.

Let the non-dependent assignment routine iXA∩B : A ∩B  X, defined by iXA∩B(a, b) := iXA (a),
for every (a, b) ∈ A ∩B. If (a, b) and (a′, b′) are in A ∩B, let

(a, b) =A∩B (a′, b′) :⇔ iXA∩B(a, b) =X iXA∩B(a′, b′) :⇔ iXA (a) =X iXA (a′).

We write A G B to denote that the intersection A ∩B is inhabited.

1Here we define a non-dependent assignment routine on the totality A ∪B, without knowing beforehand
that A ∪B is a set. It turns out that A ∪B is set, but for that we need to define iXA∪B first.
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Clearly, =A∩B is an equality on A∩B, which is considered to be a set, iXA∩B is an embedding
of A ∩ B into X, and

(
A ∩ B, iXA∩B

)
is a subset of X. If 6=X is a given inequality on X,

the canonical inequality on A ∩ B is determined in Corollary 2.6.3. If P,Q are extensional
properties on X, then XP ∩XQ has elements in X ×X, while XP∧Q has elements in X, hence
the two subsets are not definitionally equal. Next we show that they are “externally” equal
i.e., equal in V0.

Remark 2.6.7. If P,Q are extensional properties on the set X, then XP∧Q =V0 XP ∩XQ.

Proof. Since the inclusion maps corresponding to XP and XQ are the identities, let f :
XP∧Q → XP ∩XQ with f(z) := (z, z), for every z ∈ XP∧Q, and let g : XP ∩XQ → XP∧Q
with g(a, b) := a, for every (a, b) ∈ XP ∩XQ. Hence, f(g(a, b)) := f(a) := (a, a), and since
(a, b) ∈ XP ∩XQ, we have by definition that P (a), Q(b) and a =X b, hence (a, a) =X×X (a, b).
If z ∈ XP∧Q, then g(f(z)) := g(z, z) := z.

Clearly, X ∩ X =P(X) X, while prA : (A ∩ B, iXA∩B) ⊆ (A, iA) and the identity map

eA : A→ A ∪B witnesses the inequality (A, iXA ) ⊆ (A ∪B, iXA∪B)

A ∩B A

X

A ∪B

prA

iXAiXA∩B iXA∪B

eA

The following properties of the union and intersection of subsets are easy to show.

Proposition 2.6.8. Let A,B and C be subsets of the set X.

(i) A ∪B =P(X) B ∪A and A ∩B =P(X) B ∩A.

(ii) A ∪ (B ∪ C) =P(X) (A ∪B) ∪ C and A ∩ (B ∩ C) =P(X) (A ∩B) ∩ C.

(iii) A ∩ (B ∪ C) =P(X) (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) =P(X) (A ∪B) ∩ (A ∪ C).

Definition 2.6.9. Let X,Y be sets, (A, iXA )(C, iXC ) ⊆ X, e : (A, iXA ) ⊆ (C, iXC ), f : C → Y ,
and (B, iYB) ⊆ Y . The restriction f|A of f to A is the function fA := f ◦ e

A C Y .
e f

f|A

The image f(A) of A under f is the pair f(A) := (A, fA), where A is equipped with the equality
a =f(A) a

′ :⇔ f|A(a) =Y f|A(a′), for every a, a′ ∈ A. We denote {f(a) | a ∈ A} := f(A). The
pre-image f−1(B) of B under f is the set

f−1(B) := {(c, b) ∈ C ×B | f(c) =Y iYB(b)}.

Let iC
f−1(B)

: f−1(B) ↪→ C, defined by iC
f−1(B)

(c, b) := c, for every (c, b) ∈ f−1(B). The equality

of the extensional subset f−1(B) of C ×B is inherited from the equality of C ×B.
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Clearly, the restriction f|A of f : X → Y to (A, ıA) ⊆ X is the function fA := f ◦ iXA . It is
immediate to show that f(A) ⊆ Y and f−1(B) ⊆ C. Notice that

(A, iXA ) =P(X) (B, iXB )⇒ iXA (A) =P(X) i
X
B (B),

since, if (f, g) : (A, iXA ) =P(X) (B, iXB ), then iXA (a) =X iXB (f(a)) and iXB (b) =X iXA (g(b)), for
every a ∈ A and b ∈ B, respectively. If 6=Y is a given inequality on Y , the canonical inequality
on f(A) is determined in Corollary 2.6.3. Similarly, if 6=X is an inequality on X, f : X → Y , and
(B, iYB) ⊆ Y , the canonical inequality on f−1(B) is given by (x, b) 6=f−1(B) (x′, b′) :⇔ x 6=X x′,
and not by the canonical inequality on X ×B.

Proposition 2.6.10. Let X,Y be sets, A,B subsets of X, C,D subsets of Y , and f : X → Y .

(i) f−1(C ∪D) =P(X) f
−1(C) ∪ f−1(D).

(ii) f−1(C ∩D) =P(X) f
−1(C) ∩ f−1(D).

(iii) f(A ∪B) =P(Y ) f(A) ∪ f(B).

(iv) f(A ∩B) =P(Y ) f(A) ∩ f(B).

(v) A ⊆ f−1(f(A)).

(vi) f(f−1(C) ∩A) =P(Y ) C ∩ f(A), and f(f−1(C)) =P(Y ) C ∩ f(X).

Proposition 2.6.11. Let (A, iXA ), (B, iXB ), (A′, iXA′), (B, i
X
B′) ⊆ X, such that A =P(X) A

′ and

B =P(X) B
′. Let also (C, iYC ), (C ′, iYC′), (D, i

Y
D) ⊆ Y , such that C =P(Y ) C

′, and let f : X → Y .

(i) A ∩B =P(X) A
′ ∩B′, and A ∪B =P(X) A

′ ∪B′.
(ii) f(A) =P(Y ) f(A′), and f−1(C) =P(X) f

−1(C ′).

(iii) (A× C, iXA × iYC) ⊆ X × Y , where the map iXA × iYC : A× C ↪→ X × Y is defined by

(iXA × iYC)(a, c) :=
(
iXA (a), iYC(c)

)
; (a, c) ∈ A× C.

(iv) A× C =P(X×Y ) A
′ × C ′.

(v) A× (C ∪D) =P(X×Y ) (A× C) ∪ (A×D).

(vi) A× (C ∩D) =P(X×Y ) (A× C) ∩ (A ∩D).

Proof. All cases are straightforward to show.

2.7 Partial functions

Definition 2.7.1. Let X,Y be sets. A partial function from X to Y is a triplet (A, iXA , f
Y
A ),

where (A, iXA ) ⊆ X, and fYA ∈ F(A, Y ). Often, we use only the symbol fYA instead of the
triplet (A, iXA , f

Y
A ), and we also write fYA : X ⇀ Y . If (A, iXA , f

Y
A ) and (B, iXB , f

Y
B ) are partial

functions from X to Y , we call fYA a subfunction of fYB , in symbols (A, iXA , f
Y
A ) ≤ (B, iXB , f

Y
B ),

or simpler fYA ≤ fYB , if there is eAB : A→ B such that the following inner diagrams commute

A B

X

Y .

eAB

fYA fYB

iXA iXB
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In this case we use the notation eAB : fYA ≤ fYB . The totality of partial functions from X to Y
is the partial function space F(X,Y ), and it is equipped with the equality

(A, iXA , f
Y
A ) =F(X,Y ) (B, iXB , f

Y
B ) :⇔ fYA ≤ fYB & fYB ≤ fYA .

If eAB : fYA ≤ fYB and eBA : fYB ≤ fYA , we write (eAB, eBA) : fYA =F(X,Y ) f
Y
B .

Since the membership condition for F(X,Y ) requires quantification over V0, the totality
F(X,Y ) is a class. Clearly, if f : X → Y , then (X, idX , f) ∈ F(X,Y ). If (eAB, eBA) :
fYA =F(X,Y ) f

Y
B , then (eAB, eBA) : A =P(X) B, and (eAB, eBA) : A =V0 B. Let the set

PrfEql0(fYA , f
Y
B ) :=

{
(f, g) ∈ F(A,B)× F(B,A) | f : fYA ≤ fYB & g : fYB ≤ fYA

}
,

equipped with the canonical equality of the product. All the elements of PrfEql0(fYA , f
Y
B ) are

equal to each other. If f ∈ F(A,B), g ∈ F(B,A), h ∈ F(B,C), and k ∈ F(C,B), let

refl(fYA ) :=
(
idA, idA

)
& (f, g)−1 := (g, f) & (f, g) ∗ (h, k) := (h ◦ f, g ◦ k),

and the groupoid-properties for PrfEql0(fYA , f
Y
B ) hold by the equality of its elements.

Proposition 2.7.2. Let (A, iXA , f
Y
A ) ∈ F(X,Y ) and (B, iYB, g

Z
B) ∈ F(Y, Z). Their composition

gZB � f
Y
A :=

((
fYA
)−1

(B), iXA ◦ eA(fYA )−1(B)
,
(
gZB ◦ fYA

)Z
(fYA )−1(B)

)
, where

(
fYA
)−1

(B) :=
{

(a, b) ∈ A×B | fYA (a) =Y iYB(b)
}
,

eA
(fYA )−1(B)

:
(
fYA
)−1

(B) ↪→ A, (a, b) 7→ a; (a, b) ∈
(
fYA
)−1

(B),(
gZB ◦ fYA

)Z
(fYA )−1(B)

(a, b) := gZB(b); (a, b) ∈
(
fYA
)−1

(B),

is a partial function that belongs to F(X,Z). If (A, iXA , i
X
A ) ∈ F(X,X), (B, iYB, i

Y
B) ∈ F(Y, Y ),

and (C, iZC , h
W
C ) ∈ F(Z,W ), the following properties hold:

(i) fYA � iXA =F(X,Y ) f
Y
A and iYB � f

Y
A =F(X,Y ) f

Y
A .

(ii)
(
hWC � gZB

)
� fXA =F(X,Z) h

W
C �

(
gZB � f

X
A

)
.

Proof. (i) We show only the first equality and for the second we work similarly. By definition

fYA � iXA :=

((
iXA
)−1

(A), iXA ◦ eA(iXA )−1(A)
,
(
fYA ◦ iXA

)Y
(iXA )−1(A)

)
, where

(
iXA
)−1

(A) :=
{

(a, a′) ∈ A×A | iXA (a) =X iXA (a′)
}
,

eA
(iXA )−1(A)

:
(
iXA
)−1

(A) ↪→ A, (a, a′) 7→ a; (a, a′) ∈
(
iXA
)−1

(A),(
fYA ◦ iXA

)
(a, a′) := fYA (a′); (a, a′) ∈

(
iXA
)−1

(A).

Let the operations φ : A  
(
iXA
)−1

(A), defined by φ(a) := (a, a), for every a ∈ A, and

θ :
(
iXA
)−1

(A) A, defined by θ(a, a′) := a, for every (a, a′) ∈
(
iXA
)−1

(A). It is immediate to
show that φ and θ are well-defined functions. It is straightforward to show the commutativity
of the following inner diagrams
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A
(
iXA
)−1

(A)

X

Y .

φ

θ

fYA fYA ◦ iXA

iXA iXA ◦ eA(iXA )−1(A)

(ii) We have that hWC � gZB :=

((
gZB
)−1

(C), iYB ◦ eB(gZB)−1(C)
,
(
hWC � gZB

)W
(gZB)−1(C)

)
, where

(
gZB
)−1

(C) :=
{

(b, c) ∈ B × C | gZB(b) =Z i
Z
C(c)

}
,

eB
(gZB)−1(C)

:
(
gZB
)−1

(C) ↪→ B, (b, c) 7→ b; (b, c) ∈
(
gZB
)−1

(C),(
hWC ◦ gZB

)
(b, c) := hWC (c); (b, c) ∈

(
gZB
)−1

(C).

Hence,
(
hWC � gZB

)
� fXA :=

(
D, iXA ◦ eAD,

[(
hWC ◦ gZB

)
◦ fXZ

]W
D

)
, where

D :=
(
fYA
)−1[(

gZB
)−1

(C)
]

:=

{
(a, d) ∈ A×

[(
gZB
)−1

(C)
]
| fYA (a) =Y

(
iYB ◦ eB(gZB)−1(C)

)
(d)

}
,

with d := (b, c) ∈ B × C such that gZB(b) =Z i
Z
C(c). The map eAD : D ↪→ A is defined by the

rule (a, d) 7→ a, for every (a, d) ∈ D, and[(
hWC ◦ gZB

)
◦ fYA

]
(a, d) :=

(
hWC ◦ gZB

)
(d) := hWC (c); (a, d) := (a, (b, c)) ∈ D.

Moreover, hWC �
(
gZB � fYA

)
:=

(
E, iXA ◦ eA(fYA )−1(B)

◦ e(fYA )−1(B)

E ,
[
hWC ◦

(
gZB ◦ fXZ

)]W
E

)
, where

E :=

[(
gZB ◦ fYA

)Z
(fYA )−1(B)

]−1

(C) :=

{
(u, c) ∈

[(
fYA
)−1

(B)
]
× C | (gZB ◦ fYA )(u) =Z i

Z
C(c)

}
,

e
(fYA )−1(B)

E : E ↪→
(
(fYA

)
)−1(B) is defined by the rule (u, c) 7→ u, for every (u, c) ∈ E, and[
hWC ◦

(
gZB ◦ fYA

)]
(u, c) := hWC (c); (u, c) ∈ E.

Let the operations φ : D  E, defined by φ(a, (b, c)) := ((a, b), c), for every (a, (b, c)) ∈ D, and
θ : E  D, defined by θ((a, b), c) := (a, (b, c)), for every ((a, b), c) ∈ E. It is straightforward to
show that φ and θ are well-defined functions, and that the following inner diagrams commute

D E

X

W .

φ
θ

(
hWC ◦ gZB

)
◦ fYA hWC ◦

(
gZB ◦ fYA

)
iXA ◦e

A
D iXA ◦e

A

(fY
A

)−1(B)
◦e

(fYA )−1(B)

E
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The next proposition is straightforward to show.

Proposition 2.7.3. Let (A, iXA , f
Y
A ), (B, iXB , f

X
B ) ∈ F(X,Y )

A X B

Y .

iXA iXB

fYA fYB

Their left fYA ∩l fYB and right intersection fYA ∩r fYB are the partial functions

fYA ∩l fYB :=

(
A ∩B, iXA∩B,

(
fYA ∩l fYB

)Y
A∩B

)
, where

(
fYA ∩l fYB

)Y
A∩B(a, b) := fYA (a); (a, b) ∈ A ∩B, and

fYA ∩r fYB :=

(
A ∩B, iXA∩B,

(
fYA ∩r fYB

)Y
A∩B

)
, where

(
fYA ∩r fYB

)Y
A∩B(a, b) := fYB (b); (a, b) ∈ A ∩B.

Their union fYA ∪ fYB is the partial function

fYA ∪ fYB :=

(
A ∪B, iXA∪B,

(
fYA ∪ fYB

)Y
A∪B

)
, where

(
fYA ∪ fYB

)Y
A∪B(z) :=

{
fYA (z) , z ∈ A
fYB (z) , z ∈ B.

(i) fYA ∩l fYB ≤ fYA and fYA ∩r fYB ≤ fYB .

(ii) If fYA (a) =Y fYB (b), for every (a, b) ∈ A ∩B, then fYA ∩l fYB =F(X,Y ) f
Y
A ∩r fYB .

(iii) fYA ≤ fYA ∪ fYB and fYB ≤ fYA ∪ fYB .

(iv) fYA ∪ fYB =F(X,Y ) f
Y
B ∪ fYA .

Definition 2.7.4. Let the operation of multiplication on 2, defined by 0 · 1 := 1 · 0 := 0 · 0 := 0
and 1 · 1 := 1. If (A, iXA , f

2
A), (B, iXB , g

2
B) ∈ F(X,2), let

fA · gB :=
(
A ∩B, iXA∩B, (fA · gB)2

A∩B
)
,

where (fA · gB)2
A∩B : A ∩B → 2 is defined, for every (a, b) ∈ A ∩B, by

(fA · gB)2
A∩B(a, b) := f2

A(a) · g2
B(b).

By the equality of the product on A ∩ B, it is immediate to show that the operation
(fA · gB)2

A∩B is a function. More generally, operations on Y induce operations on F(X,Y ).
The above example with Y := 2 is useful to the next section.
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2.8 Complemented subsets

An inequality on a set X induces a positively defined notion of disjointness of subsets of X.

Definition 2.8.1. Let (X,=X , 6=X) be a set, and (A, iXA ), (B, iXB ) ⊆ X. We say that A and
B are disjoint with respect to 6=X , in symbols AKJ6=XB, if

A KJ
6=X

B :⇔ ∀a∈A∀b∈B
(
iXA (a) 6=X iXB (b)

)
.

If 6=X is clear from the context, we only write AKJB.

Clearly, if AKJB, then A ∩B is not inhabited. The positive disjointness of subsets of X
induces the notion of a complemented subset of X, and the negative notion of the complement
of a set is avoided. We use bold letters to denote a complemented subset of a set.

Definition 2.8.2. A complemented subset of a set (X,=X , 6=X) is a pair A := (A1, A0),
where (A1, iXA1) and (A0, iXA0) are subsets of X such that A1KJA0. We call A1 the 1-component
of A and A0 the 0-component of A. If Dom(A) := A1 ∪A0 is the domain of A, the indicator
function, or characteristic function, of A is the operation χA : Dom(A) 2 defined by

χA(x) :=

{
1 , x ∈ A1

0 , x ∈ A0.

Let x ∈ A :⇔ x ∈ A1 and x /∈ A :⇔ x ∈ A0. If A,B are complemented subsets of X, let

A ⊆ B :⇔ A1 ⊆ B1 & B0 ⊆ A0.

Let PKJ(X) be their totality, equipped with the equality A =PKJ(X) B :⇔ A ⊆ B & B ⊆ A.

Let PrfEql0(A,B) := PrfEql0(A1, B1)× PrfEql0(A0, B0). A map f : A→ B from A to B
is a pair (f1, f0), where f1 : A1 → B1 and f0 : A0 → B0.

Clearly, A =PKJ(X) B ⇔ A1 =P(X) B
1 & A0 =P(X) B

0, and PrfEql0(A,B) is a subsin-
gleton, as the product of subsingletons. Since the membership condition for PKJ(X) requires
quantification over V0, the totality PKJ(X) is a class. The operation χA is a function, actually,
χA is a partial function in F(X,2). Let z, w ∈ A1 ∪A0 such that z =A1∪A0 w i.e.,

iXA1(z) , z ∈ A1

iXA0(z) , z ∈ A0

 := iXA1∪A0(z) =X iXA1∪A0(w) :=


iXA1(w) , w ∈ A1

iXA0(w) , w ∈ A0.

Let z ∈ A1. If w ∈ A0, then iXA1(z) := iXA1∪A0(z) =X iXA1∪A0(w) := iXA0(w) i.e., (z, w) ∈ A1∩A0,
which contradicts the hypothesis A1KJA0. Hence w ∈ A1, and χA(z) = χA(w). If z ∈ A0, we
proceed similarly.

Definition 2.8.3. If (X,=X) is a set, let the inequality on X defined by

x 6=F(X,2)

X x′ :⇔ ∃f∈F(X,2)

(
f(x) =2 1 & f(x′) =2 0

)
If f ∈ F(X,2), the following extensional subsets of X

δ1
0(f) := {x ∈ X | f(x) =2 1},

δ0
0(f) := {x ∈ X | f(x) =2 0},

are called detachable, or free subsets of X. Let also their pair δ(f) :=
(
δ1

0(f), δ0
0(f)

)
.
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Clearly, x 6=F(X,2)

X x′ ⇔ ∃f∈F(X,2)

(
f(x) 6=2 f(x′)

)
, and δ(f) is a complemented subset of X

with respect to the inequality 6=F(X,2)

X . The characteristic function χδ(f) of δ(f) is definitionally
equal to f (recall that f(x) =2 1 :⇔ f(x) := 1), and δ1

0(f) ∪ δ0
0(f) = X.

Definition 2.8.4. If A,B ∈ PKJ(X) and C ∈ PKJ(Y ), let

A ∪B := (A1 ∪B1, A0 ∩B0),

A ∩B := (A1 ∩B1, A0 ∪B0),

−A := (A0, A1),

A−B := (A1 ∩B0, A0 ∪B1),

A×C :=
(
A1 × C1, [A0 × Y ] ∪ [X × C0]

)
.

The following diagrams depict A ∪B,A ∩B, A−B, and A×C, respectively.

A1

B1

A0

B0

A1

B1

A0

B0

A1

B1

A0

B0
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Y

X

A1 A0

C1

C0

Remark 2.8.5. If A,B ∈ PKJ(X) and C ∈ PKJ(Y ), then A ∪B, A ∩B, −A, and A −B
are in PKJ(X) and A×C is in PKJ(X × Y ).

Proof. We show only the last membership. If (a1, b1) ∈ A1 ×B1 and (a0, b0) ∈ A0 ×B0, then
iXA1(a1) 6=X iXA0(a0) and iYB1(b1) 6=Y iYB0(b0). By definition

iX×Y
A1×B1(a1, b1) :=

(
iXA1(a1), iYB1(b1)

)
.

If (a0, y) ∈ A0 × Y , then (iXA0 × idY )(a0, y) := (iXA0(a0), y), and if (x, b0) ∈ X × B0, then
(idX × iYB0)(x, b0) := (x, iYB0(b0)). In both cases we get the required inequality.

Remark 2.8.6. Let A,B and C be in PKJ(X). The following hold:

(i) −(−A) := A.

(ii) −(A ∪B) := (−A) ∩ (−B).

(iii) −(A ∩B) := (−A) ∪ (−B).

(iv) A ∪ (B ∩C) =PKJ(X) (A ∪B) ∩ (A ∪C).

(v) A ∩ (B ∪C) =PKJ(X) (A ∩B) ∪ (A ∩C).

(vi) A−B := A ∩ (−B).

(vii) A ⊆ B ⇔ (A ∩B) =PKJ(X) A.

(viii) A ⊆ B ⇔ −B ⊆ −A.

(ix) If A ⊆ B and B ⊆ C, then A ⊆ C.

Proposition 2.8.7. Let A ∈ PKJ(X) and B,C ∈ PKJ(Y ).

(i) A× (B ∪C) =PKJ(X×Y ) (A×B) ∪ (A×C).

(ii) A× (B ∩C) =PKJ(X×Y ) (A×B) ∩ (A×C).
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Proof. We prove only (i). We have that

A× (B ∪C) := (A1, A0)× (B1 ∪ C1, B0 ∩ C0)

:=
(
A1 × (B1 ∪ C1), (A0 × Y ) ∪ [X × (B0 ∩ C0)]

)
=PKJ(X×Y )

(
(A1 ×B1) ∪ (A1 × C1), [(A0 × Y ) ∪ (X ×B0)] ∩

∩ [(A0 × Y ) ∪ (X × C0)]
)

:= (A×B)× (A×C).

Proposition 2.8.8. Let the sets (X,=X , 6=f
X) and (Y,=Y , 6=Y ), where f : X → Y (see Re-

mark 2.3.3). Let also A := (A1, A0) and B := (B1, B0) in PKJ(Y ).

(i) f−1(A) :=
(
f−1(A1), f−1(A0)

)
∈ PKJ(X).

(ii) f−1(A ∪B) =PKJ(X)
f−1(A) ∪ f−1(B).

(iii) f−1(A ∩B) =PKJ(X)
f−1(A) ∩ f−1(B).

(iv) f−1(−A) =PKJ(X)
−f−1(A).

(v) f−1(A−B) =PKJ(X)
f−1(A)− f−1(B).

Proof. (i) By Definition 2.6.9 we have that

f−1(A1) := {(x, a1) ∈ X ×A1 | f(x) =Y iXA1(a1)}, iX
f−1(A1)

(x, a1) := x,

f−1(A0) :=
(
{(x, a0) ∈ X ×A0 | f(x) =Y iXA0(a0)}, iX

f−1(A0)
(x, a0) := x.

Let (x, a1) ∈ f−1(A1) and (z, a0) ∈ f−1(A0). By the extensionality of 6=Y we have that

iX
f−1(A1)

(x, a1) 6=f
X iX

f−1(A0)
(z, a0) :⇔ x 6=f

X z :⇔ f(x) 6=Y f(z)⇔ iXA1(a1) 6=Y iXA0(a0),

and the last inequality holds by the hypothesis A ∈ PKJ(Y ). Next we show only (ii):

f−1(A ∪B) := f−1
(
A1 ∪B1, A0 ∩B0

)
:=
(
f−1(A1 ∪B1), f−1(A0 ∩B0)

)
=
(
f−1(A1) ∪ f−1(B1), f−1(A0) ∩ f−1(B0)

)
:= f−1(A) ∪ f−1(B).

Alternatively, one can define the following operations between complemented subsets.

Definition 2.8.9. If A,B ∈ PKJ(X) and C ∈ PKJ(Y ), let

A ∨B :=
(
[A1 ∩B1] ∪ [A1 ∩B0] ∪ [A0 ∩B1], A0 ∩B0

)
,

A ∧B :=
(
A1 ∩B1, [A1 ∩B0] ∪ [A0 ∩B1] ∪ [A0 ∩B0]

)
,

A	B := A ∧ (−B),

A⊗C :=
(
A1 × C1, [A1 × C0] ∪ [A0 × C1] ∪ [A0 × C0]

)
,

The following diagrams depict A ∨B,A ∧B, A	B, and A⊗C, respectively.
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A1

B1

A0

B0

A1

B1

A0

B0

A1

B1

A0

B0

Y

X

A1 A0

C1

C0



2.9. NOTES 29

With the previous definitions the corresponding characteristic functions are expressed
through the characteristic functions of A and B.

Remark 2.8.10. If A,B are complemented subsets of X, then A ∨B,A ∧B,A −B and
−A are complemented subsets of X with characteristic functions

χA∨B =F(X,2) χA ∨ χB, χA∧B =F(X,2) χA · χB, χA−B =F(X,2) χA(1− χB),

χA⊗B(x, y) =F(X×X,2) χA(x) · χB(y), χ−A =F(X,2) 1− χA.

Proof. We show only the equality χA∧B =F(X,2) χA ·χB. By Definition 2.7.4 the multiplication
of the partial maps χA : Dom(A)→ 2 and χB : Dom(B)→ 2 is the partial function

χA · χB :=
(
Dom(A) ∩ Dom(B), iXDom(A)∩Dom(B), (χA · χB)2

Dom(A)∩Dom(B)

)
,

(χA · χB)2
Dom(A)∩Dom(B)(u,w) := χA(u) · χB(w),

for every (u,w) ∈ Dom(A) ∩ Dom(B). The partial function χA∧B is the triplet

χA∧B :=
(
Dom(A ∧B), iXDom(A∧B), (χA∧B)2

Dom(A∧B)

)
.

Since Dom(A∧B) =P(X) Dom(A)∩Dom(B), and if (f, g) : Dom(A∧B) =P(X) Dom(A)∩Dom(B),
it is straightforward to show that also the following outer diagram commutes

Dom(A ∧B) Dom(A) ∩ Dom(B)

X

2

f

g

(χA∧B)2
Dom(A∧B) (χA · χB)2

Dom(A)∩Dom(B)

iX
Dom(A∧B) iX

Dom(A)∩Dom(B)

and hence the two partial functions are equal in F(X,2).

2.9 Notes

Note 2.9.1. In [55] Greenleaf introduced predicates on objects through the totality Ω of
propositions and then he defined P(X) as F(X,Ω). A similar treatment of the powerset P(X)
is found in [113]. For us a predicate on a set X is a bounded formula P (x) with x as a free
variable. In order to define new objects from X through P we ask P to be extensional.

Note 2.9.2. In [27], pp. 114-5, Cantor described a set as follows:

A manifold (a sum, a set) of elements belonging to some conceptual sphere is
called well-defined if, on the basis of its definition and in accordance with the
logical principle of the excluded third, it must be regarded as internally determined,
both whether any object of that conceptual sphere belongs as an element to the
mentioned set, and also whether two objects belonging to the set, in spite of formal
differences in the mode of givenness, are equal to each other or not.



30 CHAPTER 2. FUNDAMENTALS OF BISHOP SET THEORY

Bishop’s intuitive notion of set is similar to Cantor’s, except that he does not invoke the
principle of the excluded middle (PEM). As it was pointed to me by W. Sieg, Dedekind’s
primitive notions in [44] were “systems” and “transformations of systems”. Notice that here
we study defined totalities that are not defined inductively. The inductively defined sets are
expected to be studied in a future work within an extension BST∗ of BST.

Note 2.9.3. Although N is the only primitive set considered in BST, one could, in principle,
add more primitive sets. E.g., a primitive set of Booleans, of integers, and, more interestingly,
a primitive continuous interval, or a primitive real line (see [23] for an axiomatic treatment of
the set R of reals within BISH).

Note 2.9.4. In Martin-Löf type theory the definitional, or judgemental equality a := b, where
a, b are terms of some type A, is never used in a formula. We permit the use of the definitional
equality := for membership conditions only. In the membership condition for the product we
use the primitive notion of a pair. The membership condition for an extensional subset XP of
X implies that an object x “has not unique typing”, as it can be an element of more than one
sets.

Note 2.9.5. The positively defined notion of discrete set used here comes from [76], p. 9.
There it is also mentioned that a set without a specified inequality i.e., a pair (X,=X), is
discrete, if ∀x,y∈X

(
x =X y ∨ ¬(x =X y)

)
. In [84] it is mentioned that the above discreteness

of F(N,N) implies the non-constructive principle “weak LPO”

∀f∈F(N,N)

(
∀n∈N

(
f(n) =N 0

)
∨ ¬∀n∈N

(
f(n) =N 0

))
.

Because of a result of Bauer and Swan in [4], we cannot show in BISH the existence of
an uncountable separable metric space, hence, using the discrete metric, the existence of
an uncountable discrete set. Note that in [9], p. 66, a set S is called discrete, if the set
D := {(s, t) ∈ S × S | s =S t} is a free, or a detachable subset of S × S. In Definition 2.2.4 we
use the symbol D(S) for D and we call it the diagonal of S. We employ here the diagonal of
a set in the fundamental definition of a set-indexed family of sets (Definition 3.1.1).

Note 2.9.6. In [9] and [19], the negation ¬φ of a formula φ is not mentioned explicitly. E.g.,
the exact writing of condition (Ap1) in Definition 2.2.5 is “if x =X y and x 6=X y, then
0 =N 1”. Similarly, the condition of tightness in Definition 2.2.5 is written as follows: “if
x 6=X y entails 0 = 1, then x =X y”. hence, if 6=X is tight, the implication x 6=X y ⇒ 0 =N 1
is logically equivalent to the (positively defined, if X is a defined totality) equality x =X y.
Within intuitionistic logic one defines ¬φ := φ⇒ ⊥.

Note 2.9.7. The definitions of (−2)-sets and (−1)-sets are proof-irrelevant translations of
the corresponding notions in HoTT, which were introduced by Voevodsky (see [124]). The
definition of a 0-set requires to determine a set PrfEqlX0 (x, y) of witnesses of the equality
x =X y. This is done in a universal way in MLTT, while in BST in a “local” way, and by
definition (see Definition 5.6.3).

Note 2.9.8. In the literature of constructive mathematics (see e.g., [7], pp. 34–35) the term
preset is used for a totality. Also, the term operation is used for a non-dependent assignment
routine from a totality X to a totality Y (see [7], p. 44), while we use it only for a non-dependent
assignment routine from a set X to a set Y .
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Note 2.9.9. The notion of uniqueness associated to the definition of a function is local, in
the following sense: if f : X → Y , it is immediate to show that ∀x∈X∃!y∈Y

(
f(x) =Y y

)
. The

converse is the local version of Myhill’s axiom of non-choice (LANC). Let P (x, y) be an
extensional property on X × Y i.e., ∀x,x′,y,y′∈X

(
[x =X x′ & y =Y y′ & P (x, y)]⇒ P (x′, y′)

)
.

The principle (LANC) is the formula

∀x∈X∃!y∈Y P (x, y)⇒ ∃f∈F(X,Y )∀x∈X
(
P (x, f(x))

)
.

Notice that LANC provides the existence of a function for which we only know how its outputs
behave with respect to the equality of Y , and it gives no information on how f behaves
definitionally. If we define Qx(y) := P (x, y), then if we suppose Qx(f(x)) and Qx(g(x)), for
some f, g ∈ F(X,Y ), we get f(x) =Y y =Y g(x), and then (LANC) implies

∀x∈X∃!y∈Y P (x, y)⇒ ∃!f∈F(X,Y )∀x∈X
(
P (x, f(x))

)
.

We can use (LANC) to view an arbitrary subset (A, iXA ) of X as an extensional subset of X.
If (A, iXA ) ∈ P(X), then the property PA on X defined by PA(x) := ∃a∈A

(
iXA (a) =X x

)
, is

extensional, and (iXA , j
X
A ) : XPA =P(X) (A, iXA ), for some function jXA : XPA → A. To show

this, let x, y ∈ X such that PA(x) and x =X y. By transitivity of =X , if iXA (a) =X x, then
iXA (a) =X y. If x ∈ X and a, b ∈ A such that iXA (a) =X x =X iXA (b), then a =A b i.e.,
∀x∈XPA∃!a∈A

(
iXA (a) =X x

)
, and since the property Q(x, a) :⇔ iXA (a) =X x is extensional on

XPA ×A, by (LANC) there is a (unique) function jXA : XPA → A, such that for every x ∈ XP

we have that iXA (jXA (x)) =X x, and the required diagram commutes. The principle (LANC),
which is also considered in [5], is included in Myhill’s system CST (see [80]) as a principle of
generating functions. This is in contrast to Bishop’s algorithmic approach to the concept of
function.

Note 2.9.10. In [19], p. 67, a function f : A→ B is defined as a finite routine which, applied
to any element of A, produces an element b ≡ f(a) of B, such that f(a) =B f(a′), whenever
a =A a

′. In [19], p. 15, we read that f “affords an explicit, finite mechanical reduction of the
procedure for constructing f(a) to the procedure for constructing a”. The pattern of defining
a function f : X → Y by first defining an operation f : X  Y , and then proving that f is a
function, is implicit in the more elementary parts of [9] and [19], and more explicit in the later
parts of the books. E.g., in [19], p. 199, an inhabited subset U of C has the maximal extent
property, if there is an operation µ from U to R+ satisfying certain properties. One can show
afterwords that U is open and µ is a function on U . This property is used in Bishop’s proof of
the Riemann mapping theorem (see [19], pp. 209–210).

Note 2.9.11. Regarding the set-character of F(X,Y ), Bishop, in [19], p. 67, writes:

When X is not countable, the set F(X,Y ) seems to have little practical interest,
because to get a hold on its structure is too hard. For instance, it has been asserted
by Brouwer that all functions in F(R,R) are continuous, but no acceptable proof
of this assertion is known.

Similar problems occur though, in function spaces where the domain of the functions is a
countable set. E.g., we cannot accept constructively (i.e., in the sense of Bishop) that the
Cantor space F(N, 2) satisfies Markov’s principle, but no one that we know of has doubted
the set-character of F(N, 2). The possibility of doubting the set-character of the Baire space
F(N,N) is discussed by Beeson in [7], p. 46.
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Note 2.9.12. In intensional Martin-Löf Type Theory the type( ∏
x : X

f(x) = g(x)

)
→ f = g

is not provable (inhabited), and its inhabitance is known as the axiom of function extensionality
(FunExt). In BST this axiom is part of the canonical definition of the function space F(X,Y ).
Because of this, many results in MLTT + FunExt are translatable in BST (see Chapter 5 ).

Note 2.9.13. The totality V0 is not mentioned by Bishop, although it is necessary, if we want
to formulate the fundamental notion of a set-indexed family of sets. The defined equality
on the universe V0 expresses that V0 is univalent, as isomorphic sets are equal in V0. In
univalent type theory, which is MLTT extended with Voevodsky’s axiom of univalence UA

(see [124]), the existence of a pair of quasi-inverses between types A and B implies that they
are equivalent in Voevodsky’s sense, and by the univalence axiom, also propositionally equal.
The axiom UA is partially translated in BST as the canonical definition of V0. Because of this,
results in MLTT + UA that do not raise the level of the universe are translatable in BST. For
example, Proposition 5.5.1 is lemma 4.9.2 in book HoTT [124], where UA is used in its proof:
if e : X ' Y , then Z → X ' Z → Y , and by UA we get e = idtoEqv(p), for some p : X =U Y .
Notice that in the formulation of this lemma the universe-level is not raised.

Note 2.9.14. The notion of a dependent operation is explicitly mentioned by Bishop in [9],
p. 65, and repeated in [19], p. 70, in the definition of the intersection of a family of subsets of
a set indexed by some set T :

an element u of
⋂
t∈T λ(t) is a finite routine which associates an element xt of λ(t)

with each element t of T , such that it(xt) = it′(xt′) whenever t, t′ ∈ T .

This definition corresponds to Definition 4.3.1 in this Thesis.

Note 2.9.15. Bishop’s definition of a subset of a set is related to the notion of a subobject in
Category Theory (see [3], p. 89, and [54], p. 75). In practice the subsets of a set X are defined
through an extensional property on X. In [20], p. 7, this approach to the notion of a subset is
considered as its definition. Note that there the implication x =X y ⇒ (P (y)⇒ P (x)) is also
included in the definition of an extensional property, something which follows though, from
the symmetry of =X . Such a form of separation axiom is used implicitly in [9] and in [19].
Myhill used in his system CST the axiom of bounded separation to implement the notion of
an extensional subset of X. This axiom is also included in Aczel’s system CZF (see [1], p. 26).

Note 2.9.16. One could have defined the equality =A∪B without relying on the non-dependent
assignment routine iXA∪B. If we define first

z =A∪B w :⇔



iXA (z) =X iA(w) , z, w ∈ A

iXA (z) =X iB(w) , z ∈ A & w ∈ B

iXB (z) =X iB(w) , z, w ∈ B

iXB (z) =X iA(w) , z ∈ B & w ∈ A,
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we can define afterwords the operation iXA∪B : A ∪B → X as in Definition 2.6.5. In this way
the non-dependent assignment routine iXA∪B is defined on a set, and it is an operation. Bishop
avoids this definition, probably because this pattern cannot be extended to the definition of a
union of a family of subsets (see Definition 4.2.1). In that case, we cannot write down the
corresponding case distinction for z =A∪B w. Moreover, the proof of

(
A ∪ B, iXA∪B

)
⊆ X is

immediate, if one uses Definition 2.6.5.

Note 2.9.17. The definition of the empty subset ∅X of a set X, given in [9], p. 65, can
be formulated as follows. Let X be a set and x0 ∈ X. The totality ∅X is defined by
z ∈ ∅X :⇔ x0 ∈ X & 0 =N 1. Let iX∅ : ∅X  X be the non-dependent assignment routine,
defined by i(z) := x0, for every z ∈ ∅X , and let z =∅X w :⇔ i(z) =X i(w) :⇔ x0 =X x0. The
pair (∅X , iX∅ ) is the empty subset of X. One can show that =∅X is an equality on ∅X , and

hence ∅X can be considered to be a set. The assignment routine iX∅ is an embedding of ∅X into

X, and hence (∅X , iX∅ ) is a subset of X. As Bishop himself writes in [9], p. 65, “the definition
of ∅ is negativistic, and we prefer to mention the void set as seldom as possible”. In [19], p. 69,
Bishop and Bridges define two subsets A,B of X to be disjoint, when A ∩ B “is the void
subset of X”. Clearly, this “is” cannot be A ∩B := ∅X . If we interpret it as A ∩B =P(X) ∅X ,
we need the existence of certain functions from ∅X to A ∩ B and from A ∩ B to ∅X . The
latter approach is followed in MLTT for the empty type. Following Bishop, we refrain from
elaborating this negatively defined notion.

Note 2.9.18. If (A, iXA ) ⊆ A, (B, iYB) ⊆ Y , and f : X → Y , the extensional image f [A] of A
under f is defined through the extensional property P (y) := ∃a∈A

(
f(iA(a)) =Y y

)
. Similarly,

the extensional pre-image f−1[B] of B under f is defined through the extensional property
Q(x) := ∃b∈B

(
f(x) =Y iB(b)

)
. The subset f(A) of Y contains exactly the outputs f(iXA (a)) of

f , for every a ∈ A, while the subset f [A] of Y contains all the elements of Y that are =Y -equal
to some output f(iA(a)) of f , for every a ∈ A. It is useful to keep the “distinction” between
the subsets f(A), f [A], and f−1(B), f−1[B]. We need the equality in P(X) of a subset of X
to its extensional version (see Note 2.9.9), hence the principle LANC, to get f(A) =P(Y ) f [A]
and f−1(B) =P(X) f

−1[B].

Note 2.9.19. There are instances in Bishop’s work indicating that the powerset of a set is
treated as a set. In [9], p. 68, and in [19], p. 74, the following “function” is defined

j : PKJ(X)→ P(X), (A1, A0) 7→ A1.

This is in complete contrast to our interpretation of a function as an operation between sets.
Of course, such a rule is an exception in [9] and [19]. In the definition of an integration space,
see [19], p. 216, the “set” F(X,Y ) of all strongly extensional partial functions from X to Y
requires quantification over V0. Such a quantification is also implicit in the definition of a
measure space given in [19], p. 282, and in the definition of a complete measure space in [19],
p. 289. These definitions appeared first in [18], p. 47, and p. 55, respectively. The powerset is
repeatedly used as a set in [20] and [76]. It is not known if the treatment of the powerset as a
set implies some constructively unacceptable principle.

Note 2.9.20. There are instances in Bishop’s work indicating that the powerset of a set is
not treated as a set. See e.g., the definition of a set-indexed family of sets in [19], p. 78 (our
Definition 3.1.1). Similarly, in the definition of a family of subsets of a set A indexed by some
set T (see [19], p. 69), the notion of a finite routine that assigns a subset of A to an element
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of T is used, and not the notion of a function from T to P(A). In the definition of a measure
space in [9], p. 183, a subfamily of a given family of complemented sets is considered in order
to avoid quantification over the class of all complemented subsets in the formulations of the
definitional clauses of a measure space (see Note 7.6.6). The powerset axiom is also avoided
in Myhill’s formalization [80] of BISH and in Aczel’s subsequent system CZF of constructive
set theory (see [1]). Although, as we said, it is not known if the use of the powerset as a
set implies some constructively unacceptable principle, it is not accepted in any predicative
development of constructive mathematics.

Note 2.9.21. The notion of a partial function was introduced by Bishop and Cheng in [18],
p. 1, and this definition, together with the introduced term “partial function”, was also
included in Chapter 3 of [19], p. 71. The totality of partial functions F(X) from a set X to R
is crucial to the definition of an integration space in the new measure theory developed in [18],
and seriously extended in [19]. Only the basic algebraic operations on F(X) were defined
in [19], p. 71. The composition of partial functions is mentioned in [39], pp. 66–67. A notion
of a partial dependent operation can be defined as follows. If A, I are sets, a partial dependent
operation is a triplet (A, iIA,Φ

λ0
A ), where (A, iA) ⊆ I, λ0 : A  V0, and Φλ0

A :
c
a∈A λ0(a). If

λ0(a) := Y , for every a ∈ A, then the corresponding partial dependent operation is reduced to
a partial function in F(I, Y ).

Note 2.9.22. In the study of various subsets of a set X we avoided to define the complement
of a subset, since this requires a negative definition. Recall that the negatively defined notion
of empty subset of a set is not really used. In [9] Bishop introduced a positive notion of
the complement of a subset of a set X, the notion of a complemented subset of X. For its
definition we need a notion of a fixed inequality on X, which is compatible with the given
equality of X. In this way we can express the disjointness of two subsets A,B of a set X in a
positive way. Usually, A,B are called disjoint , if A∩B is not inhabited. It is computationally
more informative though, if a positive way is found to express disjointness of subsets. In [25]
a positive notion of apartness is used as a foundation of constructive topology.

Note 2.9.23. The definitions of A∩B,A∪B and A−B appear in [9], p. 66, where A∪B and
A ∩B are special cases of the complemented subsets

⋃
i∈I λ0(i) and

⋂
i∈I λ0(i), respectively

(see Proposition 4.9.2). There the inequality on X is induced by an inhabited set of functions
from X to R. The definition of A ×C appears in [9], p. 206, in the section of the product
measures. One can motivate these definitions applying a “classical” thinking. If x ∈ X, recall
the definitions

x ∈ A :⇔ x ∈ A1 & x /∈ A :⇔ x ∈ A0.

Interpreting the connectives in a classical way, we get

x ∈ A ∪B ⇔ x ∈ A ∨ x ∈ B :⇔ x ∈ A1 ∨ x ∈ B1 :⇔ x ∈ A1 ∪B1,

x /∈ A ∪B ⇔ x /∈ A & x /∈ B :⇔ x ∈ A0 & x ∈ B1 :⇔ x ∈ A1 ∩B1,

x ∈ A ∩B ⇔ x ∈ A & x ∈ B :⇔ x ∈ A1 & x ∈ B1 :⇔ x ∈ A1 ∩B1,

x /∈ A ∩B ⇔ x /∈ A ∨ x /∈ B :⇔ x ∈ A0 ∨ x ∈ B1 :⇔ x ∈ A1 ∪B1,

x ∈ −A⇔ x /∈ A :⇔ x ∈ A0 & x /∈ −A⇔ x ∈ A :⇔ x ∈ A1,

(x, y) ∈ A×C ⇔ x ∈ A & y ∈ C :⇔ x ∈ A1 & y ∈ B1 :⇔ (x, y) ∈ A1 ×B1,

(x, y) /∈ A×C ⇔ x /∈ A ∨ y /∈ C :⇔ x ∈ A0 ∨ y ∈ B0 :⇔ (x, y) ∈ (A0 × Y ) ∪ (X ×B0).
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Note 2.9.24. In [18], pp. 16–17, and in [19], p. 73, the operations between the complemented
subsets of a set X follow Definition 2.8.9 in order to employ the good behaviour of the
corresponding characteristic functions in the new measure theory. In the measure theory of [9],
where the characteristic functions of complemented subsets are not crucial, the operations
between complemented subsets are defined according to Definition 2.8.4. Bishop and Cheng
use the notation A×B instead of A⊗B. As it is evident from the previous figures, the 1-
and 0-components of the complemented subsets in the Bishop-Cheng definition are subsets of
the corresponding 1- and 0-components of the complemented subsets in the Bishop definition
from [9]. Actually, the definitions of the operations of complemented subsets in [9] associate
to the 1-component of the complemented subset a maximal complement. The two sets of
operations though, share the same algebraic and set-theoretic properties. They only behave
differently with respect to their characteristic functions. Based on the work [113] of Shulman,
we can motivate the second set of operations in a way similar to the motivation provided for
the first set of operations in Note 2.9.23. Keeping the definitions of x ∈ A and x /∈ B, we can
apply a “linear” interpretation of the connectives ∨ and &. As it is mentioned in [113], p. 2,
the multiplicative version P par Q of P ∨Q in linear logic represents the pattern “if not P ,
then Q; and if not Q, then P”. Let

x ∈ A ∨B :⇔ [x /∈ A⇒ x ∈ B] & [x /∈ B ⇒ x ∈ A].

With the use of Ex falsum quodlibet the implication x /∈ A⇒ x ∈ B holds if x ∈ A :⇔ x ∈ A1,
or if x /∈ A :⇔ x ∈ A0 and x ∈ B :⇔ x ∈ B1 i.e., if x ∈ A0 ∩B1. Hence, the first implication
holds if x ∈ A1 ∪ (A0 ∩B1). Similarly, the second holds if x ∈ B1 ∪ (B0 ∩A1). Thus

x ∈ A ∨B ⇔ x ∈ [A1 ∪ (A0 ∩B1)] ∩ [B1 ∪ (B0 ∩A1)],

and the last intersection is equal to Dom(A ∨B)! One then can define x /∈ A ∨B :⇔ x /∈
A & x /∈ B, and x ∈ A ∧B :⇔ x ∈ A & x ∈ B, and x /∈ A ∧B :⇔ x ∈ (−A) ∨ (−B).



36 CHAPTER 2. FUNDAMENTALS OF BISHOP SET THEORY



Chapter 3

Families of sets

We develop the basic theory of set-indexed families of sets and of family-maps between them.
We study the exterior union of a family of sets Λ, or the

∑
-set of Λ, and the set of dependent

functions over Λ, or the
∏

-set of Λ. We prove the distributivity of
∏

over
∑

for families of
sets indexed by a product of sets, which is the translation of the type-theoretic axiom of choice
into BST. Sets of sets are special set-indexed families of sets that allow “lifting” of functions
on the index-set to functions on them. The direct families of sets and the set-relevant families
of sets are introduced. The index-set of the former is a directed set, while the transport maps
of the latter are more than one and appropriately indexed. With the use of the introduced
universe Vim

0 of sets and impredicative sets we study families of families of sets.

3.1 Set-indexed families of sets

Roughly speaking, a family of sets indexed by some set I is an assignment routine λ0 : I  V0

that behaves like a function i.e., if i =I j, then λ0(i) =V0 λ0(j). Next follows an exact
formulation of this description that reveals the witnesses of the equality λ0(i) =V0 λ0(j).

Definition 3.1.1. If I is a set, a family of sets indexed by I, or an I-family of sets, is a pair
Λ := (λ0, λ1), where λ0 : I  V0, and λ1, a modulus of function-likeness for λ0, is given by

λ1 :
k

(i,j)∈D(I)

F
(
λ0(i), λ0(j)

)
, λ1(i, j) := λij , (i, j) ∈ D(I),

such that the transport maps λij of Λ satisfy the following conditions:

(a) For every i ∈ I, we have that λii := idλ0(i).

(b) If i =I j and j =I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λjk

λij λik

I is the index-set of the family Λ. If X is a set, the constant I-family of sets X is the pair
CX := (λX0 , λ

X
1 ), where λ0(i) := X, for every i ∈ I, and λ1(i, j) := idX , for every (i, j) ∈ D(I)

(see the left diagram in Definition 3.1.2).
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The dependent operation λ1 should have been written as follows

λ1 :
k

z∈D(I)

F
(
λ0(pr1(z)), λ0(pr2(z))

)
,

but, for simplicity, we avoid the use of the primitive projections pr1,pr2. Condition (a) of
Definition 3.1.1 could have been written as λii =F(λ0(i),λ0(i)) idλ0(i). If i =I j, then by conditions
(b) and (a) of Definition 3.1.1 we get idλ0(i) := λii = λji ◦ λij and idλ0(j) := λjj = λij ◦ λji i.e.,
(λij , λji) : λ0(i) =V0 λ0(j). In this sense λ1 is a modulus of function-likeness for λ0.

Definition 3.1.2. The pair Λ2 := (λ2
0 , λ

2
1), where λ2

0 : 2 V0 with λ2
0(0) := X, λ2

0(1) := Y ,
and λ2

1(0, 0) := idX and λ2
1(1, 1) := idY , is the 2-family of X and Y

X X

X

Y

Y

Y .
idX

idX idX

idY

idY idX

The n-family Λn of the sets X1, . . . Xn, where n ≥ 1, and the N-family ΛN := (λN
0 , λ

N
1 ) of the

sets (Xn)n∈N are defined similarly1.

Definition 3.1.3. Let Λ := (λ0, λ1) and M := (µ0, µ1) be I-families of sets. A family-map
from Λ to M , in symbols Ψ: Λ⇒M is a dependent operation Ψ:

c
i∈I F

(
λ0(i), µ0(i)

)
such

that for every (i, j) ∈ D(I) the following diagram commutes

µ0(i) µ0(j).

λ0(j)λ0(i)

µij

λij

Ψi Ψj

Let MapI(Λ,M) be the totality of family-maps from Λ to M , which is equipped with the equality

Ψ =MapI(Λ,M) Ξ :⇔ ∀i∈I
(
Ψi =F(λ0(i),µ0(i)) Ξi

)
.

If Ξ : M ⇒ N , the composition family-map Ξ ◦ Ψ: Λ ⇒ N is defined, for every i ∈ I, by
(Ξ ◦Ψ)i := Ξi ◦Ψi

λ0(i) λ0(j)

µ0(j)µ0(i)

ν0(i) ν0(j).

λij

Ψj

µij

Ψi

Ξi Ξj

νij

(Ξ ◦Ψ)i (Ξ ◦Ψ)j

1It is immediate to show that Λn is an n-family, and ΛN is an N-family.
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The identity family-map IdΛ :
c
i∈I F

(
λ0(i), λ0(i)

)
on Λ, is defined by IdΛ(i) := idλ0(i), for

every i ∈ I. Let Fam(I) be the totality of I-families, equipped with the canonical equality

Λ =Fam(I) M :⇔ ∃Φ∈MapI(Λ,M)∃Ξ∈MapI(M,Λ)

(
(Φ,Ξ): Λ =Fam(I) M

)
,

(Φ,Ξ): Λ =Fam(I) M :⇔
(
Φ ◦ Ξ = idM & Ξ ◦ Φ = idΛ

)
.

It is straightforward to show that the composition family-map Ξ ◦ Ψ is a family-map
from Λ to N , and that the equalities on MapI(Λ,M) and Fam(I) satisfy the conditions of an
equivalence relation. It is natural to accept the totality Map(Λ,M) as a set. If Fam(I) was a set
though, the constant I-family with value Fam(I) would be defined though a totality in which
it belongs to. From a predicative point of view, this cannot be accepted. The membership
condition of the totality Fam(I) though, does not depend on the universe V0, therefore it is
also natural not to consider Fam(I) to be a class. Hence, Fam(I) is a totality “between” a
(predicative) set and a class. For this reason, we say that Fam(I) is an impredicative set . Next
follows an obvious generalisation of a family-map.

Definition 3.1.4. If Λ,M ∈ Fam(I), such that Λ =Fam(I) M , we define the set

PrfEql0(Λ,M) :=
{

(Φ,Ψ) ∈ MapI(Λ,M)× MapI(M,Λ) | (Φ,Ψ) : Λ =Fam(I) M
}
,

equipped with the equality of the product of sets. If Φ ∈ MapI(Λ,M),Ψ ∈ MapI(M,Λ),Φ′ ∈
MapI(M,N) and Ψ′ ∈ MapI(N,M), let refl(Λ) :=

(
IdΛ, IdΛ

)
and (Φ,Ψ)−1 := (Ψ,Φ) and

(Φ,Ψ) ∗ (Φ′,Ψ′) := (Φ′ ◦ Φ,Ψ ◦Ψ′).

As in the case of V0 and the corresponding set PrfEql0(X,Y ), in general, not all elements
of PrfEql0(Λ,M) are equal. If I := 1 := {0}, and λ0(0) := 2, and if Φ0 := id2 and
Ψ0 := sw2, then (Φ,Φ) ∈ PrfEql0(Λ,Λ) and (Ψ,Ψ) ∈ PrfEql0(Λ,Λ), while Φ 6=MapI(Λ,Λ) Ψ,
since Φ0 6=F(2,2) Ψ0. It is immediate to show the groupoid-properties (i)-(iv) for the equality
of the totality Fam(I).

Definition 3.1.5. Let I, J,K be sets, h ∈ F(J, I), g ∈ F(K,J), Λ := (λ0, λ1) ∈ Fam(I),
M := (µ0, µ1) ∈ Fam(J), and N := (ν0, ν1) ∈ Fam(K). A family-map from M to Λ over h
is a dependent operation Ψ:

c
j∈J F

(
µ0(j), λ0(h(j))

)
, such that for every (j, j′) ∈ D(J) the

following diagram commutes

λ0(h(j)) λ0(h(j′)),

µ0(j′)µ0(j)

λh(j)h(j′)

µjj′

Ψj Ψj′

where Ψj := Ψ(j) is the j-component of Ψ, for every j ∈ J . We write Ψ: M
h⇒ Λ for such a

family-map. If Ψ: M
h⇒ Λ and Ξ: N

g⇒M , the composition family-map Ψ ◦ Ξ: N
h◦g
=⇒ Λ over

h ◦ g is defined, for every k ∈ K, by (Ψ ◦ Ξ)k := Ψg(k) ◦ Ξk
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ν0(k) ν0(k′)

µ0(g(k))µ0(g(k′))

λ0(h(g(k))) λ0(h(g(k′))).

νkk′

Ξk′

µg(k)g(k′)

Ξk

Ψg(k) Ψg(k′)

λh(g(k))h(g(k′))

(Ψ ◦ Ξ)k (Ψ ◦ Ξ)k′

Definition 3.1.6. Let Λ := (λ0, λ1),M := (µ0, µ1) be I-families of sets.

(i) The product family of Λ and M is the pair Λ×M := (λ0 × µ0, λ1 × µ1), where

(λ0 × µ0)(i) := λ0(i)× µ0(i); i ∈ I,(
λ1 × µ1

)
ij

: λ0(i)× µ0(i)→ λ0(j)× µ0(j); (i, j) ∈ D(I),(
λ1 × µ1

)
ij

(
x, y
)

:=
(
λij(x), µij(y)

)
; x ∈ λ0(i) & y ∈ µ0(i).

(ii) The function space family from Λ to M is the pair F(Λ,M) :=
(
F(λ0, µ0),F(λ1, µ1)

)
where[

F(λ0, µ0)
]
(i) := F

(
λ0(i), µ0(i)

)
; i ∈ I,

F(λ1, µ1) :
k

(i,j)∈D(I)

F

(
F
(
λ0(i), µ0(i)

)
,F
(
λ0(j), µ0(j)

))
F(λ1, µ1)ij := F(λ1, µ1)(i, j) : F

(
λ0(i), µ0(i)

)
→ F

(
λ0(j), µ0(j)

)
; (i, j) ∈ D(I),

F(λ1, µ1)ij(f) := µij ◦ f ◦ λji

λ0(j) µ0(j).

µ0(i)λ0(i)

F(λ1,µ1)ij(f)

f

λji µij

(iii) If K is a set, Σ := (σ0, σ1) is a K-family of sets and h : I → K, the composition family
of Σ with h is the pair Σ ◦ h := (σ0 ◦ h, σ1 ◦ h), where

(σ0 ◦ h)(i) := σ0(h(i)); i ∈ I,

(σ1 ◦ h)ij := (σ1 ◦ h)(i, j) : σ0(h(i))→ σ0(h(j)); (i, j) ∈ D(I),

(σ1 ◦ h)ij := σh(i)h(j).

It is straightforward to show that Λ ×M , F(Λ,M), and Σ ◦ h are I-families. E.g., for
F(Λ,M), and if i, j, k ∈ I and i =I j =I k, we have that

F(λ1, µ1)ii(f) := µii ◦ f ◦ λii := idµ0(i) ◦ f ◦ idλ0(i) := f,
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F(λ1, µ1)jk

(
F(λ1, µ1)ij(f)

)
:= µjk ◦

[
µij ◦ f ◦ λji

]
◦ λkj

:=
[
µjk ◦ µij

]
◦ f ◦

[
λji ◦ λkj

]
= µik ◦ f ◦ λki
:= F(λ1, µ1)ik(f).

Proposition 3.1.7. Let X,Y, I be sets and CX , CY , CX×Y , CF(X,Y ) the constant I-families
X,Y,X × Y , and F(X,Y ), respectively.

(i) CX × CY =Fam(I) C
X×Y .

(ii) F(CX , CY ) =Fam(I) C
F(X,Y ).

Proof. (i) Let Φ: CX×CY ⇒ CX×Y and Ψ: CX×Y ⇒ CX×CY be defined by Φi := X×Y :=
Ψi, for every i ∈ I, then by the commutativity of the following left diagram

X × Y X × Y

X × YX × Y

F(X,Y ) F(X,Y ),

F(X,Y )F(X,Y )

λij

(λX1 × µY1 )ij

idX×Y idX×Y

µij

F(λX1 , µ
Y
1 )ij

idF(X,Y ) idF(X,Y )

Φ,Ψ are well-defined family-maps and (Φ,Ψ): CX × CY =Fam(I) C
X×Y .

(ii) Let Φ: F(CX , CY ) ⇒ CF(X,Y ) and Ψ: CF(X,Y ) ⇒ F(CX , CY ) be defined by Φi :=
F(X,Y ) := Ψi, for every i ∈ I, then by the commutativity of the above right diagram
Φ,Ψ are well-defined family-maps and (Φ,Ψ): F(CX , CY ) =Fam(I) C

F(X,Y ).

The operations on families of sets generate operations on family-maps.

Proposition 3.1.8. Let Λ := (λ0, λ1),M := (µ0, µ1), N := (ν0, ν1), K := (κ0, κ1) ∈ Fam(I).

(i) If Φ: N ⇒ Λ and Ψ: N ⇒M , then Φ×Ψ: N ⇒ Λ×M is the product family-map of Φ
and Ψ, where, for every i ∈ I, the map (Φ×Ψ)i : ν0(i)→ λ0(i)× µ0(i) is defined by

(Φ×Ψ)i(z) :=
(
Φi(z),Ψi(z)

)
; z ∈ ν0(i).

(ii) If Φ: N ⇒ Λ and Ψ: K ⇒M , then Φ×Ψ: N ×K ⇒ Λ×M is the product family-map of
Φ and Ψ, where, for every i ∈ I, the map (Φ×Ψ)i : ν0(i)× κ0(i)→ λ0(i)× µ0(i) is defined by

(Φ×Ψ)i(x, y) :=
(
Φi(x),Ψi(y)

)
; (x, y) ∈ ν0(i)× κ0(i).

(iii) If Φ: N ⇒ Λ, then F(Φ)c : F(Λ,M) ⇒ F(N,M), where, for every i ∈ I, the function
F(Φ)ci : F

(
λ0(i), µ0(i)

)
→ F

(
ν0(i), µ0(i)

)
is defined by

F(Φ)ci (f) := f ◦ Φi; f ∈ F
(
λ0(i), µ0(i)

)
ν0(j) λ0(i) µ0(i) µ0(j) λ0(i) ν0(i).

Φi f

F(Φ)ci (f)

f Φi

F(Φ)di (f)
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If Φ: Λ⇒ N , then F(Φ)d : F(M,Λ)⇒ F(M,N), where, for every i ∈ I and f ∈ F
(
µ0(i), λ0(i)

)
,

the function F(Φ)di : F
(
µ0(i), λ0(i)

)
→ F

(
µ0(i), ν0(i)

)
is defined by F(Φ)di (f) := Φi ◦ f .

(iv) If Φ: N ⇒ Λ and Ψ: M ⇒ K, then F(Φ,Ψ): F(Λ,M)⇒ F(N,K), where for every i ∈ I,
the map F(Φ,Ψ)i : F

(
λ0(i), µ0(i)→ F

(
ν0(i), κ0(i) is defined by

F(Φ,Ψ)i(f) := Ψi ◦ f ◦ Φi; f ∈ F
(
λ0(i), µ0(i)

)

ν0(i) κ0(i).

µ0(i)λ0(i)

F(Φ,Ψ)i(f)

f

Φi Ψi

Proof. We prove (i) and (iii), as the proofs of (ii), (iv) are similar to that of (i), (iii), respectively.
(i) If i =I j, the following diagram is commutative

µ0(i)× λ0(i) µ0(j)× λ0(j),

ν0(j)ν0(i)

(λ1 × µ1)ij

νij

(Φ×Ψ)i (Φ×Ψ)j

since by the commutativity of the following two diagrams

λ0(i) λ0(j)

ν0(j)ν0(i)

µ0(i) µ0(j),

ν0(j)ν0(i)

λij

νij

Φi Φj

µij

νij

Ψi Ψj

(Φ×Ψ)j
(
νij(z)

)
:=
(
Φj(νij(z)),Ψj(νij(z))

)
=
(
λij(Φi(z)), µij(Ψi(z))

)
:= (λ1 × µ1)ij

(
Φi(z),Ψi(z)

)
:= (λ1 × µ1)ij

(
(Φ×Ψ)i(z)

)
; z ∈ ν0(i).

(ii) If i =I j, the following diagram is commutative

F
(
ν0(i), µ0(i)

)
F
(
ν0(j), µ0(j)

)
,

F
(
λ0(j), µ0(j)

)
F
(
λ0(i), µ0(i)

)

F(ν1,µ1)ij

F(λ1,µ1)ij

F(Φ)ci F(Φ)cj
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F(Φ)cj
(
F(λ1, µ1)ij(f)

)
:= F(Φ)cj(µij ◦ f ◦ λji)
:= (µij ◦ f ◦ λji) ◦ Φj

:= µij ◦ f ◦ (λji ◦ Φj)

:= µij ◦ f ◦ (Φi ◦ νji)
:= µij ◦ (f ◦ Φi) ◦ νji
:= F(ν1, µ1)ij(f ◦ Φi)

:= F(ν1, µ1)ij
(
F(Φ)ci (f)

)
; f ∈ F

(
λ0(i), µ0(i)

)
.

The equality λji ◦ Φj = Φi ◦ νji used above follows from the definition of Φ: N ⇒ Λ on
(j, i) ∈ D(I). The proof of F(Φ)d : F(M,Λ)⇒ F(M,N) is similar.

3.2 The exterior union of a family of sets

Definition 3.2.1. Let Λ := (λ0, λ1) be an I-family of sets. The exterior union, or disjoint
union, or the

∑
-set

∑
i∈I λ0(i) of Λ, and its canonical equality are defined by

w ∈
∑
i∈I

λ0(i) :⇔ ∃i∈I∃x∈λ0(i)

(
w := (i, x)

)
,

(i, x) =∑
i∈I λ0(i) (j, y) :⇔ i =I j & λij(x) =λ0(j) y.

The
∑

-set of the 2-family Λ2 of the sets X and Y is the coproduct of X and Y , and we write

X + Y :=
∑
i∈2

λ2
0(i).

Proposition 3.2.2. (i) The equality on
∑

i∈I λ0(i) satisfies the conditions of an equivalence
relation.

(ii) Let (I,=I , 6=I) be a discrete set and 6=λ0(i) an inequality on λ0(i), for every i ∈ I. If the
transport map λij is strongly extensional, for every (i, j) ∈ D(I), then the relation

(i, x) 6=∑
i∈I λ0(i) (j, y) :⇔ i 6=I j ∨

(
i =I j & λij(x) 6=λ0(j) y

)
is an inequality on

∑
i∈I λ0(i). If (λ0(i),=λ0(i), 6=λ0(i)) is a discrete set, for every i ∈ I, then(∑

i∈I λ0(i),=∑
i∈I λ0(i), 6=∑

i∈I λ0(i)

)
is discrete. Moreover, if 6=I is tight, and if, for every

i ∈ I, the inequality 6=λ0(i) is tight, then the inequality 6=∑
i∈I λ0(i) is tight.

Proof. (i) Let (i, x), (j, y), (k, z) ∈
∑

i∈I λ0(i). Since i =I i and λii := idλ0(i), we get
(i, x) =∑

i∈I λ0(i) (i, x). If (i, x) =∑
i∈I λ0(i) (j, y), then j =I i and λji(y) = λji(λij(x)) = λii(x) :=

idλ0(i)(x) := x, hence (j, y) =∑
i∈I λ0(i) (i, x). If (i, x) =∑

i∈I λ0(i) (j, y) and (j, y) =∑
i∈I λ0(i) (k, z),

then i =I j & j =I k ⇒ i =I k, and

λik(x) =λ0(k) (λjk ◦ λij)(x) := λjk(λij(x)) =λ0(k) λjk(y) =λ0(k) z.

(ii) The condition (Ap1) of Definition 2.2.5 is trivially satisfied. To show condition (Ap2), we
suppose first that i 6=I j, hence by the corresponding condition of 6=I we get (j, y) 6=∑

i∈I λ0(i)

(i, x). If i =I j & λij(x) 6=λ0(j) y, we show that λji(y) 6=λ0(i) x. By the extensionality of 6=λ0(j)

(Remark 2.2.6) the inequality λij(x) 6=λ0(j) y implies the inequality λij(x) 6=λ0(j) λij
(
λji(y)

)
,
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and since λij is strongly extensional, we get x 6=λ0(i) λji(y). To show condition (Ap3), let
(i, x) 6=∑

i∈I λ0(i) (j, y), and let (k, z) ∈
∑

i∈I λ0(i). If i 6=I j, then by condition (Ap3) of 6=I we
get k 6=I i, or k 6=I j, hence (k, z) 6=∑

i∈I λ0(i) (i, x), or (k, z) 6=∑
i∈I λ0(i) (j, y). Suppose next

i =I j & λij(x) 6=λ0(j) y. Since the set (I,=I , 6=I) is discrete, k 6=I i, or k =I i =I j. If k 6=I i,
then what we want to show follows immediately. If k =I i =I j, then by the extensionality of
6=λ0(j) and the strong extensionality of the transport map λkj we have that

λij(x) 6=λ0(j) y ⇒ λkj
(
λik(x)

)
6=λ0(j) λkj

(
λjk(y)

)
⇒ λik(x) 6=λ0(k) λjk(y).

Hence, by condition (Ap3) of 6=λ0(k) we get λik(x) 6=λ0(k) z, or λjk(y) 6=λ0(k) z, hence
(i, x) 6=∑

i∈I λ0(i) (k, z), or (j, y) 6=∑
i∈I λ0(i) (k, z). Suppose next that (λ0(i),=λ0(i), 6=λ0(i))

is a discrete set, for every i ∈ I. We show that (i, x) =∑
i∈I λ0(i) (j, y) i.e., i =I j and

λij(x) =λ0(i) y, or (i, x) 6=∑
i∈I λ0(i) (j, y) i.e., i 6=I j or i =I j & λij(x) 6=λ0(j) y. Since

(I,=I , 6=I) is discrete, i =I j, or i 6=I j. In the first case, and since (λ0(j),=λ0(j), 6=λ0(j)) is
discrete, we get λij(x) =λ0(j) y or λij(x) 6=λ0(j) y, and what we want follows immediately. If
i 6=I j, we get (i, x) 6=∑

i∈I λ0(i) (j, y). Finally, we suppose that 6=I is tight, and that 6=λ0(i) is
tight, for every i ∈ I. Let ¬

[
(i, x) 6=∑

i∈I λ0(i) (j, y)
]

i.e.,[
i 6=I j ∨

(
i =I j & λij(x) 6=λ0(j) y

)]
⇒ ⊥.

From this hypothesis we get the conjunction2[
i 6=I j ⇒ ⊥

]
&
[(
i =I j & λij(x) 6=λ0(j) y

)
⇒ ⊥

]
.

By the tightness of 6=I we get i =I j. The implication
(
i =I j & λij(x) 6=λ0(j) y

)
⇒ ⊥ logically

implies the implication (i =I j) ⇒
(
λij(x) 6=λ0(j) y ⇒ ⊥

)
, and since its premiss i =I j is

derived by the tightness of 6=I , by Modus Ponens we get λij(x) 6=λ0(j) y ⇒ ⊥. Since 6=λ0(i) is
tight, we conclude that λij(x) =λ0(j) y, hence (i, x) =∑

i∈I λ0(i) (j, y).

The totality
∑

i∈I λ0(i) is considered to be a set. By the definition of X + Y

w ∈ X + Y ⇔ ∃i∈2∃x∈λ2
0(i)

(
w := (i, x)

)
⇔ ∃x∈X

(
w := (0, x)

)
∨ ∃y∈Y

(
w := (1, y)

)
,

(i, x) =X+Y (i′, x′)⇔ (i =2 i
′ =2 0 & x =X x′) ∨ (i =2 i

′ =2 1 & x =Y x′).

One could have defined X + Y independently from Λ2, and then prove X + Y =V0

∑
i∈2 λ

2
0(i).

Corollary 3.2.3. If (X,=X , 6=X), (Y,=Y , 6=Y ) are discrete, (X+Y,=X+Y , 6=X+Y ) is discrete.

Proof. Since (2,=2, 6=2) is a discrete set, we use Proposition 3.2.2(ii).

Definition 3.2.4. Let Λ := (λ0, λ1),M := (µ0, µ1) be I-families of sets. The coproduct family
of Λ and M is the pair Λ +M := (λ0 + µ0, λ1 + µ1), where (λ0 + µ0)(i) := λ0(i) + µ0(i), for
every i ∈ I, and the map

(
λ1 + µ1

)
ij

: λ0(i) + µ0(i)→ λ0(j) + µ0(j) is defined by

(
λ1 + µ1

)
ij

(w) :=

{ (
0, λij(x)

)
, w := (0, x)(

1, µij(y)
)

, w := (1, y)
; w ∈ λ0(i) + µ0(i).

2Here we use the logical implication
(
(φ ∨ ψ)⇒ ⊥

)
⇒ [(φ⇒ ⊥) & (ψ ⇒ ⊥)].
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It is straightforward to show that Λ +M is an I-family of sets.

Proposition 3.2.5. Let Λ := (λ0, λ1),M := (µ0, µ1), and N := (ν0, ν1) be I-families of sets.
If Φ: Λ ⇒ N and Ψ: M ⇒ N , then Φ + Ψ: Λ + M ⇒ N is the coproduct family-map of Φ
and Ψ, where, for every i ∈ I, the map (Φ + Ψ)i : λ0(i) + µ0(i)→ ν0(i) is defined by

(Φ + Ψ)i(w) :=

{
Φi(x) , w := (0, x)
Ψi(y) , w := (1, y)

; w ∈ λ0(i) + µ0(i).

Proof. If i =I j, the following diagram is commutative

ν0(i) ν0(j),

λ0(j)+µ0(j)λ0(i)+µ0(i)

νij

(λ1+µ1)ij

(Φ + Ψ)i (Φ + Ψ)j

since by the commutativity of the following left diagram

ν0(i) ν0(j)

λ0(j)λ0(i)

ν0(i) ν0(j),

µ0(j)µ0(i)

νij

λij

Φi Φj

νij

µij

Ψi Ψj

(Φ + Ψ)j
(
(λ1 + µ1)ij(0, x)

)
:= (Φ + Ψ)j

(
0, λij(x)

)
= Φj

(
λij(x)

)
= νij

(
Φi(x)

)
:= νij

(
(Φ + Ψ)i(0, x)

)
; x ∈ λ0(i).

By the commutativity of the right diagram, (Φ+Ψ)j
(
(λ1+µ1)ij(1, y)

)
= νij

(
(Φ+Ψ)i(1, y)

)
.

Proposition 3.2.6. If Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I), then∑
i∈I

(
λ0(i) + µ0(i)

)
=V0

(∑
i∈I

λ0(i)

)
+

(∑
i∈I

µ0(i)

)
.

Proof. Let f :
∑

i∈I
(
λ0(i) + µ0(i)

)
 
∑

i∈I λ0(i) +
∑

i∈I µ0(i) be defined by

f(i, w) :=

{ (
0, (i, x)

)
, w := (0, x)(

1, (i, y)
)

, w := (1, y)
; i ∈ I, w ∈ λ0(i) + µ0(i).

Clearly, f is a well-defined operation. To show that f is a function, we suppose that

(i, w) =∑
i∈I (λ0(i)+µ0(i)) (j, u) :⇔ i =I j & (λ1 + µ1)ij(w) =λ0(j)+µ0(j) u,

and we show that f(i, w) = f(j, u). The equality (λ1 + µ1)ij(w) =λ0(j)+µ0(j) u amounts to
λij(x) =λ0(j) x

′, if w := (0, x) and u := (0, x′), or to µij(y) =µ0(j) y
′, if w := (1, y) and
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u := (1, y′). With the use of these equalities and the definition of the canonical equality on the
coproduct it is straightforward to show that

(
0, (i, x)

)
=
(
0, (j, x′)

)
, or

(
1, (i, y)

)
=
(
1, (j, y′)

)
,

hence f(i, w) = f(j, u). Let g :
∑

i∈I λ0(i) +
∑

i∈I µ0(i) 
∑

i∈I
(
λ0(i) + µ0(i)

)
be defined by

g(U) :=

{ (
i, (0, x)

)
, U :=

(
0, (i, x)

)(
i, (1, y)

)
, U :=

(
1, (i, y)

) ; U ∈
∑
i∈I

λ0(i) +
∑
i∈I

µ0(i).

Proceeding similarly, we show that the operation g is a function. It is straightforward to show
that (f, g) :

∑
i∈I
(
λ0(i) + µ0(i)

)
=V0

∑
i∈I λ0(i) +

∑
i∈I µ0(i).

Proposition 3.2.7. Let Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I), and Ψ : Λ⇒M .

(i) For every i ∈ I the operation eΛ
i : λ0(i) 

∑
i∈I λ0(i), defined by eΛ

i (x) := (i, x), for every
x ∈ λ0(i), is an embedding.

(ii) The operation ΣΨ :
∑

i∈I λ0(i) 
∑

i∈I µ0(i), defined by

ΣΨ(i, x) := (i,Ψi(x)); (i, x) ∈
∑
i∈I

λ0(i),

is a function, such that for every i ∈ I the following diagram commutes

∑
i∈I λ0(i)

∑
i∈I µ0(i).

µ0(i)λ0(i)

ΣΨ

Ψi

eΛ
i eMi

(iii) If Ψi is an embedding, for every i ∈ I, then ΣΨ is an embedding.

(iv) If Ψi is a surjection, for every i ∈ I, then ΣΨ is an surjection.

(v) If Φ : M ⇒ Λ, where Φi is a modulus of surjectivity for Ψi, for every i ∈ I, then a modulus
of surjectivity for ΣΨ is the operation σΨ:

∑
i∈I µ0(i) 

∑
i∈I λ0(i), defined by

σΨ(i, y) := (i,Φi(y)); (i, y) ∈
∑
i∈I

µ0(i).

Proof. (i) If x, y ∈ λ0(i), then eΛ
i (x) =∑

i∈I λ0(i) e
Λ
i (y) if and only if (i, x) =∑

i∈I λ0(i) (i, y), which
is equivalent to λii(x) =λ0(i) y :⇔ x =λ0(i) y.
(ii) If (i, x) =∑

i∈I λ0(i) (j, y) i.e., i =I j and λij(x) =λ0(j) y, we show that (i,Ψi(x)) =∑
i∈I µ0(i)

(j,Ψj(y)) i.e., i =I j and µij(Ψi(x)) =µ0(j) Ψj(y). Since Ψ: Λ⇒M , we get µij(Ψi(x)) =µ0(j)

Ψj(λij(x)) =µ0(j) Ψj(y). The required commutativity of the diagram is immediate to show.
(iii) Since Ψ is a family-map from Λ to M , we have that

ΣΨ(i, x) =∑
i∈I µ0(i) ΣΨ(j, y) :⇔ (i,Ψi(x)) =∑

i∈I µ0(i) (j,Ψj(y))

:⇔ i =I j & µij(Ψ(x)) =µ0(j) Ψj(y)

⇔ i =I j & Ψj(λij(x)) =µ0(j) Ψj(y)

⇒ i =I j & λij(x) =λ0(j) y

:⇔ (i, x) =∑
i∈I λ0(i) (j, y).



3.3. DEPENDENT FUNCTIONS OVER A FAMILY OF SETS 47

(iv) Let (i, y) ∈
∑

i∈I µ0(i). Since Ψi is a surjection, there is x ∈ λ0(i) such that Ψi(x) = y.
Hence ΣΨ(i, x) := (i,Ψi(x)) =∑

i∈I µ0(i) (i, y), since µii
(
Ψi(x)

)
:= Ψi(x) =µ0(i) y.

(v) If y ∈ µ0(i), then Ψi(Φi(y)) =µ0(i) y. To show that the operation σΨ is a function, we
suppose (i, y) =∑

i∈I µ0(i) (j, z) :⇔ i =I j & µij(y) =µ0(j) z and we show that (i, σi(y)) =∑
i∈I λ0(i)

(j, σj(z)) :⇔ i =I j & λij(Φi(y)) =λ0(j) Φj(z). Since Φj : µ0(j) → λ0(j), we have that
µij(y) =µ0(j) z ⇒ Φj

(
µij(y)

)
=λ0(j) Φj(z). By the commutativity of the diagram

λ0(i) λ0(j),

µ0(j)µ0(i)

λij

µij

Φi Φj

Φj(z) =λ0(j) Φj

(
µij(y)

)
=λ0(j) λij(Φi(y)). Since µii

(
Ψi(Φi(y))

)
:= Ψi(Φi(y))

)
=µ0(i) y,

ΣΨ
(
σΨ(i, y)

)
:= ΣΨ

(
(i,Φi(y))

)
:=
(
i,Ψi(Φi(y))

)
=∑

i∈I µ0(i) (i, y).

Definition 3.2.8. Let Λ := (λ0, λ1) be an I-family of sets. The first projection on
∑

i∈I λ0(i)
is the operation prΛ

1 :
∑

i∈I λ0(i)  I, defined by prΛ
1 (i, x) := pr1(i, x) := i, for every

(i, x) ∈
∑

i∈I λ0(i). We may only write pr1, if Λ is clearly understood from the context.

By the definition of the canonical equality on
∑

i∈I λ0(i) we get that prΛ
1 is a function.

Definition 3.2.9. Let Λ := (λ0, λ1) be an I-family of sets. The
∑

-indexing of Λ is the
pair ΣΛ := (σΛ

0 , σ
Λ
1 ), where σΛ

0 :
∑

i∈I λ0(i)  V0 is defined by σΛ
0 (i, x) := λ0(i), for every

(i, x) ∈
∑

i∈I λ0(i), and σΛ
1

(
(i, x), (j, y)

)
:= λij, for every

(
(i, x), (j, y)

)
∈ D

(∑
i∈I λ0(i)

)
.

Clearly, ΣΛ is a family of sets over
∑

i∈I λ0(i), and Σ: ΣΛ prΛ1=⇒ Λ (see Definition 3.1.5),
where, if w := (i, x) ∈

∑
i∈I λ0(i), we define Σw : λ0(i)→ λ0(prΛ

1 (w)) to be the identity idλ0(i).

Definition 3.2.10. Let Λ := (λ0, λ1) be an I-family of sets. The second projection on∑
i∈I λ0(i) is the dependent operation prΛ

2 :
c

(i,x)∈
∑
i∈I λ0(i) λ0(i), defined by prΛ

2 (i, x) :=

pr2(i, x) := x, for every (i, x) ∈
∑

i∈I λ0(i). We may only write pr2, when the family of sets
Λ is clearly understood from the context.

In Remark 3.3.2 we show that prΛ
2 is a dependent function over the family ΣΛ.

3.3 Dependent functions over a family of sets

Definition 3.3.1. Let Λ := (λ0, λ1) be an I-family of sets. The totality
∏
i∈I λ0(i) of dependent

functions over Λ, or the
∏

-set of Λ, is defined by

Θ ∈
∏
i∈I

λ0(i) :⇔ Θ ∈ A(I, λ0) & ∀(i,j)∈D(I)

(
Θj =λ0(j) λij(Θi)

)
,

and it is equipped with the canonical equality and the canonical inequality of the set A(I, λ0).
If X is a set and ΛX is the constant I-family X (see Definition 3.1.1), we use the notation

XI :=
∏
i∈I

X.
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Clearly, the property P (Φ) :⇔ ∀(i,j)∈D(I)

(
Θj =λ0(j) λij(Θi)

)
is extensional on A(I, λ0), the

equality on
∏
i∈I λ0(i) is an equivalence relation.

∏
i∈I λ0(i) is considered to be a set.

Remark 3.3.2. If Λ := (λ0, λ1) is an I-family of sets and ΣΛ := (σΛ
0 , σ

Λ
1 ) is the

∑
-indexing

of Λ, then prΛ
2 is a dependent function over ΣΛ.

Proof. By Definition 3.2.10 the second projection prΛ
2 of Λ is the dependent assignment

prΛ
2 :

c
(i,x)∈

∑
i∈I λ0(i) λ0(i), such that prΛ

2 (i, x) := x, for every (i, x) ∈
∑

i∈I λ0(i). It suffices

to show that if (i, x) =∑
i∈I λ0(i) (j, y) :⇔ i =I j & λij(x) =λ0(j) y, then

prΛ
2 (j, y) := y =λ0(j) λij(x) := σΛ

1

(
(i, x), (j, y)

)(
prΛ

2 (i, x)
)
.

Remark 3.3.3. (i) If Λ2 is the 2-family of the sets X and Y , then
∏
i∈2 λ

2
0(i) =V0 X × Y .

(ii) If I, A are sets, and Λ := (λA0 , λ1) is the constant I-family A, then AI =V0 F(I, A).

Proof. (i) Let f :
∏
i∈2 λ

2
0(i) X×Y be defined by f(Φ) := (Φ0,Φ1), for every Φ ∈

∏
i∈2 λ

2
0(i).

Let g : X × Y  
∏
i∈2 λ

2
0(i) be defined by g(x, y) := Φ(x,y), for every (x, y) ∈ X × Y . It is

easy to show that f, g are well-defined functions and (f, g) :
∏
i∈2 λ

2
0(i) =V0 X × Y .

(ii) Let h : AI  F(I, A) be defined by h(Φ) := hΦ : I → A, where hΦ(i) := Φi, for every
Φ ∈ AI and i ∈ I. Let k : F(I, A) AI be defined by k(e) := Φe, where [Φe]i := e(i), for every
e ∈ F(I, A) and i ∈ I. Then h, k are well-defined functions and (h, k) : AI =V0 F(I, A).

Corollary 3.3.4. If Λ,M ∈ Fam(I) and Ψ:
c
i∈I F

(
λ0(i), µ0(i)

)
, the following are equivalent:

(i) Ψ: Λ⇒M .

(ii) Ψ ∈
∏
i∈I
[
F(λ0, µ0)

]
(i).

Proof. If i =I j, the commutativity of the following left diagram

µ0(i) µ0(j)

λ0(j)λ0(i)

µ0(i) µ0(j),

λ0(j)λ0(i)

µij

λij

Φi Φj

µij

λji

Φi Φj

is equivalent to the commutativity of the above right one, hence the defining condition for
Ψ ∈ Map(Λ,M) is equivalent to the defining condition Ψj = F(λ1, µ1)ij(Ψi) := µij ◦Ψi ◦ λji
for Ψ ∈

∏
i∈I
(
λ0(i)× µ0(i)

)
(see Definition 3.1.6(ii)).

Proposition 3.3.5. Let Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I), and Ψ : Λ⇒M .

(i) If i ∈ I, the operation πΛ
i :
∏
i∈I λ0(i) λ0(i), defined by Θ 7→ Θi, is a function.

(ii) The operation ΠΨ :
∏
i∈I λ0(i) 

∏
i∈I µ0(i), defined by

[ΠΨ(Θ)]i := Ψi(Θi); i ∈ I,

is a function, such that for every i ∈ I the following diagram commutes
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∏
i∈I λ0(i)

∏
i∈I µ0(i).

µ0(i)λ0(i)

ΠΨ

Ψi

πΛ
i πMi

(iii) If Ψi is an embedding, for every i ∈ I, then ΠΨ is an embedding.

(iv) If Φ : M ⇒ Λ such that Φi is a modulus of surjectivity for Ψi, for every i ∈ I, the operation
πΨ:

∏
i∈I µ0(i) 

∏
i∈I λ0(i) is a modulus of surjectivity for

∏
Ψ, where[

πΨ(Ω)
]
i

:= Φi(Ωi); Ω ∈
∏
i∈I

µ0(i), i ∈ I.

Proof. (i) This follows immediately from the definition of equality on
∏
i∈I λ0(i).

(ii) First we show that ΠΨ is well-defined i.e., ΠΨ(Θ) ∈
∏
i∈I µ0(i). If i =I j, then by the

commutativity of the following left diagram from the definition of a family-map

µ0(i) µ0(j)

λ0(j)λ0(i)

λ0(i) λ0(j),

µ0(j)µ0(i)

µij

λij

Ψi Ψj

λij

µij

Φi Φj

[ΠΨ(Θ)]j := Ψj(Θj) = Ψj

(
λij(Θi)

)
= µij

(
Ψi(Θi)

)
:= µij

(
[ΠΨ(Θ)]i

)
.

It is immediate to show that ΠΨ is a function and that the required diagram commutes.
(iii) If Θ,Θ′ ∈

∏
i∈I λ0(i), then

ΠΨ(Θ) =∏
i∈I µ0(i) ΠΨ(Θ′) :⇔ ∀i∈I

(
Ψi(Θi) =µ0(i) Ψi(Θ

′
i)
)

⇒ ∀i∈I
(
Θi =λ0(i) Θ′i

)
:⇔ Θ =∏

i∈I λ0(i) Θ′.

(iv) First we show that πΨ is well-defined i.e., πΨ(Ω) ∈
∏
i∈I λ0(i). If i =I j, and since

Φ : M ⇒ Λ, by the commutativity of the above right diagram[
πΨ(Ω)

]
j

:= Φj(Ωj) =λ0(j) Φj

(
µij(Ωi)

)
=λ0(j) λij

(
Φi(Ωi)

)
:= λij

([
πΨ(Ω)

]
i

)
.

It is immediate to show that πΨ is a function. Finally we show that ΠΨ
(
πΨ(Ω)

)
= Ω, for

every Ω ∈
∏
i∈I µ0(i). If i ∈ I, and since Φi is a modulus of surjectivity for Ψi, we get[

ΠΨ
(
πΨ(Ω)

)]
i

:= Ψi

([
πΨ(Ω)

]
i

)
:= Ψi

(
Φi(Ωi)

)
= Ωi.

Proposition 3.3.6. If Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I), then∏
i∈I

(
λ0(i)× µ0(i)

)
=V0

(∏
i∈I

λ0(i)

)
×
(∏
i∈I

µ0(i)

)
,

MapI(Λ,M) =V0

∏
i∈I

F
(
λ0(i), µ0(i)

)
.
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Proof. Let the operation f :
∏
i∈I
(
λ0(i) × µ0(i)

)
 
∏
i∈I λ0(i) ×

∏
i∈I µ0(i) be defined by

f(Φ) :=
(
pr1(Φ), pr2(Φ)

)
, for every Φ ∈

∏
i∈I
(
λ0(i)× µ0(i)

)
, where pr1(Φ)i := pr1(Φi) and

pr2(Φ)i := pr2(Φi), for every i ∈ I. Using Definition 3.1.6(i),

pr1(Φ)j := pr1(Φj) = pr1

(
(λ1×µ1)ij(Φi)

)
:= pr1

(
λij(pr1(Φ)i), µij(pr2(Φ)i

)
:= λij(pr1(Φ)i),

hence pr1(Φ) ∈
∏
i∈I λ0(i). Similarly, pr2(Φ) ∈

∏
i∈I µ0(i). It is immediate to show that the

operation f is a function. Let g :
∏
i∈I λ0(i)×

∏
i∈I µ0(i) 

∏
i∈I
(
λ0(i)× µ0(i)

)
be defined

by g(Ψ,Ξ) := Φ, for every Ψ ∈
∏
i∈I λ0(i) and Ξ ∈

∏
i∈I µ0(i), where Φi := (Ψi,Ξi), for every

i ∈ I. We show that g is well-defined i.e., Φ ∈
∏
i∈I
(
λ0(i)× µ0(i)

)
. If i =I j, then

(λ1 × µ1)ij(Φi) := (λ1 × µ1)ij(Ψi,Ξi) :=
(
λij(Ψi), µij(Ξi)

)
= (Ψj ,Ξj) := Φj .

Clearly, f, g are inverse to each other. For the equality MapI(Λ,M) =V0

∏
i∈I F

(
λ0(i), µ0(i)

)
,

we use Coroallry 3.3.4 and the corresponding identity maps are its witnesses.

3.4 Subfamilies of families of sets

Definition 3.4.1. Let Λ := (λ0, λ1) ∈ Fam(I) and h : J → I. The pair Λ◦h := (λ0 ◦h, λ1 ◦h),
defined in Definition 3.1.6, is called the h-subfamily of Λ, and we write (Λ ◦ h)J ≤ ΛI . If
J := N, we call Λ ◦ h the h-subsequence of Λ.

Remark 3.4.2. If Λ ∈ Set(I), then Λ ◦ h ∈ Set(J) if and only h is an embedding.

Proof. Let Λ ◦ h ∈ Set(J) and h(j) =I h(j′), hence (λh(j)h(j′), λh(j′)h(j)) : λ0(h(j)) =V0

λ0(h(j′)), and j =J j
′. If h is an embedding and (λ0 ◦ h)(j) =V0 (λ ◦ h)(j′) :⇔ λ0(j(j)) =V0

λ0(h(j′)), then h(j) =I h(j′), since Λ ∈ Set(I), and hence j =J j
′.

Remark 3.4.3. Let Λ,M ∈ Fam(I), h ∈ F(J, I) and g ∈ F(I,K).

(i) Λ ◦ idI := Λ.

(ii) (Λ ◦ g) ◦ h := Λ ◦ (g ◦ h).

(iii) If Φ: Λ⇒M , then Φ ◦ h : Λ ◦ h⇒M ◦ h, where

(Φ ◦ h)j : λ0(h(j))→ µ0(h(j)), (Φ ◦ h)j := Φh(j); j ∈ J.

(iv) If Φ: Λ⇒M , then Φh : Λ ◦ h h⇒M , where

Φh
j : λ0(h(j))→ µ0(h(j)), Φh

j := Φh(j); j ∈ J.

(iv) (Λ ◦ h)× (M ◦ h) := (Λ×M) ◦ h.

(v) F
(
(Λ ◦ h), (M ◦ h)

)
:= F(Λ,M) ◦ h.

Proof. All cases are straightforward to show.

Proposition 3.4.4. Let Λ ∈ Fam(I), and h : J → I.

(i) The operation
∑

h :
∑

j∈J λ0(h(j)) 
∑

i∈I λ0(i), defined by∑
h

(j, u) := (h(j), u); (j, u) ∈
∑
j∈J

λ0(h(j)),
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is a function, and it is an embedding if h is an embedding.

(ii) The operation
∏
h :
∏
i∈I λ0(i) 

∏
j∈J λ0(h(j)), defined by

Φ 7→
∏
h

(Φ),

(∏
h

Φ

)
j

:= Φh(j); Φ ∈
∏
i∈I

λ0(i), j ∈ J,

is a function, and if h is an embedding, then
∏
h is an embedding.

Proof. (i) By definition we have that

(j, u) =∑
j∈J (λ0◦h)(j) (j′, u′) :⇔ j =J j

′ & λh(j)h(j′)(u) =λ0(h(j′) u
′,

(h(j), u) =∑
i∈I λ0(i) (h(j′), u′) :⇔ h(j) =I h(j′) & λh(j)h(j′)(u) =λ0(h(j′) u

′.

Since h is a function, the operation
∑

h is a function. If h is an embedding, it is immediate to
show that

∑
h is an embedding.

(ii) First we show that
∏
h is well-defined. If j =J j

′, then(∏
h

Φ

)
j′

:= Φh(j′) =λ0(h(j′)) λh(j)h(j′)

(
Φh(j)

)
:= (λ1 ◦ h)jj′

((∏
h

Φ

)
j

)
.

It is immediate to show that
∏
h is a function. Let h be a surjection and let Φ,Θ ∈

∏
i∈I λ0(i)

such that
∏
h(Φ) =∏

j∈J λ0(h(j))

∏
h(Θ). If i ∈ I, let j ∈ J with h(j) =I i. As Φi =λ0(i) λh(j)iΦh(j)

and Θi =λ0(i) λh(j)iΘh(j), and since Φh(j) =λ0(h(j)) Θh(j), we get Φi =λ0(i) Θi.

3.5 Families of sets over products

Proposition 3.5.1. Let Λ := (λ0, λ1),K := (k0, k1) ∈ Fam(I) and M := (µ0, µ1), N :=
(ν0, ν1) ∈ Fam(J).

(i) Λ⊗M := (λ0 ⊗ µ0, λ1 ⊗ µ1) ∈ Fam(I × J), where λ0 ⊗ µ0 : I × J  V0 is defined by

(λ0 ⊗ µ0)(i, j) := λ0(i)× µ0(j); (i, j) ∈ I × J,

(λ1 ⊗ µ1)(i,j)(i′j′) : λ0(i)× µ0(j)→ λ0(i′)× µ0(j′),

(λ1 ⊗ µ1)(i,j)(i′j′)(u,w) :=
(
λii′(u), µjj′(w)

)
; (u,w) ∈ λ0(i)× µ0(j).

(ii) If Φ: Λ⇒ K and Ψ: M ⇒ N , then Φ⊗Ψ: Λ⊗M ⇒ K⊗N , where, for every (i, j) ∈ I×J ,

(Φ⊗Ψ)(i,j) : λ0(i)× µ0(j)→ k0(i)× ν0(j),

(Φ⊗Ψ)(i,j)(u,w) :=
(
Φi(u),Ψj(w)

)
; (u,w) ∈ λ0(i)× µ0(j).

(iii) The following equalities hold∑
(i,j)∈I×J

(
λ0(i)× µ0(j)

)
=V0

(∑
i∈I

λ0(i)

)
×
(∑
j∈J

µ0(j)

)
,

∏
(i,j)∈I×J

(
λ0(i)× µ0(j)

)
=V0

(∏
i∈I

λ0(i)

)
×
(∏
j∈J

µ0(j)

)
.
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Proof. (i) The proof is straightforward.
(ii) We show the required following commutativity by the following supposed ones by

k0(i)× ν0(j) k0(i′)× ν0(j′)

λ0(i′)× µ0(j′)λ0(i)× µ0(j)

(k1 ⊗ ν1)(i,j)(i′,j′)

(λ1 ⊗ µ1)(i,j)(i′,j′)

(Φ⊗Ψ)(i,j) (Φ⊗Ψ)(i′,j′)

k0(i) k0(i′)

λ0(i′)λ0(i)

µ0(j) µ0(j′),

µ0(j′)µ0(j)

kii′

λii′

Φi Φi′

νjj′

µjj′

Ψj Ψj′

(Φ⊗Ψ)(i′,j′)

(
(λ1 ⊗ µ1)(i,j)(i′,j′)

)
:= (Φ⊗Ψ)(i′,j′)

(
λii′(u), µjj′(w)

)
:=
(
Φi′
(
λii′(u)

)
,Ψj′

(
µjj′(w)

))
=
(
kii′
(
Φi(u)

)
, νjj′

(
Ψj(w)

))
:= (k1 ⊗ ν1)(i,j)(i′,j′)

(
Φi(u),Ψj(w)

)
:= (k1 ⊗ ν1)(i,j)(i′,j′)

(
(Φ⊗Ψ)(i,j)(u,w)

)
.

(iii) For the equality on
∑

(i,j)∈I×J
(
λ0(i)× µ0(j)

)
we have that(

(i, j), (u,w)
)

=∑
(i,j)∈I×J (λ0(i)×µ0(j))

(
(i′, j′), (u′, w′)

)
:⇔ i =I i

′ & j =J j
′ &

(λ1 ⊗ µ1)(i,j)(i′,j′)(u,w) =λ0(i′)×µ0(j′) (u′, w′) :⇔ λii′(u) =λ0(i′) u
′ & µjj′(w) =µ0(j′) w

′.

For the equality on
(∑

i∈I λ0(i)
)
×
(∑

j∈J µ0(j)
)

we have that(
(i, u), (j, w)

)
=(∑

i∈I λ0(i)

)
×
(∑

j∈J µ0(j)

) ((i′, u′), (j′, w′)) :⇔

(i, u) =∑
i∈I λ0(i) (i′, u′) & (j, w) =∑

j∈J µ0(j) (j′, w′),

i.e., if i =I i
′ and λii′(u) =λ0(i′) u

′, and j =J j′ and µjj′(w) =µ0(j′) w
′. As the equality

conditions for the two sets are equivalent, the operation φ :
(∑

i∈I λ0(i)
)
×
(∑

j∈J µ0(j)
)
 ∑

(i,j)∈I×J
(
λ0(i)× µ0(j)

)
, defined by the rule

(
(i, u), (j, w)

)
7→
(
(i, j), (u,w)

)
, together with

the operation θ :
∑

(i,j)∈I×J
(
λ0(i)× µ0(j)

)
 
(∑

i∈I λ0(i)
)
×
(∑

j∈J µ0(j)
)
, defined by the

inverse rule
(
(i, j), (u,w)

)
7→
(
(i, u), (j, w)

)
, are well-defined functions that witness the required

equality of the two sets in V0.
(iv) We proceed similarly to the proof of Proposition 3.3.6.

Next we define new families of sets generated by a given family of sets indexed by the
product X × Y of X and Y . These families will also be used in section 5.1.
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Definition 3.5.2. Let X,Y be sets, and let R := (ρ0, ρ1) be an (X × Y )-family of sets.

(i) If x ∈ X, the x-component of R is the pair Rx := (ρx0 , ρ
x
1), where the assignment routines

ρx0 : Y  V0 and ρx1 :
c

(y,y′)∈D(Y ) F
(
ρx0(y), ρx0(y′)

)
are defined by ρx0(y) := ρ0(x, y), for every

y ∈ Y , and ρx1(y, y′) := ρxyy′ := ρ(x,y)(x,y′), for every (y, y′) ∈ D(Y ).

(ii) If y ∈ Y , the y-component of R is the pair Ry := (ρy0, ρ
y
1), where the assignment routines

ρy0 : Y  V0 and ρy1 :
c

(x,x′)∈D(X) F
(
ρy0(x), ρy0(x′)

)
are defined by ρy0(x) := ρ0(x, y), for every

x ∈ X, and ρy1(x, x′) := ρyxx′ := ρ(x,y)(x′,y), for every (x, x′) ∈ D(X).

(iii) Let
∑1R := (

∑1 ρ0,
∑1 ρ1), where

∑1 ρ0 : X  V0 and

1∑
ρ1 :

k

(x,x′)∈D(X)

F

(( 1∑
ρ0

)
(x),

( 1∑
ρ0

)
(x′)

)
are defined by

( 1∑
ρ0

)
(x) :=

∑
y∈Y

ρx0(y) :=
∑
y∈Y

ρ0(x, y); x ∈ X,

( 1∑
ρ1

)
(x, x′) :=

( 1∑
ρ1

)
xx′

:
∑
y∈Y

ρ0(x, y)→
∑
y∈Y

ρ0(x′, y); (x, x′) ∈ D(X),

( 1∑
ρ1

)
xx′

(y, u) :=
(
y, ρ(x,y)(x′,y)(u)

)
; (y, u) ∈

∑
y∈Y

ρ0(x, y).

(iv) Let
∑2R := (

∑2 ρ0,
∑2 ρ1), where

∑2 ρ0 : Y  V0 and

2∑
ρ1 :

k

(y,y′)∈D(X)

F

(( 2∑
ρ0

)
(y),

( 2∑
ρ0

)
(y′)

)
are defined by

( 2∑
ρ0

)
(y) :=

∑
x∈X

ρy0(x) :=
∑
x∈X

ρ0(x, y); y ∈ Y,

( 2∑
ρ1

)
(y, y′) :=

( 2∑
ρ1

)
yy′

:
∑
x∈X

ρ0(x, y)→
∑
x∈X

ρ0(x, y′); (y, y′) ∈ D(Y ),

( 2∑
ρ1

)
yy′

(x,w) :=
(
x, ρ(x,y)(x,y′)(w)

)
; (x,w) ∈

∑
x∈X

ρ0(x, y).

(v) Let
∏1R := (

∏1 ρ0,
∏1 ρ1), where

∏1 ρ0 : X  V0 and

1∏
ρ1 :

k

(x,x′)∈D(X)

F

(( 1∏
ρ0

)
(x),

( 1∏
ρ0

)
(x′)

)
are defined by

( 1∏
ρ0

)
(x) :=

∏
y∈Y

ρx0(y) :=
∏
y∈Y

ρ0(x, y); x ∈ X,
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( 1∏
ρ1

)
(x, x′) :=

( 1∏
ρ1

)
xx′

:
∏
y∈Y

ρ0(x, y)→
∏
y∈Y

ρ0(x′, y); (x, x′) ∈ D(X),

[( 1∏
ρ1

)
xx′

(Θ)

]
y

:= ρ(x,y)(x′,y)(Θy)
)
; Θ ∈

∏
y∈Y

ρ0(x, y), y ∈ Y.

(vi) Let
∏2R := (

∏2 ρ0,
∏2 ρ1), where

∏2 ρ0 : Y  V0 and

2∏
ρ1 :

k

(y,y′)∈D(X)

F

(( 2∏
ρ0

)
(y),

( 2∏
ρ0

)
(y′)

)
are defined by

( 2∏
ρ0

)
(y) :=

∏
x∈X

ρy0(x) :=
∏
x∈X

ρ0(x, y); y ∈ Y,

( 2∏
ρ1

)
(y, y′) :=

( 2∏
ρ1

)
yy′

:
∏
x∈X

ρ0(x, y)→
∏
x∈X

ρ0(x, y′); (y, y′) ∈ D(Y ),

[( 2∏
ρ1

)
yy′

(Φ)

]
x

:= ρ(x,y)(x,y′)(Φx)
)
; Φ ∈

∏
x∈X

ρ0(x, y), x ∈ X.

It is easy to show that Ry,
∑1R,

∏1R ∈ Fam(X) and Rx,
∑2R,

∏2R ∈ Fam(Y ).

Proposition 3.5.3. Let X,Y ∈ V0, R := (ρ0, ρ1), S := (σ0, σ1) ∈ Fam(X×Y ), and Φ: R⇒ S.

(i) Let Φx :
c
y∈Y F

(
ρx0(y), σx0 (y)

)
, where Φx

y := Φ(x,y) : ρx0(y)→ σx0 (y).

(ii) Let Φy :
c
x∈X F

(
Ry(x), Sy(x)

)
, where Φy

x := Φ(x,y) : ρy0(x)→ σy0(x).

(iii) Let
∑1 Φ:

c
x∈X F

((∑1 ρ0

)
(x),

(∑1 σ0

)
(x)
)
, where, for every x ∈ X, we define( 1∑

Φ

)
x

:
∑
y∈Y

ρy0(x)→
∑
y∈Y

σx0 (y)

( 1∑
Φ

)
x

(y, u) :=
(
y,Φ(x,y)(u)

)
; (y, u) ∈

∑
y∈Y

ρ0(x, y).

(iv) If
∑2 Φ:

c
y∈Y F

((∑2 ρ0

)
(y),

(∑2 σ0

)
(y)
)
, where, for every y ∈ Y , we define( 2∑

Φ

)
y

:
∑
x∈X

ρx0(y)→
∑
x∈X

σy0(x)

( 2∑
Φ

)
y

(x,w) :=
(
x,Φ(x,y)(w)

)
; (x,w) ∈

∑
x∈X

ρ(x, y).

(v) Let
∏1 Φ:

c
x∈X F

((∏1 ρ0

)
(x),

(∏1 σ0

)
(x)
)
, where, for every x ∈ X, we define( 1∏

Φ

)
x

:
∏
y∈Y

ρy0(x)→
∏
y∈Y

σx0 (y)
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[( 1∏
Φ

)
x

(Θ)

]
y

:= Φ(x,y)

(
Θy))

)
; Θ ∈

∏
y∈Y

ρ0(x, y).

(vi) Let
∏2 Φ:

c
y∈Y F

((∏2 ρ0

)
(y),

(∏2 σ0

)
(y)
)
, where, for every y ∈ Y , we define

( 2∏
Φ

)
y

:
∏
x∈X

ρx0(y)→
∏
x∈X

σy0(x)

[( 2∏
Φ

)
y

(Θ)

]
x

:= Φ(x,y)

(
Θx)

)
; Θ ∈

∏
x∈X

ρ0(x, y).

Then Φx : Rx ⇒ Sx, Φy : Ry ⇒ Sy,
∑1 Φ:

(∑1R
)
⇒
(∑1 S

)
,
∑2 Φ:

(∑2R
)
⇒
(∑2 S

)
,∏1 Φ:

(∏1R
)
⇒
(∏1 S

)
, and

∏2 Φ:
(∏2R

)
⇒
(∏2 S

)
.

Proof. The proofs of (ii), (iv) and (vi) are like the proofs of (i), (iii), and (v), respectively.
(i) It is immediate to show that the operation Φx

y : ρx0(y)  σx0 (y) is a function. If y =Y y′,
the commutativity of the following left diagram from the hypothesis Φ: R⇒ S

σ0(x, y) σ0(x, y′)

ρ0(x, y′)ρ0(x, y)

σx0 (y) σx0 (y′)

ρx0(y′)σx0 (y)

σ(x,y)(x,y′)

ρ(x,y)(x,y′)

Φ(x,y) Φ(x,y′)

σxyy′

ρxyy′

Φx
y Φx

y′

implies the required commutativity of the right above diagram, as these are the same diagrams.
(iii) First we explain why the operation

(∑1 Φ
)
x

is a function. If

(y, u) =∑
y∈Y ρ

y
0(x) (y′, u′) :⇔ y =Y y′ & ρ(x,y)(x,y′)(u) =ρ0(x,y′) u

′,(
y,Φ(x,y)(u)

)
=∑

y∈Y σ
y
0 (x)

(
y,Φ(x,y)(u)

)
:⇔ y =Y y′ & σ(x,y)(x,y′)

(
Φ(x,y)(u)

)
=σ0(x,y′) Φ(x,y′)(u

′).

From our hypothesis the second equality is equivalent to

σ(x,y)(x,y′)

(
Φ(x,y)(u)

)
=σ0(x,y′) Φ(x,y′)

(
ρ(x,y)(x,y′)(u)

)
,

which is the commutativity of the above left diagram. If x =X x′, and since Φ(x′,y)◦ρ(x,y)(x′,y) =
σ(x,y)(x′,y) ◦ Φ(x,y) we get the commutativity of the following left diagram by

∑
y∈Y σ0(x,y)

∑
y∈Y σ0(x′,y)

∑
y∈Y ρ0(x′,y)

∑
y∈Y ρ0(x,y)

∏
y∈Y σ0(x,y)

∏
y∈Y σ0(x′,y)

∏
y∈Y ρ0(x′,y)

∏
y∈Y ρ0(x,y)

(∑1 σ1

)
xx′

(∑1 ρ1

)
xx′

(∑1 Φ
)
x

(∑1 Φ
)
x′

(∏1 σ1

)
xx′

(∏1 ρ1

)
xx′

(∏1 Φ
)
x

(∏1 Φ
)
x′
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( 1∑
Φ

)
x′

(( 1∑
ρ1

)
xx′

(y, u)

)
:=

( 1∑
Φ

)
x′

(
y, ρ(x,y)(x′,y)(u)

)
:=
(
y,Φ(x′,y)

(
ρ(x,y)(x′,y)(u)

))
=
(
y, σ(x,y)(x′,y)

(
Φ(x,y)(u)

))
:=

( 1∑
σ1

)
xx′

(
y,Φ(x,y)(u)

))
:=

( 1∑
σ1

)
xx′

(( 1∑
Φ

)
x

(y, u)

)
.

(v) First we explain why the operation
(∏1 Φ

)
x

is well-defined. If y =Y y′ and Θ ∈
∏
y∈Y ρ

x
0(y),

then by the commutativity of the above left diagram we have that

[( 1∏
Φ

)
x

(Θ)

]
y′

:= Φ(x,y′)

(
Θy′
)

= Φ(x,y′)

(
ρ(xy)(x,y′)(Θy)

)
= σ(x,y)(x,y′)

(
Φ(x,y)(Θy)

)
:= σxyy′

([( 1∏
Φ

)
x

(Θ)

]
y

)
.

Clearly, the operation
(∏1 Φ

)
x

is a function. If x =X x′, and by the commutativity of the
first diagram in the proof of (iii) we get the commutativity of the above right diagram

[( 1∏
Φ

)
x′

(( 1∏
ρ1

)
xx′

(Θ)

)]
y

:= Φ(x′,y)

[( 1∏
ρ1

)
xx′

(Θ)

]
y

)
:= Φ(x′,y)

(
ρ(x,y)(x′,y)(Θy)

)
= σ(x,y)(x′,y)

(
Φ(x,y)(Θy)

)
:= σ(x,y)(x′,y)

([ 1∏
Φ

)
x

(Θ)

]
y

)

:=

[( 1∏
σ1

)
xx′

( 1∏
Φ

)
x

(Θ)

)]
y

.

Proposition 3.5.4. If R := (ρ0, ρ1) ∈ Fam(X × Y ), the following equalities hold.∑
x∈X

∑
y∈Y

ρ0(x, y) =V0

∑
y∈Y

∑
x∈X

ρ0(x, y),

∏
x∈X

∏
y∈Y

ρ0(x, y) =V0

∏
y∈Y

∏
x∈X

ρ0(x, y).

Proof. The proof is straightforward.



3.6. THE DISTRIBUTIVITY OF
∏

OVER
∑

57

3.6 The distributivity of
∏

over
∑

We prove the translation of the type-theoretic axiom of choice in BST (Theorem 3.6.4).

Lemma 3.6.1. Let R := (ρ0, ρ1), Rx := (ρx0 , ρ
x
1) and

∑1R := (
∑1 ρ0,

∑1 ρ1) be the families
of sets of Definition 3.5.2. If Φ ∈

∏
x∈X

(∑1 ρ0

)
(x), the operation fΦ : X  Y , defined by

x 7→ prR
x

1 (Φx), for every x ∈ X, is a function from X to Y .

Proof. If x =X x′, then Φx′ =
(∑1 ρ1

)
xx′

(Φx). Since Φx ∈
∑

y∈Y ρ0(x, y), there are y ∈ Y
and u ∈ ρ0(x, y) such that Φx := (y, u). Hence fΦ(x) := y and

fΦ(x′) := prR
x

1 (Φx′) =Y prR
x

1

(( 1∑
ρ1

)
xx′

(Φx)

)
:= prR

x

1

(
y, ρ(x,y)(x′,y)(u)

)
:= y.

Lemma 3.6.2. Let R := (ρ0, ρ1), Rx := (ρx0 , ρ
x
1) and

∑1R := (
∑1 ρ0,

∑1 ρ1) be as above. If

f : X → Y , the pair Nf :=
(
νf0 , ν

f
1

)
is an X-family of sets, where the assignment routines

νf0 : X  V0 and νf1 :
c

(x,x′)∈D(X) F
(
νf0 (x), νf0 (x′)

)
are given by νf0 (x) := ρ0(x, f(x)), for

every x ∈ X, and νfxx′ := ρ(x,f(x))(x′,f(x′)), for every (x, x′) ∈ D(X),

Proof. The proof is straightforward (see also [95], p. 12).

Lemma 3.6.3. If R := (ρ0, ρ1) and Nf :=
(
νf0 , ν

f
1

)
are families of sets as above, then the pair

Ξ := (ξ0, ξ1) is an F(X,Y )-family of sets, where the assignment routines ξ0 : F(X,Y ) V0

and ξ1 :
c

(f,f ′)∈D(F(X,Y )) F
(
ξ0(f), ξ0(f ′)

)
are defined by

ξ0(f) :=
∏
x∈X

νf0 (x) :=
∏
x∈X

ρ0(x, f(x)); f ∈ F(X,Y ),

ξff ′ :
∏
x∈X

ρ0(x, f(x))→
∏
x∈X

ρ0(x, f ′(x)); (f, f ′) ∈ D(F(X,Y )),

[
ξff ′(H)

]
x

:= ρ(x,f(x))(x,f ′(x))(Hx); H ∈
∏
x∈X

ρ0(x, f(x)), x ∈ X.

Proof. First we show that the operation ξff ′ is well-defined i.e., if

H ∈
∏
x∈X

ρ0(x, f(x)) :⇔ ∀(x,x′)∈D(X)

(
Hx′ = νfxx′(Hx) := ρ(x,f(x))(x′,f(x′))(Hx)

)
, then

ξff ′(H) ∈
∏
x∈X

ρ0(x, f ′(x)) :⇔ ∀(x,x′)∈D(X)

([
ξff ′(H)

]
x′

= νfxx′
([
ξff ′(H)

]
x

)
If x =X x′, then f(x) =Y f(x′) =Y f ′(x′) =Y f ′(x), and

νfxx′
([
ξff ′(H)

]
x

)
:= ρ(x,f ′(x))(x′,f ′(x′))

([
ξff ′(H)

]
x

)
:= ρ(x,f ′(x))(x′,f ′(x′))

(
ρ(x,f(x))(x,f ′(x))(Hx)

)
= ρ(x,f(x))(x′,f ′(x′))(Hx)

= ρ(x′,f(x′))(x′,f ′(x′))

(
ρ(x,f(x))(x′,f(x′))(Hx)

)
= ρ(x′,f(x′))(x′,f ′(x′))(Hx′)

:=
[
ξff ′(H)

]
x′
.
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It is immediate to see to show that ξff ′ is a function. If f ∈ F(X,Y ), then[
ξff (H)

]
x

:= ρ(x,f(x))(x,f(x))(Hx) := idρ0(x,f(x))(Hx) := Hx.

Moreover, if f =F(X,Y ) f
′ =F(X,Y ) f

′′, the following diagram is commutative:

ξ0(f ′) ξ0(f ′′)

ξ0(f)

ξf ′f ′′

ξff ′ ξff ′′

[
(ξf ′f ′′ ◦ ξff ′)(H)

]
x

:=
[
ξf ′f ′′

(
ξff ′(H)

)]
x

:= ρ(x,f ′(x))(x,f ′′(x))

([
ξff ′(H)

]
x

)
:= ρ(x,f ′(x))(x,f ′′(x))

(
ρ(x,f(x))(x,f ′(x))(Hx)

)
= ρ(x,f(x))(x,f ′′(x))(Hx)

:=
[
ξff ′′(H)

]
x
.

Theorem 3.6.4 (Distributivity of
∏

over
∑

). Let X,Y be sets, R := (ρ0, ρ1), Rx := (ρx0 , ρ
x
1),

and
∑1R := (

∑1 ρ0,
∑1 ρ1) as above. If

Φ ∈
∏
x∈X

( 1∑
ρ0

)
(x) :=

∏
x∈X

∑
y∈Y

ρ0(x, y), there is

ΘΦ ∈
∏
x∈X

νfΦ
0 (x) :=

∏
x∈X

ρ0(x, fΦ(x)),

where fΦ : X → Y is defined in Lemma 3.6.1. The following operation is a function:

ac :
∏
x∈X

∑
y∈Y

ρ0(x, y) 
∑

f∈F(X,Y )

∏
x∈X

ρ0(x, f(x))

Φ 7→
(
fΦ,ΘΦ

)
; Φ ∈

∏
x∈X

∑
y∈Y

ρ0(x, y).

Proof. Since by Remark 3.3.2,

prR
x

2 ∈
∏

w∈
∑
y∈Y ρ

x
0 (y)

ρx0(prR
x

1 (w)) :=
∏

w∈
∑
y∈Y ρ0(x,y)

ρ0(x, prR
x

1 (w)),

prR
x

2 (Φx) ∈ ρ0(x, prR
x

1 (Φx)) := ρ0(x, fΦ(x)).

Hence, the dependent operation ΘΦ ∈
c
x∈X ν

fΦ
0 (x) :=

c
x∈X ρ0(x, fΦ(x)), defined by

ΘΦ(x) := prR
x

2 (Φx) := u; Φx := (y, u), y := fΦ(x), x ∈ X,

is well-defined. To show that ΘΦ ∈
∏
x∈X ν

fΦ
0 (x), let x =X x′. Since,

ΘΦ(x′) := prR
x′

2 (Φx′) := u′; Φx′ := (y′, u′), y′ := fΦ(x′),
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we need to show that u′ =ρ0(x′,y′) ν
fΦ

xx′(u). Since Φ ∈
∏
x∈X

(∑1 ρ0

)
(x), we have that

(y′, u′) := (fΦ(x′), u′) := Φx′ =∑
y∈Y ρ0(x′,y)

( 1∑
ρ1

)
xx′

(Φx) =∑
y∈Y ρ0(x′,y)

(
y, ρ(x,y)(x′,y)(u)

)
.

By the last equality we get y =Y y′ and

ρx
′
yy′
(
ρ(x,y)(x′,y)(u)

)
=
ρx
′

0 (y′)
u′ :⇔ ρ(x′,y)(x′,y′)

(
ρ(x,y)(x′,y)(u)

)
=ρ0(x′,y′) u

′

⇔ ρ(x,y)(x′,y′)(u) =ρ0(x′,y′) u
′.

Hence,
νfΦ

xx′(u) := ρ(x,fΦ(x))(x′,fΦ(x′))(u) := ρ(x,y)(x′,y′)(u) =ρ0(x′,y′) u
′.

To show that the operation ac is a function, we suppose that Φ =∏
x∈X µ0(x) Φ′, and we show

that ac(Φ) =∑
f∈F(X,Y ) ξ0(f) ac(Φ′) i.e.,(

fΦ,ΘΦ

)
=∑

f∈F(X,Y ) ξ0(f)

(
fΦ′ ,ΘΦ′

)
:⇔ fΦ =F(X,Y ) fΦ′ & ξfΦ,fΦ′ (ΘΦ) =ξ0(fΦ′ )

ΘΦ′ .

By definition, Φ =∏
x∈X

(∑1 ρ0

)
(x)

Φ′ if and only if Φx =(∑1 ρ0

)
(x)

Φx
′, for every x ∈ X. By

Lemma 3.6.1
fΦ(x) := prR

x

1 (Φx) := y; Φx := (y, u),

fΦ′(x) := prΛx

1 (Φ′x) := y′; Φ′x := (y′, u′).

Since Φx =(∑1 ρ0

)
(x)

Φx
′, we get y =Y y′, and ρ(x,y)(x,y′)(u) =ρ0(x,y′) u

′. From the first equality

we get and hence fΦ(x) =Y fΦ′(x), and from the second we conclude that[
ξfΦ,fΦ′ (ΘΦ)

]
x

:= ρ(x,fΦ(x))(x,fΦ′ (x))

(
[Θf ]x

)
:= ρ(x,y)(x,y′)(u) =ρ0(x,y′) u

′ :=
[
ΘΦ′

]
x
.

3.7 Sets of sets

Definition 3.7.1. If I is a set, a set of sets indexed by I, or an I-set of sets, is a pair
Λ := (λ0, λ1) ∈ Fam(I) such that the following condition is satisfied:

Q(Λ) :⇔ ∀i,j∈I
(
λ0(i) =V0 λ0(j)⇒ i =I j

)
.

Let Set(I) be their totality, equipped with the canonical equality on Fam(I).

Remark 3.7.2. If Λ ∈ Set(I) and M ∈ Fam(I) such that Λ =Fam(I) M , then M ∈ Set(I).

Proof. Let i, j ∈ I, f : µ0(i)→ µ0(j) and g : µ0(j)→ µ0(i), such that f ◦g = idµ0(j) and g◦f =
idµ0(i). It suffices to show that λ0(i) =V0 λ0(j). Let Φ ∈ MapI(Λ,M) and Ψ ∈ MapI(M,Λ)
such that Φ ◦Ψ = idM and Ψ ◦Φ = idΛ. We define f ′ : λ0(i)→ λ0(j) and g′ : λ0(j)→ λ0(i) by

f ′ := Ψj ◦ f ◦ Φi & g′ := Ψi ◦ g ◦ Φj

λ0(i) λ0(j)

µ0(j)µ0(i)

λ0(i) λ0(j).

µ0(j)µ0(i)

f ′

f

Φi Ψj

g′

g

Ψi Φj
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It is straightforward to show that (f ′, g′) : λ0(i) =V0 λ0(j).

By the previous remark Q(Λ) is an extensional property on Fam(I). Since Set(I) is defined
by separation on Fam(I), which is impredicative, Set(I) is also an impredicative set. We can
also see that by an argument similar to the one used for the impredicativity of Fam(I).

If X,Y are not equal sets in V0, then with Ex falsum we get that the 2-family Λ2 of X
and Y is a 2-set of sets. Similarly, if Xn and Xm are not equal in V0, for every n 6= m, then
with Ex falsum we get that the N-family ΛN of (Xn)n∈N is an N-set of sets. If I is a set with
(i, j) ∈ I × I such that ¬(i =I j), then the constant I-family A, for some set A, is an I-family
that is not an I-set of sets. We can easily turn an I-family of sets Λ into an I-set of sets.

Definition 3.7.3. Let Λ := (λ0, λ1) ∈ Fam(I). The equality =Λ
I on I induced by Λ is given

by i =Λ
I j :⇔ λ0(i) =V0 λ0(j), for every i, j ∈ I. The set λ0I of sets generated by Λ is the

totality I equipped with the equality =Λ
I . For simplicity, we write λ0(i) ∈ λ0I, instead of i ∈ I,

when I is equipped with the equality =Λ
I . The operation λ∗0 : I  I from (I,=I) to (I,=Λ

I ),
defined by i 7→ i, for every i ∈ I, is denoted by λ∗0 : I  λ0I, and its definition is rewritten as
λ∗0(i) := λ0(i), for every i ∈ I.

Clearly, λ∗0 is a function. In the next proof the hypothesis of a set of sets is crucial.

Proposition 3.7.4. Let Λ := (λ0, λ1) be an I-set of sets, and let Y be a set. If f : I → Y ,
there is a unique function λ0f : λ0I → Y such that the following diagram commutes

λ0I

I Y.

λ0fλ0

f

Conversely, if f : I  Y and f∗ : λ0I → Y such that the corresponding diagram commutes,
then f is a function and f∗ is equal to the function from λ0I to Y generated by f .

Proof. The operation λ0f from λ0I to Y defined by λ0f(λ0(i)) := f(i), for every λ0(i) ∈ λ0I,
is a function, since, for every i, j ∈ I, we have that λ0(i) =V0 λ0(j) ⇒ i =I j, hence
f(i) =Y f(j) :⇔ λ0f(λ0(i)) =Y λ0f(λ0(j)). The commutativity of the diagram follows from
the reflexivity of =Y . If g : λ0I → Y makes the above diagram commutative, then for every
λ0(i) we have that g(λ0(i)) =Y f(i) =: λ0f(λ0(i)), hence g =F(λ0I,Y ) λ0f . For the converse,
if i, j ∈ I, then by the transitivity of =Y we have that i =I j ⇒ λ0(i) =V0 λ0(j), hence
⇒ f∗(λ0(i)) =Y f∗(λ0(j)), and f(i) =Y f(j). The proof of the fact that f∗ is the function
from λ0I to Y generated by f is immediate.

Proposition 3.7.5. Let Λ := (λ0, λ1) ∈ Fam(I), and let Y be a set. If f∗ : λ0I → Y , there is
a unique function f : I → Y such that the following diagram commutes

λ0I

I Y.

f∗λ0

f
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If Λ ∈ Set(I), then f∗ is equal to the function from λ0I to Y generated by f .

Proof. Let f∗ : I  Y , defined by f(i) := f∗(λ0(i)), for every i ∈ I. Since i =I i
′ ⇒ λ0(i) =V0

λ0(i′)⇒ f∗(λ0(i)) =Y f∗(λ0(i′))⇔ f(i) =Y f(i′), f is the required function. If Λ ∈ Set(I),
by Proposition 3.7.4 f∗ is generated by f . The uniqueness of f follows immediately.

Remark 3.7.6. Let f ∈ F(I, Y ) and g ∈ F(Y, Z). If Λ ∈ Set(I), then λ0(g ◦ f) := g ◦ λ0f

λ0I

I Y Z.
λ0f

g

λ0

f

λ0(g ◦ f)

Proof. If i ∈ I, then by Proposition 3.7.4 we have that λ0(g ◦ f)(λ0(i)) := (g ◦ f)(i) :=
g(f(i)) =: g[λ0f(λ0(i))] =: [g ◦ λ0f ](λ0(i)).

Proposition 3.7.7. Let Λ := (λ0, λ1) ∈ Set(I) and M := (µ0, µ1) ∈ Set(J). If f : I → J ,
there is a unique function f∗ : λ0I → µ0J such that the following diagram commutes

λ0I µ0J.

JI

f∗

f

λ0 µ0

Conversely, if f : I  J , and f∗ : λ0I → µ0J such that the corresponding to the above diagram
commutes, then f ∈ F(I, J) and f∗ is equal to the function from λ0I to µ0J generated by f .

Proof. Let f∗ : λ0I  µ0J be defined by f∗(λ0(i)) := µ0(f(i)), for every λ0(i) ∈ λ0I. We show
that f∗ ∈ F(λ0I, µ0J). If i, j ∈ I, such that λ0(i) =V0 λ0(j), then i =I j, hence f(i) =J f(j),
and consequently µ0(f(i)) =V0 µ0(f(j)) i.e., f∗(λ0(i)) =V0 f

∗(λ0(j)). The uniqueness of f∗

is trivial. For the converse, by the transitivity of =V0 , and since M ∈ Set(J), we have that
i =I j ⇒ λ0(i) =V0 λ0(j) ⇒ f∗(λ0(i)) =V0 f

∗(λ0(j)), hence µ0(f(i)) =V0 µ0(f(j)), which
implies f(i) =J f(j). Clearly, f∗ is equal to the function from λ0I to µ0J generated by f .

Proposition 3.7.8. Let Λ := (λ0, λ1) ∈ Fam(I) and M := (µ0, µ1) ∈ Set(J). If f∗ : λ0I →
µ0J , there is a unique function f from I to J , such that the following diagram commutes, and
f∗ is equal to the function from λ0I to µ0J generated by f

λ0I µ0J.

JI

f∗

f

λ0 µ0

Proof. If i ∈ I, then f∗(λ0(i)) := µ0(j), for some j ∈ J . We define the routine f(i) := j i.e.,
the output of f∗ determines the output of f . Since i =I i

′ ⇒ λ0(i) =V0 λ0(i′)⇒ f∗(λ0(i)) =V0

f∗(λ0(i′)) we get µ0(j) =V0 µ0(j′) ⇒ j =J j
′ ⇔ f(i) =J f(i′), hence f is a function. The

required commutativity of the diagram follows immediately. If g : I → J such that the above
diagram commutes, then µ0(g(i)) =V0 f

∗(λ0(i)) := µ0(j) =: µ0(f(i)), hence g(i) =J f(i).
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3.8 Direct families of sets

Definition 3.8.1. Let (I,4I) be a directed set, and D4(I) :=
{

(i, j) ∈ I × I | i 4I j
}

the diagonal of 4I . A direct family of sets (I,4I), or an (I,4I)-family of sets, is a pair
Λ4 := (λ0, λ

4
1 ), where λ0 : I  V0, and λ41 , a modulus of transport maps for λ0, is defined by

λ41 :
k

(i,j)∈D4(I)

F
(
λ0(i), λ0(j)

)
, λ41 (i, j) := λ4ij , (i, j) ∈ D4(I),

such that the transport maps λ≺ij of Λ4 satisfy the following conditions:

(a) For every i ∈ I, we have that λ4ii := idλ0(i).

(b) If i 4I j and j 4I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λ4jk

λ4ij λ4ik

If X ∈ V0, the constant (I,4I)-family X is the pair C4,X := (λX0 , λ
4,X
1 ), where λX0 (i) := X,

and λ4,X1 (i, j) := idX , for every i ∈ I and (i, j) ∈ D4(I).

Since in general 4I is not symmetric, the transport map λ4ij does not necessarily have an

inverse. Hence λ41 is only a modulus of transport for λ0, in the sense that determines the
transport maps of Λ4, and not necessarily a modulus of function-likeness for λ0.

Definition 3.8.2. If Λ4 := (λ0, λ
4
1 ) and M4 := (µ0, µ

4
1 ) are (I,4I)-families of sets, a direct

family-map Φ from Λ4 to M4, denoted by Φ: Λ4 ⇒ M4, their set Map(I,4I)(Λ
4,M4), and

the totality Fam(I,4I) of (I,4I)-families are defined as in Definition 3.1.3. The direct sum∑4
i∈I λ0(i) over Λ4 is the totality

∑
i∈I λ0(i) equipped with the equality

(i, x) =∑4
i∈I λ0(i)

(j, y) :⇔ ∃k∈I
(
i 4I k & j 4I k & λ4ik(x) =λ0(k) λ

4
jk(y)

)
.

The totality
∏4
i∈I λ0(i) of dependent functions over Λ4 is defined by

Φ ∈
4∏
i∈I

λ0(i) :⇔ Φ ∈ A(I, λ0) & ∀(i,j)∈D4(I)

(
Φj =λ0(j) λ

4
ij(Φi)

)
,

and it is equipped with the equality of A(I, λ0).

Clearly, the property P (Φ) :⇔ ∀(i,j)∈D4(I)

(
Φj =λ0(j) λ

4
ij(Φi)

)
is extensional on A(I, λ0),

the equality on
∏4
i∈I λ0(i) is an equivalence relation.

∏4
i∈I λ0(i) is considered to be a set.

Proposition 3.8.3. The relation (i, x) =∑4
i∈I λ0(i)

(j, y) is an equivalence relation.
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Proof. If i ∈ I, and since i 4I i, there is k ∈ I such that i 4I k, and by the reflexivity of the
equality on λ0(k) we get λ4ik(x) =λ0(k) λ

4
ik(x). The symmetry of =∑4

i∈I λ0(i)
follows from the

symmetry of the equalities =λ0(k). To prove transitivity, we suppose that

(i, x) =∑4
i∈I λ0(i)

(j, y) :⇔ ∃k∈I
(
i 4I k & j 4I k & λ4ik(x) =λ0(k) λ

4
jk(y)

)
,

(j, y) =∑4
i∈I λ0(i)

(j′, z) :⇔ ∃k′∈I
(
j 4I k

′ & j′ 4I k
′ & λ4jk′(y) =λ0(k′) λ

4
j′k′(z)

)
,

and we show that

(i, x) =∑4
i∈I λ0(i)

(j′, z) :⇔ ∃k′′∈I
(
i 4I k

′′ & j′ 4I k
′′ & λ4ik′′(x) =λ0(k′′) λ

4
j′k′′(z)

)
.

By the definition of a directed set there is k′′ ∈ I such that k 4I k′′ and k′ 4I k′′

i

k

j j′,

k′k′′

hence by transitivity i 4I k′′ and j′ 4I k′′. Moreover,

λ4ik′′(x)
i4Ik4Ik′′= λ4kk′′

(
λ4ik(x)

)
= λ4kk′′

(
λ4jk(y)

)
j4Ik4Ik′′= λ4jk′′(y)

j4Ik′4Ik′′= λ4k′k′′
(
λ4jk′(y)

)
= λ4k′k′′

(
λ4j′k′(z)

)
j′4Ik′4Ik′′= λ4j′k′′(z).

Notice that the projection operation from
∑4

i∈I λ0(i) to I is not a function.

Proposition 3.8.4. If (I,4I) is a directed set, Λ4 := (λ0, λ
4
1 ), M4 := (µ0, µ

4
1 ) are (I,4I)-

families of sets, and Ψ4 : Λ4 ⇒M4, the following hold.

(i) For every i ∈ I the operation eΛ4

i : λ0(i)  
∑4

i∈I λ0(i), defined by x 7→ (i, x), for every

x ∈ λ0(i), is a function from λ0(i) to
∑4

i∈I λ0(i).

(ii) The operation Σ4Ψ :
∑4

i∈I λ0(i)  
∑4

i∈I µ0(i), defined by
(
Σ4Ψ

)
(i, x) := (i,Ψi(x)), for

every (i, x) ∈
∑4

i∈I λ0(i), is a function from
∑4

i∈I λ0(i) to
∑4

i∈I µ0(i) such that, for every
i ∈ I, the following left diagram commutes

∑4
i∈I λ0(i)

∑4
i∈I µ0(i)

µ0(i)λ0(i)

∏4
i∈I λ0(i)

∏4
i∈I µ0(i).

µ0(i)λ0(i)

Σ4Ψ

Ψi

eΛ4

i eM
4

i

Π4Ψ

Ψi

πΛ4

i πM
4

i
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(iii) If Ψi is an embedding, for every i ∈ I, then Σ4Ψ is an embedding.

(iv) For every i ∈ I the operation πΛ4

i :
∏4
i∈I λ0(i)  λ0(i), defined by Θ 7→ Θi, for every

Θ ∈
∏4
i∈I λ0(i), is a function from

∏4
i∈I λ0(i) to λ0(i).

(v) The operation Π4Ψ :
∏4
i∈I λ0(i) 

∏4
i∈I µ0(i), defined by [Π4Ψ(Θ)]i := Ψi(Θi), for every

i ∈ I and Θ ∈
∏4
i∈I λ0(i), is a function from

∏4
i∈I λ0(i) to

∏4
i∈I µ0(i), such that, for every

i ∈ I, the above right diagram commutes.

(vi) If Ψi is an embedding, for every i ∈ I, then Π4Ψ is an embedding.

Proof. (i) If x, y ∈ λ0(i) such that x =λ0(i) y, then, since 4 is reflexive, if we take k := i, we

get λ4ii(x) := idλ0(i)(x) := x =λ0(i) y := idλ0(i)(y) := λ4ii(y), hence (i, x) =∑4
i∈I λ0(i)

(i, y).

(ii) If (i, x) =∑4
i∈I λ0(i)

(j, y), there is k ∈ I such that i 4I k, j 4I k and λ4ik(x) =λ0(k) λ
4
jk(y).

We show the following equality:(
Σ4Ψ

)
(i, x) =∑4

i∈I µ0(i)

(
Σ4Ψ

)
(j, y) :⇔ (i,Ψi(x)) =∑4

i∈I µ0(i)
(j,Ψj(y))

:⇔ ∃k′∈I
(
i, j 4I k

′ & µ4ik′(Ψi(x)) =µ0(k′) µ
4
jk′(Ψj(y))

)
.

If we take k′ := k, by the commutativity of the following diagrams, and since Ψk is a function,

µ0(i) µ0(k)

λ0(k)λ0(i)

µ0(j)

λ0(j)

µ0(k)

λ0(k)

µ4ik

λ4ik

Ψi Ψk

µ4jk

λ4jk

Ψj Ψk

µ4ik
(
Ψi(x)

)
=µ0(k) Ψk

(
λ4ik(x)

)
=µ0(k) Ψk

(
λ4jk(y)

)
=µ0(k) µ4jk

(
Ψj(y)

)
.

(iii) If we suppose
(
Σ4Ψ

)
(i, x) =∑4

i∈I µ0(i)

(
Σ4Ψ

)
(j, y) i.e., µ4ik(Ψi(x)) =µ0(k) µ

4
jk(Ψj(y))

)
, for

some k ∈ I with i, j 4I k, by the proof of case (ii) we get Ψk

(
λ4ik(x)

)
=µ0(k) Ψk

(
λ4jk(y)

)
, and

since Ψk is an embedding, we get λ4ik(x) =λ0(k) λ
4
jk(y) i.e., (i, x) =∑4

i∈I λ0(i)
(j, y).

(iv)-(vi) Their proof is omitted, since a proof of their contravariant version (see Note 3.11.10)
is given in the proof of Theorem 6.6.3.

Since the transport functions λ4ik are not in general embeddings, we cannot show in general

that eΛ4

i is an embedding, as it is the case for the map eΛ
i in Proposition 3.2.7(i). The study

of direct families of sets can be extended following the study of set-indexed families of sets.

3.9 Set-relevant families of sets

In general, we may want to have more than one transport maps from λ0(i) to λ0(j), if i =I j.
In this case, to each (i, j) ∈ D(I) we associate a set of transport maps.

Definition 3.9.1. If I is a set, a set-relevant family of sets indexed by I, is a triplet Λ∗ :=(
λ0, ε

λ
0 , λ2), where λ0 : I  V0, ελ0 : D(I) V0, and

λ2 :
k

(i,j)∈D(I)

k

p∈ελ0 (i,j)

F
(
λ0(i), λ0(j)

)
, λ2

(
(i, j), p

)
:= λpij , (i, j) ∈ D(I), p ∈ ελ0(i, j),
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such that the following conditions hold:

(i) For every i ∈ I there is p ∈ ελ0(i, i) such that λpii =F(λ0(i),λ0(i)) idλ0(i).

(ii) For every (i, j) ∈ D(I) and every p ∈ ελ0(i, j) there is some q ∈ ελ0(j, i) such that such that
the following left diagram commutes

λ0(j) λ0(i)

λ0(i)

λ0(j)

λ0(i)

λ0(k).
λqji

λpij idλ0(i) λpij λrik

λqjk

(iii) If i =I j =I k, then for every p ∈ ελ0(i, j) and every q ∈ ελ0(j, k) there is r ∈ ελ0(i, k) such
that the above right diagram commutes.

We call Λ∗ function-like, if ∀(i,j)∈D(I)∀p,p′∈ελ0 (i,j)

(
p =ελ0 (i,j) p

′ ⇒ λpij =F(λ0(i),λ0(j)) λ
p′

ij

)
.

It is immediate to show that if Λ := (λ0, λ1) ∈ Fam(I), then Λ generates a set-relevant
family over I, where ελ0(i, j) := 1, and λ2

(
(i, j), p)

)
:= λij , for every (i, j) ∈ D(I).

Definition 3.9.2. Let Λ∗ := (λ0, ε
λ
0 , λ2) and M := (µ0, ε

µ
0 , µ2) be set-relevamt families of sets

over I. A covariant set-relevant family-map from Λ∗ to M∗, in symbols Ψ: Λ∗ ⇒ M∗, is a
dependent operation Ψ:

c
i∈I F

(
λ0(i), µ0(i)

)
such that for every (i, j) ∈ D(I) and for every

p ∈ ελ0(i, j) there is q ∈ εµ0 (i, j) such that the following diagram commutes

µ0(i) µ0(j).

λ0(j)λ0(i)

µqij

λpij

Ψi Ψj

A contravariant set-relevant family-map is defined by the property: for every q ∈ εµ0 (i, j),
there is p ∈ ελ0(i, j) such that the above diagram commutes. Let MapI(Λ

∗,M∗) be the totality
of covariant set-relevant family-maps from Λ∗ to M∗, which is equipped with the pointwise
equality. If Ξ : M∗ ⇒ N∗, the composition set-relevant family-map Ξ ◦Ψ: Λ∗ ⇒ N∗ is defined,
for every i ∈ I, by (Ξ ◦Ψ)i := Ξi ◦Ψi

λ0(i) λ0(j)

µ0(j)µ0(i)

ν0(i) ν0(j).

λpij

Ψj

µqij

Ψi

Ξi Ξj

νrij

(Ξ ◦Ψ)i (Ξ ◦Ψ)j



66 CHAPTER 3. FAMILIES OF SETS

The composition of contravariant set-relevant family-maps is defined similarly The identity
set-relevant family-map is defined by IdΛ∗(i) := idλ0(i), for every i ∈ I. Let Fam∗(I) be the
totality of set-relevant I-families, equipped with the obvious canonical equality.

IdΛ∗ is both a covariant and a contravariant set-relevant family-map from Λ∗ to itself.

Definition 3.9.3. Let Λ∗ :=
(
λ0, ε

λ
0 , λ2

)
∈ Fam∗(I). The exterior union

∑∗
i∈I λ0(i) of Λ∗ is

the totality
∑

i∈I λ0(i), equipped with the following equality

(i, x) =∑∗
i∈I λ0(i) (j, y) :⇔ i =I j & ∃p∈ελ0 (i,j)

(
λpij(x) =λ0(j) y

)
.

The totality
∏∗
i∈I λ0(i) of dependent functions over Λ∗ is defined by

Θ ∈
∗∏
i∈I

λ0(i) :⇔ Θ ∈ A(I, λ0) & ∀(i,j)∈D(I)∀p∈ελ0 (i,j)

(
Θj =λ0(j) λ

p
ij(Θi)

)
,

and it is equipped with the pointwise equality.

A motivation for the definitions of
∑∗

i∈I λ0(i) and
∏∗
i∈I λ0(i) is provided in Note 5.7.10.

Remark 3.9.4. The equalities on
∑∗

i∈I λ0(i) and
∏∗
i∈I λ0(i) satisfy the conditions of an

equivalence relation.

Proof. Let (i, x), (j, y) and (k, z) ∈
∑

i∈I λ0(i). By definition there is p ∈ ελ0(i, i) such that
λpii = idλ0(i), hence (i, x) =∑∗

i∈I λ0(i) (i, x). If (i, x) =∑∗
i∈I λ0(i) (j, y), then j =I i and there is

q ∈ ελ0(ji) such that λqji(y) = λqji(λ
p
ij(x)) = idλ0(i)(x) := x, hence (j, y) =∑g

i∈I ∗λ0(i) (i, x). If

(i, x) =∑∗
i∈I λ0(i) (j, y) and (j, y) =∑∗

i∈I λ0(i) (k, z), then from the hypotheses i =I j and j =I k,

we get i =I k. From the hypotheses ∃p∈ελ0 (i,j)

(
λpij(x) =λ0(j) y

)
and ∃q∈ελ0 (j,k)

(
λqjk(y) =λ0(k) z

)
,

let r ∈ ελ0(i, k) such that λrik = λqjk ◦ λ
p
ij . Hence λrik(x) =λ0(k) λ

q
jk(λ

p
ij(x)) =λ0(k) λ

q
jk(y) = z.

The proof for the equality on
∏∗
i∈I λ0(i) is trivial.

Proposition 3.9.5. Let Λ := (λ0, ε
λ
0 , λ2), M := (µ0, ε

µ
0 , µ2) ∈ Fam∗(I), and Ψ : Λ∗ ⇒M∗.

(i) For every i ∈ I the operation eΛ∗
i : λ0(i) 

∑∗
i∈I λ0(i), defined by eΛ∗

i (x) := (i, x), for every
x ∈ λ0(i), is a function.

(ii) If Ψ is covariant, the operation Σ∗Ψ :
∑∗

i∈I λ0(i) 
∑∗

i∈I µ0(i), defined by Σ∗Ψ(i, x) :=
(i,Ψi(x)), for every (i, x) ∈

∑∗
i∈I λ0(i), is a function, such that for every i ∈ I the following

left diagram commutes

∑∗
i∈I λ0(i)

∑∗
i∈I µ0(i).

µ0(i)λ0(i)

∏∗
i∈I λ0(i)

∏∗
i∈I µ0(i).

µ0(i)λ0(i)

Σ∗Ψ

Ψi

eΛ∗
i eM

∗
i

Π∗Ψ

Ψi

πΛ∗
i πM

∗
i

(iii) If i ∈ I, the operation πΛ∗
i :

∏∗
i∈I λ0(i) λ0(i), defined by Θ 7→ Θi, is a function.

(iv) If Ψ is contravariant, the operation Π∗Ψ :
∏∗
i∈I λ0(i) 

∏∗
i∈I µ0(i), defined by [Π∗Ψ(Θ)]i :=

Ψi(Θi), for every i ∈ I, is a function, such that for every i ∈ I the above right diagram
commutes.

(v) If Ψi is an embedding, for every i ∈ I, then Π∗Ψ is an embedding.
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Proof. We proceed as in the proofs of Propositions 3.2.7 and 3.3.5.

The definitions of operations on I-families of sets and their family-maps extend to operations
on set-relevant I-families and their family-maps. An important example of a set-relevant family
of sets is that of a family of sets over a set with a proof-relevant equality (see Definition 5.3.4).
For reasons that are going to be clear in the study of these families of sets, the first definitional
clause of a set-relevant family of sets over I involves the equality =F(λ0(i),λ0(i)) instead of the
definitional one. Next follows the definition of the direct version of a set-relevant family of
sets, the importance of which is explained in Note 6.10.4.

Definition 3.9.6. If (I,4I) is a directed set, a set-relevant direct family of sets indexed

by I, is a quadruple Λ∗,4 :=
(
λ0, ε

λ4
0 ,Θ, λ42 ), where λ0 : I  V0, ελ

4

0 : D4(I)  V0,

Θ ∈
c

(i,j)∈D4(I) ε
λ4
0 (i, j) is a modulus of inhabitedness for ελ

4

0 , and

λ42 :
k

(i,j)∈D4(I)

k

p∈ελ40 (i,j)

F
(
λ0(i), λ0(j)

)
, λ42

(
(i, j), p

)
:= λp,4ij , (i, j) ∈ D(I), p ∈ ελ40 (i, j),

such that the following conditions hold:

(i) For every i ∈ I there is p ∈ ελ40 (i, i) such that λp,4ii =F(λ0(i),λ0(i)) idλ0(i).

(ii) If i 4I j 4I k, then for every p ∈ ελ40 (i, j) and every q ∈ ελ40 (j, k) there is r ∈ ελ40 (i, k)
such that λq,4jk ◦ λ

p,4
ij = λr,4ik .

(iii) For every (i, j) ∈ D4(I) and every p, p′ ∈ ελ40 (i, j) and every x ∈ λ0(i) there is k ∈ I such

that j 4I k and there is q ∈ ελ40 (j, k) such that

λq,4jk
(
λp,4ij (x)

)
=λ0(k) λ

q,4
jk

(
λp
′,4
ij (x)

)
.

The modulus of inhabitedness Θ for ελ
4

0 and the last condition in the previous definition
guarantee that the equality on the corresponding

∑
-set of a set-relevant direct family of sets

satisfies the conditions of an equivalence relation.

Definition 3.9.7. Let Λ∗,4 :=
(
λ0, ε

λ4
0 ,Θ, λ42

)
a set-relevant family of sets over a directed

set (I,4). Its exterior union
∑∗,4

i∈I λ0(i) is the totality
∑

i∈I λ0(i) equipped with the equality

(i, x) =∑∗,4
i∈I λ0(i)

(j, y) :⇔ ∃k∈I
(
i, j 4I k & ∃

p∈ελ40 (i,k)
∃
q∈ελ40 (j,k)

(
λp,4ik (x) =λ0(k) λ

q,4
jk (y)

))
.

The set
∏∗,4
i∈I λ0(i) of dependent functions over Λ∗,4 is defined by

Φ ∈
∗,4∏
i∈I

λ0(i) :⇔ Φ ∈ A(I, λ0) & ∀(i,j)∈D4(I)∀p∈ελ,40 (i,j)

(
Φj =λ0(j) λ

p,4
ij (Φi)

)
,

and it is equipped with the pointwise equality.

Proposition 3.9.8. The equality on
∑∗,4

i∈I λ0(i) satisfies the conditions of an equivalence
relation.
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Proof. To show that (i, x) =∑∗,4
i∈I λ0(i)

(i, x) we use the first definitional clause of a set-relevant

directed family of sets. The proof of the equality (j, y) =∑∗,4
i∈I λ0(i)

(i, x) from the equality

(i, x) =∑∗,4
i∈I λ0(i)

(j, y) is trivial. For transitivity we suppose that (i, x) =∑∗,4
i∈I λ0(i)

(j, y) and

(j, y) =∑∗,4
i∈I λ0(i)

(j′, z) i.e.,

∃k′∈I
(
j 4I k

′ & j′ 4I k
′ & ∃

p′∈ελ40 (j,k′)
∃
q′∈ελ40 (j′,k′)

(
λp
′,4
jk′ (y) =λ0(k′) λ

q′,4
j′k′ (z)

))
.

There is k′′ ∈ I such that k 4I k′′ and k′ 4I k′′.

i

k

j j′

k′k′′

Moreover, there are r ∈ ελ40 (i, k′′) and s ∈ ελ40 (j, k′′) such that

λr,4ik′′(x)
i4Ik4Ik

′′
= λ

Θ(k,k′′),4

kk′′
(
λp,4ik (x)

)
= λ

Θ(k,k′′),4

kk′′
(
λq,4jk (y)

) j4Ik4Ik
′′

= λs,4jk′′(y).

λ0(i) λ0(j)

λ0(k′′)

λ0(j′)

λ0(k) λ0(k′)

λ0(l)

λp,4ik

λr,4ik′′

λr
′′′,4
il

λq,4jk λp
′,4
jk′

λs,4jk′′

λq
′,4
j′k′

λr
′,4
j′k′′

λr
′′,4
j′l

λt,4k′′l

λ
Θ(k,k′′),4

kk′ λ
Θ(k′k′′),4

k′k′′

If we apply condition (iii) of Definition 3.9.7 to j 4I k′′, y ∈ λ0(j) and the transport maps

λs,4jk′′ and λ
Θ(k′,k′′),4

k′k′′ ◦ λp
′,4
jk′ from λ0(j) to λ0(k′′), then there is l ∈ I, such that k′′ 4I l, and

some t ∈ ελ40 (k′′, l) such that

λt,4k′′l
(
λs,4jk′′(y)

)
= λt,4k′′l

(
λ

Θ(k′,k′′),4

k′k′′
(
λp
′,4
jk′ (y)

))
= λt,4k′′l

(
λ

Θ(k′,k′′),4

k′k′′
(
λq
′,4
j′k′ (z)

))
= λt,4k′′l

(
λr
′,4
j′k′′(z)

)
= λr

′′,4
j′l (z),
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for some r′ ∈ ελ40 (j′, k′′) and some r′′ ∈ ελ40 (j′, l). From λr,4ik′′(x) =λ0(k′′) λ
s,4
jk′′(y) we get

λt,4k′′l
(
λs,4jk′′(y)

)
= λt,4k′′l

(
λr,4ik′′(x)

)
= λr

′′′,4
il (x),

for some r′′′ ∈ ελ40 (i, l). Hence, λr
′′i,4
il (x) =λ0(l) λ

r′′,4
j′l (z) i.e., (i, x) =∑∗,4

i∈I λ0(i)
(j′, z).

3.10 Families of families of sets, an impredicative interlude

We define the notion of a family of families of sets (Λi)i∈I , where each family of sets Λi is
indexed by some set µ0(i), and i ∈ I. As expected, the index-sets are given by some family
M ∈ Fam(I), and (Λi)i∈I must must be a function-like object i.e., if i =I j, the family Λi

of sets over the index-set µ0(i) is “equal” to the family Λj of sets over the index-set µ0(j).
This equality can be expressed through the notion of a family map from Λi to Λj over µij
(see Definition 3.1.5). As in the case of the definition of a family of sets we provide the a
priori given transport maps of (Λi)i∈I with certain properties that guarantee the existence of
these family-maps. As Fam(I) is an impredicative set, to define a family of families of sets, we
need to introduce, in complete analogy to the introduction of V0, the class Vim

0 of sets and
impredicative sets. All notions of assignment routines defined in Chapter 2 are defined in a
similar way when the class Vim

0 is used instead of V0. We add the superscript im to a symbol
in order to denote the version of the corresponding notion that requires the use of Vim

0 .

Definition 3.10.1. Let M := (µ0, µ1) ∈ Fam(I) and, if (i, j) ∈ D(I) let the set

Tij(M) := {(m,n) ∈ µ0(i)× µ0(j) | µij(m) =µ0(j) n}.

A family of families of sets over I and M , or an (I,M)-family of families of sets, is a pair
(Λi)i∈I :=

(
Λ0,M ,Λ1,M

)
, where

Λ0,M :
imk

Fam(µ0(i)), Λ0,M
i :=

(
λi0, λ

1
1

)
; i ∈ I,

Λ1,M :
k

(i,j)∈D(I)

k

(m,n)∈Tij(M)

F
(
λi0(m), λj0(n)

)
,

(
Λ1,M

(i,j)

)
(m,n)

:= λijmn : λi0(m)→ λj0(n); (i, j) ∈ D(I), (m,n) ∈ Tij(M),

such that the transport maps λijmn of (Λi)i∈I , satisfy the following conditions:

(i) For every i ∈ I and (m,m′) ∈ Tij(M), we have that λiimm′ := λimm′.

(ii) If i =I j =I k, for every (m,n) ∈ Tij(M) and (n, l) ∈ Tjk(M), the following diagram
commutes

λj0(n) λk0(l).

λi0(m)

λjknl

λijmn λikml

Let Fam(I,M) be the totality of (I,M)-families of families of sets.
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For condition (i) above, we have that µii(m) = m′ :⇔ m =µ(i) m
′ and for condition (ii),

from the hypotheses (m,n) ∈ Tij(M) :⇔ µij(m) = n and (n, l) ∈ Tjk(M) :⇔ µjk(n) = l we
get (m, l) ∈ Tik(M) :⇔ µik(m) = l, as µik(m) = µjk(µij(m)) = l. The main intuition behind
this defintion is that if i =I j, then µ0(i) =V0 µ0(j), hence, if m ∈ µ0(i) and n ∈ µ0(j), there
is a transport map λijmn from λi0(m) to λj0(n). It is easy to see that if Λ ∈ Fam(J), then by
taking I := 1 and M the constant family J over 1, then Λ can be viewed as an (1,M)-family
of families of sets.

Lemma 3.10.2. If (Λi)i∈I ∈ Fam(I,M), for its transport maps λijmn the following hold:

(i) λiimm := idλi0(m).

(ii) λijmn ◦ λjinm = id
λj0(n)

.

(iii) If µij(m) = n, then λijmµij(m) = λjnµij(m) ◦ λ
ij
mn

λj0(µij(m)) λj0(n).

λi0(m)λi0(m)

λjnµij(m)

λimm

λijmµij(m) λijmn

(iv) If m =µ0(i) m
′, then λjµij(m)µij(m′)

◦ λijmµij(m) = λijm′µij(m′) ◦ λ
i
mm′

λj0(µij(m)) λj0(µij(m
′)).

λi0(m′)λi0(m)

λjµij(m)µij(m′)

λimm′

λijmµij(m) λijm′µij(m′)

(v) If i =I j =I k, then λkµik(m)µjk(µij(m)) ◦ λ
ik
mµik(m) = λjkµij(m)µjk(µij(m)) ◦ λ

ij
mµij(m)

λj0(µij(m)) λk0(µjk(µij(m)).

λk0(µik(m))λi0(m)

λjkµij(m)µjk(µij(m)

λikmµik(m)

λijmµij(m)
λikµik(m)µjk(µij(m))

Proof. (i) By Definition 3.10.1 λiimm := λimm := idλi0(m).

(ii) By the composition-rule and case (i) we get λijmn ◦ λjinm = λjjnn = id
λj0(n)

.

(iii) By the composition-rule we get λijmµij(m) = λjjnµij(m) ◦ λ
ij
mn := λjnµij(m) ◦ λ

ij
mn.
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(iv) By Definition 3.10.1 we have that

λjµij(m)µij(m′)
◦ λijmµij(m) := λjjµij(m)µij(m′)

◦ λijmµij(m)

= λijmµij(m′)

= λijm′µij(m′) ◦ λ
ii
mm′

:= λijm′µij(m′) ◦ λ
i
mm′ .

(v) If l := µjk(µij(m)), then by case (iii) λikmµik(m) = λkµjk(µij(m))µik(m) ◦ λ
ik
mµjk(µij(m)), hence

λkµik(m)µjk(µij(m)) ◦ λ
ik
mµik(m) = λkµik(m)µjk(µij(m)) ◦

[
λkµjk(µij(m))µik(m) ◦ λ

ik
mµjk(µij(m))

]
:=
[
λkµik(m)µjk(µij(m)) ◦ λ

k
µjk(µij(m))µik(m)

]
◦ λikmµjk(µij(m))

= λkµjk(µij(m))µjk(µij(m)) ◦ λ
ik
mµjk(µij(m))

:= λikmµjk(µij(m))

= λjkµij(m)µjk(µij(m)) ◦ λ
ij
mµij(m).

Definition 3.10.3. If (Λi)i∈I ∈ Fam(I,M), and based on Definition 3.1.5, its transport

family-maps ΦΛ
ij are the family-maps ΦΛ

ij : Λ0,M
i

µij
=⇒ Λ0,M

j , defined by the rule

[
ΦΛ
ij

]
m

:= λijmµij(m); m ∈ µ0(i), (i, j) ∈ D(I).

The fact that λijmµij(m) : Λ0,M
i

µij
=⇒ Λ0,M

j is shown by the commutativity of the diagram in

case (iv) of Lemma 3.10.2. In analogy to the transport maps λij of an I-family of sets Λ, the

transport family-maps ΦΛ
ij witness the equality between the µ0(i)-family of sets Λ0,M

i and the

µ0(j)-family of sets Λ0,M
j .

Definition 3.10.4. If (Λi)i∈I ∈ Fam(I,M), its exterior union
∑

i∈I
∑

m∈µ0(i) λ
i
0(m) is defined

by

w ∈
∑
i∈I

∑
m∈µ0(i)

λi0(m) :⇔ ∃i∈I∃m∈µ0(i)∃x∈λi0(m)

(
w := (i,m, x)

)
,

(i,m, x) =∑
i∈I

∑
m∈µ0(i) λ

i
0(m) (j, n, y) :⇔ i =I j & µij(m) =µ0(j) n & λijmn(x) =

λ
j
0(n)

y.

Remark 3.10.5. The equality on
∑

i∈I
∑

m∈µ0(i) λ
i
0(m) satisfies the conditions of an equiva-

lence relation.

Proof. To show (i,m, x) = (i,m, x) :⇔ i =I i & µii(m) = m & λiimm(x) = x, we use
Lemma 3.10.2(i). If (i,m, x) = (j, n, y) :⇔ i = j & µij(m) = n & λijmn(x) = y, then j = i

and µji(n) = m, and, using Lemma 3.10.2(ii), λjinm(y) = λjinm
(
λijmn(x)

)
= λiimm(x) = x i.e.,

(j, n, y) = (i,m, x). If (i,m, x) = (j, n, y) and (j, n, xy = (k, l, z) :⇔ j = k & µjk(n) =

l & λjknl (y) = z, then i = k and µik(m) = µjk(µij(m)) = µjk(n) = l, and λikml(x) =

λjknl
(
λijmn(x)

)
= λjknl (y) = z i.e., (i,m, x) = (k, l, z).
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Proposition 3.10.6. If (Λi)i∈I ∈ Fam(I,M), then Σ := (σ0, σ1) ∈ Fam(I), where

σ0(i) :=
∑

m∈µ0(i)

λi0(m); i ∈ I,

σ1(i, j) := σij :

( ∑
m∈µ0(i)

λi0(m)

)
→

∑
n∈µ0(j)

λj0(n); (i, j) ∈ D(I),

σij(m,x) :=
(
µij(m), λijmµij(m)(x)

)
; m ∈ µ0(i), x ∈ λi0(m).

Proof. First we show that the operation σij is a function. We suppose that (m,x) =∑
m∈µ0(i) λ

i
0(m)

(m′, x′) :⇔ m =µ0(i) m
′ & λimm′(x) =λi0(m′) x, and we show that(

µij(m), λijmµij(m)(x)
)

=∑
n∈µ0(j) λ

j
0(n)

(
µij(m

′), λijmµij(m′)(x
′)
)
⇔

µij(m) =µ0(j) µij(m
′) & λjµij(m)µij(m′)

(
λijmµij(m)(x)

)
=
λ
j
0(µij(m′)) λ

ij
m′µij(m′)

(x′).

The first conjunct follows from m =µ0(i) m
′, and the second is Lemma 3.10.2(iv). Since

σii(m,x) :=
(
µii(m), λiimµii(m)(x)

)
:= (m,λiimm(x)) := (m, idλi0(m)(x)) := (m,x),

we get σii := id∑
m∈µ0(i) λ

i
0(m). For the commutativity of the diagram

∑
n∈µ0(j) λ

j
0(n)

∑
l∈µ0(k) λ

k
0(l)

∑
m∈µ0(i) λ

i
0(m)

σjk

σij σik

we have that by definition σik(m,x) :=
(
µik(m), λikmµik(m)(x)

)
, and

σjk
(
σij(m,x)

)
:= σjk

(
µij(m), λijmµij(m)(x)

)
:=

(
µjk(µij(m)), λjkµij(m)µjk(µij(m))

(
λijmµij(m)(x)

))
.

Hence, σik(m,x) =∑
l∈µ0(k) λ

k
0(l) σjk

(
σij(m,x)

)
:⇔ µik(m) =µ0(k) µjk(µij(m)) and

λkµik(m)µjk(µij(m))

(
λikmµik(m)(x)

)
= λjkµij(m)µjk(µij(m))

(
λijmµij(m)(x)

)
.

The first conjunct is immediate to show, and the second is exactly Lemma 3.10.2(v).

Clearly, for the exterior union of (Λi)i∈I we have that∑
i∈I

∑
m∈µ0(i)

λi0(m) =V0

∑
i∈I

σ0(i) :=
∑
i∈I

( ∑
m∈µ0(i)

λi0(m)

)
.

If (Λi)i∈I and (M i)i∈I are (I,M)-families of families, a map from (Λi)i∈I to (M i)i∈I is an
appropriate dependent function (Ψi)i∈I such that Ψi is a family map from Λi to M i, for every
i ∈ I. Before giving this definition we show a fact of independent interest.
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Proposition 3.10.7. Let (Ki)i∈I := (K0,M ,K1,M ), (Λi)i∈I := (Λ0,M ,Λ1,M ) ∈ Fam(I,M),
and let i =I j.

(i) The operation γij : Map
(
K0,M
i ,Λ0,M

i

)
 Map

(
K0,M
j ,Λ0,M

j

)
, defined by the rule Ψi 7→[

γij(Ψ
i)
]j

, is a function, where, for every n ∈ µ0(j), the map
[
γij(Ψ

i)
]j
n

: κj0(n) → λj0(n) is

defined by
[
γij(Ψ

i)
]j
n

:= λijµji(n)n ◦Ψi
µji(n) ◦ κ

ji
nµji(n)

κi0(µji(n)) λi0(µji(n)).

λj0(n)κj0(n)

Ψi
µji(n)

[
γij(Ψ

i)
]j
n

κjinµji(n) λijµji(n)n

(ii) The pair Γ := (γ0, γ1) ∈ Fam(I), where γ0(i) := Map
(
K0,M
i ,Λ0,M

i

)
, for every i ∈ I, and

γ1(i, j) := γij, for every (i, j) ∈ D(I).

Proof. (i) First we show that γij is well-defined i.e.,
[
γij(Ψ

i)
]j ∈ Map(Kj ,Λj). If n, n′ ∈ µ0(j),

we show that the following diagram commutes

λj0(n) λj0(n′).

κj0(n′)κj0(n)

λjnn′

κjnn′

[
γij(Ψ

i)
]j
n

[
γij(Ψ

i)
]j
n′

By definition we have that
[
γij(Ψ

i)
]j
n′
◦ κjnn′ :=

[
λijµji(n′)n′ ◦Ψi

µji(n′)
◦ κjin′µji(n′)

]
◦ κjnn′ . Since

Ψi is in Map(K0,M
i ,Λ0,M

i ), by the commutativity of the following diagram

λi0(µji(n)) λi0(µji(n
′)),

κi0(µji(n
′))κi0(µji(n))

λiµji(n)µji(n′)

κiµji(n)µji(n′)

Ψi
µji(n) Ψi

µji(n′)

we get Ψi
µji(n′)

◦ κiµji(n)µji(n′)
= λiµji(n)µji(n′)

◦Ψi
µji(n), and hence

Ψi
µji(n′)

◦ κjin′µji(n′) = Ψi
µji(n′)

◦
(
κiµji(n)µji(n′)

◦ κjin′µji(n)

)
:=
(
Ψi
µji(n′)

◦ κiµji(n)µji(n′)

)
◦ κjin′µji(n)

=
(
λiµji(n)µji(n′)

◦Ψi
µji(n)

)
◦ κjin′µji(n),
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[
γij(Ψ

i)
]
n′
◦ κjnn′ :=

[
λijµji(n′)n′ ◦

(
Ψi
µji(n′)

◦ κjin′µji(n′)
)]
◦ κjnn′

=
[
λijµji(n′)n′ ◦

((
λiµji(n)µji(n′)

◦Ψi
µji(n)

)
◦ κjin′µji(n)

)]
◦ κjnn′

:=
(
λijµji(n′)n′ ◦ λ

i
µji(n)µji(n′)

)
◦Ψi

µji(n) ◦
(
κjin′µji(n) ◦ κ

j
nn′
)

= λijµji(n)n′ ◦Ψi
µji(n) ◦ κ

ji
nµji(n)

= λjnn′ ◦
(
λijµji(n)n ◦Ψi

µji(n) ◦ κ
ji
nµji(n)

)
:= λjnn′ ◦

[
γij(Ψ

i)
]j
n
.

If Ψi = Φi, we show that
[
γij(Ψ

i)
]j

=
[
γij(Φ

i)
]j

. As

[γij(Ψ
i)]jn := λijµji(n)n ◦Ψi

µji(n) ◦ κ
ji
nµji(n) & [γij(Φ

i)]jn := λijµji(n)n ◦ Φi
µji(n) ◦ κ

ji
nµji(n),

and since Ψi = Φi, we get Ψi
µji(n) = Φi

µji(n), and hence the following diagram commutes

κj0(n) λj0(n).

λj0(n)κj0(n)

λijµji(n)n ◦ Φi
µji(n) ◦ κ

ji
nµji(n)

λijµji(n)n ◦Ψi
µji(n) ◦ κ

ji
nµji(n)

κjnn λjnn

(ii) If m ∈ µ0(i), then [γii(Ψ
i)]im := λiiµii(m)m ◦ Ψi

µii(m) ◦ κ
ii
mµii(m) := λiimm ◦ Ψi

m ◦ κiimm :=

idλi0(m) ◦Ψi
m ◦ idκi0(m) := Ψi

m, hence [γii(Ψ
i)]im := Ψi

m, and consequently
[
γii(Ψ

i)
]i

:= Ψi. For
the commutativity of the diagram

Map
(
K0,M
j ,Λ0,M

j

)
Map
(
K0,M
k ,Λ0,M

k

)
Map
(
K0,M
i ,Λ0,M

i

)

γjk

γij γik

we need to show the equality between the maps

χkl := λjkµkj(l)l ◦
[
γij(Ψ

i)
]j
µkj(l)

◦ κkjlµkj(l) & υkl := λikµki(l)l ◦Ψj
µki(l)

◦ κkilµki(l).

By the definition of
[
γij(Ψ

i)
]j
µkj(l)

we get

χkl := λjkµkj(l)l ◦
(
λijµji(µkj(l))µkj(l) ◦Ψi

µji(µkj(l))
◦ κjiµkj(l)µji(µkj(l))

)
◦ κkjlµkj(l)

=
(
λjkµkj(l)l ◦ λ

ij
µji(µkj(l))µkj(l)

)
◦Ψi

µji(µkj(l))
◦
(
κjiµkj(l)µji(µkj(l)) ◦ κ

kj
lµkj(l)

)
= λikµji(µkj(l))l ◦Ψi

µji(µkj(l))
◦ κkilµji(µkj(l)).

By the supposed commutativity of the following diagram
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λi0(µki(l)) λi0(µji(µkj(l))),

κi0(µji(µkj(l)))κi0(µki(l))

λiµki(l)µji(µkj(l))

κiµki(l)µji(µkj(l))

Ψi
µki(l)

Ψi
µji(µkj(l))

υkl := λikµki(l)l ◦Ψj
µki(l)

◦ κkilµki(l)
= λikµji(µkj(l))l ◦

(
λiµki(l)µji(µkj(l)) ◦Ψj

µki(l)

)
◦ κkilµki(l)

= λikµji(µkj(l))l ◦
(
Ψi
µji(µkj(l))

◦ κiµki(l)µji(µkj(l))
)
◦ κkilµki(l)

= λikµji(µkj(l))l ◦Ψi
µji(µkj(l))

◦
(
κiµki(l)µji(µkj(l)) ◦ κ

ki
lµki(l)

)
= λikµji(µkj(l))l ◦Ψi

µji(µkj(l))
◦ κkilµji(µkj(l))

= χkl .

Definition 3.10.8. If (Ki)i∈I , (Λ
i)i∈I ∈ Fam(I,M), a family of families-map from (Ki)i∈I to

(Λi)i∈I , in symbols Ψ: (Ki)i∈I ⇒ (Λi)i∈I , is a dependent operation Ψ:
c
i∈I Map

(
K0,M
i ,Λ0,M

i

)
such that for every (i, j) ∈ D(I) the following diagram commutes

Λ0,M
i

Λ0,M
j ,

K0,M
jK0,M

i

ΦΛ
ij

ΦK
ij

Ψi Ψj

where ΦK
ij and ΦΛ

ij are the transport family-maps of (Ki)i∈I and (Λi)i∈I , respectively, according

to Definition 3.10.3. If Ξ: (Λi)i∈I ⇒ (N i)i∈I , the composition Ξ ◦ Ψ: (Ki)i∈I ⇒ (N i)i∈I is
defined, for every i ∈ I, by (Ξ ◦Ψ)i := Ξi ◦Ψi

K0,M
i

K0,M
j

Λ0,M
jΛ0,M

i

N0,M
i

N0,M
j .

ΦK
ij

Ψj

ΦΛ
ij

Ψi

Ξi Ξj

ΦN
ij

(Ξ ◦Ψ)i (Ξ ◦Ψ)j

The identity family of families-map Id(Λi)i∈I is defined by the rule
[
Id(Λi)i∈I

]i
:= Id

Λ0,M
i

, for

every i ∈ I. The totality of family of families-maps from (Ki)i∈I to (Λi)i∈I , and the canonical
equality on Fam(I,M) is defined in analogy to Definition 3.1.3.
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If Ψ: (Ki)i∈I ⇒ (Λi)i∈I , the commutativity of the diagram in Definition 3.10.8 is unfolded
as follows. If i =I j and m ∈ µ0(i), then[

Ψj ◦ ΦK
ij

]
m

=
[
ΦΛ
ij ◦Ψi

]
m

:⇔ Ψj
µij(m) ◦

[
ΦK
ij

]
m

=
[
ΦΛ
ij

]
m
◦Ψi

m

:⇔ Ψj
µij(m) ◦ κ

ij
mµij(m) = λijmµij(m) ◦Ψi

m

i.e., the following diagram commutes

λi0(m) λj0(µij(m)).

κj0(µij(m))κi0(m)

λijmµij(m)

κijmµij(m)

Ψi
m Ψj

µij(m)

In analogy to Corollary 3.3.4 we have the following.

Corollary 3.10.9. If (Ki)i∈I , (Λ
i)i∈I ∈ Fam(I,M) and Ψ:

c
i∈I Map

(
K0M
i ,Λ0,M

i

)
, the follow-

ing are equivalent:

(i) Ψ: (Ki)i∈I ⇒ (Λi)i∈I .

(ii) Ψ ∈
∏
i∈I Map

(
K0M
i ,Λ0,M

i

)
.

Proof. If i =I j, the commutativity of the diagram in the definition of a family of families-map
Ψ: (Ki)i∈I ⇒ (Λi)i∈I is equivalent to the membership condition Ψ ∈

∏
i∈I Map

(
K0M
i ,Λ0,M

i

)
using the above unfolding of the equality

[
Ψj ◦ ΦK

ij

]
m

=
[
ΦΛ
ij ◦Ψi

]
m

.

Definition 3.10.10. The totality
∏
i∈I
∏
m∈µ0(i) λ

i
0(m) of dependent functions over a family

of families of set (Λi)i∈I ∈ Fam(I,M) is defined by

Θ ∈
∏
i∈I

∏
m∈µ0(i)

λi0(m) :⇔ Θ:
k

i∈I

k

m∈µ0(i)

λi0(m) & ∀(i,j)∈D(I)∀(m,n)∈Tij(M)

(
Θj
n =

λj0(n)
λijmn(Θi

m)
)
,

Θ =∏
i∈I

∏
m∈µ0(i) λ

i
0(m) Φ :⇔ ∀i∈I∀m∈µ0(i)

(
Θi
m =λi0(m) Φi

m

)
.

The theory of families of families of sets over (I,M) within Vim
0 can be developed further

along the lines of the theory of families of sets over I within V0.

3.11 Notes

Note 3.11.1. The concept of a family of sets indexed by a (discrete) set was asked to be
defined in [9], Exercise 2, p. 72, and the required definition, given by Richman, is included
in [19], Exercise 2, p. 78, where the discreteness hypothesis is omitted. The definition has a
strong type-theoretic flavour, although, Richman’s motivation had categorical origin, rather
than type-theoretic. In a personal communication regarding this definition, Richman referred
to the definition of a set-indexed family of objects of a category, given in [76], p. 18, as the
source of the definition attributed to him in [19], p. 78. Given the categorical flavour of
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Bishop’s notion of a subset, it might be that Bishop was also thinking in categorical terms,
although Bishop, to our knowledge, neither used a purely categorical language to describe his
concepts, nor he used general category theory as a foundational framework for BISH.

Specifically, in [76] Richman presented a set I as a category with objects its elements and

Hom=I (i, j) := {x ∈ {0} | i =I j},

for every i, j ∈ I. If we view V0 as a category with objects its elements and

Hom=V0
(X,Y ) :=

{
(f, f ′) : F(X,Y )× F(Y,X) | (f, f ′) : X =V0 Y

}
,

for every X,Y ∈ V0, then an I-family of sets is a functor from the category I to the
category V0. Notice that in the definitions of Hom=I (i, j) and of Hom=V0

(X,Y ) the properties
P (x) := i =I j and Q(f, f ′) := (f, f ′) : X =V0 Y are extensional. In [95] we reformulated
Richman’s definition using the universe V0 of sets and the universe V1 of triplets (A,B, f),
where A,B ∈ V0 and f : A→ B. Definition 3.1.1 rests on the notion of dependent operation,
in order to be absolutely faithful to Bishop’s account of sets and functions in [9] and [19]. For
the definition of the concept of a family of sets in ZF, or CZF, see [82], p. 35, and Note 1.3.4.

The term “transport map” in Definition 3.1.1 is drawn from MLTT. Actually, Defini-
tion 3.1.1 is a “definitional form” of the type-theoretic transport i.e., the existence of the
transport map p∗ : P (x)→ P (y), where p : x =A y and P : A→ U is a type-family over A : U
in the universe of types U . In MLTT the existence of p∗ follows from Martin-Löf’s J-rule, the
induction principle that accommodates the indentity type-family =A : A→ A→ U , for every
type A : U . In Definition 3.1.1 we describe in a proof-irrelevant way i.e., using only the fact
that i =I j and not referring to witnesses of this equality, a structure of transport maps. This
structure in BST is defined, and not generated from the equality type family of MLTT.

Note 3.11.2. In the categorical setting of Richman (see Note 3.11.1), a family map Ψ ∈
MapI(Λ,M) is a natural transformation from the functor Λ to the functor M . The fact
that the most fundamental concepts of category theory, that of a functor and of a natural
transformation, are formulated in a natural way in BST through the notion of a dependent
operation explains why category theory is so closely connected to BST. For more on the
connections between BST, dependent type theory and category theory see section 8.1.

Note 3.11.3. The exterior union, is necessary to the definition of the infinite product of a
sequence of sets. In [19], p. 125, the following is noted:

Within the main body of this text, we have only defined the product of a family of
subsets of a given set. However, with the aid of Problem 2 of Chapter 3 we can
define the product of an arbitrary sequence of sets. Definition (1.7) then applies
to such a product3.

Note 3.11.4. If ΛN is the sequence of sets defined in Definition 3.1.2, the definitional clauses
of the corresponding exterior union can be written as follows:∑

n∈N

Xn =: {(n, x) | n ∈ N & x ∈ Xn},

(n, x) =∑
n∈N Xn

(m, y) :⇔ n =N m & x =Xn y.

3This is the definition of the countable product of metric spaces.
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Traditionally, the countable product of this sequence of sets is defined by∏
n∈N

Xn :=

{
φ : N→

∑
n∈N

Xn | ∀n∈N
(
φ(n) ∈ Xn

)}
,

which is a rough writing of the following∏
n∈N

Xn :=

{
φ : N→

∑
n∈N

Xn | ∀n∈N
(
pr1(φ(n)) =N n

)}
.

In the second writing pr1(φ(n)) =N n implies that pr1(φ(n) := n, hence, if φ(n) := (m, y),
then m = n and y ∈ Xn. When the equality of I though, is not like that of N, we cannot
solve this problem in a satisfying way. Although Bishop did not consider products other than
countable ones, in more abstract areas of mathematics, like e.g., the general topology of Bishop
spaces, arbitrary products are considered (see [88]). One could have defined

Φ ∈
∏
i∈I

λ0(i) :⇔ Φ ∈ F

(
I,
∑
i∈I

λ0(i)

)
& ∀i∈I

(
pr1(Φ(i)) := i

)
.

This approach has the problem that the property

Q(Φ) :⇔ ∀i∈I
(
pr1(Φ(i)) := i

)
is not necessarily extensional; let Φ =F(I,

∑
i∈I λ0(i)) Θ i.e., ∀i∈I

(
Φ(i) =∑

i∈I λ0(i) Θ(i)
)
, and

suppose that Q(Φ). If we fix some i ∈ I, and Φ(i) := (i, x) and Θ(i) := (j, y), we only get that
j =I i. The use of dependent operations allows us to define the right analogue to the

∏
-type

of MLTT and being at the same time compatible with the use of dependent operations by
Bishop in [9], p. 65.

Note 3.11.5. A precise formulation of the definition in [19], p. 85, of the countable product
of a sequence

(
Xn, ρn

)
n∈N of metric spaces, where ρn is bounded by 1, for every n ∈ N, is

the following. Let ΛN := (λN
0 , λ

N
1 ) be the N-family of the sets (Xn)n∈N (see Definition 3.1.2).

Notice that the dependent operation λN
1 is compatible to the corresponding metric structures

in the sense that each transport map λN
nn := idXn is a morphism in any category of metric

spaces considered. This is an example of a spectrum of metric spaces over ΛN (see also
the introduction to section 6.1). The countable product metric ρ∞ on

∏
n∈NXn, for every

Φ,Θ ∈
∏
n∈NXn, is defined by

ρ∞(Φ,Θ) :=

∞∑
n=0

ρn
(
Φn,Θn

)
2n

.

Note 3.11.6. The equality Φj =λ0(j) λij(Φi) in Definition 3.3.1 is the proof-irrelevant version
of dependent application of a dependent function in MLTT (see also Note 5.7.10).

Note 3.11.7. As it is mentioned in [84], the axiom of choice is “freely used in Bishop
constructivism”. In Theorem 3.6.4 we show only the formal version of the type-theoretic
axiom choice within BST i.e., the the distributivity of

∏
over

∑
. This term was suggested to

us by M. Maietti. In [95] a proof of this result is also given, where dependecy is formulated
with the help of the universe V1 of triplets (A,B, f) (see Note 3.11.1). As it was first noted to
us by E. Palmgren, this distributivity holds in every locally cartesian closed category. In [128]
it is mentioned that this fact is attributed to Martin-Löf and his work [73]. For a proof see [2].
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Note 3.11.8. The notion of an I-set of sets is in accordance with Bishop’s predicative spirit,
and his need to avoid the treatment of the universe V0 as a set. This notion was not defined by
Bishop, only its “internal” version, the notion of an I-set of subsets, was defined similarly by
him in [9], p. 65. The use of the term “set of subsets” was a source of misreading of [9] from
the side of Myhill in [80] (see also Notes 7.6.5 and 7.6.7). The definition of the set λ0I is in the
spirit of the definition of the quotient group G/H of the group G by its normal subgroup H,
given in [76], p. 38. If I is equipped with the equality =Λ

I , then Λ does not become necessarily
an I-set of sets. The reason for this is that the transport maps of Λ are given beforehand,
and if we equip I with =Λ

I we need to add a transport map λij for every pair (i, j) for which
λ0(i) =V0 λ0(j) and (i, j) /∈ D(I), where D(I) is understood here as the diagonal D(I,=I)
with respect to the equality =I . So, λ1 has to be extended, and define a new family of sets
over (I,=Λ

I ), which is going to be an (I,=Λ
I )-set of sets.

Note 3.11.9. A direct family of sets is a useful variation of the notion of a set-indexed family
of sets (see Chapter 6). A directed set (I,4I) can also be seen as a category with objects the
elements of I, and Hom4I (i, j) := {x ∈ {0} | i 4I j}. If the universe V0 is seen as a category
with objects its elements and Hom4V0

(X,Y ) := F(X,Y ), an (I,4I)-family of sets is a functor
from the category (I,4I) to this new category V0.

Note 3.11.10. A generalisation of the notion of a direct family of sets is that of a preorder
family of sets. If (I,4I) is a preorder (see Definition 9.2.1), a covariant preorder family of
sets over (I,4I) is defined as a direct family of sets. One needs though the property of a
directed set to define an interesting equality on the exterior union of the corresponding family.
A contravariant preorder family of sets over (I,4I), or an (I,<I)-family of sets, is a pair
M< := (µ0, µ

<
1 ), where if (j, i) ∈ D<(I), the transport maps µ<1 (j, i) : µ0(j)→ µ0(i) behave in

a dual way i.e., for every i, j, k ∈ I with k <I j <I i, the following diagram commutes

µ0(j) µ0(k).

µ0(i)

µ<jk

µ<ij µ<ik

If (I,4) is an inverse-directed set (see Definition 9.2.1) and M< is an (I,<I)-contravariant
direct family of sets, defined in the obvious way, the inverse-direct sum

∑<
i∈I µ0(i) of M< is

the totality
∑

i∈I µ0(i), equipped with the equality

(i, x) =∑<
i∈I µ0(i)

(j, y) :⇔ ∃k∈I
(
i <I k & j <I k & µ<ik(x) =µ0(k) µ

<
jk(y)

)
.

The set
∏<
i∈I µ0(i) is defined in the expected way. Thinking classically, a topology T of open

sets on a set X, equipped with the subset order ⊆, is an inverse-directed set, and the notion
of a presheaf of sets on (X,T ) is an example of a (T,⊇)-contravariant direct family of sets.
In the language of presheaves (see [65], p. 72) the transport maps µ<ij are called restriction

maps, and a family-map Φ: Λ< ⇒M< is called a morphism of presheaves. It is natural to use
also the term extension map for the transport map λ4ij of a covariant (direct) preorder family
of sets. The notion of a family of sets over a partial order is also used in the definition of a
Kripke model for intuitionistic predicate logic. For that see [125], p. 85, where the transport
maps λ4ij are called there transition functions.
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Note 3.11.11. If a set-relevant family-map Ψ: Λ∗ ⇒M∗ was defined by the stronger condition:
for every (i, j) ∈ D(I), every p ∈ ελ0(i, j) and every q ∈ εµ0 (i, j) the diagram in Definition 3.9.2
commutes, then the expected fact idΛ∗ : Λ∗ ⇒ Λ∗ implies that λpij = λqij , for every p, q ∈ ελ0(i, j).
This property is called proof-irrelevance in Definition 5.3.4.

Note 3.11.12. The theory of families of families of sets over (I,M) within Vim
0 is the third

rung of the ladder of set-like objects in Vim
0 . The first three rungs can be described as follows:

X,Y ∈ V0, f : X → Y,

Λ,M ∈ Fam(I), Ψ: Λ⇒M ⇔ Ψ ∈
∏
i∈I

F
(
λ0(i), µ0(i)

)
,

(Ki)i∈I , (Λ
i)i∈I ∈ Fam(I,M), Ψ: (Ki)i∈I ⇒ (Λi)i∈I ⇔ Ψ ∈

∏
i∈I

Map
(
K0,M
i ,Λ0,M

i

)
.

This hierarchy of universes and families can be extended further, if necessary.

Note 3.11.13 (Small categories within BST). As it is mentioned in the introduction to
Chapter 9 of [124], where category theory is developed within HoTT, categories do not fit
well with set-based mathematics. Quit earlier, see e.g, in [61], it is mentioned that “type
theory is adequate to represent faithfully categorical reasoning”. In [61] the objects are
modelled as types and the Hom-sets as Hom-setoids of arrows, within the Calculus of Inductive
Constructions. In [87] there are elements of such a development of category theory within
type theory, where both the algebraic and the hom-definition are given. In [86] are included
interesting remarks on the formulation of category theory in [124]. For relations between
category theory and Explicit Mathematics see [64]. In this note we briefly explain why small
categories fit well with BST.

As we have already explained in Note 3.11.1, Richman used the notion of a functor to
define the fundamental notion of a set-indexed family of sets, as a special case of a set-indexed
family of objects in some category C. Here we do the opposite. The notion of a set-indexed
family of sets is fundamental and comes first. We use the basic theory of set-indexed families of
sets to describe the basic notions of category theory within BST. In what follows we consider
the objects of a category to be a set, although that could also be a class. The totality of
arrows is always a set i.e., we could study locally small categories, but here we only present
small categories. A set is not necessarily in the homotopy sense of the book-HoTT (see the
corresponding notion of a strict category in [124], section 9.6). At this point we do not equip
ObC with equality with evidence (EwE) that makes possible the formulation of precategory
and category in the sense of the book-HoTT (see section 5.3). For a general discussion on the
relations between categories and sets in BST see section 8.1.

Definition 3.11.14. A (small) category is a structure C :=
(
ObC ,morC0 ,morC1 ,CompC , IdC

)
,

where ObC is a set,
(
morC0 ,morC1

)
∈ Fam(ObC ×ObC),

CompC :
k

x,y,z∈ObC

F
(
morC0(y, z)×morC0(x, y),morC0(x, z)

)
,

CompCxyz := CompC(x, y, z) : morC0(y, z)×morC0(x, y)→ morC0(x, z), CompCxyz(φ, ψ) := φ◦ψ,

IdC :
k

x∈ObC

morC0(x, x), IdCx := IdC(x); x ∈ ObC ,
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such that the following conditions are satisfied:

(Cat1) For every x, y, z, w ∈ ObC, χ ∈ morC0(z, w), φ ∈ morC0(y, z), ψ ∈ morC0(x, y),

χ ◦ (φ ◦ ψ) := CompCxzw
(
χ,CompCxyz(φ, ψ)

)
=morC0 (x,w) CompCxyw

(
CompCyzw(χ, φ), ψ

)
:= (χ ◦ φ) ◦ ψ.

(Cat2) For every x, y ∈ ObC, and for every ψ ∈ morC0(x, y),

IdCy ◦ ψ := CompCxyy(Id
C
y , ψ) =MorC0 (x,y) ψ & ψ ◦ IdCx := CompCxxy(ψ, Id

C
x, ψ) =morC0 (x,y) ψ.

(Cat3) For every x, y, z, x′, y′, z′ ∈ ObC, with x =ObC x
′, y =ObC y

′ and z =ObC z
′, for every ψ ∈

morC0(x, y), φ ∈ morC0(y, z), morC(x,z)(x′,z′)(φ ◦ ψ) =morC0 (x′,z′) morC(y,z)(y′,z′)(φ) ◦morC(x,y)(x′,y′)(ψ)

x′ y′

x y z

z′.
mor(y,z)(y′,z′)(φ)mor(x,y)(x′,y′)(ψ)

ψ φ

morC
(y,z)(y′,z′)(φ) ◦ morC

(x,y)(x′,y′)(ψ)

morC
(x,z)(x′,z′)(φ◦ψ)

(Cat4) For every x, x′ ∈ ObC, with x =ObC x
′, morC(x,x)(x′,x′)

(
IdCx
)

=morC0 (x′,x′) IdCx′

x′ x′.

xx

mor(x,x)(x′,x′)(Idx)

Idx

Idx′

The last two conditions, which reflect a functorial behaviour of the transport maps of
morC1 and are not found in the standard definition of a category, are necessary compatibility
conditions between these transport maps and the

(
CompC , IdC

)
-structure of the category C.

While in intensional MLTT these conditions follow from the transport, hence the J-rule, here
we need to include them in our definition.

As a characteristic example of a category in the above sense, we consider the constructive
analogue to the category of posets. Classically, the category of posets has objects the collection
of all posets and arrows the monotone functions. In order to formulate this constructively, we
need to generalise Definition 3.11.14 to categories with objects an abstract totality ObC . In
Definition 3.11.15 we define the category generated by a spectrum of posets. We can define
similarly the category generated by a spectrum of groups, rings, modules etc. (for the notion
of an S-spectrum, where S is a structure on a set X, see the introduction to section 6.1).
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Definition 3.11.15. A spectrum of posets over a set I is an I-family of sets Λ :=
(
λ0, λ1

)
such

that (λ0(i),≤i) is a poset for every i ∈ I, and for every (i, j) ∈ D(I) the transport map λij :
λ0(i)→ λ0(j) is a monotone function. If Fmn

(
λ0(i), λ0(j)

)
is the set of monotone functions

from λ0(i) to λ0(j), the category CΛ generated by the I-spectrum Λ is the structure CΛ :=(
ObCΛ ,morCΛ0 ,morCΛ1 ,CompCΛ , IdCΛ

)
, where ObCΛ := λ0I, and morCΛ0 := Fmn

(
λ0(i), λ0(j)

)
.

If i =I i
′ and j =I j

′, and since the composition of monotone functions is monotone, let
morCΛ(i,j)(i′j′) : Fmn

(
λ0(i), λ0(j)

)
→ Fmn

(
λ0(i′), λ0(j′)

)
, defined by

f 7→ morCΛ(i,j)(i′,j′)(f), morCΛ(i,j)(i′,j′)(f) := λjj′ ◦ f ◦ λi′i; f ∈ Fmn
(
λ0(i), λ0(j)

)
,

λ0(i′) λ0(j′).

λ0(j)λ0(i)

morCΛ(i,j)(i′j′)(f)

f

λi′i λjj′

The dependent operations IdCΛ
(
λ0(i)

)
:= Idλ0(i) and CompCΛ are defined as expected.

Next we only show (Cat3) and (Cat4) for CΛ. If i =I i
′, f =I j

′ and k =I k
′, we have that

morCΛ(k,i)(k′,i′)(φ) ◦morCΛ(j,k)(j′,k′)(ψ) :=
(
λii′ ◦ φ ◦ λk′k

)
◦
(
λkk′ ◦ ψ ◦ λj′j

)
= λii′ ◦ φ ◦

(
λk′k ◦ λkk′

)
◦ ψ ◦ λj′j

= λii′ ◦ (φ ◦ ψ) ◦ λj′j
:= morCΛ(j,i)(j′,i′)(φ ◦ ψ),

morCΛ(i,i)(i′,i′)

(
IdCΛ

(
λ0(i)

)
) := morCΛ(i,i)(i′,i′)

(
Idλ0(i)

)
:= λii′ ◦Idλ0(i) ◦λi′i = Idλ0(j) := IdCΛ

(
λ0(j)

)
.

Definition 3.11.16. A functor F : C → D from C :=
(
ObC ,morC0 ,morC1 ,CompC , IdC

)
to

D :=
(
ObD,morD0 ,morD1 ,CompD, IdD

)
is a pair F := (F0, F1), where F0 : ObC → ObD and

F1 :
k

x,y∈ObC

F
(
morC0(x, y),morD0 (F0(x), F0(y))

)
,

Fxy := F1(x, y) : morC0(x, y)→ morD0 (F0(x), F0(y)),

such that the following conditions are satisfied:

(Funct1) For every x, y, z ∈ ObC, and for every ψ ∈ morC0(x, y), φ ∈ morC0(y, z) we have that

Fxz(φ ◦ ψ) =morD0 (F0(x),F0(z)) Fyz(φ) ◦ Fxy(ψ).

(Funct2) For every x ∈ ObC we have that Fxx
(
IdCx
)

=morD0 (F0(x),F0(x)) IdDF0(x).

(Funct3) For every x, y, x′, y′ ∈ ObC, such that x =ObC x
′ and y =ObC y

′, hence (x, y) = (x′, y′)
and

(
F0(x), F0(y)

)
=
(
F0(x′), F0(y′)

)
, the following diagram commutes
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morD0 (F0(x), F0(y)) morD0 (F0(x′), F0(y′)).

morC0(x, y) morC0(x′, y′)

morD(
F0(x),F0(y)

)(
F0(x′),F0(y′)

)

morC(x,y)(x′,y′)

Fxy Fx′y′

The last condition, which is not found in the standard definition of a functor, is a compati-
bility condition between the F1-part of a functor F : C → D, the transport maps morC1 of C and
the transport maps morD1 of D. As an example of a standard categorical construction in this
framework, we formulate the notion of slice category. If C :=

(
ObC ,morC0 ,morC1 ,CompC , IdC

)
is a category and x ∈ ObC , then Λx :=

(
λx0 , λ

x
1

)
∈ Fam(ObC), where

λx0 : ObC  V0, λx0(y) := morC0(y, x); y ∈ ObC ,

λx1 :
k

(y,y′)∈D(ObC)

F
(
morC0(y, x),morC0(y′, x)

)
,

λxyy′ := λx1(y, y′) := morC(y,x)(y′,x) : morC0(y, x)→ morC0(y′, x); (y, y′) ∈ (ObCC).

Then we can prove the following fact.

Proposition 3.11.17. Let C :=
(
ObC ,morC0 ,morC1 ,CompC , IdC

)
be a category and x, z ∈ ObC.

Let the structure C/x :=
(
ObC/x,mor

C/x
0 ,mor

C/x
1 ,CompC/x, IdC/x

)
, where

ObC/x :=
∑
y∈ObC

λx0(y) :=
∑
y∈ObC

morC0(y, x),

mor
C/x
0

(
(y, f), (z, g)

)
:=
{
h ∈ morC0(y, z) | g ◦ h = f

}
.

If (y, f) =ObC/x (y′, f ′) and (z, g) =ObC/x (z′, g′), the function

mor
C/x(

(y,f),(z,g)
)
,
(

(y′,f ′),(z′,g′)
) : mor

C/x
0

(
(y, f), (z, g)

)
→ mor

C/x
0

(
(y′, f ′), (z′, g′)

)
,

h 7→ morC(y,z)(y′,z′)(h); h ∈ mor
C/x
0

(
(y, f), (z, g)

)
,

is well-defined. If CompC/x is defined in the expected compositional way, and if IdC/x
(
(y, f)

)
:=

IdC(y), for every (y, f) ∈ ObC/x, then C/x is a category. Moreover, if h ∈ morC0(x, z), then
H := (H0, H1) : C/x→ C/z, where

H0 :

( ∑
y∈ObC

morC0(y, x)

)
→
( ∑
y∈ObC

morC0(y, z)

)
,

(y, f) 7→ (y, h ◦ f); (y, f) ∈
∑
y∈ObC

morC0(y, x),

H1 :
k

(y,f),(y′,f ′)∈C/x

F

(
mor

C/x
0

(
(y, f)(y′, f ′)

)
,mor

C/z
0

(
(y, h ◦ f), (y′, h ◦ f ′)

))
,

H(y,f)(y′,f ′) : mor
C/x
0

(
(y, f)(y′, f ′)

)
→ mor

C/z
0

(
(y, h ◦ f), (y′, h ◦ f ′)

)
,

g 7→ g; g ∈ mor
C/x
0 ((y, f)(y′, f ′)).
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Chapter 4

Families of subsets

We develop the basic theory of set-indexed families of subsets and of the corresponding
family-maps between them. In contrast to set-indexed families of sets, the properties of which
are determined “externally” through their transport maps, the properties of a set-indexed
family Λ(X) of subsets of a given set X are determined “internally” through the embeddings
of the subsets of Λ(X) to X. The interior union of Λ(X) is the internal analogue to the

∑
-set

of a set-indexed family of sets Λ, and the intersection of Λ(X) is the internal analogue to the∏
-set of Λ. Families of sets over products, sets of subsets, and direct families of subsets are

the internal analogue to the corresponding notions for families of sets. Set-indexed families
of partial functions and set-indexed families of complemented subsets, together with their
corresponding family-maps, are studied.

4.1 Set-indexed families of subsets

Roughly speaking, a family of subsets of a set X indexed by some set I is an assignment
routine λ0 : I  P(X) that behaves like a function i.e., if i =I j, then λ0(i) =P(X) λ0(j). The
following definition is a formulation of this rough description that reveals the witnesses of the
equality λ0(i) =P(X) λ0(j). This is done “internally”, through the embeddings of the subsets
into X. The equality λ0(i) =V0 λ0(j), which in the previous chapter is defined “externally”
through the transport maps, follows, and a family of subsets is also a family of sets.

Definition 4.1.1. Let X and I be sets. A family of subsets of X indexed by I, or an I-family
of subsets of X, is a triplet Λ(X) := (λ0, EX , λ1), where λ0 : I  V0,

EX :
k

i∈I
F
(
λ0(i), X

)
, EX(i) := EXi ; i ∈ I,

λ1 :
k

(i,j)∈D(I)

F
(
λ0(i), λ0(j)

)
, λ1(i, j) := λij ; (i, j) ∈ D(I),

such that the following conditions hold:

(a) For every i ∈ I, the function EXi : λ0(i)→ X is an embedding.

(b) For every i ∈ I, we have that λii := idλ0(i).

(c) For every (i, j) ∈ D(I) we have that EXi = EXj ◦ λij and EXj = EXi ◦ λji
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λ0(i) λ0(j)

X.

λij

λji
EXi EXj

EX is a modulus of embeddings for λ0, and λ1 a modulus of transport maps for λ0. Let
Λ := (λ0, λ1) be the I-family of sets that corresponds to Λ(X). If (A, iA) ∈ P(X), the constant
I-family of subsets A is the pair CA(X) := (λA0 , EX,A, λA1 ), where λ0(i) := A, EX,Ai := iA, and
λ1(i, j) := idA, for every i ∈ I and (i, j) ∈ D(I) (see the left diagram in Definition 4.1.3).

Proposition 4.1.2. Let X and I be sets, λ0 : I  V0, EX a modulus of embeddings for λ0,
and λ1 a modulus of transport maps for λ0. The following are equivalent.

(i) Λ(X) := (λ0, EX , λ1) is an I-family of subsets of X.

(ii) Λ := (λ0, λ1) ∈ Fam(I) and EX : Λ⇒ CX , where CX is the constant I-family X.

Proof. (i)⇒(ii) First we show that Λ ∈ Fam(I). If i =I j =I k, then EXk ◦ (λjk ◦ λij) =
(EXk ◦ λjk) ◦ λij = EXj ◦ λij = EXi and EXk ◦ λik = EXi

λ0(i) λ0(j) λ0(k)

X,

λik

λij λjk

EXi EXkEXj

hence EXk ◦ (λjk ◦ λij) = EXk ◦ λik, and since EXk is an embedding, we get λjk ◦ λij = λik. If
EX : Λ⇒ CX , the following squares are commutative

X X

λ0(j)λ0(i)

X

λ0(j)

X

λ0(i)

idX

λij

EXi EXj

idX

λji

EXj EXi

X

λ0(i) λ0(j) λ0(j)

X

λ0(i)

EXi EXj

λij

EXiEXj

λji

if and only if the above triangles are commutative. The implication (ii)⇒(i) follows immediately
from the equivalence between the commutativity of the above pairs of diagrams.
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Definition 4.1.3. Let X be a set and (A, iXA ), (B, iXB ) ⊆ X. The triplet Λ2(X) := (λ2
0 , EX , λ2

1),
where Λ2 := λ2

0 , λ
2
1 is the 2-family of A,B, EX0 := iXA , and EX1 := iXB

X

A A B

X

B

iXA iXA

idA

iXBiXB

idB

is the 2-family of subsets A and B of X. The n-family Λn(X) of the subsets (A1, i1), . . . , (An, in)
of X, and the N-family of subsets (An, in)n∈N of X are defined similarly.

Definition 4.1.4. If Λ(X) := (λ0, EX , λ1),M(X) := (µ0,ZX , µ1) and N(X) := (ν0,HX , ν1)
are I-families of subsets of X, a family of subsets-map Ψ: Λ(X) ⇒ M(X) from Λ(X) to
M(X) is a dependent operation Ψ :

c
i∈I F

(
λ0(i), µ0(i)

)
, where Ψ(i) := Ψi, for every i ∈ I,

such that, for every i ∈ I, the following diagram commutes1

X.

λ0(i) µ0(i)

EXi ZXi

Ψi

The totality MapI(Λ(X),M(X)) of family of subsets-maps from Λ(X) to M(X) is equipped
with the pointwise equality. If Ψ: Λ(X) ⇒ M(X) and Ξ: M(X) ⇒ N(X), the composition
family of subsets-map Ξ ◦Ψ: Λ(X)⇒ N(X) is defined by (Ξ ◦Ψ)(i) := Ξi ◦Ψi,

λ0(i) µ0(i) ν0(i)

X,

Ei Zi Hi

Ψi Ξi

(Ξ ◦Ψ)i

for every i ∈ I. The identity family of subsets-map IdΛ(X) : Λ(X)⇒ Λ(X) and the equality on
the totality Fam(I,X) of I-families of subsets of X are defined as in Definition 3.1.3.

We see no obvious reason, like the one for Fam(I), not to consider Fam(I,X) to be a set. In
the case of Fam(I) the constant I-family Fam(I) would be in Fam(I), while the constant I-family
Fam(I,X) is not clear how could be seen as a family of subsets of X. If ν0(i) := Fam(I,X),
for every i ∈ I, we need to define a modulus of embeddings NX

i : Fam(I,X) ↪→ X, for
every i ∈ I. From the given data one could define the assignment routine NX

i by the rule
NX
i

(
Λ(X)

)
:= EXi (ui), if it is known that ui ∈ λ0(i). Even in that case, the assignment

routine NX
i cannot be shown to satisfy the expected properties. Clearly, if NX

i was defined
by the rule NX

i

(
Λ(X)

)
:= x0 ∈ X, then it cannot be an embedding.

1Trivially, for every i ∈ I the map Ψi : λ0(i)→ µ0(i) is an embedding.
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Definition 4.1.5. If Λ(X)M(X) ∈ Fam(I,X), let

Λ(X) ≤M(X) :⇔ ∃Φ∈MapI(Λ(X),M(X))

(
Φ: Λ(X)⇒M(X)

)
,

If Φ ∈ MapI(Λ(X),M(X)),Ψ ∈ MapI(M(X),Λ(X)),Φ′ ∈ MapI(M(X), N(X)) and Ψ′ ∈
MapI(N(X),M(X)), let the following set and operations

PrfEql0(Λ(X),M(X)) := MapI(Λ(X),M(X))× MapI(M(X),Λ(X)),

refl(Λ) :=
(
IdΛX , IdΛX

)
& (Φ,Ψ)−1 := (Ψ,Φ) & (Φ,Ψ) ∗ (Φ′,Ψ′) := (Φ′ ◦ Φ,Ψ ◦Ψ′).

Proposition 4.1.6. Let Λ(X) := (λ0, EX , λ1),M(X) := (µ0,ZX , µ1) ∈ Fam(I,X).

(i) If Ψ: Λ(X)⇒M(X), then Ψ: Λ⇒M .

(ii) If Ψ: Λ(X)⇒M(X) and Φ: Λ(X)⇒M(X), then Φ =MapI(Λ(X),M(X)) Ψ.

Proof. (i) By the commutativity of the following inner diagrams

λ0(i) µ0(i)

X

λ0(j) µ0(j),

λij

Ψi

EXi ZXi

Ψj

EXj ZXj

µij

we get the required commutativity of the above outer diagram. If x ∈ λ0(i), then

(ZXj ◦Ψj)
(
λij(x)

)
= EXj

(
λij(x)

)
= EXi (x) = (ZXi ◦Ψi)(x) = ZXj

(
µij(Ψi(x))

)
.

Since ZXj
(
Ψj(λij(x))

)
= ZXj

(
µij(Ψi(x))

)
, we get Ψj(λij(x) = µij(Ψi(x)).

(ii) If i ∈ I, then Ψi : λ0(i) ⊆ µ0(i), Φi : λ0(i) ⊆ µ0(i)

λ0(i) µ0(i)

X,

Φi

Ψi

Ei Ei

hence by Proposition 2.6.2 we get Ψi =F(λ0(i),µ0(i)) Φi.

Because of Proposition 4.1.6(ii) all the elements of PrfEql0(Λ(X),M(X)) are equal to
each other, hence the groupoid- properties (i)-(iv) for PrfEql0(Λ(X),M(X)) hold trivially.
Of course, Λ(X) =Fam(I,X) M(X) :⇔ Λ(X) ≤M(X) & M(X) ≤ Λ(X). The characterisation
of a family of subsets given in Proposition 4.1.2 together with the operations on family-maps
help us define new families of subsets from given ones.
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Proposition 4.1.7. If Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) and M(Y ) := (µ0, EY , µ1) ∈
Fam(I, Y ), then

(Λ×M)(X × Y ) := Λ(X)×M(Y ) :=
(
λ0 × µ0, EX × EY , λ1, µ1

)
∈ Fam(I,X × Y ),

where the I-family Λ×M := (λ0×µ0, λ1×µ1) is defined in Definition 3.1.6 and the family-map
EX × EY : Λ×M ⇒ CX × CY is defined in Proposition 3.1.8(ii).

Proof. By Proposition 3.1.8(ii) EX×EY : Λ×M ⇒ CX×CY , where (EX×EY )i : λ0(i)×µ0(i) ↪→
X × Y is defined by the rule (u,w) 7→

(
EX(u), EY (w)

)
, for every (u,w) ∈ λ0(i)× µ0(i). By

Proposition 2.6.11 this is a well-defined subset of X×Y . By Proposition 3.1.7(i) EX×EY : Λ×
M ⇒ CX×Y , and we use Proposition 4.1.2.

The operations on subsets induce operations on families of subsets.

Proposition 4.1.8. Let Λ(X) := (λ0, EX , λ1) and M(X) := (µ0,ZX , µ1) ∈ Fam(I,X).

(i) (Λ ∩ M)(X) := (λ0 ∩ µ0, EX ∩ ZX , λ1 ∩ µ1) ∈ Fam(I,X), where λ0 ∩ µ0 : I  V0 is
defined by (λ0 ∩ µ0)(i) := λ0(i) ∩ µ0(i), for every i ∈ I, and the dependent operations
EX ∩ ZX :

c
i∈I F

(
λ0(i) ∩ µ0(i), X

)
, λ1 ∩ µ1 :

c
(i,j)∈D(I) F

(
λ0(i) ∩ µ0(i), λ0(j) ∩ µ0(j)

)
are

defined by (
EX ∩ ZX

)
i

:= iXλ0(i)∩µ0(i); i ∈ I,[(
λ1 ∩ µ1

)
1
(i, j)

]
(u,w) :=

(
λ1 ∩ µ1

)
ij

(u,w) :=
(
λij(u), µij(w)

)
; (u,w) ∈ λ0(i) ∩ µ0(i).

(ii) (Λ ∪ M)(X) := (λ0 ∪ µ0, EX ∪ ZX , λ1 ∪ µ1) ∈ Fam(I,X), where λ0 ∪ µ0 : I  V0 is
defined by (λ0 ∪ µ0)(i) := λ0(i) ∪ µ0(i), for every i ∈ I, and the dependent operations
EX ∪ ZX :

c
i∈I F

(
λ0(i) ∪ µ0(i), X

)
, λ1 ∪ µ1 :

c
(i,j)∈D(I) F

(
λ0(i) ∪ µ0(i), λ0(j) ∪ µ0(j)

)
are

defined by (
EX ∪ ZX

)
i
(z) :=

{
EXi (z) , z ∈ λ0(i)
ZXi (z) , z ∈ µ0(i),

; i ∈ I, z ∈ λ0(i) ∪ µ0(i)

(λ1 ∪ µ1)ij(z) :=

{
λij(z) , z ∈ λ0(i)
µij(z) , z ∈ µ0(i),

; (i, j) ∈ D(I), z ∈ λ0(i) ∪ µ0(i).

Proof. (i) By Definition 2.6.9 we have that

λ0(i) ∩ µ0(i) := {(u,w) ∈ λ0(i)× µ0(i) | EXi (u) =X ZXi (w)}, iXλ0(i)∩µ0(i)(u,w) := EXi (u),

λ0(j)∩µ0(j) := {(u′, w′) ∈ λ0(j)×µ0(j) | EXj (u′) =X ZXj (w′)}, iXλ0(j)∩µ0(j)(u
′, w′) := EXj (u′).

Since EXj
(
λij(u)

)
=X EXi (u) =X ZXi (w) =X ZXj

(
µij(w)

)
, we get

(
λ1 ∩ µ1

)
ij

(u,w) ∈ λ0(j) ∩
µ0(j). Clearly,

(
λ1∩µ1

)
ij

is a function. The commutativity of the following left inner diagrams

λ0(i) ∩ µ0(i) λ0(j) ∩ µ0(j)

X

λ0(i) ∪ µ0(i) λ0(i) ∪ µ0(i)

X

(λ1 ∩ µ1)ij

(λ1 ∩ µ1)ji(
EX ∩ ZX

)
i

(
EX ∩ ZX

)
j

(λ1 ∪ µ1)ij

(λ1 ∪ µ1)ji(
EX ∪ ZX

)
i

(
EX ∪ ZX

)
j
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follows by the equalities
(
EX ∩ XX

)
j

(
(λ1 ∩ µ1)ij(u,w)

)
:= iXλ0(i)∩µ0(i)

(
λij(u), µij(w)

)
:=

EXj
(
λij(u)

)
=X EXi (u) :=

(
EX ∩ XX

)
i
(u,w).

(ii) First we show that (λ1∪µ1)ij is a function. The more interesting case is z ∈ λ0(i), w ∈ µ0(i)
and EXi (z) =X ZXi (w). Hence EXj

(
λij(u)

)
=X=X ZXj

(
µij(w)

)
, and λij(z) =λ0(i)∪µ0(i) µij(w).

The commutativity of the above right inner diagrams is straightforward to show.

Proposition 4.1.9. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) and M(Y ) := (µ0, EY , µ1) ∈
Fam(J, Y ). If f : X → Y , let [f(Λ)](Y ) :=

(
f(λ0), f(EX)Y , f(λ1)

)
, where the non-dependent

assignment routine f(λ0) : I  V0, and the dependent operations f(EX)Y :
c
i∈I F(f(λ0)(i), Y )

and f(λ1) :
c

(i,i′)∈D(I) F
(
f(λ0)(i), f(λ0)(i′)

)
are defined by

λ0(i) X Y
EXi f

fYi

[f(λ0)](i) := f(λ0(i)) := (λ0(i), fi), fYi := f ◦ EXi ; i ∈ I,[
f(EX)Y

]
(i) := fYi , f(λ1)ii′ := λii′ ; i ∈ I, (i, i′) ∈ D(I).

We call [f(Λ)](Y ) the image of Λ under f . The pre-image of M under f is the triplet
[f−1(M)](X) :=

(
f−1(µ0), f−1(EY )X , f−1(µ1)

)
, where the non-dependent assignment rou-

tine f−1(µ0) : J  V0, and the dependent operations f−1(EY )X :
c
j∈J F(f−1(µ0)(j), X) and

f−1(µ1) :
c

(j,j′)∈D(J) F
(
f−1(µ0)(j), f−1(µ0)(j′)

)
are defined by

[f−1(µ0)](j) := f−1(µ0(j)) :=
{

(x, y) ∈ X × µ0(j) | f(x) =Y EYj (y)
}

; j ∈ J

ej : f−1(µ0(j)) ↪→ X ej(x, y) := x; x ∈ X, y ∈ µ0(j), j ∈ J,[
f−1(EY )X

]
(j) := ej ; j ∈ J,

f−1(µ1)jj′ : f
−1(µ0)(j)→ f−1(µ0)(j′) f−1(µ1)jj′(x, y) := (x, µjj′(y)); (j, j′) ∈ D(J).

Then [f(Λ)](Y ) ∈ Fam(I, Y ) and [f−1(M)](X) ∈ Fam(J,X).

Proof. It suffices to show the commutativity of the following diagrams

λ0(i) λ0(i′)

XY

f−1(µ0)(j) f−1(µ0)(j′)

X.

λii′

λi′i
EXi EXi′

f

f−1(µ1)jj′

f−1(µ1)j′j[
f−1(EY )X

]
(j)

[
f−1(EY )X

]
(j′)

For the left, we use the supposed commutativity of the two diagrams without the arrow f : X →
Y . For the above right outer diagram we have that

[
f−1(EY )X

]
(j′)
(
f−1(µ1)jj′(x, y)

)
:=[

f−1(EY )X
]
(j′)(x, µjj′(y)) := ej′((x, µjj′(y)) := x := ej(x, y) :=

[
f−1(EY )X

]
(j)(x, y). For the

commutativity of the above right inner diagram we proceed similarly.

The operations on families of subsets generate operations on family of subsets-maps.
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Proposition 4.1.10. Let Λ(X),K(X),M(X), N(X) ∈ Fam(I,X), P (Y ), Q(Y ) ∈ Fam(J, Y ),
and f : X → Y . Let also Φ: Λ(X)⇒ K(X), Ψ: M(X)⇒ N(X), and Ξ: P (Y )⇒ Q(Y ).

(i) Φ ∩Ψ: (Λ ∩M)(X)⇒ (K ∩N)(X), where, for every i ∈ I and (u,w) ∈ λ0(i) ∩ µ0(i),

(Φ ∩Ψ)i : λ0(i) ∩ µ0(i)→ k0(i) ∩ ν0(i), (Φ ∩Ψ)i(u,w) :=
(
Φi(u),Ψi(w)

)
.

(ii) Φ ∪Ψ: (Λ ∪M)(X)⇒ (K ∪N)(X), where, for every i ∈ I,

(Φ ∪Ψ)i : λ0(i) ∪ µ0(i)→ k0(i) ∪ ν0(i),

(Φ ∪Ψ)i(z) :=

{
Φi(z) , z ∈ λ0(i)
Ψi(z) , z ∈ µ0(i)

(iii) Φ×Ξ: (Λ×P )(X×Y )⇒ (K×Q)(X×Y ), where, for every i ∈ I and (u,w) ∈ λ0(i)×p0(i),

(Φ× Ξ)i : λ0(i)× p0(i)→ k0(i)× q0(i), (Φ× Ξ)i(u,w) :=
(
Φi(u),Ξi(w)

)
.

(iv) f(Φ): [f(Λ)](Y )⇒ [f(K)](Y ), where, for every i ∈ I and u ∈ f(λ0(i)),

[f(Φ)]i : f(λ0(i))→ f(k0(i)), [f(Φ)]i(u) := Φi(u).

(v) f−1(Ξ) : [f−1(P )](X)⇒ [f−1(Q)](X), where, for every j ∈ J and (x, y) ∈ f−1(p0(j)),

[f−1(Ξ)]i : f
−1(p0(j))→ f−1(q0(j)), [f−1(Ξ)]j(x, y) :=

(
x,Ξj(y)

)
.

Proof. It is straightforward to show that all family of subsets-maps above are well-defined.

Definition 4.1.11. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) and h : J → I. The triplet Λ(X) ◦
h := (λ0 ◦ h, EX ◦ h, λ1 ◦ h), where Λ ◦ h := (λ0 ◦ h, λ1 ◦ h) is the h-subfamily of Λ, and the
dependent operation EX ◦ h :

c
j∈J F

(
λ0(h(j)), X

)
is defined by (EX ◦ h)j := EXh(j), for every

j ∈ J , is called the h-subfamily of Λ(X). If J := N, we call Λ(X) ◦ h the h-subsequence of
Λ(X).

It is immediate to show that Λ(X) ◦ h ∈ Fam(J,X), and if Λ(X) ◦ h ∈ Set(J,X), then h is
an embedding. All notions and results of section 3.4 on subfamilies of families of sets extend
naturally to subfamilies of families of subsets.

4.2 The interior union of a family of subsets

Definition 4.2.1. Let Λ(X) := (λ0, EX , λ1) be an I-family of subsets of X. The interior
union, or simply the union of Λ(X) is the totality

∑
i∈I λ0(i), which we denote in this case

by
⋃
i∈I λ0(i). Let the non-dependent assignment routine e

Λ(X)⋃ :
⋃
i∈I λ0(i) X defined by

(i, x) 7→ EXi (x), for every (i, x) ∈
⋃
i∈I λ0(i), and let

(i, x) =⋃
i∈I λ0(i) (j, y) :⇔ e

Λ(X)⋃ (i, x) =X e
Λ(X)⋃ (j, y) :⇔ EXi (x) =X EXj (y).

If 6=X is an inequality on X, let (i, x) 6=⋃
i∈I λ0(i) (j, y) :⇔ EXi (x) 6=X EXj (y). The family Λ(X)

is called a covering of X, or Λ(X) covers X, if⋃
i∈I

λ0(i) =P(X) X.
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If 6=I is an inequality on I, and 6=X an inequality on X, we say that Λ(X) is a family of
disjoint subsets of X (with respect to 6=I), if

∀i,j∈I
(
i 6=I j ⇒ λ0(i)KJλ0(j)

)
,

where by Definition 2.8.1 λ0(i)KJλ0(j) :⇔ ∀u∈λ0(i)∀w∈λ0(j)

(
EXi (u) 6=X EXj (w)

)
. Λ(X) is called

a partition of X, if it covers X and it is a family of disjoint subsets of X.

Clearly, =⋃
i∈I λ0(i) is an equality on

⋃
i∈I λ0(i), which is considered to be a set, and the

operation e
Λ(X)⋃ is an embedding of

⋃
i∈I λ0(i) into X, hence

(⋃
i∈I λ0(i), e

Λ(X)⋃ )
⊆ X. The in-

equality 6=⋃
i∈I λ0(i) is the canonical inequality of the subset

⋃
i∈I λ0(i) of X (see Corollary 2.6.3).

Hence, if (X,=X , 6=X) is discrete, then
(⋃

i∈I λ0(i),=⋃
i∈I λ0(i), 6=⋃

i∈I λ0(i)

)
is discrete, and if

6=X is tight, then =⋃
i∈I λ0(i) is tight. As the following left diagram commutes, Λ(X) covers X,

if and only of the following right diagram commutes i.e., if and only if X ⊆
⋃
i∈I λ0(i)

⋃
i∈I λ0(i) X

X

⋃
i∈I λ0(i) X

X.

e
Λ(X)⋃

e
Λ(X)⋃ idX

g

e
Λ(X)⋃ idX

If (i, x) =⋃
i∈I λ0(i) (j, y), it is not necessary that i =I j, hence it is not necessary that

(i, x) =∑
i∈I λ0(i) (j, y) (as we show in the next proposition, the converse implication holds).

Consequently, the first projection operation pr
Λ(X)
1 := prΛ

1 , where Λ is the I-family of sets
induced by Λ(X), is not necessarily a function! The second projection map on Λ(X) is

defined by pr
Λ(X)
2 := prΛ

2 . Notice that 6=⋃
i∈I λ0(i) is an inequality on

⋃
i∈I λ0(i), without

supposing neither an inequality on I, nor an inequality on the sets λ0(i)’s, as we did in
Proposition 3.2.2(ii). Moreover, 6=⋃

i∈I is tight, if 6=X is tight. Cases (ii) and (iii) of the next
proposition are due to M. Zeuner.

Proposition 4.2.2. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X).

(i) If (i, x) =∑
i∈I λ0(i) (j, y), then (i, x) =⋃

i∈I λ0(i) (j, y).

(ii) If e
Λ(X)⋃ :

∑
i∈I λ0(i) X is an embedding,

(∑
i∈I λ0(i), e

Λ(X)⋃ )
=P(X)

(⋃
i∈I λ0(i), e

Λ(X)⋃ )
.

(iii) If 6=I is a tight inequality on X, and Λ(X) is a family of disjoint subsets of X with respect

to 6=I , then e
Λ(X)⋃ :

∑
i∈I λ0(i) ↪→ X.

Proof. (i) If i =I j, and since EXj is a function, we get EXi (x) = EXj (λij(x)) = EXj (y).

(ii) Let EXi (x) =X EXj (y)⇔ (i, x) =∑
i∈I λ0(i) (j, y). We define the operations id1 :

∑
i∈I λ0(i) ⋃

i∈I λ0(i) and id2 :
⋃
i∈I λ0(i) 

∑
i∈I λ0(i), both defined by the identity map-rule. That id1

is a function, follows from (i). That id2 is a function, follows from the hypothesis on e
Λ(X)⋃ .

(iii) We suppose that e
Λ(X)⋃ (i, x) := EXi (x) =X EXj (y) := e

Λ(X)⋃ (j, y) and we show that
(i, x) =∑

i∈I λ0(i) (j, y). The converse implication follows from (i). If ¬(i 6=I j), then λ0(i)KJλ0(j),

hence EXi (x) 6=X EXj (y), which contradicts our hypothesis. By the tightness of 6=I we get i =I j,
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and it remains to show that λij(x) =λ0(j) y. By the equalities EXj
(
λij(x)

)
=X EXi (y) =X EXj (y),

and as EXj is an embedding, we get λij(x) =λ0(j) y.

Remark 4.2.3. Let i0 ∈ I, (A, iXA ) ⊆ X, and CA(X) := (λA0 , EA,X , λA1 ) ∈ Fam(I,X) the
constant family A of subsets of X. Then⋃

i∈I
A :=

⋃
i∈I

λA0 (i) =P(X) A.

Proof. By definition (i, a) =⋃
i∈I A (j, b) :⇔ EA,Xi (a) =X EA,Xj (b) :⇔ iXA (a) =X iXA (b)⇔ a =A b.

Let the operation φ :
⋃
i∈I A A, defined by φ(i, a) := a, for every (i, a) ∈

⋃
i∈I A, and let

the operation θ : A  
⋃
i∈I A, defined by θ(a) := (i0, a), for every a ∈ A. Clearly, φ and θ

are functions. The required equality of these subsets follows from the following equalities:

iXA (a) =X e
CA(X)⋃ (i, a) := EA,Xi (a) := iXA (a), and e

CA(X)⋃ (i0, a) := EA,Xi0
(a) := iXA (a).

The interior union of a family of subsets generalises the union of two subsets.

Proposition 4.2.4. If Λ2(X) is the 2-family of subsets A,B of X,
⋃
i∈2 λ

2
0(i) =P(X) A ∪B.

Proof. The operation g :
⋃
i∈2 λ

2
0(i)  A ∪ B, defined by g(i, x) := pr2(i, x) := x, for every

(i, x) ∈
⋃
i∈2 λ

2
0(i), is well-defined, and it is an embedding, since g(i, x) =A∪B g(j, y) :⇔

x =A∪B y :⇔ iXA (x) =X iXB (y) :⇔ (i, x) =⋃
i∈2 λ0(i) (j, y). The operation f : A∪B  

⋃
i∈2 λ

2
0(i),

defined by f(z) := (0, z), if z ∈ A, and f(z) := (1, z), if z ∈ B, is easily seen to be a function.
For the commutativity of the following inner diagrams

A ∪B
⋃
i∈2 λ

2
0(i)

X

f

g
iXA∪B e

Λ2(X)⋃

we use the equalities iXA∪B(g(i, x)) := iXA∪B(x) := iXA (x) := e
Λ2(X)⋃ (i, x) and

e
Λ2(X)⋃ f(z)) :=


e

Λ2(X)⋃ (0, z) , z ∈ A

e
Λ2(X)⋃ (1, z) , z ∈ B

:=


iXA (z) , z ∈ A

iXB (z) , z ∈ B
:= iXA∪B(z).

Proposition 4.2.5. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) and M(Y ) := (µ0, EY , µ1) ∈
Fam(I, Y ). If f : X → Y , the following hold:

(i) f

(⋃
i∈I λ0(i)

)
=P(Y )

⋃
i∈I f

(
λ0(i)

)
.

(ii) f−1

(⋃
i∈I µ0(i)

)
=P(X)

⋃
i∈I f

−1
(
µ0(i)

)
.
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Proof. (i) By Definition 2.6.9 we have that f
(⋃

i∈I λ0(i)
)

:=
(⋃

i∈I λ0(i), f
Λ(X)⋃ )

, where

f
Λ(X)⋃ := f ◦ eΛ(X)⋃ , and by Proposition 4.1.9 we have that

(i, x) =
f

(⋃
i∈I λ0(i)

) (j, y) :⇔ f
Λ(X)⋃ (i, x) =Y f

Λ(X)⋃ (j, y)

:⇔
(
f ◦ eΛ(X)⋃ )

(i, x) =Y

(
f ◦ eΛ(X)⋃ )

(j, y)

:⇔ f
(
EXi (x)

)
=Y f

(
EXj (y)

)
:⇔ fYi (x) =Y fYj (y)

By Proposition 4.1.9 and Definition 4.2.1 for the subset
(⋃

i∈I f
(
λ0(i)

)
, e

[f(Λ)](Y )⋃ )
of Y we

have that f(λ0(i)) :=
(
λ0(i), fYi

)
, where fYi := f ◦ EXi , for every i ∈ I, and x =f(λ0(i)) x

′ :⇔
fYi (x) =Y fYo (x′). Moreover, e

[f(Λ)](Y )⋃ (i, x) :=
[
f(EX)Y

]
i
(x) := fYi (x). Let the operations

g : f
(⋃

i∈I λ0(i)
)
 
⋃
i∈I f

(
λ0(i)

)
and h :

⋃
i∈I f

(
λ0(i)

)
 f

(⋃
i∈I λ0(i)

)
, defined by the

same rule (i, x) 7→ (i, x).

f
(⋃

i∈I λ0(i)
) ⋃

i∈I f
(
λ0(i)

)

X

f−1
(⋃

i∈I µ0(i)
) ⋃

i∈I f
−1
(
µ0(i)

)

X

g

h
f

Λ(X)⋃ [
f−1(EY )X

]
(j′)

g′

h′e
[f−1(M)](X)⋃ [

f−1(EY )X
]
i

It is immediate by the previous equalities that the above left diagrams commute.

(ii) By Definitions 4.2.1 and 2.6.9 for the subset
(⋃

i∈I µ0(i), e
M(Y )⋃ )

of Y we have that the

embedding e
M(Y )⋃ :

⋃
i∈I µ0(i) ↪→ Y is given by the rule (i, y) 7→ EYi (y), and

f−1

(⋃
i∈I

µ0(i)

)
:=

{(
x, (i, y)

)
∈ X ×

⋃
i∈I

µ0(i) | f(x) =Y e
M(Y )⋃ (i, y)

}
,

with embedding into X the mapping eX , defined by the rule eX
(
x, (i, y)

)
:= x. Moreover,(

x, (i, y)
)

=f−1(
⋃
i∈I µ0(i))

(
x′, (i′, y′)

)
:⇔ x =X x′ & EYi (y) =Y EYi′ (y′).

The subset f−1(µ0(i)) := {(x, y) ∈ X × µ0(i) | f(x) =Y EYi (y)} of X is equipped with the
embedding eX

f−1(µ0(i))
: f−1(µ0(i)) ↪→ X, which is defined by eX

f−1(µ0(i))
(x, y) := x, for every

(x, y) ∈ f−1(µ0(i)). Moreover, we have that(
x, (i, y)

)
=⋃

i∈I f
−1
(
µ0(i)

) (x′, (i′, y′)) :⇔
[
f−1(EY )X

]
i
(x, y) =X

[
f−1(EY )X

]
i′

(x′, y′)

:⇔ eX
f−1(µ0(i))

(x, y) =X f−1(µ0(i′))(x′, y′)

:⇔ x =X x′.

If the operation g′ : f−1
(⋃

i∈I µ0(i)
)
 
⋃
i∈I f

−1
(
µ0(i)

)
is defined by the rule

(
x, (i, y)

)
7→(

i, (x, y)
)

and the operation h′ :
⋃
i∈I f

−1
(
µ0(i)

)
 f−1

(⋃
i∈I µ0(i)

)
is defined by the rule

inverse rule, then it is immediate to show that g′ is a function. To show that h′ is a function, we



4.2. THE INTERIOR UNION OF A FAMILY OF SUBSETS 95

suppose that x =X x′, hence f(x) =Y f(x′), and by the definition of f−1
(⋃

i∈I µ0(i)
)

we get

e
M(Y )⋃ (i, y) =Y e

M(Y )⋃ (i′, y′) :⇔ EYi (y) =Y Ei′(y′), hence
(
x, (i, y)

)
=
f−1
(⋃

i∈I µ0(i)

) (x′, (i′, y′)).
It is immediate to show the commutativity of the above right diagrams.

Theorem 4.2.6 (Extension theorem for coverings). Let X,Y be sets, and let Λ(X) :=
(λ0, EX , λ1) ∈ Fam(I,X) be a covering of X. If fi : λ0(i)→ Y , for every i ∈ I, such that

fi|λ0(i)∩λ0(j) =F(λ0(i)∩λ0(j),Y ) fj |λ0(i)∩λ0(j),

for every i, j ∈ I, there is a unique f : X → Y such that f|λ0(i) =F(λ0(i),Y ) fi, for every i ∈ I.

Proof. Let e : X ↪→
⋃
i∈I λ0(i) such that the following diagram commutes

X
⋃
i∈I λ0(i)

X.

e

idX e
Λ(X)⋃

Let the operation f : X  Y defined by

f(x) := f
pr

Λ(X)
1 (e(x))

(
pr

Λ(X)
2 (e(x)

)
,

for every x ∈ X. Hence, if x ∈ X, and e(x) := (i, u), for some i ∈ I and u ∈ λ0(i),
then f(x) := fi(u). We show that f is a function. Recall that λ0(i) ∩ λ0(j) :=

{
(u,w) ∈

λ0(i) × λ0(j) | EXi (u) =X EXj (w)
}

. If x, x′ ∈ X, let e(x) := (i, u) and e(x′) := (j, w). If
x =X x′, then

e(x) =⋃
i∈I λ0(i) e(x

′) :⇔ (i, u) =⋃
i∈I λ0(i) (j, w) :⇔ EXi (u) =X EXj (w) :⇔ (u,w) ∈ λ0(i) ∩ λ0(j).

By the definition of f we have that f(x) := fi(u) and f(x′) := fj(w). We show that
fi(u) =Y fj(w). Since λ0(i) ∩ λ0(j) ⊆ λ0(i) and λ0(i) ∩ λ0(j) ⊆ λ0(j), and as we have
explained right before Proposition 2.6.8, by Definition 2.6.9 we have that

fi|λ0(i)∩λ0(j) := fi ◦ prλ0(i) & fj |λ0(i)∩λ0(j) := fj ◦ prλ0(j).

Since (u,w) ∈ λ0(i) ∩ λ0(j), by the equality of the restrictions of fi and fj to λ0(i) ∩ λ0(j)

fi(u) :=
(
fi ◦ prλ0(i)

)
(u,w) =Y

(
fj ◦ prλ0(j)

)
(u,w) := fj(w).

Next we show that, if i ∈ I, then f|λ0(i) = fi. Since EXi : (λ0(i), EXi ) ⊆ (X, idX)

λ0(i) X

X,

EXi

EXi idX
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by Definition 2.6.9 we have that f|λ0(i) := f ◦ EXi . If u ∈ λ0(i), let e
(
EXi (u)

)
:= (j, w), for

some j ∈ I and w ∈ λ0(j). Hence, by the definition of f we get

f|λ0(i)(u) := f
(
EXi (u)

)
:= fj(w).

By the commutativity of the first diagram in this proof we get for EXi (u) ∈ X

EXj (w) := e
Λ(X)⋃ (

e
(
EXi (u)

))
=X idX

(
EXi (u)

)
:= EXi (u)

i.e., (u,w) ∈ λ0(i) ∩ λ0(j). Hence, f|λ0(i)(u) := fj(w) =Y fi(u). Finally, let f∗ : X → Y such

that f∗|λ0(i) := f∗ ◦ EXi =F(λ0(i),Y ) fi, for every i ∈ I. If x ∈ X let e(x) := (i, u), for some i ∈ I
and u ∈ λ0(i). By the commutativity of the first diagram, and since f∗ is a function, we get

f∗(x) =Y f∗
(
e

Λ(X)⋃ (e(x))
)

:= f∗
(
e

Λ(X)⋃ (i, u)
)

:= f∗
(
EXi (u)

)
=Y fi(u)

:= f
pr

Λ(X)
1 (e(x))

(
pr

Λ(X)
2 (e(x)

)
:= f(x).

Corollary 4.2.7. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) be a partition of X. If fi : λ0(i)→ Y ,
for every i ∈ I, there is a unique f : X → Y with f|λ0(i) =F(λ0(i),Y ) fi, for every i ∈ I.

Proof. The condition fi|λ0(i)∩λ0(j) =F(λ0(i)∩λ0(j),Y ) fj |λ0(i)∩λ0(j) of Theorem 4.2.6 is trivially

satisfied using the logical principle Ex falso quodlibet. If we suppose that (u,w) ∈ λ0(i)∩λ0(j),
which is impossible as λ0(i)KJλ0(j), the equality (fi ◦ prλ0(i))(u,w) =Y (fj ◦ prλ0(j))(u,w),
where i, j ∈ I, follows immediately.

Proposition 4.2.8. Let Λ(X) := (λ0, EX , λ1), M(X) := (µ0,ZX , µ1) ∈ Fam(I,X), Ψ :
Λ(X)⇒M(X), and (B, iXB ) ⊆ X.

(i) For every i ∈ I the operation e
Λ(X)
i : λ0(i)  

⋃
i∈I λ0(i), defined by x 7→ (i, x), is an

embedding, and e
Λ(X)
i : λ0(i) ⊆

⋃
i∈I λ0(i).

(ii) If λ0(i) ⊆ B, for every i ∈ I, then
⋃
i∈I λ0(i) ⊆ B.

(iii) The operation
⋃

Ψ :
⋃
i∈I λ0(i)  

⋃
i∈I µ0(i), defined by

⋃
Ψ(i, x) := (i,Ψi(x)), is an

embedding, such that for every i ∈ I the following diagram commutes

⋃
i∈I λ0(i)

⋃
i∈I µ0(i).

µ0(i)λ0(i)

⋃
Ψ

Ψi

e
Λ(X)
i e

M(X)
i

Proof. (i) If x, x′ ∈ λ0(i), and since EXi is an embedding, we have that

e
Λ(X)
i (x) =⋃

i∈I λ0(i) e
Λ(X)
i (x′) :⇔ (i, x) =⋃

i∈I λ0(i) (i, x′) :⇔ EXi (x) = EXi (x′)⇔ x =λ0(i) x
′.
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Moreover, eX⋃ (eΛ(X)
i (x)

)
:= eX⋃ (i, x) := EXi (x), hence e

Λ(X)
i : λ0(i) ⊆

⋃
i∈I λ0(i).

(ii) If i ∈ I and eBi : λ0(i) ⊆ B, then iXB (eBi (x)) =X EXi (x), for every x ∈ λ0(i). Let the
operation eB :

⋃
i∈I λ0(i) B, defined by eB(i, x) := eBi (x), for every (i, x) ∈

⋃
i∈I λ0(i). The

operation eB is a function:

(i, x) =⋃
i∈I λ0(i) (j, y) :⇔ EXi (x) =X EXj (y)

⇒ iXB (eBi (x)) =X iXB (eBj (y))

⇒ eBi (x) =X eBj (y)

:⇔ eB(i, x) =X eB(j, y).

Moroever, iXB
(
eB(i, x)

)
:= iXB (eBi (x)) =X EXi (x) := e

Λ(X)⋃ (i, x), hence eB :
⋃
i∈I λ0(i) ⊆ B.

(iii) The required commutativity of the diagram is immediate, and
⋃

Ψ is an embedding, since

X

λ0(i) µ0(i) λ0(j) µ0(j)

X,

EXi ZXi

Ψi

EXj ZXj

Ψj

(i, x) =⋃
i∈I λ0(i) (j, y) :⇔ EXi (x) =X EXj (y)

⇔ ZXi (Ψi(x)) =X ZXj (Ψj(y))

:⇔ (i,Ψi(x)) =⋃
i∈I µ0(i) (j,Ψj(y))

:⇔
⋃

Ψ(i, x) =⋃
i∈I µ0(i)

⋃
Ψ(j, y).

4.3 The intersection of a family of subsets

Definition 4.3.1. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X), and i0 ∈ I. The intersection⋂
i∈I λ0(i) of Λ(X) is the totality defined by

Φ ∈
⋂
i∈I

λ0(i) :⇔ Φ ∈ A(I, λ0) & ∀i,j∈I
(
EXi (Φi) =X EXj (Φj)

)
.

Let e
Λ(X)⋂ :

⋂
i∈I λ0(i) X be defined by e

Λ(X)⋂ (Φ) := EXi0
(
Φi0

)
, for every Φ ∈

⋂
i∈I λ0(i), and

Φ =⋂
i∈I λ0(i) Θ :⇔ e

Λ(X)⋂ (Φ) =X e
Λ(X)⋂ (Θ) :⇔ EXi0

(
Φi0

)
=X EXi0

(
Θi0

)
,

If 6=X is a given inequality on X, let Φ 6=⋂
i∈I λ0(i) Θ :⇔ EXi0

(
Φi0

)
6=X EXi0

(
Θi0

)
.

Clearly, =⋂
i∈I λ0(i) is an equality on

⋂
i∈I λ0(i), which is considered to be a set, and e

Λ(X)⋂
is an embedding, hence

(⋂
i∈I λ0(i), e

Λ(X)⋂ )
⊆ X. Moreover, the inequality 6=⋂

i∈I λ0(i) is the
canonical inequality of the subset

⋂
i∈I λ0(i) of X (see Corollary 2.6.3).

Proposition 4.3.2. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X).

(i) Φ =⋂
i∈I λ0(i) Θ⇔ Φ =A(I,λ0) Θ.

(ii) If Φ ∈
⋂
i∈I λ0(i), then Φ ∈

∏
i∈I λ0(i).

(iii) If (X,=X , 6=X) is discrete, the set
(⋂

i∈I λ0(i),=⋂
i∈I λ0(i), 6=⋂

i∈I λ0(i)

)
is discrete.
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Proof. (i) To show the implication (⇒), if i ∈ I, then EXi (Φi) =X EXi0 (Φi0) =X EXi0 (Θi0) =X

EXi (Θi), and since EXi is an embedding, Φi =λ0(i) Θi. For the converse implication, the

pointwise equality of Φ and Θ implies that Φi0 =λ0(i0) Θi0 , hence EXi0 (Φi0) =X EXi0 (Θi0).

(ii) If i =I j, then EXj
(
λij(Φi)

)
=X EXi (Φi) =X Ej(Φj), and as EXj is an embedding, we get

the required equality λij(Φi) =λ0(j) Φj . The proof of (iii) is immediate.

Since the equality of
∏
i∈I λ0(i) is the pointwise equality of A(I, λ0), then, as we explained

above, the equality of
∏
i∈I λ0(i) is the equality of

⋂
i∈I λ0(i).

Remark 4.3.3. Let i0 ∈ I, (A, iXA ) ⊆ X, and CA(X) := (λA0 , EA,X , λA1 ) ∈ Fam(I,X) the
constant family A of subsets of X. Then⋂

i∈I
A :=

⋂
i∈I

λA0 (i) =P(X) A.

Proof. We proceed similarly to the proof of Remark 4.2.3.

Proposition 4.3.4. If Λ2(X) is the 2-family of subsets A,B of X,
⋂
i∈2 λ

2
0(i) =P(X) A ∩B.

Proof. By definition Φ ∈
⋂
i∈I λ

2
0(i) :⇔ Φ:

c
i∈I λ

2
0(i) and for every i, j ∈ 2 we have that

EXi (Φi) =X EXj (Φj), where EX0 := iXA and EX1 := iXB . Moreover, e
Λ2(X)⋂ :

⋂
i∈I λ

2
0(i)  X is

given by e
Λ2(X)⋂ (Φ) := EX0

(
Φ0

)
, for every Φ ∈

⋂
i∈I λ

2
0(i), and Φ =⋂

i∈I λ
2
0(i) Θ :⇔ EX0

(
Φ0

)
=X

EX0
(
Θ0

)
. Let f : A ∩B  

⋂
i∈2 λ

2
0(i) be defined by f(a, b) := Φ(a,b), for every (a, b) ∈ A ∩B,

where Φ(a,b) :
c
i∈I λ

2
0(i), such that Φ(a,b)(0) := a and Φ(a,b)(1) := b. Since EX0

(
Φ(a,b)(0)

)
=X

EX1
(
Φ(a,b)(1)

)
⇔ EX0 (a) =X E1(b) :⇔ iXA (a) =X iXB (b), where the last equality holds by the

definition of A∩B (see Definition 2.6.6), the operation f is well-defined. It is straightforward to
show that f is a function. Let the operation g :

⋂
i∈2 λ

2
0(i) A∩B, defined by g(Φ) := (Φ0,Φ1),

for every Φ ∈
⋂
i∈2 λ

2
0(i). Since iXZ (Φ0) := EX0 (Φ0) =X EX1 (Φ1) := iXB (Φ1), we have that g is

well-defined. It is easy to show that g is a function,

A ∩B
⋂
i∈2 λ

2
0(i)

X.

f

g
iXA∩B e

Λ2(X)⋂

and the above inner diagrams commute.

Proposition 4.3.5. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) and M(Y ) := (µ0, EY , µ1) ∈
Fam(I, Y ). If f : X → Y , the following hold:

(i) f

(⋂
i∈I λ0(i)

)
⊆
⋂
i∈I f

(
λ0(i)

)
.

(ii) f−1

(⋂
i∈I µ0(i)

)
=P(X)

⋂
i∈I f

−1
(
µ0(i)

)
.

Proof. We proceed similarly to the proof of Proposition 4.2.5.
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Proposition 4.3.6. Let Λ(X) := (λ0, EX , λ1),MX := (µ0,ZX , µ1) ∈ Fam(I,X), let i0 ∈ I,
Ψ : Λ(X)⇒M(X), and (B, iXB ) ⊆ X.

(i) The operation π
Λ(X)
i :

⋂
i∈I λ0(i)  λ0(i), defined by Θ 7→ Θi, is a function, and

π
Λ(X)
i :

⋂
i∈I λ0(i) ⊆ λ0(i), for every i ∈ I.

(ii) If B ⊆ λ0(i), for every i ∈ I, then B ⊆
⋂
i∈I λ0(i).

(iii) The operation
⋂

Ψ :
⋂
i∈I λ0(i) 

⋂
i∈I µ0(i), defined by [

⋂
Ψ(Θ)]i := Ψi(Θi), for every

i ∈ I, is an embedding, such that for every i ∈ I the following diagram commutes

⋂
i∈I λ0(i)

⋂
i∈I µ0(i).

µ0(i)λ0(i)

⋂
Ψ

Ψi

π
Λ(X)
i π

M(X)
i

Proof. (i) Since Φ =⋂
i∈I λ0(i) Θ ⇒ Φ =A(I,λ0) Θ, we get Φi = Θi, for every i ∈ I. Since

EXi
(
π

Λ(X)
i (Θ)

)
:= EXi (Θi) =X EXi0 (Θi0) := eX⋂ (Θ), we get π

Λ(X)
i :

⋂
i∈I λ0(i) ⊆ λ0(i).

(ii) If i ∈ I, let eiB : B ⊆ λ0(i), hence EXi (eiB(b)) =X iXB (b), for every b ∈ B. Let the operation
eB : B  

⋂
i∈I λ0(i), defined by the rule b 7→ eB(b), where [eB(b)]i := eiB(b), for every b ∈ B

and i ∈ I. First we show that eB is well defined. If i, j ∈ I, then

EXi
(
[eB(b)]i

)
=X EXj

(
[eB(b)]j

)
:⇔ EXi (eiB(b)) =X EXj (ejB(b))⇔ iXB (b) =X iXB (b).

Clearly, eB is a function. Moreover, eB : B ⊆
⋂
i∈I λ0(i), since, for every b ∈ B,

e⋂(eB(b)) := EXi0
(
[eB(b)]i0

)
:= EXi0 (ei0B(b)) =X iXB (b).

(iii) It suffices to show that
⋂

Ψ is an embedding. If Φ,Θ ∈
⋂
i∈I λ0(i), then

Φ =⋂
i∈I λ0(i) Θ :⇔ EXi0

(
Φi0

)
=X EXi0

(
Θi0

)
⇔ ZXi0 (Ψi0(Φi0)) =X ZXi0 (Ψi0(Θi0))

:⇔ ZXi0

([⋂
Ψ(Φ)

]
i0

)
=X ZXi0

([⋂
Ψ(Θ)

]
i0

)
:⇔
(⋂

Ψ

)
(Φ) =⋂

i∈I µ0(i)

(⋂
Ψ

)
(Θ).

The above notions and results can be generalised as follows.

Definition 4.3.7. Let X and Y be sets, and h : X → Y . If Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X),
and M(Y ) := (µ0,ZY , µ1) ∈ Fam(I, Y ), a family of subsets-map from Λ(X) to M(Y ) is a
dependent operation Ψ :

c
i∈I F

(
λ0(i), µ0(i)

)
, where if Ψ(i) := Ψi, for every i ∈ I, then, for

every i ∈ I, the following diagram commutes

λ0(i) µ0(i)

X Y .

EXi ZYi

Ψi

h
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The totality MapI,h(Λ(X),M(Y )) of family of subsets-maps from Λ(X) to M(Y ) is equipped

with the pointwise equality, and we write Ψ: Λ(X)
h⇒ M(Y ), if Ψ ∈ Map(Λ(X),M(X)). If

Ξ: M(Y )
g⇒ N(Z), where g : Y → Z, the composition family of subsets-map Ξ ◦Ψ : Λ(X)

g◦h
=⇒

N(Z) is defined by (Ξ ◦Ψ)(i) := Ξi ◦Ψi, for every i ∈ I

λ0(i) µ0(i) ν0(i)

X Y Z.

EXi ZYi HZi

Ψi

h

Ξi

g

If Y := X, and h := idX , and if Ψ: Λ(X)
idX=⇒ M(X), then Ψ: Λ(X) ⇒ M(X). In the

general case, if Ψ: Λ(X)
h⇒M(Y ), then Ψi is an embedding, if h is an embedding.

Proposition 4.3.8. Let X and Y be sets, and h : X → Y . Let also Λ(X) := (λ0, EX , λ1) ∈
Fam(I,X), M(Y ) := (µ0,ZY , µ1) ∈ Fam(I, Y ), and Ψ: Λ(X)

h⇒M(Y ).

(i) The operation
⋃
h Ψ :

⋃
i∈I λ0(i)  

⋃
i∈I µ0(i), defined by

(⋃
h Ψ
)
(i, u) := (i,Ψi(u)), for

every (i, u) ∈
⋃
i∈I λ0(i), is a function, and for every i ∈ I the following left diagram commutes

⋃
i∈I λ0(i)

⋃
i∈I µ0(i)

µ0(i)λ0(i)

⋂
i∈I λ0(i)

⋂
i∈I µ0(i).

µ0(i)λ0(i)

⋃
h Ψ

Ψi

e
Λ(X)
i e

M(Y )
i

⋂
h Ψ

Ψi

π
Λ(X)
i π

M(Y )
i

(ii) If i0 ∈ I, the operation
⋂
h Ψ :

⋂
i∈I λ0(i) 

⋂
i∈I µ0(i), defined by [

⋂
h Ψ(Θ)]i := Ψi(Θi),

for every i ∈ I, is a function, such that for every i ∈ I the above right diagram commutes.

Proof. (i) The commutativity of the diagram is trivial, and we show that
⋃
h Ψ is a function:

(i, u) =⋃
i∈I λ0(i) (j, w) :⇔ Ei(u) =X Ej(w)

⇒ h(Ei(u)) =Y h(Ej(w))

⇔ Ei(Ψi(u)) =Y Ej(Ψj(w))

:⇔ (i,Ψi(u)) =⋃
i∈I µ0(i) (j,Ψj(w))

:⇔
(⋃

h

Ψ

)
(i, u) =⋃

i∈I µ0(i)

(⋃
h

Ψ

)
(j, w).

(ii) The commutativity of the diagram is trivial, and we show that
⋂
h Ψ is a function:

Φ =⋂
i∈I λ0(i) Θ⇔ Ei0(Φi0) =X Ei0(Θi0)

⇒ h
(
Ei0(Φi0)

)
=Y h

(
Ei0(Θi0)

)
⇔ Ei0

(
Ψi0(Φi0)

)
=Y Ei0

(
Ψi0(Θi0)

)
:⇔ Ei0

([⋂
h

Ψ(Φ)

]
i0

)
=Y Ei0

([⋂
h

Ψ(Θ)

]
i0

)
:⇔
(⋂

h

Ψ

)
(Φ) =⋂

i∈I µ0(i)

(⋂
h

Ψ

)
(Θ).
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4.4 Families of subsets over products

Proposition 4.4.1. Let Λ(X) := (λ0, EX , λ1),K(X) := (k0,HX , k1) ∈ Fam(I,X), M(Y ) :=
(µ0, EY , µ1), and N(Y ) := (ν0,HY , ν1) ∈ Fam(J, Y ).

(i) (Λ⊗M)(X × Y ) := (λ0 ⊗ µ0, EX ⊗ EY , λ1 ⊗ µ1) ∈ Fam(I × J,X × Y ), where

(λ0 ⊗ µ0)(i, j) := λ0(i)× µ0(j); (i, j) ∈ I × J,(
EX ⊗ EY

)
(i,j)

: λ0(i)× µ0(j) ↪→ X × Y,(
EX ⊗ EY

)
(i,j)

(u,w) :=
(
EXi (u), EYj (w)

)
; (u,w) ∈ λ0(i)× µ0(j), (i, j) ∈ I × J,

(λ1 ⊗ µ1)(i,j)(i′j′) : λ0(i)× µ0(j)→ λ0(i′)× µ0(j′),

(λ1 ⊗ µ1)(i,j)(i′j′)(u,w) :=
(
λii′(u), µjj′(w)

)
; (u,w) ∈ λ0(i)× µ0(j).

(ii) If Φ: Λ(X) ⇒ K(X) and Ψ: M(X) ⇒ N(X), then Φ ⊗ Ψ: (Λ ⊗M)(X × Y ) ⇒ (K ⊗
N)(X × Y ), where, for every (i, j) ∈ I × J ,

(Φ⊗Ψ)(i,j) : λ0(i)× µ0(j)→ k0(i)× ν0(j),

(Φ⊗Ψ)(i,j)(u,w) :=
(
Φi(u),Ψj(w)

)
; (u,w) ∈ λ0(i)× µ0(j).

(iii) The following equality holds⋃
(i,j)∈I×J

(
λ0(i)× µ0(j)

)
=P(X×Y )

(⋃
i∈I

λ0(i)

)
×
( ⋃
j∈J

µ0(j)

)
.

(iv) If i0 ∈ I and j0 ∈ J , the following equality holds⋂
(i,j)∈I×J

(
λ0(i)× µ0(j)

)
=P(X×Y )

(⋂
i∈I

λ0(i)

)
×
( ⋂
j∈J

µ0(j)

)
.

(v) If Λ(X) covers X and M(Y ) covers Y , then (Λ⊗M)(X × Y ) covers X × Y .

(vi) Let the inequalities 6=I , 6=J , 6=X and 6=Y on I, J,X and Y , respectively. If Λ(X) is a
partition of X and M(Y ) is a partition of Y , then (Λ⊗M)(X × Y ) is a partition of X × Y .

Proof. The proofs of (i)-(iv) are the internal analogue to the proofs of Proposition 3.5.1(i)-(iii).
(v) Since X =P(X)

⋃
i∈I λ0(i) and Y =P(Y )

⋃
j∈J µ0(j), by case (iii) and by Proposi-

tion 2.6.11(iv) we have that

X × Y =P(X×Y )

(⋃
i∈I

λ0(i)

)
×
( ⋃
j∈J

µ0(j)

)
=P(X×Y )

⋃
(i,j)∈I×J

(
λ0(i)× µ0(j)

)
.

(vi) By Definition 4.2.1 we have that

i 6=I i
′ ⇒ EXi (u) 6=X EXi′ (u′); i, i′ ∈ I, u ∈ λ0(i), u′ ∈ λ0(i′),

j 6=J j
′ ⇒ EYi (w) 6=Y EYj′ (w′); j, j′ ∈ J, w ∈ µ0(j), w′ ∈ µ0(j′).

Let (i, j) 6=I×J (i′, j′) :⇔ i 6=I i
′ ∨ j 6=J j

′. If i 6=I i
′ is the case, then EXi (u) 6=X EXi′ (u′), hence(

EXi (u), EYj (w)
)
6=X×Y

(
EXi (u′), EYj (w′)

)
. If j 6=J j

′, we proceed similarly.
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Proposition 4.4.2. Let Λ(X) := (λ0, EX , λ1),K(X) := (k0,HX , k1) ∈ Fam(I,X), M(X) :=
(µ0,ZX , µ1), and N(X) := (ν0,FX , ν1) ∈ Fam(J,X).

(i) (Λ ∧M)(X) := (λ0 ∧ µ0, EX ∧ ZX , λ1 ∧ µ1) ∈ Fam(I × J,X), where

(λ0 ∧ µ0)(i, j) := λ0(i) ∩ µ0(j); (i, j) ∈ I × J,(
EX ∧ ZX

)
(i,j)

: λ0(i) ∩ µ0(j) ↪→ X,(
EX ∧ ZX

)
(i,j)

(u,w) := EXi (u); (u,w) ∈ λ0(i) ∩ µ0(j), (i, j) ∈ I × J,

(λ1 ∧ µ1)(i,j)(i′j′) : λ0(i) ∩ µ0(j)→ λ0(i′) ∩ µ0(j′),

(λ1 ⊗ µ1)(i,j)(i′j′)(u,w) :=
(
λii′(u), µjj′(w)

)
; (u,w) ∈ λ0(i) ∩ µ0(j).

(ii) (Λ ∨M)(X) := (λ0 ∨ µ0, EX ∨ ZX , λ1 ∨ µ1) ∈ Fam(I × J,X), where

(λ0 ∨ µ0)(i, j) := λ0(i) ∪ µ0(j); (i, j) ∈ I × J,(
EX ∨ ZX

)
(i,j)

: λ0(i) ∪ µ0(j) ↪→ X,

(
EX ∨ ZX

)
(i,j)

(z) :=

{
EXi (z) , z ∈ λ0(i)
ZYj (z) , z ∈ µ0(j)

; i ∈ I, z ∈ λ0(i) ∪ µ0(i)

(λ1 ∨ µ1)(i,j)(i′j′)(z) :=

{
λii′(z) , z ∈ λ0(i)
µjj′(z) , z ∈ µ0(j)

;
(
(i, j), (i′j′)

)
∈ D(I × J).

(iii) If Φ: Λ(X)⇒ K(X) and Ψ: M(X)⇒ N(X), then Φ ∧Ψ: (Λ ∧M)(X)⇒ (K ∧N)(X),
where, for every (i, j) ∈ I × J ,

(Φ ∧Ψ)(i,j) : λ0(i) ∩ µ0(j)→ k0(i) ∩ ν0(j),

(Φ ∧Ψ)(i,j)(u,w) :=
(
Φi(u),Ψj(w)

)
; (u,w) ∈ λ0(i) ∩ µ0(j).

(iv) If Φ: Λ(X)⇒ K(X) and Ψ: M(X)⇒ N(X), then Φ ∨Ψ: (Λ ∨M)(X)⇒ (K ∨N)(X),
where, for every (i, j) ∈ I × J ,

(Φ ∧Ψ)(i,j) : λ0(i) ∪ µ0(j)→ k0(i) ∪ ν0(j),

(Φ ∨Ψ)(i,j)(z) :=

{
Φi(z) , z ∈ λ0(i)
Ψj(z) , z ∈ µ0(j).

(v) The following equality holds⋃
(i,j)∈I×J

(
λ0(i) ∩ µ0(j)

)
=P(X)

(⋃
i∈I

λ0(i)

)
∩
( ⋃
j∈J

µ0(j)

)
.

(vi) If (i0, j0) ∈ I × J , the following equality holds⋂
(i,j)∈I×J

(
λ0(i) ∪ µ0(j)

)
=P(X)

(⋂
i∈I

λ0(i)

)
∪
( ⋂
j∈J

µ0(j)

)
.

(vii) If Λ(X) covers X and M(Y ) covers Y , then (Λ ∧M)(X) covers X.

(viii) Let the inequalities 6=I , 6=J , 6=X and 6=Y on I, J,X and Y , respectively. If Λ(X) is a
partition of X and M(Y ) is a partition of Y , then (Λ ∧M)(X) is a partition of X.
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Proof. We proceed as in the proof of Proposition 4.4.1.

Let M(Y ) := (µ0,ZY , µ1) ∈ Fam(J, Y ), (A, iXA ) ⊆ X, (B, iYB) ⊆ Y , and let ΛA(X) :=
(λA0 , EA,X , λX1 ) ∈ Fam(1, X) the constant family A of subsets of X, and ΛB := (λB0 , EB,Y , λB1 )
the constant family B of subsets of Y . By Propositions 4.4.1 and 4.4.2 we have that⋃

j∈J
(A× µ0(j)) :=

⋃
(i,j)∈1×J

A× µ0(j)

:=
⋃

(i,j)∈1×J

(
λA0 (i)× µ0(j)

)
=P(X×Y )

(⋃
i∈1

λA0 (i)

)
×
( ⋃
j∈J

µ0(j)

)

=P(X×Y ) A×
( ⋃
j∈J

µ0(j)

)
,

⋂
j∈J

(A× µ0(j)) :=
⋂

(i,j)∈1×J

A× µ0(j)

:=
⋂

(i,j)∈1×J

(
λA0 (i)× µ0(j)

)
=P(X×Y )

(⋂
i∈1

λA0 (i)

)
×
( ⋂
j∈J

µ0(j)

)

=P(X×Y ) A×
( ⋂
j∈J

µ0(j)

)
,

⋃
j∈J

(B ∩ µ0(j)) :=
⋃

(i,j)∈1×J

B ∩ µ0(j)

:=
⋃

(i,j)∈1×J

(
λB0 (i) ∩ µ0(j)

)
=P(Y )

(⋃
i∈1

λB0 (i)

)
∩
( ⋃
j∈J

µ0(j)

)

=P(Y ) B ∩
( ⋃
j∈J

µ0(j)

)
,

⋂
j∈J

(B ∪ µ0(j)) :=
⋂

(i,j)∈1×J

B ∪ µ0(j)

:=
⋂

(i,j)∈1×J

(
λB0 (i) ∪ µ0(j)

)
=P(Y )

(⋂
i∈1

λB0 (i)

)
∪
( ⋂
j∈J

µ0(j)

)

=P(Y ) B ∪
( ⋂
j∈J

µ0(j)

)
.
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Definition 4.4.3. Let X,Y, Z ∈ V0, x0 ∈ X, y0 ∈ Y , and R(Z) := (ρ0, EZρ1) ∈ Fam(X×Y, Z).

(i) If x ∈ X, the x-component of R is the triplet Rx(Z) := (ρx0 , Ex,Z , ρx1), where the assignment
routines ρx0 , ρ

x
1 are as in Definition 3.5.2, and the dependent operation Ex,Z :

c
y∈Y F

(
ρx0(y), Z

)
is defined by Ex,Zy := EZ(x,y), for every y ∈ Y .

(ii) If y ∈ Y , the y-component of R is the triplet Ry(Z) := (ρy0, Ey,Z , ρ
y
1), where the assignment

routines ρy0, ρ
y
1 are as in Definition 3.5.2, and the dependent operation Ey,Z :

c
x∈X F

(
ρy0(x), Z

)
is defined by Ey,Zx := EZ(x,y), for every x ∈ Y .

(iii) Let
⋃1R := (

⋃1 ρ0,
(⋃1 E

)Z
,
⋃1 ρ1), where

⋃1 ρ0 : X  V0,

1⋃
ρ1 :

k

(x,x′)∈D(X)

F

(( 1⋃
ρ0

)
(x),

( 1⋃
ρ0

)
(x′)

)
,
( 1⋃
E
)Z

:
k

x∈X
F
(( 1⋃

ρ0

)
(x), Z

)
are defined by

( 1⋃
ρ0

)
(x) :=

⋃
y∈Y

ρx0(y) :=
⋃
y∈Y

ρ0(x, y); x ∈ X,

( 1⋃
ρ1

)
(x, x′) :=

( 1⋃
ρ1

)
xx′

:
⋃
y∈Y

ρ0(x, y)→
⋃
y∈Y

ρ0(x′, y); (x, x′) ∈ D(X),

( 1⋃
ρ1

)
xx′

(y, u) :=
(
y, ρ(x,y)(x′,y)(u)

)
; (y, u) ∈

⋃
y∈Y

ρ0(x, y),

( 1⋃
E
)Z
x

(y, u) := EZ(x,y)(u); x ∈ X, (y, u) ∈
⋃
y∈Y

ρ0(x, y).

(iv) Let
⋃2R := (

⋃2 ρ0,
(⋃2 E

)Z
,
⋃2 ρ1), where

⋃2 ρ0 : Y  V0,

2⋃
ρ1 :

k

(y,y′)∈D(Y )

F

(( 2⋃
ρ0

)
(x),

( 2⋃
ρ0

)
(x′)

)
,
( 2⋃
E
)Z

:
k

y∈Y
F
(( 2⋃

ρ0

)
(y), Z

)
are defined by

( 2⋃
ρ0

)
(y) :=

⋃
x∈X

ρy0(x) :=
⋃
x∈X

ρ0(x, y); y ∈ Y,

( 2⋃
ρ1

)
(y, y′) :=

( 2⋃
ρ1

)
yy′

:
⋃
x∈X

ρ0(x, y)→
⋃
x∈X

ρ0(x′, y); (y, y′) ∈ D(Y ),

( 2⋃
ρ1

)
yy′

(x,w) :=
(
x, ρ(x,y)(x′,y)(w)

)
; (x,w) ∈

⋃
x∈X

ρ0(x, y),

( 2⋃
E
)Z
y

(x,w) := EZ(x,y)(w); y ∈ Z, (x,w) ∈
⋃
x∈X

ρ0(x, y).

(v) Let
⋂1R := (

⋂1 ρ0,
(⋂1 E

)Z
,
⋂1 ρ1), where

⋂1 ρ0 : X  V0,

1⋂
ρ1 :

k

(x,x′)∈D(X)

F

(( 1⋂
ρ0

)
(x),

( 1⋂
ρ0

)
(x′)

)
,
( 1⋂
E
)Z

:
k

x∈X
F
(( 1⋂

ρ0

)
(x), Z

)
are defined by
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( 1⋂
ρ0

)
(x) :=

⋂
y∈Y

ρx0(y) :=
⋂
y∈Y

ρ0(x, y); x ∈ X,

( 1⋂
ρ1

)
(x, x′) :=

( 1⋂
ρ1

)
xx′

:
⋂
y∈Y

ρ0(x, y)→
⋂
y∈Y

ρ0(x′, y); (x, x′) ∈ D(X),

[( 1⋂
ρ1

)
xx′

(Φ)

]
y

:= ρ(x,y)(x′,y)(Φy); Φ ∈
⋂
y∈Y

ρ0(x, y),

( 1⋂
E
)Z
x

(Φ) := EZ(x,y0)(Φy0); Φ ∈
⋂
y∈Y

ρ0(x, y).

(vi) Let
⋂2R := (

⋂2 ρ0,
(⋂2 E

)Z
,
⋂2 ρ1), where

⋂2 ρ0 : X  V0,

2⋂
ρ1 :

k

(y,y′)∈D(Y )

F

(( 2⋂
ρ0

)
(y),

( 2⋂
ρ0

)
(y′)

)
,
( 2⋂
E
)Z

:
k

y∈Z
F
(( 2⋂

ρ0

)
(y), Z

)
are defined by

( 2⋂
ρ0

)
(y) :=

⋂
x∈X

ρy0(x) :=
⋂
x∈X

ρ0(x, y); y ∈ Y,

( 2⋂
ρ1

)
(y, y′) :=

( 2⋂
ρ1

)
yy′

:
⋂
x∈X

ρ0(x, y)→
⋂
x∈X

ρ0(x, y′); (y, y′) ∈ D(Y ),

[( 2⋂
ρ1

)
yy′

(Φ)

]
x

:= ρ(x,y)(x,y′)(Φx); Φ ∈
⋂
x∈X

ρ0(x, y),

( 2⋂
E
)Z
y

(Φ) := EZ(x0,y)(Φx0); Φ ∈
⋂
x∈X

ρ0(x, y).

Clearly, Ry(Z),
⋃1R(Z),

⋂1R(Z) ∈ Fam(X,Z) and Rx(Z),
⋃2R(Z),

⋂2R(Z) ∈ Fam(Y,Z).

Proposition 4.4.4. Let X,Y, Z ∈ V0, R(Z) := (ρ0, EZρ1), S(Z) := (σ0,AZ , σ1) ∈ Fam(X ×
Y,Z), and Φ: R(Z)⇒ S(Z).

(i) Let Φx :
c
y∈Y F

(
ρx0(y), σx0 (y)

)
, where Φx

y := Φ(x,y) : ρx0(y)→ σx0 (y).

(ii) Let Φy :
c
x∈X F

(
Ry(x), Sy(x)

)
, where Φy

x := Φ(x,y) : ρy0(x)→ σy0(x).

(iii) Let
⋃1 Φ:

c
x∈X F

((⋃1 ρ0

)
(x),

(⋃1 σ0

)
(x)
)
, where, for every x ∈ X, we define

( 1⋃
Φ

)
x

:
∑
y∈Y

ρy0(x)→
⋃
y∈Y

σx0 (y)

( 1⋃
Φ

)
x

(y, u) :=
(
y,Φ(x,y)(u)

)
; (y, u) ∈

⋃
y∈Y

ρ0(x, y).
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(iv) Let
⋃2 Φ:

c
y∈Y F

((⋃2 ρ0

)
(y),

(⋃2 σ0

)
(y)
)
, where, for every y ∈ Y , we define( 2⋃

Φ

)
y

:
⋃
x∈X

ρx0(y)→
⋃
x∈X

σy0(x)

( 2⋃
Φ

)
y

(x,w) :=
(
x,Φ(x,y)(w)

)
; (x,w) ∈

⋃
x∈X

ρ(x, y).

(v) Let
⋂1 Φ:

c
x∈X F

((⋂1 ρ0

)
(x),

(⋂1 σ0

)
(x)
)
, where, for every x ∈ X, we define( 1⋂

Φ

)
x

:
⋂
y∈Y

ρy0(x)→
⋂
y∈Y

σx0 (y)

[( 1⋂
Φ

)
x

(Θ)

]
y

:= Φ(x,y)

(
Θy))

)
; Θ ∈

⋂
y∈Y

ρ0(x, y).

(vi) Let
⋂2 Φ:

c
y∈Y F

((⋂2 ρ0

)
(y),

(⋂2 σ0

)
(y)
)
, where, for every y ∈ Y , we define( 2⋂

Φ

)
y

:
⋂
x∈X

ρx0(y)→
⋂
x∈X

σy0(x)

[( 2⋂
Φ

)
y

(Θ)

]
x

:= Φ(x,y)

(
Θx)

)
; Θ ∈

⋂
x∈X

ρ0(x, y).

Then we have that Φx : Rx(Z) ⇒ Sx(Z) and Φy : Ry(Z) ⇒ Sy(Z) and
⋃1 Φ:

(⋃1R
)
(Z) ⇒(⋃1 S

)
(Z) and

⋃2 Φ:
(⋃2R

)
(Z) ⇒

(⋃2 S
)
(Z) and

⋂1 Φ:
(⋂1R

)
(Z) ⇒

(⋂1 S
)
(Z) and⋂2 Φ:

(⋂2R
)
(Z)⇒

(⋂2 S
)
(Z).

Proof. We proceed similarly to the proof of Proposition 3.5.3.

Proposition 4.4.5. If R := (ρ0, ρ1) ∈ Fam(X × Y,Z), the following equalities hold.⋃
x∈X

⋃
y∈Y

ρ0(x, y) =P(Z)

⋃
y∈Y

⋃
x∈X

ρ0(x, y),

⋂
x∈X

⋂
y∈Y

ρ0(x, y) =P(Z)

⋂
y∈Y

⋂
x∈X

ρ0(x, y).

Proof. The proof is straightforward.

4.5 The semi-distributivity of
⋂

over
⋃

Section 4.4 is the “internal” analogue to section 3.5, as the presentation of the families of
subsets over products follows the presentation of the families of sets over products. The
distributivity of

⋂
over

⋃
though, cannot be approached as the distributivity of Σ over

∏
, as

the crucial Lemma 3.6.1 depends on the fact that the operation prR
x

1 is a function, something
which is not the case, as we have already explained in section 4.2, when the totality of the
exterior union is equipped with the equality of the interior union.
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Definition 4.5.1. If Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) and h : J → I, the composition family
of Λ(X) with h is the triplet Λ(X) ◦ h := (λ0 ◦ h, EX ◦ h, λ1 ◦ h), where λ0 ◦ h : J  V0 and
λ1 ◦ h :

c
(j,j′)∈D(J) F

(
λ0(h(j)), λ0(h(j′))

)
are given in Definition 3.1.6(iii), and the dependent

operation EX ◦ h :
c
j∈J F

(
λ0(h(j)), X

)
is defined by (EX ◦ h)j := EXh(j), for every j ∈ J .

Clearly, Λ(X) ◦h ∈ Fam(J,X). To formulate the distributivity of
⋂

over
⋃

in the language
of BST we need to introduce a family of subsets P (I) of the index-set I of a given family of
subsets of a set X. Throughout this section let the following data:

(a) Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X).

(b) (K,=K , 6=K) is a set, and k0 ∈ K.

(c) P (I) := (p0,ZI , p1) ∈ Fam(K, I).

(d) Λ(X) ◦ ZIk := (λ0 ◦ ZIk , EX ◦ ZIk , λ1 ◦ ZIk) ∈ Fam(p0(k), X), for every k ∈ K.

(e) T :=
⋂
k∈K p0(k).

Proposition 4.5.2. N(K) := (ν0,NX , ν1) ∈ Fam(K,X), where ν0 : K  V0 is defined by

ν0(k) :=
⋃

j∈p0(k)

(λ0 ◦ ZIk)(j) :=
⋃

j∈p0(k)

λ0

(
ZIk(j)

)
; k ∈ K,

and NX :
c
k∈K F(ν0(k), X), ν1 :

c
(k,k′)∈D(K) F

(
ν0(k), ν0(k′)

)
are defined by

NX
k :

( ⋃
j∈p0(k)

λ0

(
ZIk(j)

))
↪→ X, NX

k (j, u) := EXZIk(j)
(u); j ∈ p0(k), u ∈ λ0

(
ZIk(j)

)
,

ν1(k, k′) := νkk′ :
⋃

j∈p0(k)

λ0

(
ZIk(j)

)
→

⋃
j∈p0(k′)

λ0

(
ZIk′(j)

)
,

νkk′(j, u) :=
(
pkk′(j), λZIk(j)ZI

k′ (pkk′ (j))
(u)
)
; j ∈ p0(k), u ∈ λ0

(
ZIk(j)

)
.

Proof. The operation NX
k is an embedding, since by Definition 4.5.1

(j, u) =⋃
j∈p0(k) λ0(ZIk(j)) (j′, u′) :⇔ EXZIk(j)

(u) =X EXZIk(j′)(u
′) :⇔ NX

k (j, u) =X NX
k (j′, u′).

Let k =K k′, j ∈ p0(k) and u ∈ λ0

(
ZIk(j)

)
. By the commutativity of the left inner diagrams

p0(k) p0(k′)

I

⋃
j∈p0(k) λ0

(
ZIk(j)

) ⋃
j′∈p0(k′) λ0

(
ZI
k′ (j
′)
)

X

pkk′

pk′k
ZIk ZIk′

νkk′

νk′kNX
k NX

k′

we have that ZIk′
(
pkk′(j)

)
=I ZIk(j). Hence λZIk(j)ZI

k′ (pkk′ (j))
: λ0

(
ZIk(j)

)
→ λ0

(
ZIk′
(
pkk′(j)

))
and νkk′(j, u) is well defined. Next we show that the above right inner diagrams commute. If

j′ := pkk′(j) & i := ZIk(j) & i′ := ZIk′(j′), then

NX
k′
(
νkk′(j, u)

)
:= NX

k′
(
j′, λii′(u)

)
:= EXi′

(
λii′(u)

)
=X EXi (u) := NX

k (j, u),

using the commutativity of the following diagram
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λ0(i) λ0(i′)

X.

λii′

λi′i
EXi EXi′

For the other above right inner diagram we proceed similarly. Clearly, νkk(j, u) := (j, u).

Proposition 4.5.3. If τ ∈ T , then τ(X) := (τ0, T X , τ1) ∈ Fam(K,X), where τ0 : K  
V0 is defined by τ0(k) := λ0

(
ZIk(τk)

)
, for every k ∈ K, and the dependent operations

T X :
c
k∈K F(τ0(k), X), τ1 :

c
(k,k′)∈D(K) F

(
τ0(k), τ0(k′)

)
are defined by

T Xk : λ0

(
ZIk(τk)

)
↪→ X, T Xk := EXZIk(τk)

,

τ1(k, k′) := τkk′ : λ0

(
ZIk(τk)

)
→ λ0

(
ZIk′(τk′)

)
, τkk′ := λZIk(τk)ZI

k′ (τk′ )
.

Proof. What we want follows in a straightforward way from the fact that Λ(X) ∈ Fam(I,X).

Proposition 4.5.4. Ξ(X) := (ξ0,HX , ξ1) ∈ Fam(T,X), where ξ0 : T  V0 is defined by

ξ0(τ) :=
⋂
k∈K

τ0(k) :=
⋂
k∈K

λ0

(
ZIk(τk)

)
; τ ∈ T,

and the dependent operations HX :
c
τ∈T F(ξ0(τ), X), ξ1 :

c
(τ,τ ′)∈D(T ) F

(
ξ0(τ), ξ0(τ ′)

)
are de-

fined, respectively, by HXτ :

(⋂
k∈K τ0(k)

)
↪→ X, where HXτ := e

τ(X)⋂ , for every τ ∈ T ,

ξ1(τ, τ ′) := ξττ ′ :
⋂
k∈K

λ0

(
ZIk(τk)

)
→
⋂
k∈K

λ0

(
ZIk(τ ′k)

)
,

Φ 7→ ξττ ′(Φ);
[
ξττ ′(Φ)

]
k

:= λZIk(τk)ZIk(τ ′k)(Φk); Φ:
⋂
k∈K

λ0

(
ZIk(τk)

)
, k ∈ K.

Proof. If τ ∈ T , then by the definition of the embedding e
τ(X)⋂ we get

HXτ (Φ) := T Xk0
(Φk0) := EXZIk0

(τk0
)
(Φk0); Φ:

⋂
k∈K

λ0

(
ZIk(τk)

)
.

HXτ is an embedding. Next we show that ξττ ′(Φ) ∈
⋂
k∈K λ0

(
ZIk (τ ′k)

)
. As Φ:

⋂
k∈K λ0

(
ZIk (τk)

)
,

T Xk
([
ξττ ′(Φ)

]
k

)
:= EXZIk(τ ′k)

([
ξττ ′(Φ)

]
k

)
:= EXZIk(τ ′k)

(
λZIk(τk)ZIk(τ ′k)(Φk)

)
=X EXZIk(τk)

(Φk)

=X EXZIl (τl)
(Φl)

=X EXZIl (τ ′l)

(
λZIk(τl)ZIk(τ ′l)

(Φl)

)
:= T Xl

([
ξττ ′(Φ)

]
l

)
,
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for every k, l ∈ K. Similarly we show that ξττ ′ is a function. If τ =T τ
′, then

⋂
k∈K λ0(ZIk(τk)))

⋂
k∈K λ0(ZIk(τ ′k))

X

ξττ ′

ξτ ′τHXτ HXτ ′

HXτ ′
(
ξττ ′(Φ)

)
:= EXZIk0

(τ ′k0
)

([
ξττ ′(Φ)

]
k0

)
:= EXZIk0

(τ ′k0
)

(
λZIk0

(τk0
)ZIk0

(τ ′k0
)(Φk0)

)
=X EXZIk0

(τk0
)

(
Φk0

)
:= HXτ (Φ).

The set

W :=
⋂
k∈K

ν0(k) :=
⋂
k∈K

[ ⋃
j∈p0(k)

λ0

(
ZIk(j)

)]

is embedded into X through the map e
N(X)⋂ , where e

N(X)⋂ (A) := NX
k0

(Ak0), for every A ∈⋂
k∈K ν0(k). By definition, if A :

c
k∈K ν0(k), then

A ∈
⋂
k∈K

ν0(k)⇔ ∀k,l∈K
(
NX
k (Ak) =X NX

l (Al)
)
,

Ak ∈
⋃

j∈p0(k)

λ0

(
ZIk(j)

)
, i.e., Ak := (j, u), j ∈ p0(k), u ∈ λ0

(
ZIk(j)

)
,

NX
k (Ak) := NX

k (j, u) := EXZIk(j)
(u),

A =⋂
k∈K ν0(k) B :⇔ NX

k0
(Ak0) =X NX

k0
(Bk0).

The set

V :=
⋃
τ∈T

ξ0(τ) :=
⋃
τ∈T

[ ⋂
k∈K

λ0

(
ZIk(τk)

)]
is embedded into X through the map e

Ξ(X)⋃ , where

e
Ξ(X)⋃ (τ,Φ) := HXτ (Φ) := EXZIk0

(τk0
)
(Φk0); (τ,Φ) ∈

⋃
τ∈T

ξ0(τ),

(τ,Φ) =⋃
τ∈T ξ0(τ) (τ ′,Φ′) :⇔ HXτ (Φ) =X HXτ ′ (Φ′).

Proposition 4.5.5 (Semi-distributivity of
⋂

over
⋃

).
(
V, e

Ξ(X)⋃ )
⊆
(
W, e

N(X)⋂ )
.
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Proof. Let the operation θ : V  W , defined by

θ(τ,Φ) := A(τ,φ), (τ,Φ) ∈ V,

A
(τ,Φ)
k := (τk,Φk); k ∈ K.

By definition τk ∈ p0(k) and Φk ∈ λ0

(
ZIk(τk)

)
. We show that θ is well-defined i.e., A(τ,Φ) ∈⋂

k∈K ν0(k). If k, l ∈ K, by the above unfolding of A ∈W we need to show that

EXZIk(τk)
(Φk) =X EXZIk(τl)

(Φl),

which follows immediately from the unfolding of the membership Φ ∈
⋂
k∈K λ0

(
ZIk(τk)

)
. If

(τ,Φ) =⋃
τ∈T ξ0(τ) (τ ′,Φ′) :⇔ HXτ (Φ) =X HXτ ′ (Φ′) :⇔ EXZIk0

(τk0
)
(Φk0) =X EXZIk0

(τk0
)
(Φ′k0),

A(τ,Φ) =⋂
k∈K ν0(k) A

(τ ′,Φ′) :⇔ NX
k0

(A
(τ,Φ)
k0

) =X NX
k0

(A
(τ ′,Φ′)
k0

)

:⇔ NX
k0

(A
(τk,Φk)
k0

) =X NX
k0

(A
(τ ′k,Φ

′
k)

k0
) :⇔ EXZIk0

(τk0
)
(Φk0) =X EXZIk0

(τk0
)
(Φ′k0),

hence θ is a function. The commutativity of the following diagram is shown by the equalities

⋃
τ∈T

[⋂
k∈K λ0

(
ZIk(τk)

)] ⋂
k∈K

[⋃
j∈p0(k) λ0

(
ZIk(j)

)]

X

θ

e
Ξ(X)⋃ e

N(X)⋂

e
N(X)⋂ (

θ(τ,Φ)
)

:= NX
k0

(
τk0 ,Φk0) := EXZIk0

(τk0
)
(Φk0) := e

Ξ(X)⋃ (τ,Φ).

For the converse inclusion see Note 4.11.6.

4.6 Sets of subsets

Definition 4.6.1. If I,X ∈ V0, a set of subsets of X indexed by I, or an I-set of subsets of
X, is triplet Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) such that the following condition is satisfied:

Q(Λ(X)) :⇔ ∀i,j∈I
(
λ0(i) =P(X) λ0(j)⇒ i =I j

)
.

Let Set(I,X) be their totality, equipped with the canonical equality on Fam(I,X).

Remark 4.6.2. If Λ(X) ∈ Set(I,X) and M(X) ∈ Fam(I,X) such that Λ(X) =Fam(I,X) M(X),
then M(X) ∈ Set(I,X).

Proof. Let Φ: Λ(X)⇒M(X) and Ψ: M(X)⇒ Λ(X) such that (Φ,Ψ): Λ(X) =Fam(I,X) M(X).
Let also (f, g) : µ0(i) =P(X) µ0(j). It suffices to show that λ0(i) =P(X) λ0(j).
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µ0(i) µ0(j)

X

λ0(j)λ0(i)

f

g

ZXi ZXj

Φi

Ψi

EXi

Ψj

Φj

EXj

If we define f ′ := Ψj ◦ f ◦ Φi and g′ := Ψi ◦ g ◦ Φj , it is straightforward to show that
(f ′, g′) : λ0(i) =P(X) λ0(j), hence i =I j.

By the previous remark Q(Λ(X)) is an extensional property on Fam(I,X). Since Set(I,X)
is defined by separation on Fam(I,X), and since we see no objection to consider Fam(I,X) to
be a set, we also see no objection to consider Set(I,X) to be a set.

Definition 4.6.3. Let Λ(X) := (λ0, EXλ1) ∈ Fam(I,X). Let the equality =
Λ(X)
I on I given by

i =
Λ(X)
I j :⇔ λ0(i) =P(X) λ0(j), for every i, j ∈ I. The set λ0I(X) of subsets of X generated

by Λ(X) is the totality I equipped with the equality =
Λ(X)
I . We write λ0(i) ∈ λ0I(X), instead

of i ∈ I, when I is equipped with the equality =
Λ(X)
I . The operation λ∗0 : I  I from (I,=I) to

(I,=
Λ(X)
I ) is defined as in Definition 3.7.3.

Clearly, λ∗0 is a function. All results in section 3.7 are shown similarly for sets of subsets,
and for convenience we include them here without proof.

Proposition 4.6.4. Let Λ(X) := (λ0, EXλ1) ∈ Set(I,X), and let Y be a set. If f : I → Y ,
there is a unique function λ0f : λ0I(X)→ Y such that the following diagram commutes

λ0I(X)

I Y.

λ0fλ0

f

Conversely, if f : I  Y and f∗ : λ0I(X)→ Y such that the corresponding diagram commutes,
then f is a function and f∗ is equal to the function from λ0I(X) to Y generated by f .

Proposition 4.6.5. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X), and let Y be a set. If f∗ :
λ0I(X)→ Y , there is a unique function f : I → Y such that the following diagram commutes

λ0I(X)

I Y.

f∗λ0

f

If Λ ∈ Set(I,X), then f∗ is equal to the function from λ0I(X) to Y generated by f .
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Definition 4.6.6. Let Λ(X) := (λ0, EXλ1) ∈ Set(I,X), and let Y be a set. If f∗ : λ0I(X)→
Y , we denote the unique function f : I → Y generated by f∗ by f∗ ◦ λ0.

Corollary 4.6.7. Let Λ(X) := (λ0, EXλ1) ∈ Fam(I,X), and let Y be a set.

(i) The operation Φ: F(λ0I, Y ) F(I, Y ), defined by Φ(f∗) := f∗◦λ0, for every f∗ ∈ F(λ0I, Y ),
is an embedding.

(ii) If Λ(X) ∈ Set(I,X), then Φ is a surjection, the operation Θ: F(I, Y ) F(λ0I, Y ), defined
by Θ(f) := λ0f , for every f ∈ F(I, Y ), is an embedding, and (Θ,Φ): (F(I, Y ) =V0 F(λ0I, Y ).

Proof. (i) By definition of the corresponding equalities we have that

f∗ =F(λ0I(X),Y ) g
∗ ⇔ ∀i∈I

(
f∗(λ0(i)) =Y g∗(λ0(i))

)
⇔ ∀i∈I

(
(f∗ ◦ λ0)(i)) =Y (g∗ ◦ λ0)(i))

)
⇔ f∗ ◦ λ0 =F(I,Y ) g

∗ ◦ λ0.

(ii) If f ∈ F(I, Y ), then by Proposition 4.6.4 there is unique λ0f ∈ F(λ0I, Y ) such that
Φ(λ0f) := λ0f ◦ λ0 =F(I,Y ) f . By definition of the corresponding equalities we have that

f =F(I,Y ) g ⇔ ∀i∈I
(
f(i)) =Y g(i)

)
⇔ ∀i∈I

(
λ0f(λ0(i)) =Y λ0g(λ0(i)

)
⇔ λ0f =F(λ0I,Y ) λ0g.

Moreover, we have that (Θ ◦ Φ)(f∗) := Θ(f∗ ◦ λ0) := λ0(f∗ ◦ λ0) =F(λ0I(X),Y ) f
∗, and

(Φ ◦Θ)(f) := Φ(λ0f) := (λ0f) ◦ λ0 =F(I,Y ) f .

Proposition 4.6.8. Let Λ(X) := (λ0, EX , λ1) ∈ Set(I,X) and M(X) := (µ0,ZXµ1) ∈
Set(J, Y ). If f : I → J , there is a unique function f∗ : λ0I(X) → µ0J(Y ) such that the
following diagram commutes

λ0I(X) µ0J(Y ).

JI

f∗

f

λ0 µ0

If f : I  J , and f∗ : λ0I(X) → µ0J(Y ) such that the corresponding to the above diagram
commutes, then f ∈ F(I, J) and f∗ is equal to the map in F

(
λ0I(X), µ0J(Y )

)
generated by f .

Remark 4.6.9. Let the set
(
X,=X , 6=F(X,2)

X

)
, and ∆1(X) :=

(
δ1

0 , E1,X , δ1
1

)
, where the non-

dependent assignment routine δ1
0 : F(X,2)  V0 is defined by the rule f 7→ δ1

0(f), for every
f ∈ F(X,2) (see Definition 2.8.3), and the dependent operations E1,X :

c
f∈DF (X,2) F(δ1

0(f), X)

and δ1
1 :

c
(f,g)∈D(F(X,2)) F(δ1

0(f), δ1
0(g)) are defined, respectively, by

E1,X
f : δ1

0(f) ↪→ X x 7→ x; x ∈ δ1
0(f),

δ1
1(f, g) := δ1

fg : δ1
0(f)→ δ1

0(g) x 7→ x; x ∈ δ1
0(f).

If ∆0(X) :=
(
δ0

0 , E0,X , δ0
1

)
, where δ0

0 : F(X,2) V0 is defined by the rule f 7→ δ0
0(f), for every

f ∈ F(X,2), and the dependent operations E0,X , δ0
1 are defined similarly, then ∆1(X),∆0(X) ∈

Set(F(X,2), X), and they are called the F(X,2)-sets of detachable subsets of X.
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Proof. We give the proof only for ∆1(X). It is easy to show that ∆1(X) ∈ Fam(F(X,2), X).
Let f, g ∈ F(X,2) such that δ1

0(f) =P(X) δ
1
0(g) i.e., there are e ∈ F

(
δ1

0(f), δ1
0(g)

)
and k ∈

F
(
δ1

0(g), δ1
0(f)

)
such that (e, k) : δ1

0(f) =P(X) δ
1
0(g)

δ1
0(f) δ1

0(g)

X.

e

k
E1,X
f E1,X

g

Let x ∈ X. By the commutativity of the above diagram x := E1,X
g (x) =X E1,X

f

(
k(x)

)
:= k(x).

Hence, if f(x) =2 1, then f(k(x)) =2 1. Since k(x) ∈ δ1
0(g), we get g(k(x)) =2 1, and since

x =X k(x), we get g(x) =2 1. If f(x) =2 0, we use proceed similarly.

Clearly, δ1
0(1) = X, δ1

0(f) ∩ δ1
0(g) = δ1

0(f · g), and δ1
0(f) ∪ δ1

0(g) = δ1
0(f + g − f · g).

Proposition 4.6.10. Let the family ∆1(X) :=
(
δ1

0 , E1,X , δ1
1

)
of detachable subsets of X.

If compl : F(X,2)→ F(X,2) is defined by f 7→ 1−f, for every f ∈ F(X,2), then the operation
Compl : [δF(X,2)](X) [δF(X,2)](X), defined by

Compl(δ1
0(f)) := δ(compl(f)) =: δ1

0(1− f) = δ0
0(f); δ1

0(f) ∈ [δF(X,2)](X),

is a function such that the following conditions hold:

(a) Compl(Compl(δ1
0(f)) = δ1

0(f).

(b) Compl(δ1
0(f) ∩ δ1

0(g)) = Compl(δ1
0(f)) ∪ Compl1

0(δ(g)).

(c) Compl(δ1
0(f) ∪ δ1

0(g)) = Compl(δ1
0(f)) ∩ Compl(δ1

0(g)).

Proof. (i) By Proposition 4.6.4 the operation Compl is the unique function from [δ1
0F(X,2)](X)

to [δ1
0F(X,2)](X) that makes the following diagram commutative

[δ1
0F(X,2)](X) [δ1

0F(X,2)](X).

F(X,2)F(X,2)

Compl

compl

δ1
0 δ1

0

The proofs of conditions (a)-(c) are easy to show.

Proposition 4.6.11. Let X,Y be sets, and let the sets of detachable subsets ∆1(X) :=(
δ1,X

0 , E1,X , δX1
)
, ∆1(Y ) :=

(
δ1,Y

0 , E1,Y , δ1,Y
1

)
of X and Y , respectively. If h : Y → X, then the

operation h̃ : F(X,2)  F(Y, 2), defined by f 7→ f ◦ h, for every f ∈ F(X,2), is a function,
and there is a unique function δ1

0h̃ : [δ1
0F(X,2)](X)→ [δ1

0DF (Y,2)](Y ) such that the following
diagram commutes
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[δ1
0F(X,2)](X) [δ1

0F(Y,2)](Y ).

F(X,2)F(Y,2)

h̃

δ1
0h̃

δ1
0,Y δ1

0,X

Proof. It follows immediately from Proposition 4.6.8.

Proposition 4.6.12. Let Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) and M(Y ) := (µ0,ZY µ1) ∈
Set(J, Y ). If f∗ : λ0I(X) → µ0J(Y ), there is a unique f : I → J , such that the following
diagram commutes

λ0I µ0J.

JI

f∗

f

λ0 µ0

Moreover, f∗ is equal to the function from λ0I(X) to µ0J(Y ) generated by f .

Corollary 4.6.13. Let Λ(X) := (λ0, EX , λ1) ∈ Set(I,X) and M(Y ) := (µ0,ZY µ1) ∈
Fam(J, Y ). The operation Θ: F(I, J) F(λ0I, µ0J), defined by f 7→ f∗, for every f ∈ F(I, J),
is a function. If M(Y ) ∈ Set(J, Y ), then Θ is an embedding, and a surjection.

Proof. By definition of the corresponding equalities we have that

f =F(I,J) g ⇔ ∀i∈I
(
f(i) =J g(i)

)
⇒ ∀i∈I

(
µ0(f(i)) =P(Y ) µ0(g(i))

)
⇔ ∀i∈I

(
f∗(λ0(i)) =P(Y ) g

∗(λ0(i))
)

⇔ f∗ =F(λ0I(X),µ0J(Y )) g
∗.

If M(Y ) ∈ Set(J, Y ), the above implication is also an equivalence, hence Θ is an embedding.
By Proposition 4.6.5 we have that Θ is a surjection.

The notions of fiber and cofiber of a function were introduced in Definition 2.3.4.

Proposition 4.6.14. Let the sets (X,=X , 6=X) and (Y,=Y , 6=Y ), and let f : X → Y .

(i) Let fibf (X) :=
(
fib

f
0 , Efib,X , fib

f
1

)
, where fib

f
0 : Y  V0 is defined by the rule fib

f
0(y) :=

fibf (y), for every y ∈ Y , and the dependent operations Efib,X :
c
y∈Y F(fibf0(y), X) and

fib
f
1 :

c
(y,y′)∈D(Y ) F(fibf0(y), fibf0(y′)) are defined, respectively, by

Efib,X : fibf0(y) ↪→ X x 7→ x; x ∈ fib
f
0(y),

fib1
1(y, y′) := fib1

yy′ : fib
f (y)→ fibf (y′) x 7→ x; x ∈ fib

f
0(y).

Then fibf (X) ∈ Fam(Y,X) and if f is a surjection, then fibf (X) ∈ Set(Y,X).
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(ii) f is strongly extensional if and only if cofibf0(y)KJfibf0(y), for every y ∈ Y .

(iii) Let cofibf (X) :=
(
cofib

f
0 , Ecofib,X , cofib

f
1

)
, where cofib

f
0 : Y  V0 is defined by

the rule cofib
f
0(y) := cofibf (y), for every y ∈ Y , and Ecofib,X :

c
y∈Y F(cofibf0(y), X),

cofib
f
1 :

c
(y,y′)∈D(Y ) F(cofibf0(y), cofibf0(y′)) are defined, respectively, by

Ecofib,Xy : cofibf0(y) ↪→ X x 7→ x; x ∈ cofib
f
0(y),

cofib1
1(y, y′) := cofib1

yy′ : cofib
f (y)→ cofibf (y′) x 7→ x; x ∈ cofib

f
0(y).

Then cofibf (X) ∈ Fam(Y,X), and if f is a surjection, then cofibf (X) ∈ Set(Y,X) if and
only if the inequality 6=Y is tight.

Proof. (i) If y =Y y′ and x ∈ fibf (y), then x ∈ fibf (y′). Since the functions Efib,Xy , Efib,Xy′ ,

and fib1
yy′ are defined through the identity map-rule, we get fibf (X) ∈ Fam(Y,X). Let

y, y′ ∈ Y and functions g ∈ F
(
fibf (y), fibf (y′)

)
and h ∈ F

(
fibf (y′), fibf (y)

)
, such that

(g, h) : fibf (y) =P(X) fibf (y′). Let x ∈ X such that f(x) =Y y i.e., x ∈ fibf (y). By the
commutativity of one of the following left inner diagrams we have that g(x) =X x, and, of
course, g(x) ∈ fibf (y′) i.e., f(g(x)) =Y y′. Hence, y′ =Y f(g(x)) =Y f(x) =Y y.

fibf (y) fibf (y′)

X

cofibf (y) cofibf (y′)

X

g

h
Efib,Xy Efib,Xy′

g′

h′
Ecofib,Xy Ecofib,Xy′

(ii) Suppose that f is strongly extensional and let x ∈ cofibf (y) and z ∈ fibf (y) i.e., f(x) 6=Y y
and f(x) =Y y. By the extensionality of 6=Y (Remark 2.2.6) we get f(x) 6=Y f(z), and as f is

strongly extensional, we conclude that x 6=X z. Suppose next that cofib
f
0(y)KJfibf0(y), for

every y ∈ Y , and let x, z ∈ X with f(x) 6=Y f(z). In this case, we get x ∈ fibf (f(x)) and

z ∈ cofibf (f(x)). Since cofib
f
0(f(x))KJfibf0(f(x)) and the corresponding embeddings into

X are given by the identity map-rule, we get x 6=X z.
(iii) If y =Y y′ and x ∈ cofibf (y), then f(x) 6=Y y, and by the extensionality of 6=Y , we get
f(x) 6=Y y′ i.e., x ∈ fibf (y′). Since the functions Ecofib,Xy , Ecofib,Xy′ , and cofib1

yy′ are defined

through the identity map-rule, we get cofibf (X) ∈ Fam(Y,X). Let f be a surjection. We
suppose first that cofibf (X) ∈ Set(Y,X). If ¬(y 6=Y y′), we show that y =Y y′, by showing
that cofibf (y) =P(X) cofibf (y′). If x ∈ cofibf (y), then f(x) 6=Y y. By condition (Ap3)
either y′ 6=Y f(x) or y′ 6=Y y. Since the latter contradicts our hypothesis ¬(y 6=Y y′), we
conclude that y′ 6=Y f(x) i.e., x ∈ cofibf (y′). Similarly we show that if x ∈ cofibf (y′), then
x ∈ cofibf (y). Hence, the functions between cofibf (y) and cofibf (y′) that are given by
the identity map-rule witness the equality cofibf (y) =P(X) cofib

f (y′). Suppose next that

the inequality 6=Y is tight. Let y, y′ ∈ Y and let functions g′ ∈ F
(
cofibf (y), cofibf (y′)

)
and h′ ∈ F

(
cofibf (y′), cofibf (y)

)
, such that (g′, h′) : cofibf (y) =P(X) cofib

f (y′). We show
that y =Y y′ by showing ¬(y 6=Y y′). For that suppose y 6=Y y′, and let x, x′ ∈ X such that
f(x) =Y y and f(x′) =Y y′. By the extensionality of 6=Y we get f(x) 6=Y y′ i.e., x ∈ cofibf (y′).
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Since h′(x) ∈ cofibf (y), and since by the commutativity of one of the above right inner
diagrams h′(x) =X x, we get x ∈ cofibf (y). Since f(x) 6=Y y and y =Y f(x), by the
extensionality of 6=Y we get f(x) 6=Y f(x), which leads to the required contradiction.

If f is not a surjection, it is possible that fibf (y), fibf (y′) are not inhabited, and y 6=Y y′.
If f is not a surjection, like the function f : X → {0, 1, 2}, defined by f(x) := 0, for every
x ∈ X, then cofibf (1) = X = cofibf (2) and 1 6= 2. Notice that it is not necessary that a
family of subsets is a family of fibers or a family of cofibers, as the moduli of embeddings of
the latter are given through the identity map-rule.

Definition 4.6.15. An I-family of sets Λ := (λ0, λ1) is a family of contractible sets, if λ0(i)
is contractible, for every i ∈ I. A modulus of centres of contraction for Λ is a dependent
operation centreΛ :

c
i∈I λ0(i), with centreΛ

i a centre of contraction for λ0(i), for every i ∈ I.

In Proposition 2.4.1 we saw that if (f, g) : X =V0 Y , the set fibf (y) is contractible with

centre
f
y := g(y), for every y ∈ Y i.e., the dependent operation centref is a modulus of centres

of contractions for the family fibf (X). Next follows a kind of inverse to Proposition 2.4.1.

Proposition 4.6.16. Let the sets (X,=X , 6=X), (Y,=Y , 6=Y ), and f : X → Y . If fibf (X) :=(
fib

f
0 , Efib,X , fib

f
1

)
is a family of contractible subsets of X with centrefib

f (X) :
c
y∈Y fibf (y)

a modulus of centres of contraction for fibf (X), there is g ∈ F(Y,X) with (f, g) : X =V0 Y .

Proof. Let the operation g : Y  X, defined by g(y) := centrefib
f (X)(y), for every y ∈ Y .

Since g(y) ∈ fibf (y), we have that f(g(y)) =Y y. Since g(y) is a centre of contraction for
fibf (y), we have that ∀x∈X

(
f(x) =Y y ⇒ x =X g(y)

)
. First we show that the operation g

is a function. For that, let y =Y y′, and we show that g(y) =X g(y′). Since the map fib1
yy′

in Proposition 4.6.14 is given by the identity map-rule, and since g(y′) ∈ fibf (y′), we get
g(y′) ∈ fibf (y). Since g(y) is a centre of contraction for fibf (y), we get g(y′) =X g(y). It
remains to show that if x ∈ X, then g(f(x)) =X x. By the definition of g we have that

g(f(x)) := centrefib
f (X)(f(x)). As x ∈ fibf (f(x)), we get x =X g(f(x)).

4.7 Families of equivalence classes

In this section we extend results on sets of subsets to families of equivalence classes. Although
a family of equivalence classes is not, in general, a set of subsets, we can define functions on
them, if we use appropriate functions on their index-set.

Definition 4.7.1. If X is a set and RX(x, x′) is an extensional property on X × X that
satisfies the conditions of an equivalence relation, we call the pair (X,RX) an equivalence
structure. If (Y, SY ) is an equivalence structure, a function f : X → Y is an equivalence
preserving function, or an (RX , SY )-function, if

∀x,x′∈X
(
R(x, x′)⇒ S(f(x), f(x′))

)
.

If, for every x, x′ ∈ X, the converse implication holds, we say that f is an (RX , SY )-embedding.
Let F(RX , SY ) be the set of (RX , SY )-functions2.

2By the extensionality of SY the property of being an (RX , SY )-function is extensional on F(X,Y ).
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Proposition 4.7.2. If (X,RX) is an equivalence structure, let R(X) :=
(
ρ0,RX , ρ1

)
, where

ρ0 : X  V0 is defined by ρ0(x) := {y ∈ X | RX(y, x)}, for every x ∈ X, and the dependent
operations RX :

c
x∈X F

(
ρ0(x), X

)
, ρ1 :

c
(x,x′)∈D(X) F

(
ρ0(x), ρ0(x′)

)
are defined by

RXx : ρ0(x) ↪→ X y 7→ y; y ∈ ρ0(x),

ρ1(x, x′) := ρxx′ : ρ0(x)→ ρ0(x′) y 7→ y; y ∈ ρ0(x).

Then R(X) ∈ Fam(X,X), such that ∀xx′∈X
(
ρ0(x) =P(X) ρ0(x′)⇒ R(x, x′)

)
.

Proof. By the extensionality of RX the set ρ0(x) is a well-defined extensional subset of X.
If x =X x′ and RX(y, x), then by the extensionality of RX we get RX(y, x′), hence ρxx′ is
well-defined. Let (f, g) : ρ0(x) =P(X) ρ0(x′)

ρ0(x) ρ0(x′)

X.

f

g

RXx RXx′

If y ∈ ρ0(x) :⇔ RX(y, x), then f(y) ∈ ρ0(x′) :⇔ RX(f(y), x′), and by the commutativity of
the corresponding above diagram we get f(y) =X y. Hence by the extensionality of RX we
get RX(y, x′). Since RX(y, x) implies RX(x, y), by transitivity we get RX(x, x′).

Corollary 4.7.3. Let Eql(X) :=
(
eqlX0 , EX , eqlX1

)
be the X-family of subsets of X induced

by the equivalence relation =X i.e., eqlX0 (x) := {y ∈ X | y =X x}. Then Eql(X) ∈ Set(X,X).

Proof. It follows immediately from Proposition 4.7.2.

Proposition 4.7.4. If (X,RX) is an equivalence structure, and f : X → Y is an (RX ,=Y )-
function there is a unique ρ0f : ρ0X(X)→ Y such that the following diagram commutes

ρ0X(X)

X Y.

ρ0fρ∗0

f

Conversely, if f : X → Y and f∗ : ρ0X(X)→ Y such that the above diagram commutes, then
f is an (RX ,=Y )-function and f∗ is equal to the function from ρ0X(X) to Y generated by f .

Proposition 4.7.5. If (X,RX) is an equivalence structure, and f∗ : ρ0X(X)→ Y , there is a
unique f : X → Y , which is an (RX ,=Y )-function, such that the following diagram commutes

ρX(X)

X Y.

f∗ρ∗0

f
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Moreover, f∗ is equal to the function from ρ0X(X) to Y generated by f .

Proposition 4.7.6. Let (X,RX) and (Y, SY ) be equivalence structures and f : X → Y an
(RX , SY )-function. If R(X) and S(Y ) are the corresponding families of equivalence classes,
there is a unique function f∗ : ρ0X(X)→ σ0Y (Y ) such that the following diagram commutes

ρ0X(X) σ0Y (Y ).

YX

f∗

f

ρ∗0 σ∗0

If f : X → Y and f∗ : ρ0X(X)→ σ0Y (Y ) such that the above diagram commutes, then f is
an (RX , SY )-function and f∗ is equal to the function from ρ0X(X) to σ0Y (Y ) generated by f .

Proof. The assignment routinef∗ from ρ0X(X) to σ0Y (Y ) defined by f∗(ρ0(x)) := σ0(f(x)),
for every ρ0(x) ∈ ρ0X(X) is extensional, since for every x, x′ ∈ X we have that ρ0(x) =P(X)

ρ0(x′) ⇒ RX(x, x′) ⇒ SY (f(x), f(x′)), hence σ0(f(x)) =P(Y ) σ0(f(x′)) :⇔ f∗(ρ0(x)) =P(Y )

f∗(ρ0(x′)). The uniqueness of f∗ is immediate. For the converse, if x, x′ ∈ X, then by
the transitivity of =P(Y ) we have that RX(x, x′) ⇒ ρ0(x) =P(X) ρ0(x′) ⇒ f∗(ρ0(x)) =P(Y )

f∗(ρ0(x′))⇒ σ0(f(x)) =P(Y ) σ0(f(x′)), hence SY (f(x), f(x′)). The proof that f∗ is equal to
the function from ρ0X(X) to σ0Y (Y ) generated by f is immediate.

The previous is the constructive analogue to a standard classical fact (see [45], p. 17). A
function f∗ : ρ0X(X)→ σ0Y (Y ) does not generate a function from X to Y .

Proposition 4.7.7. Let (X,RX) and (Y, SY ) be equivalence structures and R(X), S(Y ) the
families of their equivalence classes. If f∗ : ρ0X(X)→ σ0Y (Y ), there is f : X  Y , which is
(RX , SY )-preserving and (=X , SY )-preserving, such that the following diagram commutes

ρ0X(X) σ0Y (Y ).

YX

f∗

f

ρ∗ σ∗

Proof. If x ∈ X, then f∗(ρ0(x)) := σ0(y), for some y ∈ Y . We define the routine f(x) := y
i.e., the output of f∗ determines the output of f . Since R(x, x′) ⇒ ρ0(x) =P(X) ρ0(x′) ⇒
f∗(ρ0(x)) =P(Y ) f

∗(ρ0(x′)), hence σ0(y) =P(Y ) σ0(y′) and SY (y, y′), we get SY (f(x), f(x′)),
and the operation f is (RX , SY )-preserving. Although we cannot show that f is a function, we
can show that it is (=X , S)-preserving, since x =X x′ ⇒ RX(x, x′), and we work as above.

4.8 Families of partial functions

Definition 4.8.1. Let X,Y and I be sets. A family of partial functions from X to Y indexed
by I, or an I-family of partial functions from X to Y , is a triplet Λ(X,Y ) := (λ0, EX , λ1,PY ),
where Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X) and PY :

c
i∈I F

(
λ0(i), Y

)
with PY (i) := PYi , for

every i ∈ I, such that, for every (i, j) ∈ D(I), the following inner diagrams commute
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λ0(i) λ0(j)

X

Y .

λij

λji

PYi PYj

EXi EXj

We call PY a modulus of partial functions for λ0, and Λ(X) the I-family of domains of
Λ(X,Y ). If M(X,Y ) := (µ0,ZX , µ1,QY ) and N(X,Y ) := (ν0,HX , ν1,RY ) are I-families of
partial functions from X to Y , a family of partial functions-map Ψ: Λ(X,Y ) ⇒ M(X,Y )
from Λ(X,Y ) to M(X,Y ) is a dependent operation Ψ:

c
i∈I F

(
λ0(i), µ0(i)

)
, where Ψ(i) := Ψi,

for every i ∈ I, such that, for every i ∈ I, the following inner diagrams commute

λ0(i) µ0(i)

X

Y .

Ψi

PYi QYi

EXi ZXi

The totality MapI(Λ(X,Y ),M(X,Y )) of the family of partial functions-maps from Λ(X,Y )
to M(X,Y ) is equipped with the pointwise equality. If Ψ: Λ(X,Y ) ⇒ M(X,Y ) and if
Ξ: M(X,Y )⇒ N(X,Y ), the composition family of partial functions-map Ξ ◦Ψ: Λ(X,Y )⇒
N(X,Y ) is defined by (Ξ ◦Ψ)(i) := Ξi ◦Ψi,

λ0(i) µ0(i) ν0(i)

X

Y

Ei Zi Hi

Ψi Ξi

(Ξ ◦Ψ)i

PYi RYi
QYi

for every i ∈ I. The identity family of partial functions-map IdΛ(X,Y ) : Λ(X,Y ) ⇒ Λ(X,Y )
and the equality on the totality Fam(I,X, Y ) of I-families of partial functions from X to Y are
defined as in Definition 3.1.3.

Clearly, if Λ(X,Y ) ∈ Fam(I,X, Y ) and (i, j) ∈ D(I), then (λij , λji) : PYi =F(X,Y ) PYj .
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Proposition 4.8.2. Let Λ(X,Y ) := (λ0, EX , λ1,PY ) ∈ Fam(I,X, Y ) and let M(Y, Z) :=
(µ0,ZY , µ1,QZ) ∈ Fam(I, Y, Z). Their composition (M � Λ)(X,Z) is defined by

(M � Λ)(X,Z) :=
(
µ0 � λ0,ZY � EX , µ1 � λ1, (Q � P)Z

)
(µ0 � λ0)(i) :=

(
PYi
)−1

(µ0(i)); i ∈ I,(
ZY � EX

)
i

:= EXi ◦ e
λ0(i)

(PYi )−1(µ0(i))
: (µ0 � λ0)(i) ↪→ X,

(µ1 � λ1)ij :
(
PYi
)−1

(µ0(i))→
(
PYj
)−1

(µ0(j)),

(µ1 � λ1)ij(u,w) :=
(
λij(u), µij(w)

)
; (u,w) ∈

(
PYi
)−1

(µ0(i)),

(Q � P)Zi := QZi � PYi , i ∈ I.

Then M(Y,Z) ∈ Fam(I,X,Z).

Proof. By Definition 2.6.9 we have that(
PYi
)−1

(µ0(i)) :=
{

(u,w) ∈ λ0(i)× µ0(i) | PYi (u) =Y ZYi (w)
}
,

(
PYj
)−1

(µ0(j)) :=
{

(u′, w′) ∈ λ0(j)× µ0(j) | PYj (u′) =Y ZYj (w“)
}
.

If (i, j) ∈ D(I), then PYj
(
λij(u)

)
=Y PY (u) =Y ZYi (w) =Y ZYj

(
µij(w)

)
,

λ0(i) λ0(j)

X

Y

µ0(i) µ0(j)

Y

Z.

λij

λji

PYi PYj

EXi EXj

µij

µji

QZi QZj

ZYi ZYj

hence the operation (µ1 � λ1)ij is well-defined, and it is immediate to show that it is a function.
For the commutativity of the following inner diagrams we have that

(µ0 � λ0)(i) (µ0 � λ0)(j)

X

Z

(µ1 � λ1)ij

(µ1 � λ1)ji

(Q � P)Zi (Q � P)Zj

(ZY � EX)i (ZY � EX)j
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(
ZY � EX

)
j

(
(µ1 � λ1)ij(u,w)

)
:=
(
ZY � EX

)
j

(
λij(u), µij(w)

)
:=

[
EXj ◦ e

λ0(j)

(PYj )−1(µ0(j))

](
λij(u), µij(w)

)
:= EXj

(
λij(u)

)
=X EXi (u)

:=

[
EXi ◦ e

λ0(i)

(PYi )−1(µ0(i))

]
(u,w)

:=
(
ZY � EX

)
i
(u,w),

(
Q � P

)Z
j

(
λij(u), µij(w)

)
:=
(
QZj � PYj

)(
λij(u), µij(w)

)
:= QZj

(
µij(w)

)
=Z QZi (w)

:=
(
QZi � PYi

)
(u,w)

:=
(
Q � P

)Z
i

(u,w).

For the other two inner diagrams we proceed similarly.

The basic properties of the composition of partial functions extend to equalities for the
corresponding families of partial functions. E.g., we get

N(Z,W ) �
[
M(Y,Z) � Λ(X,Y )

]
=Fam(I,X,W )

[
N(Z,W ) � M(Y,Z)

]
� Λ(X,Y ).

Suppose that Λ(X,Y ) := (λ0, EX , λ1,PY ) ∈ Fam(I,X, Y ) and M(X,Y ) := (µ0,ZX , µ1,QY ) ∈
Fam(I,X, Y ). We can define in the expected way the following families of partial functions:

(Λ ∩lM)(X,Y ) :=
(
λ0 ∩l µ0, EX ∩l ZX , λ1 ∩l µ1, (P ∩l Q)Y

)
,

(Λ ∩rM)(X,Y ) :=
(
λ0 ∩r µ0, EX ∩r ZX , λ1 ∩r µ1, (P ∩r Q)Y

)
,

(Λ ∪M)(X,Y ) :=
(
λ0 ∪ µ0, EX ∪ ZX , λ1 ∪ µ1, (P ∪Q)Y

)
.

The basic properties of the intersections and union of partial functions extend to equalities for
the corresponding families of partial functions. E.g., we get

(Λ ∪M)(X,Y ) =Fam(I,X,Y ) (M ∪ Λ)(X,Y ).

Various notions and results on families of subsets extend to families of partial functions.

4.9 Families of complemented subsets

Definition 4.9.1. Let the sets (X,=X , 6=X) and (I,=I). A family of complemented subsets
of X indexed by I, or an I-family of complemented subsets of X, is a structure Λ(X) :=(
λ1

0, E1,X , λ1
1, λ

0
0, E0,X , λ0

1), such that Λ1(X) :=
(
λ1

0, E1,X , λ1
1

)
∈ Fam(I,X) and Λ0(X) :=(

λ0
0, E0,X , λ0

1

)
∈ Fam(I,X) i.e., for every (i, j) ∈ D(I), the following inner diagrams commute
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X

λ0
0(i)

λ0
0(j)

λ1
0(i)

λ1
0(j) E1,X

j

E1,X
i E0,X

i

E0,X
j

λ1
ij λ1

ji λ0
ij λ0

ji

such that
∀i∈I

(
λ0(i) :=

(
λ1

0(i), λ0
0(i)
)
∈ PKJ(X)

)
If M(X) := (µ1

0,Z1,X , µ1
1, µ

0
0,Z0,X , µ0

1), N(X) := (ν1
0 ,H1,X , ν1

1 , ν
0
0 ,H0,X , ν0

1) are I-families
of complemented subsets of X, a family of complemented subsets-map Ψ : Λ(X) ⇒ M(X)
from Λ(X) to M(X) is a pair Ψ := (Ψ1,Ψ0), where Ψ1 : Λ1(X)⇒M1(X) and Ψ0 : Λ0(X)⇒
M0(X) i.e., for every i ∈ I, the following inner diagrams commute

X

λ0
0(i)

µ0
0(i).

λ1
0(i)

µ1
0(i) Z1,X

i

E1,X
i E0,X

i

Z0,X
i

Ψ1
i Ψ0

i

The totality MapI(Λ(X),M(X)) of the family of complemented subsets-maps from Λ(X) to
M(X) is equipped with the pointwise equality. If Ψ : Λ(X) ⇒ M(X) and if Ξ : M(X) ⇒
N(X), the composition family of complemented subsets-map Ξ ◦Ψ : Λ(X)⇒N(X) is defined
by Ξ :=

(
(Ξ ◦Ψ)1, (Ξ ◦Ψ)0

)
, where (Ξ ◦Ψ)1 := Ξ1 ◦Ψ1 and (Ξ ◦Ψ)0 := Ξ0 ◦Ψ0. Moreover,

IdΛ(X) := (IdΛ1(X), IdΛ0(X)), and the totality Fam(I,X) of families of complemented subsets
of X over I is equipped with the equality Λ(X) =Fam(I,X) M(X) if and only if

∃Ψ∈MapI(Λ(X),M(X))∃Ξ∈MapI(M(X),Λ(X))

(
Ψ ◦Ξ = IdM(X) & Ξ ◦Ψ = IdΛ(X)

)
.

As in the case of Fam(I,X), we see no reason not to consider Fam(I,X) a set. Clearly, the ob-
viously defined set PrfEql0(Λ(X),M(X)) is a subsingleton. A family Λ(X) ∈ Fam(I,X) is in
Set(I,X), if λ0(i) =PKJ(X) Λ0(j)⇒ i =I j, for every i, j ∈ I. Trivially, if Λ1(X) ∈ Set(I,X),

or if Λ0(X) ∈ Set(I,X), then Λ(X) ∈ Set(I,X). Clearly, if Λ(X) ∈ Set(I,X) and
M(X) ∈ Fam(I,X) such that M(X) =Fam(I,X) Λ(X), then M(X) ∈ Set(I,X). The
operations between complemented subsets induce new families of complemented subsets
and family-maps between them. If Λ(X) :=

(
λ1

0, E1,X , λ1
1, λ

0
0, E0,X , λ0

1

)
and M(X) :=(

µ1
0,Z1,X , µ1

1, µ
0
0,Z0,X , µ0

1

)
∈ Fam(I,X), let the following new elements of Fam(I,X):

(−Λ)(X) :=
(
λ0

0, E0,X , λ0
1, λ

1
0, E1,X , λ1

1

)
,

(Λ ∩M)(X) :=
(
λ1

0 ∩ µ1
0, E1,X ∩ Z1,X , λ1

1 ∩ µ1
1, λ

0
0 ∪ µ0

0, E0,X ∪ Z0,X , λ0
1 ∪ µ0

1

)
,

(Λ ∪M)(X) :=
(
λ1

0 ∪ µ1
0, E1,X ∪ Z1,X , λ1

1 ∪ µ1
1, λ

0
0 ∩ µ0

0, E0,X ∩ Z0,X , λ0
1 ∩ µ0

1

)
,
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(Λ−M)(X) := [Λ ∩ (−M)](X).

If N(Y ) := (ν1
0 ,H1,Y , ν1

1 , ν
0
0 ,H0,Y , ν0

1) ∈ Fam(I,Y ) and f : X → Y , then using Proposi-
tion 4.1.9 we define

f−1(N)(X) :=
(
f−1(ν1

0), f−1
(
H1,Y

)X
, f−1(ν1

1), f−1(ν0
0), f−1

(
H0,Y

)X
, f−1(ν0

1)
)
∈ Fam(I,X),

f(Λ)(Y ) :=
(
f−1(λ1

0), f
(
E1,X

)Y
, f(λ1

1), f(λ0
0), f

(
E0,X

)Y
, f(λ0

1)
)
∈ Fam(I,Y ).

Properties between complemented subsets induce equalities between their families e.g.,[
f−1

[
(N ∪K)(Y )

]]
(X) =Fam(I,X)

[
f−1(N)(Y ) ∪ f−1(K)(Y )

]
(X).

Using definitions from section 4.1, if Φ : Λ(X)⇒M(X), let −Φ : (−Λ)(X)⇒ (−M)(X)

−Φ := (Φ0,Φ1); Φ := (Φ1,Φ0).

If Ψ : P (X)⇒ Q(X), then Φ ∩Ψ : (Λ ∩ P )(X)⇒ (M ∩R)(X), where

Φ ∩Ψ := (Φ1 ∩Ψ1,Φ0∪0),

and Φ ∪Ψ : (Λ ∪ P )(X)⇒ (M ∪R)(X), where

Φ ∪Ψ := (Φ1 ∪Ψ1,Φ0∩0),

and Φ−Ψ : (Λ− P )(X)⇒ (M −R)(X), where Φ−Ψ := Φ ∩ (−Ψ). If S(Y ) ∈ Fam(J, Y ),

(Λ×S)(X×Y ) :=
(
λ1

0×s1
0, E1,X×S1,Y , λ1

1×s1
1, λ

0
0×s0

0, E0,X×S0,Y , λ0
0×s0

0

)
∈ Fam(I×J,X×Y ),

(λ0 × s0)(i, j) := λ0(i)× s0(i).

If Ξ : S(Y )⇒ T (Y ), then Φ×Ξ : (Λ× S)(X × Y )⇒ (M × T )(X × Y ), where

Φ×Ξ :=
(
Φ1 × Ξ1,Φ0 × Ξ0

)
.

Due to the above families of complemented subsets the following proposition is well-formulated.

Proposition 4.9.2. Let Λ(X) :=
(
λ1

0, E1,X , λ1
1, λ

0
0, E0,X , λ0

1

)
∈ Fam(I,X), i0 ∈ I, and let⋃

i∈I
λ0(i) :=

(⋃
i∈I

λ1
0(i),

⋂
i∈I

λ0
0(i)

)
&

⋂
i∈I
λ0(i) :=

(⋂
i∈I

λ1
0(i),

⋃
i∈I

λ0
0(i)

)
.

(i)
⋃
i∈I λ0(i),

⋂
i∈I λ0(i) ∈ PKJ(X).

(ii) −
⋃
i∈I λ0(i) =PKJ(X)

⋂
i∈I
(
− λ0(i)

)
.

(iii) −
⋂
i∈I λ0(i) =PKJ(X)

⋃
i∈I
(
− λ0(i)

)
.

(iv) If i ∈ I, then λ0(i) ⊆
⋃
i∈I λ0(i).

(v) If A ⊆ λ0(i), for some i ∈ I, then A ⊆
⋃
i∈I λ0(i).

(vi) If λ0(i) ⊆ A, for every i ∈ I, then
⋃
i∈I λ0(i) ⊆ A.

(vii) If λ0(i) ⊇ A, for every i ∈ I, then
⋂
i∈I λ0(i) ⊇ A.

(viii) If M(X) :=
(
µ1

0,Z1,X , µ1
1, µ

0
0,Z0,X , µ0

1) ∈ Fam(I,Y ) and f : X → Y , then

f−1

(⋃
i∈I
µ0(i)

)
=PKJ(X)

⋃
i∈I

f−1
(
µ0(i)

)
& f−1

(⋂
i∈I
µ0(i)

)
=PKJ(X)

⋂
i∈I

f−1
(
µ0(i)

)
.
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Proof. (i) We show the first membership only. If (i, x) ∈
⋃
i∈I λ

1
0(i) and Φ ∈

⋂
i∈I λ

0
0(i), then

e
Λ(X)⋃ (i, x) := EXi (x) and e

Λ(X)⋂ (Φ) := EXi0 (Φi0). Since EXi (Φi) =X EXi0 (Φi0) and λ1
0(i)KJλ0

0(i),

we have that EXi (x) 6=X EXi (Φi), and by the extensionality of 6=X we get EXi (x) 6=X EXi0 (Φi0).
(ii) and (iii) are straightforward to show. For (iv) we need to show that λ1

0(i) ⊆
⋃
i∈I λ

1
0(i) and⋂

i∈I λ
0
0(i) ⊆ λ0

0(i), which follow from Propositions 4.2.8(ii) and 4.3.6(ii), respectively. Case
(v) follows from (iv) and the transitivity of A ⊆ B.

(vi) If λ1
0(i) ⊆ A1, for every i ∈ I, then

⋃
i∈I λ

1
0(i) ⊆ A1, and if A0 ⊆ λ0

0(i), for every i ∈ I,
then A0 ⊆

⋂
i∈I λ

0
0(i). Case (vii) is shown similarly.

(viii) We show the first equality only. By Propositions 4.2.5 and 4.3.5 we have that

f−1

(⋃
i∈I
µ0(i)

)
:=

(
f−1

(⋃
i∈I

µ1
0(i)

)
, f−1

(⋂
i∈I

µ0
0(i)

))
=PKJ(X)

(⋃
i∈I

f−1
(
µ1

0(i)
)
,
⋂
i∈I

f−1
(
µ0

0(i)
))

:=
⋃
i∈I

(
f−1

(
µ1

0(i)
)
, f−1

(
µ0

0(i)
))

:=
⋃
i∈I

f−1
(
µ0(i)

)
.

Let Λ(X),M(X) and Ψ: Λ(X)⇒M(X). Since Ψ1 : Λ1(X)⇒M1(X) and Ψ0 : Λ0(X)⇒
M0(X), the following maps between complemented subsets (see Definition 2.8.2) are defined⋃

Ψ :=
(⋃

Ψ1,
⋂

Ψ0
)

:
⋃
i∈I
λ0(i)→

⋃
i∈I
µ0(i),

⋂
Ψ :=

(⋂
Ψ0,

⋃
Ψ1
)

:
⋂
i∈I
λ0(i)→

⋂
i∈I
µ0(i), where

⋃
Ψ1 :

⋃
i∈I

λ1
0(i)→

⋃
i∈I

µ1
0(i) &

⋂
Ψ0 :

⋂
i∈I

λ0
0(i)→

⋂
i∈I

µ0
0(i)

are defined according to Proposition 4.2.8(ii) and 4.3.6(ii).

Proposition 4.9.3. Let A ∈ PKJ(X),B ∈ PKJ(Y ), Λ(X) ∈ Fam(I,X) and M(Y ) ∈
Fam(J,Y ). The following properties hold:

A×
⋃
j∈J

µ0(j) =PKJ(X×Y )

⋃
j∈J

(A× µ0(j)),

A×
⋂
j∈J

µ0(j) =PKJ(X×Y )

⋂
j∈J

(A× µ0(j)),

(⋃
i∈I
λ0(i)

)
×B =PKJ(X×Y )

⋃
i∈I

(λ0(i)×B),

(⋂
i∈I
λ0(i)

)
×B =PKJ(X×Y )

⋂
i∈I

(λ0(i)×B).
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Proof. We show the first equality, and for the rest we proceed similarly. By the equalities
shown after Propositions 4.4.2 we have that

A×
⋃
j∈J

µ0(j) :=

(
A1 ×

⋃
j∈J

µ1
0(j), (A0 × Y ) ∪

[
X ×

( ⋂
j∈J

µ0
0(j)

)])

=PKJ(X×Y )

( ⋃
j∈J

(A1 × µ1
0(j)), (A0 × Y ) ∪

( ⋂
j∈J

(X × µ0
0(j))

))

=PKJ(X×Y )

( ⋃
j∈J

(A1 × µ1
0(j)),

⋂
j∈J

[
(A0 × Y ) ∪ (X × µ0

0(j))
])

:=
⋃
j∈J

(A× µ0(j)).

4.10 Direct families of subsets

Definition 4.10.1. Let (I,4) be a directed set, and X ∈ V0. A (covariant) direct family
of subsets of X indexed by I, or an (I,4)-family of subsets of X, is a triplet Λ4(X) :=
(λ0, EX , λ41 ), where λ0 : I  V0, EX is a modulus of embeddings for λ0 (see Definition 4.1.1)

λ41 :
k

(i,j)∈D4(I)

F
(
λ0(i), λ0(j)

)
, λ41 (i, j) := λ4ij , (i, j) ∈ D4(I),

a modulus of covariant transport maps for λ0, such that λii := idλ0(i), for every i ∈ I, and, for
every (i, j) ∈ D4(I), the following left diagram commutes

λ0(i) λ0(j) λ0(i) λ0(j)

X.X

λ4ij

Ei Ej

λ<ji

Ei Ej

A contravariant (I,<)-family of subsets of X is defined dually i.e.,

λ<1 :
k

(i,j)∈4(I)

F
(
λ0(j), λ0(i)

)
, λ<1 (i, j) := λ<ji, (i, j) ∈ D4(I),

is a modulus of contravariant transport maps for λ0, such that for every (i, j) ∈ D4(I), the
above right diagram commutes.

Proposition 4.10.2. Let X ∈ V0, (I,4I) a directed set, λ0 : I  V0, EX a modulus of
embeddings for λ0, and λ1 a modulus of transport maps for λ0. The following are equivalent.

(i) Λ<(X) := (λ0, EX , λ41 ) is an (I,4I)-family of subsets of X.

(ii) Λ4 := (λ0, λ1) ∈ Fam(I,4I) and EX : Λ4 ⇒ C4,X , where C4,X is the constant (I,4I)-
family X (see Definition 3.8.1).

Proof. We proceed exactly as in the proof of Proposition 4.1.2.

If Λ4 := (λ0, EX , λ41 ) is an (I,4I)-family of subsets of X, and if i 4I j, then λ4ij : λ0(i) ⊆
λ0(j) i.e., λ41 is a modulus of subset-witnesses for λ0.
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Definition 4.10.3. If Λ4(X) := (λ0, EX , λ41 )andM4(X) := (µ0,ZX , µ41 ) are (I,4I)-families
of subsets of X, a direct family of subsets-map Ψ: Λ4(X)⇒M4(X) from Λ4(X) to M4(X)
is a family of subsets-map Φ: Λ(X) ⇒ M(X). Their set Map(I,4I)(Λ

4(X),M4(X)) is the
set MapI(Λ(X),M(X)). The composition of direct family of subsets-maps, and the totality
Fam(I,4I , X) of (I,4I)-families of subsets of X are defined as the composition of family
of subsets-maps, and as the totality Fam(I,X), respectively. The totality Fam(I,<, X) of
contravariant direct families of subsets of X over (I, ltI) and the corresponding family-maps
are defined similarly.

Proposition 4.10.4. Let Λ4(X) := (λ0, EX , λ41 ),M(X) := (µ0,ZX , µ41 ) ∈ Fam(I,4I , X).

(i) If Ψ: Λ4(X)⇒M4(X), then Ψ: Λ4 ⇒M4.

(ii) If Ψ: Λ4(X)⇒M4(X) and Φ: Λ4(X)⇒M4(X), then Φ =Map(I,4I )(Λ
4(X),M4(X)) Ψ.

Proof. We proceed exactly as in the proof of Proposition 4.1.6

The interior union and intersection of Λ4(X)(Λ<(M)), are defined as for an I-family of
subsets Λ(X). As in the case of

∑
i∈I λ0(i) and

⋃
i∈I λ0(i), the equality of

⋃
i∈I λ0(i) does not

imply the externally defined equality of
∑4

i∈I λ0(i), only the converse is true i.e.,

(i, x) =∑4
i∈I λ0(i)

(j, y)⇒ (i, x) =⋃
i∈I λ0(i) (j, y),

as, if there is some k ∈ I such that i 4I k, j 4I k, and λ4ik(x) =λ0(k) λ
4
jk(y), then by the

equalities Ei = Ek ◦ λ4ik and Ej = Ek ◦ λ4jk we get Ei(x) = Ek
(
λ4ik(x)

)
= Ek

(
λ4jk(y)

)
= Ej(y).

4.11 Notes

Note 4.11.1. The definition of a family of subsets given by Bishop in [9], p. 65, was the
rough description we gave at the beginning of this chapter. Our definition 4.1.1 highlights the
witnessing data of the rough description, and it is in complete analogy to Richman’s definition
of a set-indexed family of sets, included later by Bishop and Bridges in [19], p. 78. In [19],
p. 80, and in [9], p. 65, an alternative definition of a family of subsets of X indexed by I is
given, as a subset Λ of X × I. The fact that (x, i) ∈ Λ can be interpreted as x ∈ λ0(i) This
definition though, which was never used by Bishop, does not reveal the witnessing data for
the equality λ0(i) =P(X) λ0(j), if i =I j, and it is not possible to connect with the notion of
a family of sets. The definition of a set of subsets is given by Bishop in [9], p. 65, and it is
repeated in [19], p. 69. The example of the set of detachable subsets of a set is given in [9],
p. 65, where the term free subsets is used instead, and it is repeated in [19], p. 70.

Note 4.11.2. There are many examples of families of subsets in the literature of Bishop-style
constructive mathematics. In topology a neighborhood space (in [19], p. 75, the reference to
the indices is omitted for simplicity) is a pair (X,N), where X is a set and N is a family ν of
subsets of X indexed by some set I such that

∀i,j∈I∀x∈X
(
x ∈ ν(i) ∩ ν(j)⇒ ∃k∈I

(
x ∈ ν(k) ⊆ ν(i) ∩ ν(j)

))
.

The covering property is not mentioned there. If (X,F ) is a Bishop space (see [19], chapter 3,
and [88]), the neighborhood structure NF on X generated by the Bishop topology F on X is
the family U of subsets of X indexed by F that assigns to every element f ∈ F the set

U(f) := {x ∈ X | f(x) > 0}.
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If f = g, then U(f) = U(g), while the converse is not true (take e.g., f = idR and g = 2idR,
where X = R and F = Bic(R)). In real analysis sequences of bounded intervals of R are
considered in [19] Problem 1, p. 292. In the theory of normed linear spaces a sequence of
bounded, located, open, convex sets is constructed in the proof of the separation theorem
(see [19], pp. 336–340). A family N∗t , for every t > 0, of subsets of the unit sphere of the
dual space X∗ of a separable normed space X occurs in the proof of Theorem (6.8) in [19],
p. 354. In constructive algebra families of ideals and families of submodules of an R-module
are studied (see [76], p. 44, and p. 53, respectively).

Note 4.11.3. In [19], p. 69, the interior union
⋃
i∈I λ0(i) is defined as the totality⋃

i∈I
λ0(i) :=

{
x ∈ X | ∃i∈I

(
x ∈ λ0(i)

)}
.

Using our notation though, in [19], pp. 69–70 it is written that

. . . to construct an element u of
⋃
i∈I λ0(i) we first construct an element i of I,

and then construct an element x of λ0(i).

Clearly, what is meant by the totality
⋃
i∈I λ0(i) is what is written in Definition 4.2.1. The

intersection of an I-family λ of subsets of X is roughly defined in [9], p. 70, as⋂
i∈I

λ0(i) :=
{
x ∈ X | ∀i∈I

(
x ∈ λ0(i)

)}
,

while the more precise definition that follows this simplified notation is different, and it is
based on the undefined in [9] and [19] notion of a dependent operation over λ, hence it is not
that precise. Moreover, the definition of

∏
X

i∈I λ0(i), given in [19], p. 70, as the set{
f : I →

⋃
i∈I

λ0(i) | ∀i∈I
(
f(i) ∈ λ0(i)

)}
is not compatible with the precise definition of

⋃
i∈I λ0(i), and it is not included in [9].

Note 4.11.4. One could have defined an I-family of disjoint subsets of X with respect to
given inequalities 6=I and 6=X (Definition 4.2.1) by

∀i,j∈I
(
i 6=I j ⇒ ¬

(
λ0(i) G λ0(j)

))
, or

∀i,j∈I
(
λ0(i) G λ0(j)⇒ i =I j

)
.

The first definition is negativistic, while the second, which avoids 6=I , is too strong.

Note 4.11.5. The classical proof of the extension theorem of coverings (Theorem 4.2.6) is
based on the definition of the interior union as the set

⋃
i∈I λ0(i) :=

{
x ∈ X | ∃i∈I

(
x ∈ λ0(i)

)}
.

As a result, the required function f : X → Y is defined as follows: If x ∈
⋃
i∈I λ0(i), there

is i ∈ I such that x ∈ λ0(i). Then, one defines f(x) = fi(x), and shows that the value f(x)
does not depend on the choice of i (see [45], p. 13). The use of choice is avoided in our proof,
because of the embedding e : X ↪→

⋃
i∈I λ0(i). Theorem 4.2.6 is related to the notion of a sheaf

of sets . The sheaf-property added to the notion of a presheaf is exactly the main condition of
Theorem 4.2.6, where the covering of X is an open covering i.e., a covering of open subsets
(see [53]).
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Note 4.11.6. If P (I) is a partition of I, such that p0(k) 6= ∅, for every k ∈ K, and if

T :=
∏
k∈K

p0(k),

then the converse inclusion to the semi-distributivity of
⋂

over
⋃

(Proposition 4.5.5) holds
classically, and the distributivity of

⋂
over

⋃
holds classically. The converse inclusion to the

semi-distributivity of
⋂

over
⋃

is equivalent to the axiom of choice (see [45], p. 25). It is
expected that this converse inclusion is constructively provable only if non-trivial data are
added to the hypotheses.

Note 4.11.7. In the hypothesis of Proposition 4.6.16 we need to suppose the existence of
a modulus of centres of contraction to avoid choice in the definition of function g. Proposi-
tion 4.6.16 is our translation of Theorem 4.4.3 of book-HoTT into BST. In the formulation of
Theorem 4.4.3 of [124] no modulus of centres of contraction is mentioned, as the type-theoretic
axiom of choice is provable in MLTT.

Note 4.11.8. As an equivalence structure (X,RX) is the analogue to the set (X,=X), one
can equip (X,RX) with an extensional relation IX on X × Y satisfying the properties of an
inequality. In this way the structure (X,RX , IX) becomes the equivalence relation-analogue
to the set (X,=X , 6=X).

Note 4.11.9. Examples of families of partial functions are found in the predicative recon-
struction of the Bishop-Cheng measure theory in [129] and [102].

Note 4.11.10. There are many examples of families of complemented subsets in the literature
of Bishop-style constructive mathematics. In the theory of normed linear spaces, sequences
of complemented subsets occur in the formulation of the constructive version of Lebesgue’s
decomposition of measures (see [19], pp. 329–331), and in the formulation of the constructive
Radon-Nikodym theorem (see [19], pp. 333–334). In the integration theory of [19], the
sequences of integrable sets in an integrable space X (see [19], pp. 234–235) are families of
subsets of X indexed by N. Sequences of measurable sets are considered in [19], pp. 269–271.
Moreover, a measure space (see [19], p. 282) is defined as a triplet (X,M,µ), where M is a
set of complemented sets in an inhabited set X. In the definition of complete measure space
in [19], pp. 288–289, the notion of a sequence of elements of M is also used.

Note 4.11.11. In the measure theory developed in [9] certain families F (and subfamilies M
of F) of complemented subsets of some set X are considered in the definition of a measure
space (see [9], p. 183). For the definition of a measure space found in [9], p. 183, Myhill writes
in [80], p. 351, the following:

The only one of the classical set-existence axioms (not counting choice) which is
missing3 is power set. Certainly there is no hint of this axiom in Bishop’s book
(except for F on p. 183, surely a slip4), or for that matter anywhere in Brouwer’s
writings prior to 1974.

In our view, Myhill is wrong to believe first, that the use of family of F requires the powerset
axiom, and, second, that its use from Bishop is surely a slip. The notion of family of subsets

3He means from his system CST.
4Our emphasis.
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does not imply the use of the powerset as a set, since a family of subsets is a certain assignment
routine from I to V0 that behaves like a function, without being one. Moreover, it is not a
slip, as it is repeatedly used by Bishop in the new measure theory, also found in [19], and by
practicioners of Bishop-style constructive mathematics, like Bridges and Richman. It is not a
coincidence that the notion of family of subsets is not a fundamental function-like object in
Myhill’s system CST.

Note 4.11.12. In [9], p. 68, the following properties of complemented subsets are mentioned

(A ∪ −A) ∩
(
A ∪

⋂
i∈I
λ0(i)

)
=PKJ(X)

(A ∪ −A) ∩
[⋂
i∈I

(
A ∪ λ0(i)

)]
,

(A ∩ −A) ∪
(
A ∩

⋃
i∈I
λ0(i)

)
=PKJ(X)

(A ∩ −A) ∪
[⋃
i∈I

(
A ∩ λ0(i)

)]
.

These equalities are the constructive analogue of the classical properties

A ∪
⋂
i∈I
λ0(i) =PKJ(X)

⋂
i∈I

(
A ∪ λ0(i)

)
,

A ∩
⋃
i∈I
λ0(i) =PKJ(X)

⋃
i∈I

(
A ∩ λ0(i)

)
.

Note 4.11.13. In [18], pp. 16–17, and in [19], p. 73, the join and meet of a countable family
of complemented subsets are defined by

∞∨
n=1

λ0(n) :=

([ ∞⋂
n=1

(
λ1

0(n) ∪ λ0
0(n)

)]
∩
[ ∞⋃
n=1

λ1
0(n)

]
,

∞⋂
n=1

λ0
0(n)

)
,

∞∧
n=1

λ0(n) :=

( ∞⋂
n=1

λ1
0(n),

[ ∞⋂
n=1

(
λ1

0(n) ∪ λ0
0(n)

)]
∩
[ ∞⋃
n=1

λ0
0(n)

])
.

These definitions can be generalised to arbitrary families of complemented subsets and
properties similar to the ones shown for

⋃
i∈I λ0(i) and

⋂
i∈I λ0(i) hold.

Note 4.11.14. Set-relevant families of subsets over some set I, and set-relevant direct families
of subsets over some directed set (I,4I) can be studied in a way similar to set-relevant
families of sets over I and set-relevant direct families of sets over (I,4I) in section 3.9. As a
consequence, a theory of generalised direct spectra of subspaces can be developed. Families
of families of subsets of X can also be studied, in analogy to families of families of sets (see
Section 3.10). As Fam(I,X) is in V0, the families of families of subsets of X are defined in V0.
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Chapter 5

Proof-relevance in BISH

A form of proof-relevance is added to BISH through BST, which is both separate from its
standard mathematical part, and also expressible in it. The distinctive feature of MLTT is its
proof-relevance, the fact that proof-objects are considered as “first-class citizens”. The various
kinds of moduli, like the moduli of uniform continuity, of convergence etc., which witness that
a function is uniformly continuous, a sequence converges etc., form a trace of proof-relevance
in BISH. We make explicit the algorithmic content of several constructive proofs by defining
a BHK-interpretation of certain formulas of BISH within BST. We define the notion of a set
with a proof-relevant equality and the notion of a Martin-Löf set, which translates the first
level of the identity type of intensional MLTT. As a result, notions and facts from homotopy
type theory are translated in BISH.

5.1 On the BHK-interpretation of BISH within BST

In the next naive definition of the BHK-interpretation of BISH the notion of proof is not
understood in the proof-theoretic sense. Although we agree with Streicher in [122] that the
term witness is better, we use the symbol Prf(φ) for traditional reasons. We could have used
the symbol Evd(φ), or Wtn(φ) instead. We choose not to reduce the rule for φ ∨ ψ to the rest
ones, as for example is done in [5], p. 156. The rule for ¬φ is usually reduced to the rule for
implication.

Definition 5.1.1 (Naive BHK-interpretation of BISH). Let φ, ψ be formulas in BISH, such
that it is understood what it means “q is a proof (or witness, or evidence) of φ” and “r is a
proof of ψ”.

(∧) A proof of φ ∧ ψ is a pair (p0, p1) such that p0 is a proof of φ and p1 is a proof of ψ.

(⇒) A proof of φ⇒ ψ is a rule r that associates to any proof p of φ a proof r(p) of ψ.

(∨) A proof of φ∨ψ is a pair (i, pi), where if i := 0, then p0 is a proof of φ, and if i := 1, then
p1 is a proof of ψ.

(⊥) There is no proof of ⊥.

For the next two rules let φ(x) be a formula on a set X, such that it is understood what it
means “q is a proof of φ(x)”, for every x ∈ X.

(∀) A proof of ∀x∈Xφ(x) is a rule R that associates to any given x ∈ X a proof Rx of φ(x).

(∃) A proof of ∃x∈Xφ(x) is a pair (x, q), where x ∈ X and q is a proof of φ(x).
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The notions of rule in the rules (⇒) and (∀) are unclear. The nature of a proof or a witness
is also unclear. The interpretation of atomic formulas is also not included (see Note 5.7.1). A
formal version of the above naive BHK-interpretation of BISH is a corresponding realisability
interpretation (see Note 5.7.2).

Following Feferman [49], Beeson declared in [5], p. 158, that “the fundamental relation
in constructive set theory is not membership but membership-with-evidence” (MwE). All
examples given by Feferman are certain extensional subsets of some set X. In MLTT this kind
of (MwE) is captured by the type

∑
x:A P (x), where P : A→ U is a family of types over A : U .

Here we explain how we can talk about (MwE) for extensional subsets of some set X within
BST, showing that BISH, as MLTT, is capable of expressing (MwE). As all known to us such
examples are extensional subsets, we do not consider the notion of a completely presented
set X∗, for every set X, as it is done in the formal systems T ∗0 of Feferman in [49], and in
Beeson’s system found in [5]. In the system of [5] proof-relevance is even more stressed, as
to any formula φ a formula Prfφ(p) is associated by a certain rule, expressing that “p proves
formula φ”. The resulting formal set theory though, is, in our opinion, not attractive. The
problem of the totality of proofs being a definite preset, hence the problem of quantifying over
it (see [5], p. 177) is solved by our “internal” treatment of MwE within BST. Consequently,
questionable principles, like Beeson’s “(MwE) is self-evident” (see [5], p. 159), are avoided.

Proposition 5.1.2 (Membership-with-Evidence I (MwE-I)). Let X,Y be sets, and let P (x)
be a property on X of the form

P (x) :⇔ ∃p∈Y
(
Q(x, p)

)
,

where Q(x, p) is an extensional property on X × Y i.e.,
[
x =X x′ & p =Y p′ & Q(x, p)

]
⇒

Q(x′, p′), for every x, x′ ∈ X and every p, p′ ∈ Y . Let PrfMembP0 : X  V0, defined by

PrfMembP0 (x) := {p ∈ Y | Q(x, p)},

for every x ∈ X, and let PrfMembP1 :
c

(x,x′)∈D(X) F
(
PrfMembP0 (x), PrfMembP0 (x′)

)
, where

PrfMembPxx′ := PrfMembP1 (x, x′) : PrfMembP0 (x) → PrfMembP0 (x′) is defined by the identity
map-rule PrfMembPxx′(p) := p, for every p ∈ PrfMembP0 (x) and every (x, x′) ∈ D(X).

(i) The property P (x) is extensional.

(ii) The pair PrfMembP :=
(
PrfMembP0 , PrfMemb

P
1

)
∈ Fam(X).

Proof. (i) Let x =X x′ and p ∈ Y such that Q(x, p). Since p =Y p, by the extensionality of Q
we get Q(x′, p), and hence P (x′).
(ii) First we show that the dependent operation PrfMembP1 is well-defined. If x =X x′ and
p ∈ PrfMembP0 (x) i.e., Q(x, p), by the extensionality of Q we get Q(x′, p). Clearly, the operation
PrfMembPxx′ is a function. As PrfMembPxx′ is given by the identity map- rule, the properties of
a family of sets for PrfMembP1 are trivially satisfied.

Actually, PrfMembP can be seen as a family of subsets of Y over X, but now we want to
work externally, and not internally. For the previous result it suffices to suppose that Q is X-
extensional i.e.,

[
x =X x′ & Q(x, p)

]
⇒ Q(x′, p), for every x, x′ ∈ X and every p ∈ Y . Notice

that the extensionality of P alone does not imply neither the X-extensionality of Q, nor the
extensionality ofQ, and it is not enough to define a function from PrfMembP0 (x) to PrfMembP0 (x′).
If XP is the extensional subset of X generated by P , we write p : x ∈ XP :⇔ Q(x, p). The
following obvious generalisation of (MwE-I) is shown similarly.
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Proposition 5.1.3 (Membership-with-Evidence II (MwE-II)). Let X,Y, Z be sets, and let
R(x) be a property on X of the form

R(x) :⇔ ∃p∈Y ∃q∈Z
(
Q(x, p, q)

)
,

where Q(x, p, q) is an extensional property on X × Y × Z i.e.,
[
x =X x′ & p =Y p′ & q =Z

q′ & Q(x, p, q)
]
⇒ Q(x′, p′, q′), for every x, x′ ∈ X, p, p′ ∈ Y , and every q, q′ ∈ Y . Let

PrfMembR0 : X  V0, defined by the rule

PrfMembR0 (x) := {(p, q) ∈ Y × Z | Q(x, p, q)},

for every x ∈ X, and let PrfMembR1 :
c

(x,x′)∈D(X) F
(
PrfMembR0 (x), PrfMembR0 (x′)

)
, where

PrfMembRxx′ := PrfMembR1 (x, x′) : PrfMembR0 (x)→ PrfMembR0 (x′,

PrfMembRxx′(p, q) := (p, q); (p, q) ∈ PrfMembR0 (x), (x, x′) ∈ D(X).

(i) The property R(x) is extensional.

(ii) The pair PrfMembR :=
(
PrfMembR0 , PrfMemb

R
1

)
∈ Fam(X).

Again, PrfMembR can be seen as a family of subsets of Y over X. If XR is the extensional
subset of X generated by R, we write

(p, q) : x ∈ XR :⇔ Q(x, p, q).

Clearly, the schema MwE-II can be generalised to a property S(x) on X of the form

S(x) :⇔ ∃p1∈X1 . . . ∃pn∈Xn
(
T (x, p1, . . . , pn)

)
,

for some extensional property T (p1, . . . , pn) on X1× . . .×Xn. The following scheme of defining
functions on extensional subsets of sets given by existential formulas is immediate to prove.

Proposition 5.1.4. Let X,Y,X ′, Y ′ be sets, and let P (x) and P (x′) properties on X and X ′,
respectively, of the form

P (x) :⇔ ∃p∈Y
(
Q(x, p)

)
& P ′(x′) :⇔ ∃p′∈Y ′

(
Q′(x′, p′)

)
,

where Q(x, p) and Q′(x′, p′) are extensional properties on X ×Y , and on X ′×Y ′, respectively.

(i) Let f : X  X ′ and Φf :
c
x∈X

c
p∈PrfMembP0 (x) PrfMemb

P ′
0 (f(x)). Then the operation

fPP ′ : XP  X ′P ′, defined by the rule XP 3 x 7→ f(x) ∈ X ′P ′ , is well-defined. If f is
a function, then fPP ′ is a function.

(ii) Let g : X  X ′ and Φg :
c
x∈X PrfMembP

′
0 (g(x)). Then the operation gP ′ : X  X ′P ′,

defined by the rule X 3 x 7→ g(x) ∈ X ′P ′ , is well-defined. If g is a function, then gP ′ is a
function.

The above results MwE-I and MwE-II are useful, when a mathematical concept is defined
as a property on a given set, and not as an element of the set together with some extra data.
E.g., in [19], p. 38, and in [9], p. 34, a function f : [a, b]→ R is called continuous, if there is a
function ωf : R+ → R+, where R+ is the set of positive real numbers, such that

∀ε>0∀x,y∈[a,b]

(
|x− y| ≤ ωf (ε)⇒ |f(x)− f(y)| ≤ ε

)
:⇔ ωf : Cont(f).
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It is also mentioned that the function ω, the so-called modulus of (uniform) continuity of f is
“an indispensable part of the definition of a continuous function”. The same concept can be
defined though, through a property on the set F([a, b]), given by an existential formula i.e.,

Cont(f) :⇔ ∃
ωf∈F

(
R+,R+

)(ωf : Cont(f)
)
.

It is this kind of definition of a mathematical notion that facilitates the definition of a set of
witnesses of some membership of an extensional subset of a set.

Example 5.1.5 (Convergent sequences at x ∈ R). Let X := F(N,R), Y := F(N+,N+). If
x ∈ R, let, for every (xn)n∈N ∈ F(N,R)

Convx
(
(xn)n∈N

)
:⇔ ∃C∈F(N+,N+)

(
C : xn

n−→ x
)
,

C : xn
n−→ x :⇔ ∀k∈N+∀n≥C(k)

(
|xn − x| ≤

1

k

)
.

If C : xn
n−→, we say that C is a modulus of convergence of (xn)n∈N at x ∈ R.

By the compatibility of the operation −, the function |.|, and the relation ≤ with the
equality of real numbers we get the extensionality of Qx

(
(xn)n∈N, C) :⇔ C : xn

n−→ x on
F(N,R)× F(N+,N+), as[

(xn)n∈N =F(N+,N+) (yn)n∈N & C : xn
n−→ x

]
⇒ C : yn

n−→ x.

By Proposition 5.1.2 PrfMembConvx :=
(
PrfMembConvx

0 , PrfMembConvx
1

)
∈ Fam

(
F(N,R)

)
, where

PrfMembConvx
0

(
(xn)n∈N

)
:=
{
C ∈ F(N+,N+) | C : xn

n−→ x
)}
.

Example 5.1.6 (Cauchy sequences). Let X := F(N,R), Y := F(N+,N+), and let

Cauchy
(
(xn)n∈N

)
:⇔ ∃C∈F(N+,N+)

(
C : Cauchy

(
(xn)n∈N

)
,

C : Cauchy
(
(xn)n∈N

)
:⇔ ∀k∈N+∀n,m≥C(k)

(
|xn − xm| ≤

1

k

)
,

for every (xn)n∈N ∈ F(N,R). If C : Cauchy
(
(xn)n∈N

)
, we say that C is a modulus of Cauchyness

for (xn)n∈N ∈ F(N,R).

The extensionality of R
(
(xn)n∈N, C) :⇔ Cauchy

(
(xn)n∈N

)
on F(N,R) × F(N+,N+) fol-

lows as above. By Proposition 5.1.2 PrfMembCauchy :=
(
PrfMemb

Cauchy
0 , PrfMembCauchy

1

)
∈

Fam
(
F(N,R)

)
, where

PrfMemb
Cauchy
0

(
(xn)n∈N

)
:=
{
C ∈ F(N+,N+) | C : Cauchy

(
(xn)n∈N

)}
.

Example 5.1.7 (Convergent sequences). Let X := F(N,R), Y := R, Z := F(N+,N+), and

Conv
(
(xn)n∈N

)
:⇔ ∃x∈R∃C∈F(N+,N+)

(
(x,C) : Conv

(
(xn)n∈N

)
,

(x,C) : Conv
(
(xn)n∈N :⇔

(
C : xn

n−→ x
)
,

for every (xn)n∈N ∈ F(N,R). If (x,C) : Conv
(
(xn)n∈N

)
, we say that (x,C) is a modulus of

convergence of (xn)n∈N.
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The extensionality of S
(
(xn)n∈N, x, C) :⇔ C : xn

n−→ x on F(N,R)×R×F(N+,N+) follows
from the compatibility of convergence with equality i.e.,[

(xn)n∈N =F(N+,N+) (yn)n∈N & x =R y & C : xn
n−→ x

]
⇒ C : yn

n−→ y.

By Proposition 5.1.3 PrfMembConv :=
(
PrfMembConv

0 , PrfMembConv
1

)
∈ Fam(F(N,R)

)
, where

PrfMembConv
0

(
(xn)n∈N

)
:=
{

(x,C) ∈ R× F(N+,N+) | (x,C) : Conv
(
(xn)n∈N

)}
.

Similar PrfMemb-sets can be defined for the set C([a, b]) of (uniformly) continuous real-
valued functions on a compact interval [a, b], and for the set D([a, b]) of (uniformly) differen-
tiable functions on a compact interval [a, b]. In this framework the Riemann-integral is not a

mapping
∫ b
a : C([a, b])→ R, given by the rule f 7→

∫ b
a f . As the definition of

∫ b
a f depends on

the modulus of continuity ωf for f (see [19], pp. 51–52), the Riemman-integral is a dependent
operation ∫ b

a
:

k

f∈F([a,b])

F

(
PrfMemb

Cont(f)
0 ,R

)
.

The standard writing ∫ b

a
f :=

∫ b

a
(f, ωf )

expresses the independence of the integral from the choice of a modulus of continuity i.e.,∫ b

a
(f, ωf ) =R

∫ b

a
(f, ω′f ),

for every ωf , ω
′
f ∈ PrfMemb

Cont(f)
0 , but it is not the accurate writing of a function from C([a, b])

to R, only a notational convention, compatible with the classical one. The following obvious
generalisation (MwE-III) of (MwE-II) to relations an a set given by an existential formula is
shown similarly. A variation of (MwE-III) concerns relations on finitely many different sets.

Proposition 5.1.8 (Membership-with-Evidence III (MwE-III)). Let X,Y, Z be sets, and let
S(x, y) be a relation on X of the form

S(x, y) :⇔ ∃p∈Y
(
Q(x, y, p)

)
,

where Q(x, y, p) is an extensional property on X ×X × Y . Let PrfRelR0 : X ×X  V0, where

PrfEqlS0 (x, y) := {p ∈ Y | Q(x, y, p)},

for every x ∈ X, and let PrfRelS1 :
c

((x,x′),(y,y′)∈D(X×X) F
(
PrfRelS1 (x, x′), PrfRelS1 (x′, y′)

)
,

where PrfRelS1 ((x, x′)(y, y′)) : PrfRelS1 (x, x′)→ PrfRelS1 (x′, y′) is defined by the identity map-
rule

[
PrfRelS1 (x, x′)

]
(p) := p, for every p ∈ PrfRelS1 (x, x′).

(i) The property S(x, y) is extensional.

(ii) The pair
(
PrfRelS0 , PrfRel

S
1

)
∈ Fam(X ×X).

The “extension” of the BHK-interpretation to what usually corresponds to atomic formulas
like the equality formulas (see also the comment of Aczel and Rathjen in Note 5.7.1), is the
first part of the following definition.
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Definition 5.1.9 (BHK-interpretation of BISH in BST - Part I). Let a membership condition,
like e.g., in Propositions 5.1.2 and 5.1.3. We define

Prf(x ∈ XP ) := PrfMembP0 (x),

Prf(x ∈ XR) := PrfMembR0 (x).

Let a relation S(x, y) on a set X, as e.g., in Proposition 5.1.8. We define

Prf
(
S(x, y)

)
:= PrfRelS0 (x, y).

Let φ, ψ be formulas in BISH such that Prf(φ) and Prf(ψ) are already defined. We define

Prf(φ & ψ) := Prf(φ)× Prf(ψ),

Prf(φ ∨ ψ) := Prf(φ) + Prf(ψ),

Prf(φ⇒ ψ) := F
(
Prf(φ), Prf(ψ)

)
.

Let φ(x) be a formula on a set X, and let Prfφ :=
(
Prf

φ
0 , Prf

φ
1

)
∈ Fam(X), where Prfφ0 : X  V0

is given by the rule x 7→ Prf
φ
0 (x) := Prf

(
φ(x)

)
, for every x ∈ X. The Prf-sets of the formulas

∀x∈Xφ(x) and ∃x∈Xφ(x) with respect to the given family Prfφ, where ∃x∈Xφ(x) is a formula
that does not express a membership condition or a relation, are defined by

Prf

(
∀x∈Xφ(x)

)
:=
∏
x∈X

Prf
φ
0 (x) :=

∏
x∈X

Prf
(
φ(x)

)
,

Prf

(
∃x∈Xφ(x)

)
:=
∑
x∈X

Prf
φ
0 (x) :=

∑
x∈X

Prf
(
φ(x)

)
.

Due to the definition of the coproduct of two sets in Definition 3.2.1, and because of Re-
mark 3.3.3(i), the definitions of the Prf-set for ∃x∈Xφ(x) and for ∀x∈Xφ(x) are generalisations
of the definitions for φ ∨ ψ and for φ & ψ, respectively.

Example 5.1.10. Let the following proposition: if (xn)n∈N+ ∈ F(N+,R) and x0 ∈ R, then

xn
n−→ x0 ⇒ (xn)n∈N+ is Cauchy.

If χ(xn, x0) is the above implication, then χ(xn, x0) of the form φ(xn, x0)⇒ ψ(xn). Its proof
(see [19], p. 29) can be seen as a rule that sends a modulus of convergence C : xn

n−→ x0 of
(xn)n∈N+ at x0 to a modulus of Cauchyness D : Cauchy

(
(xn)n∈N+

)
for (xn)n∈N+ , where

D(k) := C(2k), for every k ∈ N+. This operation from PrfMemb
Convx0
0

(
(xn)n∈N+

)
to

PrfMemb
Cauchy
0

(
(xn)n∈N+

)
is a function, and

Prf(χ(xn, x0)) := F

(
Prf
(
φ(xn, x0)

)
, Prf

(
ψ(xn)

))
,

Prf
(
φ(xn, x0)

)
:= PrfMemb

Convx0
0

(
(xn)n∈N+

)
,

Prf
(
ψ(xn)

)
:= PrfMemb

Cauchy
0

(
(xn)n∈N+

)
.
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Example 5.1.11. Let the following proposition: if x0 ∈ R, then

∀(xn)n∈N+∈F(N+,R)

(
xn

n−→ x0 ⇒ (xn)n∈N+ is Cauchy
)
.

The formula corresponding to this proposition is

χ∗(x0) :⇔ ∀xn∈F(N+,R)χ(xn, x0),

where the Prf-set of χ(xn, x0) :⇔
(
φ(xn, x0)⇒ ψ(xn)

)
is determined in the previous example.

To determine the Prf-set of χ∗(x0) we need to determine first a family of Prf-sets over
F(N+,R). Using Definition 3.1.6(ii), let

Prfχ
∗(x0) := F

(
Prfφ(xn,x0), Prfψ(xn)

)
,

and by Definition 5.1.9, we get

Prf
(
χ∗(x0)

)
:=

∏
xn∈F(N+,R)

Prf
(
χ(xn, x0)

)
.

Example 5.1.12. Let the following proposition: if (xn)n∈N+ ∈ F(N+,R), then

(xn)n∈N+ is Cauchy⇒ ∃y∈R
(
xn

n−→ y
)
.

The formula corresponding to this proposition is

θ(xn) :⇔
[
ψ(xn)⇒ ∃y∈Y

(
φ(xn, y)

)]
.

Its proof generates a rule that associates to every C : Cauchy
(
(xn)n∈N+

)
a pair (y,D), where

y ∈ R and D : xn
n−→ y, and y is defined by the rule yk :=

[
xD(k)]2k, and D(k) := 3k ∨ C(2k),

for every k ∈ N+. The use of the modulus of Cauchyness in the definition of a Cauchy sequence
is responsible for the avoidance of choice in the proof. Clearly, the rule C 7→ (y,D) of the proof
of θ(xn) determines a function from Prf(ψ(xn)) to the Prf-set of the formula ∃y∈Rφ(xn, y).
Since Prf(φ(xn, y) is already determined above, and as a corresponding family over F(N+,R)
is determined in Example 5.1.5, then, using Definition 3.5.2(iii), from Definition 5.1.9 we get

Prf(θ(xn)) :=
∑
y∈R

PrfMembConvy(xn).

From the last two examples, we see how the schemes of defining new families of sets from
given ones that were established in Chapter 3 can be used in order to define canonical families
of Prf-sets from given such families. These canonical families of Prf-sets are determined in
the second part of our definition of the BHK-interpretation of BISH within BST. As we have
already seen in the previous two examples, the following extension of Definition 5.1.9 refers to
Definitions 3.1.6 and 3.5.2.

Definition 5.1.13 (BHK-interpretation of BISH in BST - Part II). Let X,Y be sets. Let

φ1(x), φ2(x) be formulas in BISH such that Prfφ1 :=
(
Prf

φ1
0 , Prfφ1

1

)
∈ Fam(X) and Prfφ2 :=(

Prf
φ2
0 , Prfφ2

1

)
∈ Fam(X) are given. To the formulas

(φ1 & φ2)(x) :⇔ φ1(x) & φ2(x),
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(φ1 ⇒ φ2)(x) :⇔ φ1(x)⇒ φ2(x),

(φ1 ∨ φ2)(x) :⇔ φ1(x) ∨ φ2(x),

on X we associate in a canonical way the following families of sets over X, respectively:

Prfφ1&φ2 := Prfφ1 × Prfφ2 ,

Prfφ1⇒φ2 := F
(
Prfφ1 , Prfφ2

)
,

Prfφ1∨φ2 := Prfφ1 + Prfφ2 .

Let θ(x, y) be a formula on X×Y and Prfθ :=
(
Prfθ0, Prf

θ
1

)
∈ Fam(X×Y ) i.e., Prfθ0 : X×Y  

V0, with (x, y) 7→ Prfθ0(x, y) := Prf
(
θ(x, y)

)
, for every (x, y) ∈ X × Y . To the formulas(

∀yθ
)
(x) :⇔ ∀y∈Y θ(x, y),(

∃yθ
)
(x) :⇔ ∃y∈Y θ(x, y),

on X we associate in a canonical way the following families of sets over X, respectively:

Prf∀yθ :=
1∏
Prfθ,

Prf∃yθ :=
1∑

Prfθ.

By Definitions 3.1.6 and 3.5.2 we get

Prf∀yθ :=

( 1∏
Prfθ0,

1∏
Prfθ1

)
,

( 1∏
Prfθ0

)
(x) :=

∏
y∈Y

Prfθ0(x, y) :=
∏
y∈Y

Prf
(
θ(x, y)

)
,

Prf∃yθ :=

( 1∑
Prfθ0,

1∑
Prfθ1

)
,

( 1∑
Prfθ0

)
(x) :=

∑
y∈Y

Prfθ0(x, y) :=
∑
y∈Y

Prf
(
θ(x, y)

)
.

5.2 Examples of totalities with a proof-relevant equality

So far we have seen many examples of totalities equipped with an equality defined through
an existential formula. The universe V0, the powerset P(X) of a set X, the impredicative set
Fam(I) of families of sets indexed by I, the set Fam(I,X) of families of subsets of X indexed
by I, and all other sets of set-indexed families of subsets examined in Chapter 4. Next we
describe some more motivating examples.
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Example 5.2.1 (The Richman ordinals). The equality on the totality of Richman ordinals, as
this is defined in [76], pp. 24-28, behaves similarly to the equality on the powerset. Notice that
the following definition of a well-founded relation is impredicative, as it requires quantification
over the powerset of a set. If < is a binary relation on a set W , a subset H of W is called
hereditary, if

∀w∈W
(
∀u∈W

(
u < w ⇒ u ∈ H

)
⇒ w ∈ H

)
.

The relation < is well-founded if

∀H∈P(X)

(
H is hereditary ⇒ H = W

)
.

A Richman ordinal is a pair (α,≤), where α is a discrete set, ≤ is a linear order (i.e.,
x ≤ y ∨ y ≤ x, for every x, y ∈ α), and < is well founded, where x < y :⇔ x ≤ y & x 6=α y. If
α, β are ordinals, an injection ρ : α ≤ β from α to β is a function ρ : α→ β such that

(i) ∀x,y∈α
(
x < y ⇒ ρ(x) < ρ(y)

)
.

(ii) ∀z∈β∀y∈α
(
z < ρ(y)⇒ ∃x∈α(ρ(x) =β z)

)
.

In this case we write α ≤ β. In [76], p. 28, it is shown that there is at most one injection from
α to β. If OrdR is the totality (class) of Richman ordinals, then in analogy to Proposition 2.6.2
we have the following.

Proposition 5.2.2. If α, β ∈ OrdR, ρ : α ≤ β, and σ : α ≤ β, then ρ is an embedding, and
ρ =F(α,β) σ.

Proof. Let x, y ∈ α such that ρ(x) =β ρ(y). If x 6=α y, by the linearity of ≤ either x ≤ y or
y ≤ x. In the first case we get x < y, hence ρ(x) < ρ(y), and in the second we get y < x,
hence ρ(y) < ρ(x) i.e., in both cases we get a contradiction. Hence, x =α y. For the rest, one
shows that the set H := {x ∈ α | ρ(x) =β σ(x)} is hereditary (see [76], p. 28).

As in the case of P(X), we define α =OrdR β :⇔ α ≤ β & β ≤ α, and

PrfEql0(α, β) := {(ρ, σ) ∈ F(α, β)× F(β, α) | ρ : α ≤ β & σ : β ≤ α}.

Since the composition of injections is an injection, let

refl(α) :=
(
idα, idα

)
& (ρ, σ)−1 := (σ, ρ) & (ρ, σ) ∗ (τ, v) := (τ ◦ ρ, σ ◦ v),

and the groupoid properties for PrfEql0(α, β) hold trivially by the equality of all its elements.

Example 5.2.3 (The direct sum of a direct family of sets). If Λ4 :=
(
λ0, λ

4
1

)
∈ Fam(I,4I),

and if i, x), (j, y) ∈
∑4

i∈I λ0(i), and since by Definition 3.8.2

(i, x) =∑4
i∈I λ0(i)

(j, y) :⇔ ∃k∈I
(
i 4I k & j 4I k & λ4ik(x) =λ0(k) λ

4
jk(y)

)
,

let
PrfEql0

(
(i, x), (j, y)

)
:=
{
m ∈ Iij | λ4im(x) =λ0(m) λ

4
jm(y)

}
,

Iij := {k ∈ I | i 4I k & j 4I k}.

To show the extensionality of PrfEql0

(
(i, x), (j, y)

)
, let m′ =Iij m :⇔ m′ =I m and

λ4im(x) =λ0(m) λ
4
jm(y). As 4I is extensional and reflexive, m 4I m′, and by Definition 3.8.1(b)

λ4im′(x) = λ4mm′
(
λ4im(x)

)
= λ4mm′

(
λ4jm(y)

)
= λ4jm′(y).
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To define an operation of composition, we work with directed sets equipped with a modulus of
directedness δ. In the case of a partial order like the standard relation ≤ on R, the functions
δ(x, y) := x ∨ y := max{x, y} is such a modulus (see section 9.2).

Proposition 5.2.4. Let δ be a modulus of directedness on a poset (I,4I), and let Λ4 :=
(λ0, λ

4
1 ) be a family of sets over (I,4I).

(i) δ(i, i) =I i, for every i ∈ I.

(ii) δ(i, j) =I δ(j, i), for every i, j ∈ I.

(iii) If (i, x) =∑4
i∈I λ0(i)

(j, y) =∑4
i∈I λ0(i)

(k, z), then

m ∈ PrfEql0

(
(i, x), (j, y)

)
& l ∈ PrfEql0

(
(j, y), (k, z)

)
⇒ δ(m, l) ∈ PrfEql0

(
(i, x), (k, z)

)
.

Proof. (i) Since i 4I i, we use the definitional clause (δ1) of a modulus of directedness.
(ii) By (δ3) we have that δ

(
δ(i, j), i

)
=I δ

(
i, δ(j, i)

)
. By (δ1) and (δ2) we get δ

(
δ(i, j), i

)
=I

δ(i, j) and δ
(
i, δ(j, i)

)
=I δ(j, i).

(iii) If m ∈ PrfEql0

(
(i, x), (j, y)

)
⇔ m ∈ Iij & λ4im(x) =λ0(m) λ

4
jm(y), and

l ∈ PrfEql0

(
(j, y), (k, z)

)
⇔ l ∈ Ijk & λ4jl(y) =λ0(l) λ

4
kl(z),

we show that δ(m, l) ∈ Iik and λ4iδ(m,l)(x) =λ0(δ(m,l) λ
4
kδ(m,l)(z). By our hypotheses, i 4I m 4I

δ(m, l) and k 4I l 4I δ(m, l). Moreover,

λ4iδ(m,l)(x)
i4Im4Iδ(m,l)

= λ4mδ(m,l)
(
λ4im(x)

)
= λ4mδ(m,l)

(
λ4jm(y)

)
j4Im4Iδ(m,l)

= λ4jδ(m,l)(y)

j4I l4Iδ(m,l)
= λ4lδ(m,l)

(
λ4jl(y)

)
= λ4lδ(m,l)

(
λ4kl(z)

)
k4I l4Iδ(m,l)

= λ4kδ(m,l)(z).

If m ∈ PrfEql0

(
(i, x), (j, y)

)
and l ∈ PrfEql0

(
(j, y), (k, z)

)
it is natural to define

refl(i, x) := i & m−1 := m & m ∗ l := δ(m, l).

Then, refl(i, x) ∗m := i ∗m := δ(i,m) =I m, and similarly m ∗ refl(i, x) =I m, for every
m ∈ PrfEql0

(
(i, x), (j, y)

)
. The associativity (m ∗ l) ∗ n =I m ∗ (l ∗ n) is just the condition

(δ3), and if m,m′ ∈ PrfEql0

(
(i, x), (j, y)

)
and l ∈ PrfEql0

(
(j, y), (k, z)

)
such that m =I m

′

and l =I l
′, then m ∗ l =I m

′ ∗ l′ is reduced to δ(m, l) = δ(m′, l′), which follows from the fact
that δ is a function. If m ∈ PrfEql0

(
(i, x), (j, y)

)
, to show m ∗m−1 = refl(i, x) := i, we need

to use as equality on PrfEql0

(
(i, x), (i, x)

)
not the equality inherited from I, but the equality

m =
PrfEql0

(
(i,x),(i,x)

) m′ :⇔ i =I i,

according to which all elements of PrfEql0

(
(i, x), (i, x)

)
are equal to each other. Similarly

we get m−1 ∗ m := δ(m−1,m) =
PrfEql0

(
(i,x),(i,x)

) j := refl(j, y). Hence, the equality on
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PrfEql0

(
(i, x), (j, y)

)
is defined as above, if i := j and x := y, and it is inherited from I

otherwise. In order to make such a distinction though, we need to know that the previous
equalities are possible, something which is not always the case without some further assumptions
on the general equality :=. Of course, all aforementioned groupoid properties of ∗ and −1 hold,
if we define all elements of any set PrfEql0

(
(i, x), (j, y)

)
to be equal.

Example 5.2.5 (The set of reals). In [19], p. 18, the set of reals R is defined as an extensional
subset of F(N+,Q). Specifically,

R :=

{
x ∈ F(N+,Q) | ∀m,n∈N+

(
|xm − xn| ≤

1

m
+

1

n

)}
,

where N+ is the set of non-zero natural numbers. The equality on R is defined as follows:

x =R y :⇔ ∀n∈N+

(
|xn − yn| ≤

2

n

)
.

To prove though that x =R y is transitive, one needs the following characterisation:

x =R y ⇔ ∀j∈N+∃Nj∈N+∀n≥Nj
(
|xn − yn| ≤

1

j

)
.

Using countable choice, we get the equivalence

x =R y ⇔ ∃ω∈F(N+,N+)∀j∈N+∀n≥ω(j)

(
|xn − yn| ≤

1

j

)
.

If ω : N+ → N+ witnesses the equality x =R y, then ω ∨ idN+ , where (ω ∨ idN+)(j) :=
ω(j) ∨ idN+(j) := max{ω(j), idN+(j)}, for every j ∈ N+, also witnesses the equality x =R y.
Hence, without loss of generality we can assume that ω ≥ idN+ . We define

PrfEql0(x, y) :=
{
ω ∈ F(N+,N+) | ω : x =R y

}
,

ω : x =R y :⇔ ω ≥ idN+ & ∀j∈N+∀n≥ω(j)

(
|xn − yn| ≤

1

j

)
.

If ω ∈ PrfEql0(x, y) and δ ∈ PrfEql0(y, z), we define

refl(x) := idN+ & ω−1 := ω & (ω ∗ δ)(j) := ω(2j) ∨ δ(2j),

for every j ∈ N+. In this case ω ∗ δ ∈ PrfEql0(x, z), since if n ≥ ω(2j) ∨ δ(2j), then

|xn − zn| ≤ |xn − yn|+ |yn − zn| ≤
1

2j
+

1

2j
=

1

j
.

It is easy to see that ∗ is associative, and it also compatible with the canonical equality of the
sets PrfEql0(x, y), the one inherited from F(N+,N+). The rest of the groupoid properties of ∗
and −1 do not hold if we keep the canonical equality of the sets PrfEql0(x, y). In other words,
the set PrfEqlR

0 (x, y), equipped with its canonical equality, is not a (−1)-set. It becomes, if
we truncate it i.e., if we equip PrfEqlR

0 (x, y) with the equality

ω ||=
F(N+,N+)

|| δ :⇔ ω =F(N+,N+) ω & δ =F(N+,N+) δ.
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If (X, d) is a metric space, hence x =X y ⇔ d(x, y) = 0, for every x, y ∈ X, we define

PrfEql0(x, y) := PrfEql0

(
d(x, y), 0

)
.

If F is a set of real-valued functions on a set X, like a Bishop topology on X, that separates
the points of X i.e., x =X y ⇔ ∀f∈F

(
f(x) =R f(y)

)
, we define

PrfEql0(x, y) :=
k

f∈F
PrfEql0

(
f(x), f(y)

)
.

If φ : R→ R, let a dependent operation

φ1 :
k

x,y∈R

k

ω∈PrfEql0(x,y)

PrfEql0(φ(x), φ(y).

For example, let [φ1(x, y, ω)](j) := 2j, for every j ∈ N+. This element of PrfEql0

(
f(x), f(y)

though, does not depend on ω and it is not compatible with ∗ and −1.

Example 5.2.6 (Sets of integrable and measurable functions in BCMT). In (BCMT) Bishop
and Cheng define the set of integrable functions of an integration space L := (X,L,

∫
) (see [19],

p. 222) as the totality

L1 := {f ∈ F(X) | f has a representation in L},

where F(X) is the totality of real-valued partial functions on the set X, which are strongly
extensional i.e., if f(x) 6=R f(x′), then x 6=X x′, for every x, x′ ∈ X. An element f of F(X)
has a representation in L, if there is a sequence (fn)∞n=1 of partial functions in L such that∑

n∈N+

∫
|fn| < +∞, and

∀x∈X
( ∑
n∈N+

|fn(x)| < +∞⇒ f(x) =
∑
n∈N+

fn(x)

)
.

A subset F of X is full, if there is g ∈ L1 such that the domain of (the partial function) g is
included in F . The equality on L1 is defined in [19], p. 224, by

f =L1 g :⇔ ∃F∈P(X)

(
F is full & f|F = g|F

)
.

Unfortunately, this presentation of L1 within BCMT is highly problematic from a predicative
point of view. The totality L1 is defined through separation on F(X), which, because of the
definition of a partial function from X to R, is a class, like P(X), and not a set. Moreover,
the above equality f =L1 g requires quantification over the class P(X). The impredicative
character of BCMT hinders its computational content (see sections 7.3 and 7.5). Within this
impredicative theory BCMT though, one can define

PrfEql0(f, g) := {F ∈ P(X) | F is full & f|F = g|F }.

If f, g, h ∈ L1, F ∈ PrfEql0(f, g), and G ∈ PrfEql0(g, h), it is natural to define

refl(f) := dom(f) & F−1 := F & F ∗G := F ∩G,
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since the intersection of full sets is a full set, and f|F = g|F & g|G = h|G ⇒ f|F∩G = h|F∩G.
It is not hard to see that if we equip the sets PrfEql0(f, g) with the equality inherited from
P(X), we get the same groupoid properties of ∗ and −1 as in the case of R in the previous
example. If

∫
is a completely extended (see [19], p. 223), and σ-finite integral on X (see [19],

p. 269), and if p ≥ 1, the set Lp is defined as follows (see [19], p. 315):

L1 := {f ∈ F(X) | f is measurable & |f |p ∈ L1},

where a partial function f : X ⇀ R is measurable, if its domain dom(f) is a full set, and it
is appropriately approximated by elements of L1 (for the exact definition see [19], p. 259).
Similarly to L1, f =Lp g :⇔ ∃F∈P(X)

(
F is full & f|F = g|F

)
. If

∫
is a σ-finite integral on X,

the set L∞ is defined as follows (see [19], p. 346):

L∞ :=
{
f ∈ F(X) | f is measurable and essentially bounded relative to

∫ }
,

where a real-valued function defined on a full subset of X is essentially bounded relative to a
σ-finite integral

∫
on X, if there are c > 0 and a full set F , such that |f ||F ≤ c (see [19], p. 346).

The equality on L∞ is defined as in Lp, for p ≥ 1, and the corresponding sets PrfEql0(f, g)
behave analogously. A complemented subset A := (A1, A0) of X is called integrable, if its
characteristic function χA is in L1, and then the measure on A is defined by µ(A) :=

∫
χA.

If A is the totality of integrable sets with positive measure, =A is defined in [19], p. 346, by
A =A B :⇔ χA =L1 χB, and one can define PrfEql0(A,B) := PrfEql0(χA, χB). All these
totalities though, are defined impredicatively.

5.3 Martin-Löf sets

We give an abstract description of the previous examples of sets with a proof-relevant equality.

Definition 5.3.1. Let Y be a set, and (X,=X) a set with an equality condition of the form

x =X x′ :⇔ ∃p∈Y
(
p : x =X x′

)
,

where θxx
′
(p) :⇔ p : x =Y x′ is an extensional property on Y . Let also the non-dependent

assignment routine PrfEqlX0 : X ×X  V0, defined by

PrfEqlX0 (x, x′) := {p ∈ Y | p : x =X x′}; (x, x′) ∈ X ×X,

together with dependent operations

reflX :
k

x∈X
PrfEqlX0 (x, x),

−1X :
k

x,x′∈X
F

(
PrfEqlX0 (x, x′), PrfEqlX0 (x′, x)

)
,

∗X :
k

x,x′,x′′∈X
F

(
PrfEqlX0 (x, x′)× PrfEqlX0 (x′, x′′), PrfEqlX0 (x, x′′)

)
.

We call the structure X̂ := (X,=X , PrfEql
X
0 , refl

X ,−1X , ∗X) a set with a proof-relevant
equality. If X is clear from the context, we may omit the subscript X from the above dependent



144 CHAPTER 5. PROOF-RELEVANCE IN BISH

operations. We call X̂ a Martin-Löf set, if the following conditions hold:

(ML1) reflx ∗ p =PrfEqlX0 (x,x′) p and p ∗ refly =PrfEqlX0 (x,x′) p, for every p ∈ PrfEqlX0 (x, x′).

(ML2) p∗p−1 =PrfEqlX0 (x,x) reflx and p−1∗p =PrfEqlX0 (y,y) refly, for every p ∈ PrfEqlX0 (x, x′).

(ML3) (p ∗ q) ∗ r =PrfEqlX0 (x,x′′′) p ∗ (q ∗ r), for every p ∈ PrfEqlX0 (x, x′), q ∈ PrfEqlX0 (x′, x′′)

and r ∈ PrfEqlX0 (x′′, x′′′).

(ML4) If p, q ∈ PrfEqlX0 (x, x′) and r, s ∈ PrfEqlX0 (x′, x′′) such that p =PrfEqlX0 (x,x′) q and
r =PrfEqlX0 (x′,x′′) s, then p ∗ r =PrfEqlX0 (x,x′′) q ∗ s.

If X̂ is a set with a proof-relevant equality, by Definition 5.1.9 we get

Prf(x =X x′) := PrfEqlX0 (x, x′).

Conditions (ML1)-(ML3) express that the proof-relevant equality of X has a groupoid-structure,
see [82], while condition (ML4) expresses the extensionality of the composition ∗X . Next
proposition is straightforward to show.

Proposition 5.3.2. Let X̂ be a Martin-Löf set, x, x′ ∈ X, and p, q ∈ PrfEql0(x, x′).

(i) refl−1
x =PrfEql0(x,x) reflx.

(ii) (p−1)−1 =PrfEql0(x,x′) p.

(iii) If p =PrfEql0(x,x′) q, then p−1 =PrfEql0(x′,x) q
−1.

Definition 5.3.3. Let X̂, Ŷ be sets with proof-relevant equalities. A map from X̂ to Ŷ is a
pair f̂ := (f, f1), where f : X → Y and

f1 :
k

x,x′∈X
F

(
PrfEqlX0 (x, x′), PrfEqlY0 (f(x), f(x′))

)
.

We write f̂ : X̂ → Ŷ to denote a map from X̂ to Ŷ . We call the dependent operation f1 the
first associate of f̂ . If, for every x, x′ ∈ X and every p, p′ ∈ PrfEqlX0 (x, x′), we have that

p =PrfEqlX0 (x,x′) p
′ ⇒ f1(x, x′, p) =PrfEqlY0 (f(x),f(x′)) f1(x, x′, p′),

we say that f1 is a function-like first associate of f̂ . If X̂ and Ŷ are Martin-Löf sets, a map
f̂ : X̂ → Ŷ is a Martin-Löf map, if the following conditions hold:

(i) f1(x, x, reflx) =PrfEqlY0 (f(x),f(x)) reflf(x), for every x ∈ X.

(ii) If x =X x′ =X x′′, then f1(x, x′′, p ∗ q) =PrfEqlY0 (f(x),f(x′′)) f1(x, x′, p) ∗ f1(x′, x′′, q), for

every p ∈ PrfEqlX0 (x, x′) and q ∈ PrfEqlX0 (x′, x′′).

Definition 5.3.4. Let Î be a set with a proof-relevant equality. A family of sets over Î is a
triplet Λ̂ := (λ0, PrfEql

I
0, λ2), where λ0 : I  V0, and

λ2 :
k

(i,j)∈D(I)

k

p∈PrfEqlI0(i,j)

F
(
λ0(i), λ0(j)

)
, λ2

(
(i, j), p

)
:= λpij , (i, j) ∈ D(I), p ∈ PrfEqlI0(i, j),

such that the following conditions hold:
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(i) For every i ∈ I we have that λrefliii = idλ0(i).

(ii) If i =I j =I k, for every p ∈ PrfEqlI0(i, j) and q ∈ PrfEqlI0(j, k) the following diagram
commutes

λ0(j) λ0(k).

λ0(i)

λqjk

λpij λp∗qik

(iii) If i =I j, then for for every p ∈ PrfEqlI0(i, j) the following diagrams commute

λ0(j) λ0(i)

λ0(i)

λ0(i)

λ0(j)

λ0(i).
λp
−1

ji

λpij idλ0(i) λp
−1

ji
idλ0(j)

λpij

A family-map Φ: Λ̂⇒ M̂ is defined as in Definition 3.9.2. We denote by Fam(Î) the totality of
families of sets over Î, which is equipped with the obvious equality. We call Λ̂ proof-irrelevant,

if for every (i, j) ∈ D(I) and p, p′ ∈ PrfEqlI0(i, j) we have that λpij =F(λ0(i),λ0(j)) λ
p′

ij .

If Λ̂ ∈ Fam(Î), then Λ̂ ∈ Fam∗(I) (see Definition 3.9.1). If Λ̂ is function-like family over Î,
condition (iii) of the previous definition is provable, while if Λ̂ is proof-irrelevant, then Λ̂ is

function-like. Following Definition 3.9.3, we denote the
∑

-set of Λ̂ by
∑̂

i∈Iλ0(i), where

(i, x) =∑̂
i∈Iλ0(i)

(j, y) :⇔ i =I j & ∃p∈PrfEqlI0(i,j)

(
λpij(x) =λ0(j) y

)
,

and we denote the
∏

-set of Λ̂, equipped with the pointwise equality, by
∏̂
i∈Iλ0(i), where

Θ ∈
∏̂

i∈I
λ0(i) :⇔ Θ ∈ A(I, λ0) & ∀p∈PrfEqlI0(i,j)

(
Θj =λ0(j) λ

p
ij(Θi)

)
.

Proposition 5.3.5. If Λ̂ := (λ0, PrfEql
I
0, λ2) is a function-like family of sets over the Martin-

Löf set Î, then a structure of a Martin-Löf set is defined on
∑̂

i∈Iλ0(i).

Proof. Since Λ̂ is function-like, the property Qxyij (p) :⇔ λpij(x) = y is extensional on the set

PrfEqlI0(i, j), and we can define by separation its subset

PrfEql
∑̂
0

(
(i, x), (j, y)

)
:=
{
p ∈ PrfEqlI0(i, j) | λpij(x) = y

}
.

Let refl(i, x) := refli, for every (i, x) ∈
∑̂

i∈Iλ0(i). If p ∈ PrfEql
∑̂
0

(
(i, x), (j, y)

)
, then

by the condition (iii) of Definition 5.3.4 we get p−1 ∈ PrfEql
∑̂
0

(
(j, y), (i, x)

)
. If r ∈

PrfEql
∑̂
0

(
(j, y), (k, z)

)
, then by condition (iii) of Definition 5.3.4 we have that p ∗ r ∈

PrfEqlI0
∑̂(

(i, x), (k, z)
)
. The clauses of Definition 5.3.1 for PrfEql

∑̂
0

(
(i, x), (j, y)

)
follow

from the corresponding clauses for PrfEqlI0(i, j).
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If Î and
∑̂

i∈Iλ0(i) are Martin-Löf sets as above, it is straightforward to show that the

pair p̂r1 :=
(
prΛ̂

1 , $1

)
is a map from

∑̂
i∈Iλ0(I) to Î, where

prΛ̂
1 :
∑̂

i∈I
λ0(i)→ I, (i, x) 7→ i; i ∈ I, and

$1 :
k

(i,x),(j,y)∈
∑̂
i∈Iλ0(i)

F

(
PrfEql

∑̂
0

(
(i, x), (j, y)

)
, PrfEqlI0(i, j)

)
,

[
$1

(
(i, x), (j, y)

)]
(p) := p; p ∈ PrfEql

∑̂
0

(
(i, x), (j, y)

)
,

is a function-like first associate of p̂r1.

Lemma 5.3.6. Let X̂ be a Martin-Löf set, x0 ∈ X and let PrfEqlx0
0 : X  V0 be defined by

x 7→ PrfEqlX0 (x, x0), for every x ∈ X. Moreover, let

PrfEqlx0
1 :

k

(x,y)∈D(X)

k

p∈PrfEqlX0 (x,y)

F
(
PrfEqlX0 (x, x0), PrfEqlX0 (y, x0)

)
,

be defined, for every (x, y) ∈ D(X), p ∈ PrfEqlX0 (x, y) and r ∈ PrfEqlX0 (x, x0), by

PrfEqlx0
1

(
(x, y), p

)
:= PrfEqlx0

xy : PrfEqlX0 (x, x0)→ PrfEqlX0 (y, x0)

r 7→ p−1 ∗ r.

Then ̂PrfEqlx0 := (PrfEqlx0
0 , PrfEql

x0
1 ) is a function-like family of sets over X̂.

Proof. If x ∈ X, then PrfEqlreflxxx (r) := refl−1
x ∗ r = reflx ∗ r = r, for every r ∈

PrfEqlX0 (x, x0). If x =X y =X z, p ∈ PrfEqlX0 (x, y), q ∈ PrfEqlX0 (y, z), then for every
r ∈ PrfEqlX0 (x, x0) we have that(
PrfEqlqyz ◦ PrfEqlpxy

)
(r) := q−1 ∗ (p−1 ∗ r) = (q−1 ∗ p−1) ∗ r = (p ∗ q)−1 ∗ r := PrfEqlp∗qxz (r).

If p =PrfEqlX0 (x,y) p
′, then by Proposition 5.3.2(iii) and condition (ML4) we get PrfEqlpxy(r) :=

p−1 ∗ r = (p′)−1 ∗ r := PrfEqlp
′
xy(r), for every r ∈ PrfEqlX0 (x, x0).

Theorem 5.3.7 (Contractibility of singletons). Let X̂ be a proof-relevant set, x0 ∈ X and let
̂PrfEqlx0 := (PrfEqlx0

0 , PrfEql
x0
1 ) be the function-like family of sets over X̂ from Lemma 5.3.6.

Let
∑̂

x∈XPrfEql
X
0 (x, x0) be equipped with its canonical structure of a Martin-Löf set, according

to Proposition 5.3.5. Then for every (x, p) ∈
∑̂

x∈XPrfEql
X
0 (x, x0) we have that

(x, p) =∑̂
x∈X PrfEqlX0 (x,x0)

(
x0, reflx0

)
.

Proof. By the definition of equality on the
∑

-set of some Λ̂ ∈ Fam(Î) we have that

(x, p) =∑̂
x∈X PrfEqlX0 (x,x0)

(
x0, reflx0)

)
:⇔ x =X x0 & ∃q∈PrfEqlX0 (x,x0)

(
PrfEqlqxx0

(p) = reflx0

)
.

If (x, p) ∈
∑̂

x∈XPrfEql
X
0 (x, x0), then p ∈ PrfEqlX0 (x, x0), hence x =X x0. If we take q := p,

then PrfEqlpxx0
(p) := p−1 ∗ p = reflx0 .
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A map between Martin-Löf sets can generate the family of its fibers over its codomain.

Theorem 5.3.8. Let X̂, Ŷ be Martin-Löf sets, and f̂ := (f, f1) : X̂ → Ŷ a map from X̂ to Ŷ
with a function-like first associate f1.

(i) If y ∈ Y , the pair PrfEqlf :=
(
PrfEqlfy0 , PrfEqlf

y
1

)
, where PrfEqlfy0 : X  V0 is defined

by the rule x 7→ PrfEqlY0 (f(x), y),, for every x ∈ X, and

PrfEqlfy1 :
k

(x,x′)∈D(X)

k

p∈PrfEqlX0 (x,x′)

F
(
PrfEqlY0 (f(x), y), PrfEqlY0 (f(x′), y)

)
,

PrfEqlfy1
(
(x, x′), p) := PrfEqlfy,pxx′ : PrfEql

Y
0 (f(x), y)→ PrfEqlY0 (f(x′), y),

r 7→ [f1(x, x′, p)]−1 ∗ r; r ∈ PrfEqlY0 (f(x), y),

is a function-like family of sets over X̂.

(ii) The pair Prfib := (Prfib0, Prfib1), where Prfib0 : Y  V0 is defined by the rule

y 7→
∑̂

x∈X
PrfEqlY0 (f(x), y); y ∈ Y, and

Prfib1 :
k

(y,y′)∈D(Y )

k

q∈PrfEqlY0 (y,y′)

F

(∑̂
x∈X

PrfEqlY0 (f(x), y),
∑̂

x∈X
PrfEql0(Y f(x), y′)

)
,

Prfib
y
1

(
(y, y′), q) := Prfib

q
yy′ :

∑̂
x∈X

PrfEql0(f(x), y)→
∑̂

x∈X
PrfEqlY0 (f(x), y′),

(x, p) 7→ (x, p ∗ q); (x, p) ∈
∑̂

x∈X
PrfEqlY0 (f(x), y),

is a function-like family of sets over Ŷ .

Proof. (i) If r ∈ PrfEqlY0 (f(x), y), then by Proposition 5.3.2(iii) we get

PrfEql0f
y,reflx
xx′ (r) := [f1(x, x, reflx)]−1 ∗ r =

[
refl

(
f(x)

)]−1 ∗ r = refl
(
f(x)

)
∗ r = r.

If p ∈ PrfEqlX0 (x, x′) and p′ ∈ PrfEqlX0 (x′, x′′), then for every r ∈ PrfEqlY0 (f(x), y) we get

PrfEql0f
y,p′

x′x′′

(
PrfEql0f

y,p
xx′(r)

)
= [f1(x′, x′′, p′)]−1 ∗

(
[f1(x, x′, p)]−1 ∗ r

)
=
(
[f1(x′, x′′, p′)]−1 ∗ [f1(x, x′, p)]−1

)
∗ r

= [f1(x, x′, p) ∗ f1(x′, x′′, p′)]−1 ∗ r
= [f1(x, x′′, p ∗ q)]−1 ∗ r

:= PrfEql0f
y,p∗p′
xx′′ (r).

If p =PrfEqlX0 (x,x′) s, and if r ∈ PrfEqlY0 (f(x), y), by the function-likeness1 of f1 we get

PrfEql0f
y,p
xx′(r) := [f1(x, x′, p)]−1 ∗ r = [f1(x, x′, s)]−1 ∗ r := PrfEql0f

y,s
xx′(r).

1The function-likeness of f1 is also needed in the proof of condition (iii) of Definition 5.3.4.
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(ii) First we show that for every p, p′ ∈ PrfEqlY0 (f(x), y) we have that

p =
PrfEqlY0 (f(x),y) p

′ ⇒ (x, p) =∑̂
x∈X PrfEqlY0 (f(x),y) (x, p′), (5.1)

since

PrfEql0f
y,reflx
xx (p) := [f1(x, x, reflx)]−1 ∗ p = [reflf(x)]

−1 ∗ p = reflf(x) ∗ p = p = q.

If y ∈ Y , then by (5.1), for every (x, p) ∈
∑̂

x∈XPrfEql
Y
0 (f(x), y), we get

Prfib
refly
yy (x, p) :=

(
x, p ∗ refly

)
=∑̂

x∈X PrfEqlY0 (f(x),y) (x, p).

If q ∈ PrfEqlY0 (y, y′ and q′ ∈ PrfEqlY0 (y′, y′′), then for every (x, p) ∈
∑̂

x∈XPrfEql
Y
0 (f(x), y)

Prfib
q′

y′y′′

(
Prfib

q
yy′(x, p)

)
:= Prfib

q′

y′y′′(x, p ∗ q) := (x, (p ∗ q) ∗ q′
)

(5.1)
= (x, p ∗ (q ∗ q′) := Prfib

q∗q′
yy′′ (x, p).

If q =
PrfEqlY0 (y,y′) s, then Prfib

q
yy′ = Prfibsyy′ , since for every (x, p) ∈

∑̂
x∈XPrfEql

Y
0 (f(x), y)

Prfib
q
yy′(x, p) := (x, p ∗ q) (5.1)

= (x, p ∗ s) := Prfibsyy′(x, p).

5.4 On the Yoneda lemma for Fam(Î)

Within MLTT Rijke viewed in [107] a type family P : I → U over a type I : U as a presheave
of a locally small category C i.e., as an element of SetC

op
, and proved a type-theoretic version

of the Yoneda lemma using the J-rule and the axiom of function extensionality. In BST the
J-rule, in the form of the transport, is built in the definition of an I-family of sets, and the
axiom of function extensionality is built in the definition of pointwise equality on Map(Λ,M).
Here we present the Yoneda lemma when the function-like elements of Fam(Î) replace SetC

op
.

Theorem 5.4.1 (Yoneda lemma for Fam(Î)). Let Î :=
(
I,=I , PrfEql

I
0, refl

I ,−1I , ∗I
)

be a

Martin-Löf set, i0 ∈ I, and let ̂PrfEqli0 := (PrfEqli00 , PrfEql
i0
1 ) be the function-like family of

sets over Î defined in Lemma 5.3.6. If Λ̂ :=
(
λ0, PrfEql

I
0, λ2

)
∈ Fam(Î) is function-like, there

are functions

e
i0,Λ̂

: Map
Î

( ̂PrfEqli0 , Λ̂
)
→ λ0(i0) & e

Λ̂,i0
: λ0(i0)→ Map

Î

( ̂PrfEqli0 , Λ̂
)
,

such that e
i0,Λ̂
◦ e

Λ̂,i0
= idλ0(i). Moreover, if Λ̂ is proof-irrelevant, then e

Λ̂,i0
◦ e

i0,Λ̂
=

id
Map
Î

(
̂

PrfEqli0 ,Λ̂

), and hence
(
e
i0,Λ̂

, e
Λ̂,i0

)
: Map

Î

( ̂PrfEqli0 , Λ̂
)

=V0 λ0(i0).

Proof. Let the operation e
i0,Λ̂

: Map
Î

( ̂PrfEqli0 , Λ̂
)
 λ0(i0), defined by

e
i0,Λ̂

(Φ) := Φi0(reflio); Φ ∈ Map
Î

( ̂PrfEqli0 , Λ̂
)
.
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Since Φ: ̂PrfEqli0 ⇒ Λ̂, for its i0-component Φi0 : PrfEqlI0(i0, i0) → λ0(i0) we have that
Φ(i0)

(
refli0

)
∈ λ0(i0), hence e

i0,Λ̂
is well-defined. Clearly, e

i0,Λ̂
is a function. Let the

operation e
Λ̂,i0

: λ0(i0) Map
Î

( ̂PrfEqli0 , Λ̂
)
, defined by

e
Λ̂,i0

(x) := Φx; x ∈ λ0(i0),

Φx :
k

i∈I
F
(
PrfEqlI0(i, i0), λ0(i)

)
, Φx

i : PrfEqlI0(i, i0)→ λ0(i); i ∈ I,

Φx
i (p) := λp

−1

i0i
(x); p ∈ PrfEqlI0(i, i0),

where, as p : i =I i0, we get p−1 : i0 =I i, and λp
−1

i0i
: λ0(i0) → λ0(i). To show that Φx is a

function, we use the hypothesis that Λ̂ is function-like. Next we show that e
Λ̂,i0

is well-defined

i.e., Φx : ̂PrfEqli0 ⇒ Λ̂. If i, j ∈ I and p ∈ PrfEqlI0(i, j), the following diagram commutes

λ0(i) λ0(j)

PrfEqlI0(j, i0)PrfEqlI0(i, i0)

λpij

PrfEqli01 (i, j, p)

Φx
i Φx

j

Φx
j

([
PrfEqli01 (i, j, p)

]
(r)

)
:= Φx

j (p−1 ∗ r)

:= λ
(p−1∗r)−1

i0j
(x)

= λr
−1∗p
i0j

(x)

= λpij
(
λr
−1

i0i (x)
)

:= λpij
(
Φx
i (r)

)
,

where the function-likeness of Λ̂ is repeatedly used in the previous equalities. It is straightfor-
ward to show that the operation e

Λ̂,i0
is a function. Moreover,

e
i0,Λ̂

(
e

Λ̂,i0
(x)
)

:= e
i0,Λ̂

(
Φx
)

:= Φx
i0

(
refli0

)
:= λ

refl−1
i0

i0i0
(x) = λ

refli0
i0i0

(x) = idλ0(i0)(x) := x.

For the converse composition we have that

e
Λ̂,i0

(
e
i0,Λ̂

(Φ)
)

:= e
Λ̂,i0

(
Φi0(refli0)

)
:= ΦΦi0 (refli0 ),

Φ
Φi0 (refli0 )

i (p) := λp
−1

i0i

(
Φi0(refli0)

)
; p ∈ PrfEqlI0(i, i0).

We would like to show that Φ
Φi0 (refli0 )

i (p) = Φi(p), for every p ∈ PrfEqlI0(i, i0) and i ∈ I.

From the hypothesis Φ: ̂PrfEqli0 ⇒ Λ̂, and since
[
PrfEqli01 (i, i0, p)

]
(p) := p−1 ∗ p = refli0 ,

there is q ∈ PrfEqlI0(i, i0) such that the following diagram commutes
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λ0(i) λ0(i0).

PrfEqlI0(i0, i0)PrfEqlI0(i, i0)

λqii0

PrfEqli01 (i, i0, p)

Φi Φi0

Hence, Φi(p) = λq
−1

i0i

(
Φi0(refli0)

)
. To get Φi(p) = Φ

Φi0 (refli0 )

i (p) := λp
−1

i0i

(
Φi0(refli0)

)
, we

need the equality λq
−1

i0i
= λp

−1

i0i
, which we get from the supposed proof-irrelevance of Λ̂.

In the previous proof we considered the totality Map
Î

( ̂PrfEqli0 , Λ̂
)

of the corresponding
covariant set-relevant family-maps. A Yoneda lemma of the same kind is shown similarly, if
we consider the totality of the corresponding contravariant set-relevant family-maps.

5.5 Contractible sets and subsingletons in BST

The following results are translations of results from chapter 3 and 4 of book-HoTT, their
proof of which in [124] often requires FunExt. As we have already seen in Definition 2.2.8(iv),
the truncation ||X|| of a set X, which is treated as a higher inductive type in HoTT, is the
same totality X equipped with a new equality.

Proposition 5.5.1. If (f, g) : X =V0 Y , then (f∗, g∗) : F(Z,X) =V0 F(Z, Y ), where the
operations f∗ : F(Z,X) F(Z, Y ) and g∗ : F(Z, Y ) F(Z,X) are defined, respectively, by the
commutativity of the following diagrams

Y

XZ

X.

Y Z

f

h

f∗(h) g

k

g∗(k)

Proof. Clearly, the operations f∗ and g∗ are functions. If k ∈ F(Z, Y ) and h ∈ F(Z,X), then
f∗(g∗(k)) := f∗(g ◦ k) := f ◦ (g ◦ k) := (f ◦ g) ◦ k := idY ◦ k := k, and g∗(f∗(h)) := g∗(f ◦h) :=
g ◦ (f ◦ h) := (g ◦ f) ◦ h := idX ◦ h := h.

Proposition 5.5.2. If X is a set, the following are equivalent:

(i) X is contractible.

(ii) X is an inhabited subsingleton.

(iii) X =V0 1.

Proof. (i)⇒(ii) If x0 is a centre of contraction for X, then x0 inhabits X. If x, y ∈ X, then
x =X x0 and y =X x0, hence x =X y.
(ii)⇒(iii) Let f : X  1, defined by f(x) := 0, for every x ∈ X, and g : 1 : X, defined by
g(0) := x0, where x0 inhabits X. Clearly, these operations are functions, and (f, g) : X =V0 1.

(iii)⇒(i) Let f ∈ F(X,1) and g ∈ F(1, X) such that (f, g) : X =V0 1. If x ∈ X, then
x =X g(f(x)) := g(0) ∈ X. hence g(0) is a centre of contraction for X.
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Proposition 5.5.3. Let Λ := (λ0, λ1) ∈ Fam(I).

(i) If Θ:
c
i∈I λ0(i) is a modulus of centres of contraction for λ0 i.e., Θi is a centre of

contraction for λ0(i), then Θ ∈
∏
i∈I λ0(i) is a centre of contraction for

∏
i∈I λ0(i) and∑

i∈I λ0(i) =V0 I.

(ii) If i0 ∈ I is a centre of contraction for I, then
∑

i∈I λ0(i) =V0 λ0(i0).

Proof. (i) If i =I j, then Θj =λ0(j) λij(Θi), as Θj is a centre of contraction for λ0(j). If
Φ ∈

∏
i∈I λ0(i), then Φi =λ0(i) Θi, for every i ∈ I, hence Φ =∏

i∈I λ0(i) Θ. Let f : I  
∑

i∈I λ0(i),
defined by f(i) := (i,Θi), for every i ∈ I. It is immediate to show that f is a function, and(
prΛ

1 , f
)

:
∑

i∈I λ0(i) =V0 I.
(ii) Let g : λ0(i0)  

∑
i∈I λ0(i), defined by g(x) := (i0, x), for every x ∈ λ0(i0), and

h :
∑

i∈I λ0(i)  λ0(i0), defined by h(i, x) := λii0(x), for every (i, x) ∈
∑

i∈I λ0(i). It is
straightforward to show that g, h are functions and (g, h) :

∑
i∈I λ0(i) =V0 λ0(i0).

Proposition 5.5.4. Let Λ := (λ0, λ1) ∈ Fam(I), Θ:
c
i∈I λ0(i) a modulus of centres of

contraction for λ0, and X,Y sets.

(i) If h : I  
∑

i∈I λ0(i) is defined by h(i) :=
(
i,Θi

)
, for every i ∈ I, then h is a function and

(prΛ
1 , h) :

∑
i∈I λ0(i) =V0 I.

(ii) F
(
I,
∑

i∈I λ0(i)
)

=V0 F(I, I).

(iii) If X is contractible and Y is a retract of X, then Y is contractible.

Proof. The proof of (i) is straightforward, and (ii) follows from (i) and Proposition 5.5.1.
For the proof of the next theorem though, we write explicitly the witnesses of the required
equality in V0, which are the witnesses provided by the proof of Proposition 5.5.1. Let
φ : F(I,

∑
i∈I λ0(i)) F(I, I), defined by the rule f 7→ φ(f), where φ(f) := prΛ

1 ◦ f

I
∑

i∈I λ0(i) I I
∑

i∈I λ0(i).
f prΛ

1

φ(f)

g h

θ(g)

Clearly, φ is a function. Let θ : F(I, I) F(I,
∑

i∈I λ0(i)), defined by the rule g 7→ θ(g), where
θ(g) := h ◦ g, where h is defined in case (i). Clearly, θ is a function. It is straightforward to
show that (φ, θ) : F

(
I,
∑

i∈I λ0(i)
)

=V0 F(I, I).
(iii) Let r : X → Y and s : Y → X such that r ◦ s = idY . It is immediate to show that if
x0 ∈ X is a centre of contraction for X, then r(x0) is a centre of contraction for Y .

Theorem 5.5.5. Let Λ := (λ0, λ1) ∈ Fam(I), and let Θ:
c
i∈I λ0(i) be a modulus of centres

of contraction for λ0. If (φ, θ) : F
(
I,
∑

i∈I λ0(i)
)

=V0 F(I, I), where φ and θ are defined in the
proof of Proposition 5.5.4(ii), then

∏
i∈I λ0(i) is a retract of fibφ(idI).

Proof. By Definition 2.3.4 we have that

fibφ(idI) :=
{
f ∈ F

(
I,
∑
i∈I

λ0(i)
)
| φ(f) =F(I,I) idI

}
.

We need to find functions rφ : fibφ(idI)→
∏
i∈I λ0(i) and sφ :

∏
i∈I λ0(i)→ fibφ(idI) such

that the following diagram commutes
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∏
i∈I λ0(i) fibφ(idI)

∏
i∈I λ0(i).

sφ rφ

id∏
i∈I λ0(i)

Let the operation rφ : fibφ(idI) 
∏
i∈I λ0(i), defined by the rule f 7→ rφ(f), where

rφ(f) :
k

i∈I
λ0(i),

[
rφ(f)

]
i

:= λprΛ
1 (f(i))i

(
prΛ

2

(
f(i)

))
; i ∈ I.

As φ(f) := prΛ
1 ◦ f = idI , we get [φ(f)](i) := prΛ

1 (f(i)) =I i, hence
[
rφ(f)

]
i
∈ λ0(i), for every

i ∈ I. Next we show that rφ(f) ∈
∏
i∈I λ0(i). If i =I j, then f(i) =∑

i∈I λ0(i) f(j), and hence

prΛ
1 (f(i)) =I pr

Λ
1 (f(j)) & λprΛ

1 (f(i))prΛ
1 (f(j))

(
prΛ

2 (f(i)) =λ0(prΛ1 (f(j))) pr
Λ
2 (f(j)).

Therefore,

λij
([
rφ(f)

]
i

)
:= λij

(
λprΛ

1 (f(i))i

(
prΛ

2

(
f(i)

)))
= λprΛ

1 (f(i))j

(
prΛ

2

(
f(i)

))
= λprΛ

1 (f(j))j

(
λprΛ

1 (f(i))prΛ
1 (f(j))

(
prΛ

2 (f(i))

))
= λprΛ

1 (f(j))j

(
prΛ

2 (f(j))

)
:=
[
rφ(f)

]
j
.

Next we show that rφ is a function. If f = g and i ∈ I, then f(i) =∑
i∈I λ0(i) g(i) i.e.,

prΛ
1 (f(i)) =I pr

Λ
1 (g(i)) & λprΛ

1 (f(i))prΛ
1 (g(i))

(
prΛ

2 (f(i)) =λ0(prΛ1 (g(i))) pr
Λ
2 (g(i)).

Therefore, [
rφ(f)

]
i

: = λprΛ
1 (f(i))i

(
prΛ

2

(
f(i)

))
= λprΛ

1 (g(i))i

(
λprΛ

1 (f(i))prΛ
1 (g(i))

(
prΛ

2 (f(i))

))
= λprΛ

1 (g(i))i

(
prΛ

2 (g(i))

)
:=
[
rφ(g)

]
i
.

Let the operation sφ :
∏
i∈I λ0(i) fibφ(idI), defined by the rule Θ 7→ sφ(Θ), where

sφ(Θ): I  
∑
i∈I

λ0(i),
[
sφ(Θ)

]
(i) := (i,Θi); i ∈ I.

First we show that sφ(Θ) is a function. If i =I j, then (i,Θi) =∑
i∈I λ0(i) (j,Θj), as the equality

Θj =λ0(j) λij(Θ) follows from the hypothesis Θ ∈
∏
i∈I λ0(i). To show sφ(Θ) ∈ fibφ(idI),
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let i ∈ I, and then
(
φ
(
sφ(Θ)

)]
(i) := prΛ

1 (i,Θi) := i. To show that sφ is a function, let
Θ =∏

i∈I λ0(i) Θ′. If i ∈ I, then [sφ(Θ)](i) := (i,Θi) = (i,Θ′i) := [sφ(Θ′)](i). Finally, we show
the commutativity of the initial diagram in the proof. If i ∈ I, then[

rφ
(
sφ(Θ)

)]
i

:= λ
prΛ

1

(
[sφ(Θ)](i)

)
i

(
prΛ

2

([
sφ(Θ)

]
(i)
))

:= λprΛ
1 (i,Θi)i

(
prΛ

2 (i,Θi)
)

:= λii(Θi)

:= Θi.

Corollary 5.5.6. If Λ := (λ0, λ1) ∈ Fam(I) and Θ:
c
i∈I λ0(i) is a modulus of centres of

contraction for λ0, then Θ is centre of contraction for
∏
i∈I λ0(i).

Proof. Since (φ, θ) : F
(
I,
∑

i∈I λ0(i)
)

=V0 F(I, I), by Proposition 2.4.1 the set fibφ(idI) is
contractible and θ(idI) := h ◦ idI := h is a centre of contraction for fibφ(idI), where h
is defined in Proposition 5.5.4(i). As rφ : fibφ(idI) →

∏
i∈I λ0(i) is a retraction, by the

proof of Proposition 5.5.4(iv) we have that
∏
i∈I λ0(i) is contractible and rφ(h) is a centre of

contraction for
∏
i∈I λ0(i). If i ∈ I, then

[
rφ(h)

]
I

:= λprΛ
1 (h(i))i

(
prΛ

2 (h(i))
)

:= λii(Θi) := Θi,

hence rφ(h) := Θ.

Proposition 5.5.7. Let ||X|| be the truncation of X, Y,Z subsingletons, and E a set.

(i) If f ∈ F(Y,Z) and g ∈ F(Z, Y ), then (f, g) : Y =V0 Z.

(ii) If X is inhabited, then ||X|| is inhabited.

(iii) If f : X → E, there is ||f || : ||X|| → ||E||, such that ||f ||(x) := f(x), for every x ∈ X.

(iv) Y =V0 ||Y ||.

Proof. (i) and (ii) follow immediately from cases (iv) and (i) nof Definition 2.2.8. For the
proof of (iii), we define the operation ||f || : ||X|| ||E|| by the rule ||f ||(x) := f(x), for every
x ∈ X. As ||E|| is a subsingleton, if x ||=X || x

′, then ||f ||(x) := f(x) ||=E || f(x′) := ||f ||(x′),
and ||f || is a function. For the proof of (iv) it is straightforward to show that the operations
of type Y → ||Y || and ||Y || → Y , defined by the identity map-rule, respectively, are functions
that witness the equality Y =V0 ||Y ||.

Corollary 5.5.8. Let Λ := (λ0, λ1) ∈ Fam(I).

(i) ||Λ|| :=
(
||λ0||, ||λ1||) ∈ Fam(I), where ||λ0||(i) : I  V0 is defined by

||λ0||(i) := ||λ0(i)||; i ∈ I, and

||λ1||(i, j) := ||λ||ij : ||λ0(i)|| → ||λ0(j)||, ||λ||ij := ||λij ||; (i, j) ∈ D(I).

(ii) If λ0(i) is a subsingleton, for every i ∈ I, and Θ:
∏
i∈I ||λ0(i)||, then Θ:

∏
i∈I λ0(i).

(iii) If λ0(i) is a subsingleton, for every i ∈ I, then
∏
i∈I λ0(i) is a subsingleton.

Proof. (i) To show that ||λ||ij is well-defined, we use Proposition 5.5.7(iii). To show the
properties of a family of sets over I for ||Λ|| we use the corresponding properties for Λ.
(ii) By case (i), if i =I j, then Θj ∈ ||λ0(j)||. As ||λ0(j)|| is the set λ0(j), we get Θj ∈ λ0(j).
Since λ0(j) is a subsingleton, we get Θi) =λ0(j) λij(Θi).
(iii) It follows immediately from the definition of the canonical equality on

∏
i∈I λ0(i).
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5.6 On 0-sets in BST

Through the notion of set with a proof-relevant equality, Voevodsky’s notion of 0-set can be
formulated in BST. We need the notion of Martin-Löf set with an inhabited proof-relevant
structure to translate some basic facts from Voevodsky’s theory of 0-sets in BST.

Definition 5.6.1. A Martin-Löf set X̂ :=
(
X,=X , PrfEql

X
0 , refl

X ,−1X , ∗X
)

has an inhabited
proof-relevant structure, if there is a dependent operation

Θ:
k

(x,y)∈D(X)

PrfEqlX0 (x, y),

which we call a modulus of inhabitedness for X̂, such that the following conditions hold:

(i) Θ(x,x) := reflx, for every x ∈ X.

(ii) Θ−1
(x,y) = Θ(y,x), for every (x, y) ∈ D(X).

(iii) Θ(x,y) ∗Θ(y,z) = Θ(x,z), for every (x, y), (y, z) ∈ D(X).

Proposition 5.6.2. Let X̂ :=
(
X,=X , PrfEql

X
0 , refl

X ,−1X , ∗X
)

be a Martin-Löf set and Θ

a modulus of inhabitedness for X̂. If (x, x′) =X×X (y, y′), let

PrfEqlX1
(
(x, x′), (y, y′)

)
:= PrfEqlX(x,x′)(y,y′) : PrfEqlX0 (x, x′)→ PrfEqlX0 (y, y′),

PrfEqlX(x,x′)(y,y′)(r) := Θ−1
(x,y) ∗ r ∗Θ(x′,y′); r ∈ PrfEqlX0 (x, x′).

(i) PrfEqlX :=
(
PrfEqlX0 , PrfEql

X
1

)
∈ Fam(X ×X).

(ii) If x0 ∈ X, the dependent operation Θx0 :
c
x∈X PrfEqlX0 (x, x0), defined by Θx0

x := Θ(x,x0),

for every x ∈ X, is in
∏
x∈X PrfEqlX0 (x, x0).

(iii) If X is a subsingleton, then2 Θ:
∏

(x,y)∈X×X PrfEqlX0 (x, y).

Proof. (i) By Definition 5.6.1 we have that3

PrfEqlX(x,x′)(x,x′)(r) := Θ−1
(x,x) ∗ r ∗Θ(x′,x′) = refl−1

x ∗ r ∗ reflx′ = reflx ∗ r = r,

PrfEqlX(y,y′)(z,z′)
(
PrfEqlX(x,x′)(y,y′)(r)

)
:= PrfEqlX(y,y′)(z,z′)

(
Θ−1

(x,y) ∗ r ∗Θ(x′,y′)

)
:= Θ−1

(y,z) ∗
(
Θ−1

(x,y) ∗ r ∗Θ(x′,y′)

)
∗Θ(y′,z′)

:=
(
Θ−1

(y,z) ∗Θ−1
(x,y)

)
∗ r ∗

(
Θ(x′,y′) ∗Θ(y′,z′)

)
=
(
Θ(x,y) ∗Θ(y,z)

)−1 ∗ r ∗
(
Θ(x′,y′) ∗Θ(y′,z′)

)
= Θ−1

(x,z) ∗ r ∗Θ(x′,z′),

:= PrfEqlX(x,x′)(z,z′)(r).

2In intensional MLTT the existence of an object of this type is the definition of X being a subsingleton.
3This proof is in complete analogy to the proof that F(Λ,M) ∈ Fam(I), if Λ,M ∈ Fam(I).



5.7. NOTES 155

(ii) By Definition 3.5.2(ii), if x =X y, we have that

PrfEqlX(x,x0)(y,x0)

(
Θx0
x

)
:= Θ−1

(x,y) ∗Θx0
x ∗Θ(x0,x0)

= Θ(y,x) ∗Θ(x,x0) ∗ reflx0

= Θ(y,x) ∗Θ(x,x0)

= Θ(y,x0)

:= Θx0
y .

(iii) X is a subsingleton, then D(X) =P(X×X) X×X and hence Θ:
c

(x,y)∈X×X PrfEqlX0 (x, y).

If (x, y), (x′, y′) ∈ X ×X, then

PrfEqlX(x,y)(x′y′)

(
Θ(x,y)

)
:= Θ−1

(x,x′) ∗Θ(x,y) ∗Θ(y,y′)

= Θ(x′,x) ∗Θ(x,y) ∗Θ(y,y′)

= Θ(x′,y) ∗Θ(y,y′)

= Θ(x′,y′).

Definition 5.6.3. A set with a proof-relevant equality X̂ is a 0-set, if

∀x,y∈X∀p,q∈PrfEqlX0 (x,y)

(
p =

PrfEqlX0 (x,y) q
)
.

Proposition 5.6.4. Let X̂ :=
(
X,=X , PrfEql

X
0 , refl

X ,−1X , ∗X
)

be a Martin-Löf set and Θ

a modulus of inhabitedness for X̂. If X is a subsingleton, the following are equivalent.

(i) Θx0 ∈
∏̂
x∈XPrfEql

x0(x), for some x0 ∈ X.

(ii) X̂ is a 0-set.

Proof. (i)⇒(ii) If x, y ∈ X, the hypothesis (i) means that for every p ∈ PrfEqlX0 (x, y) we get

Θ(y,x0) := Θx0
y =

[
PrfEqlx0

1 (x, y, p)
]
(Θx0

x ) := p−1 ∗Θ(x,x0),

hence p−1 = Θ(y,x0) ∗Θ(x0,x) = Θ(y,x), and consequently p = Θ(x,y). Since p is arbitrary, the
required equality follows trivially.
(ii)⇒(i) It follows immediately from the equality p = Θ(x,y), for every p ∈ PrfEqlX0 (x, y).

5.7 Notes

Note 5.7.1. In [1], p. 12, the following criticism to the naive BHK-interpretation is given:

Many objections can be raised against the above definition. The explanations
offered for implication and universal quantification are notoriously imprecise be-
cause the notion of function (or rule) is left unexplained. Another problem is
that the notions of set and set membership are in need of clarification. But in
practice these rules suffice to codify the arguments which mathematicians want to
call constructive. Note also that the above interpretation (except for ⊥) does not
address the case of atomic formulas.
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Note 5.7.2. According to Feferman (see [49], p. 207), the formal, or internal realisability
interpretation of the language L(T ) of a formal theory T in the language L(T ′) of a formal
theory T ′ is an assignment φ 7→ f r φ of any formula φ of L(T ) to a formula φr :⇔ f r φ in
L(T ′), where φr has at most one additional free variable f . This interpretation is sound if

T ` φ⇒ ∃τ∈Term(L(T ′))

(
T ′ ` τ r φ

)
,

for every formula φ of L(T ). The added axiom-scheme (A−r) “to assert is to realise”

φ⇔ ∃f
(
f r φ

)
,

which expresses the equivalence of the assertion of φ with its realisability, reflects the basic
tenet of constructive reasoning that a statement is to be asserted only if it is proved. Note
that in Feferman’s refined theory with MwE the axiom-scheme (A−r) implies the principle of
dependent choice DC and the presentation axiom! (see [49], pp. 214-215). It is also expected
that one can show inductively that the scheme (A−r) is itself realisable in some theory S i.e.,

∀φ∃τ
(
S ` τ r

[
φ⇔ ∃f

(
f r φ

)])
.

In the informal, or external realisability interpretation of L(T ) one defines a relation R(f, φ)
between mathematical objects f of some sort and a formula φ. E.g., Kleene defined such a
relation for f ∈ N and φ a formula of arithmetic. External realisability interpretations can
often be regarded as the reading of a formal f r φ in a specific model. Here we described an
external realisability interpretation of some part of the language of the informal theory BISH
in itself, where the corresponding realisability relation is

Prf(p, φ) :⇔ p ∈ Prf(φ).

Why one would choose to work within an informal framework? Maybe because to realise
some formula φ does not necessarily imply that φ is constructively acceptable. E.g., in [49],
pp. 207-8, Feferman defined a formal realisability interpretation of L(T0) in itself such that
the corresponding axiom scheme (A−r) implies the full axiom of choice. Moreover, even if
one works with a realisability interpretation that avoids the realisability of the full AC, it is
not certain that whatever this theory realises is constructively acceptable, or faithful to some
motivating informal constructive theory like BISH. E.g., the realisability of the presentation
axiom in T ∗0 , which, as we have explained in Note 1.3.2, it holds also in the setoid-interpretation
of Bishop sets in intensional MLTT, does not make it necessarily constructively acceptable. In
the informal level of BISH there is no reason to accept it. If the main philosophical question
regarding Bishop-style constructive mathematics (BCM), in general, is “what is constructive?”,
an answer provided from a formal treatment of BCM that cannot be “captured” by BISH
itself, is not necessarily the “right” answer.

Note 5.7.3. In [49], p. 177, Feferman criticises Bishop for a “certain casualness about
mentioning the witnessing information. . . . one is looser in practice in order to keep that from
getting too heavy. Practice then looks very much like everyday analysis and it is hard to
see what the difference is unless one takes the official definitions seriously”. In our opinion,
Feferman is right on spotting this casualness in Bishop’s account, which is though on purpose,
as his crucial comment in [12], p. 67, shows (see Note 7.6.7). One could also say that, if the
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difference between constructive analysis and everyday, classical analysis is difficult to see, then
this is an indication of the success of Bishop’s way of writing. What we find that is missing
when some official definitions are not taken seriously is the proof-relevant character of Bishop’s
analysis and its proximity to proof-relevant mathematical analysis, like analysis within MLTT.
An important consequence of revealing the witnessing information is the avoidance of choice
(see next note).

Note 5.7.4. The use of the axiom of choice in constructive mathematics is an indication
of missing data. As we have seen already in many cases, and also in Example 5.1.12, the
inclusion of witnessing data, like a modulus of some sort, facilitates the avoidance of choice
in the corresponding constructive proof. The standard view regarding the use of choice in
BISH is that some weak form of choice, countable choice, or dependent choice, is necessary.
This is certainly true when the witnessing data are ignored. Richman criticised the use of
countable choice in BISH (see [106], and also [115]). The revealing of witnessing data or not in
BISH “oscillates” between the two extremes, regarding proof-relevance, which are also the two
extremes, regarding choice. The first extreme is classical mathematics based on ZFC, where
the complete lack of proof-relevance is combined with the use of a powerful choice axiom,
and the second extreme is type-theoretic mathematics based on intensional MLTT, where
proof-relevance is “everywhere” and the axiom of choice, the distributivity of

∑
over

∏
, is

provable! When the witnessing data are ignored, then some form of weak choice is necessary
for BISH, while when the witnessing data are highlighted, then choice is avoided. A similar
phaenomemon occurs in univalent type theory. The univalent version of the axiom of choice,
in the formulation of which truncation is involved, is not provable. And what truncation does,
is to suppress the evidence.

Note 5.7.5. The proof-relevance of BISH is not a priori part of it, but it can be revealed
a posteriori. In MLTT and its univalent extensions proof-relevance is a priori part of it.
Moreover, many facts are generated or hold automatically by the presence of the J-rule, or the
univalence axiom of Voevodsky. As it was pointed out to me by T. Coquand, this feature of
MLTT and HoTT was criticised by Deligne in his talk at the memorial meeting of Voevodsky.

Note 5.7.6. The BISH-analogue to (A−r) is the following: if φ is a BISH-formula and a set
Prf(φ) is predetermined, then

φ⇔ Prf(φ) is inhabited.

If Prf(φ) is a set with a proof-relevant equality, this equivalence can be realised in BISH. The
BISH-analogue to the soundness of a formal realisability interpretation is

BISH ` φ⇒ BISH ` Prf(φ) is inhabited,

for every formula of BISH with a well-defined set Prf(φ). This should follow from the inductive
definition of the BHK-interpretation, which is a definition in the extension BISH∗∗ of BISH
with inductive definitions with rules of |X|-many premisses. Clearly, such an inductive proof
requires, in general, a much stronger extension of BISH than BISH∗.

Note 5.7.7. A BHK-interpretation of a negated formula ¬φ is missing from Definitions 5.1.9
and 5.1.13. If Prf(φ) is given, and we apply the rule of implication for ¬φ :⇔ φ⇒ ⊥, then
Prf(¬φ) := F

(
Prf(φ), Prf(⊥)

)
. If we accept the clause of the naive BHK-interpretation that ⊥
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has no witness, then we need to state Prf(⊥) := ∅, and then we get Prf(¬φ) := F
(
Prf(φ), ∅)

)
.

As we have already remarked in Note 2.9.17, the use of the empty set in BISH is problematic,
and so is the status of the object F

(
Prf(φ), ∅)

)
. As negated formulas are rare in BISH, we

find safer at the moment to exclude them from our account of a BHK-interpretation of BISH.

Note 5.7.8. A proof-relevant membership-condition for R can be defined, if we treat a real
number as a (general) Cauchy sequence of rationals, namely

x ∈ R :⇔ x ∈ F(N+,Q) & ∃C∈F(N+,N+)

(
C : x ∈ R

)
,

C : x ∈ R :⇔ ∀k∈N+∀m,n≥C(k)

(
|xm − xn| ≤

1

k

)
.

If x ∈ F(N+,Q), we define then

PrfMembR
0 (x) :=

{
C ∈ F(N+,N+) | C : x ∈ R

}
.

Note 5.7.9. In intensional MLTT the groupoid properties of ∗ and −1 hold always by the
J-rule. This is “good” and “bad”. It is “good”, because something very useful holds. On the
other hand, as we have seen in the previous examples, it is not always the case in the practice of
BISH that all these conditions hold simultaneously. Hence, it is “bad” that intensional MLTT
is not as “flexible” as BISH (this is related to Deligne’s critique mentioned in Note 5.7.5).

Note 5.7.10. The definition of equality on
∑̂

i∈Iλ0(i) can be seen as a definitional translation
of Theorem 2.7.2 of book-HoTT [124], where if w,w′ ∈

∑
i : I P (i), then

w = w′ '
∑

p : pr1(w)=pr1(w′)

p∗(pr2(w)) = pr2(w′).

The definition of
∏̂
i∈λ0(i) can be seen as a definitional translation of Lemma 2.3.4 of book-

HoTT, where if Φ:
∏
i∈I P (i), there is a term

apdΦ :
∏
p : i=j

(
p∗(Φi) = Φj

)
.

These definitions motivated Definition 3.9.3.

Note 5.7.11. Theorem 5.3.7 is a translation of the type-theoretic contractibility of the
singleton type (see [42]) into BST. If M is the judgement (or the term) expressing this
contractibility (see also [96]), Martin-Löf’s J-rule trivially implies M , and it is equivalent to
M and the transport (see [42]). In BISH we do not have the J-rule, but we have transport in
a definitional way only. As Theorem 5.3.7 indicates, a definitional form of M is provable in
BST, although there exists no direct translation of the J-rule in BST.

Note 5.7.12. In analogy to the category of setoids and setoid-maps, several categorical
constructions for Martin-Löf sets and maps between them can be carried out. A family of
sets over a Martin-Löf set Î corresponds to Palmgren’s notion of a proof-relevant family of
setoids. As it is noted by Palmgren in [82], p. 47, proof-relevant families of setoids are very
common in MLTT, and as he explains in [82], pp. 37-38, such families are “difficult to use for
certain purposes”, like the construction of categories with equality on objects. In our language
Palmgren’s argument is reformulated as follows.
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Definition 5.7.13. Let Λ̂ be a family of sets over a Martin-Löf set Î. Let the collection of
objects be the set Î, and for every i, j ∈ I let Hom(i, j) be the set of triplets (i, f, j), where
f ∈ F

(
λ0(i), λ0(j)

)
. Moreover, let (i, f, j) ∼ (k, g, l), if there are p ∈ PrfEqlI0(i, k) and

q ∈ PrfEqlI0(j, l) such that the following diagram commutes

λ0(k) λ0(l).

λ0(j)λ0(i)

g

f

λpik λqjk

Two arrows (i, f, j) and (k, g, l) are composable, if there is t ∈ PrfEqlI0(l, i)

λ0(k) λ0(l) λ0(i) λ0(j),
g λtli f

and then their composition is defined by r ◦ s := (k, f ◦ λtli ◦ g, j)

λ0(k) λ0(l) λ0(i) λ0(j)

λ0(k′) λ0(l′) λ0(i′) λ0(j′).

g λtli f

g′ λt
′
li

f ′

λpkk′ λqll′ λrii′ λsjj′

If Λ̂ is not proof-irrelevant, we cannot show, for arbitrary t ∈ PrfEqlI0(l, i) and t′ ∈
PrfEqlI0(l′, i′), that the above outer diagram commutes. If some t ∈ PrfEqlI0(l, i) is given
though, there is t′ ∈ PrfEqlI0(l′, i′) such that the above outer diagram commutes.

Proposition 5.7.14. Let Λ̂ be a family of sets over the Martin-Löf set Î, r := (i, f, j), s :=
(k, g, l), and let r′ := (i′, f ′, j′), s′ := (k′, g′, l′) be arrows according to Definition 5.7.13. If
r ∼ r′, s ∼ s′, and r and s are composable, then r′ and s′ are composable, and s ◦ r ∼ s′ ◦ r′.

Proof. Let p ∈ PrfEqlI0(k, k′) and q ∈ PrfEqlI0(l, l′) such that the above left diagram commutes,
and let r ∈ PrfEqlI0(i, i′) and s ∈ PrfEqlI0(j, j′) such that the above right diagram commutes.
Since r and s are composable, there is t ∈ PrfEqlI0(l, i). Since t′ := q−1 ∗ t ∗ r ∈ PrfEql0(l′, i′),
we conclude that r′ and s′ are composable, and r′ ◦s′ :=

(
k′, f ′ ◦λt′li ◦g′, j′

)
. By Definition 5.3.4

we have that

λt
′
li ◦ λ

q
ll′ =

(
λrii′ ◦ λtli ◦ λ

q−1

l′l

)
◦ λqll′

= λrii′ ◦ λtli ◦
(
λq
−1

l′l ◦ λ
q
ll′
)

= λrii′ ◦ λtli ◦ idλ0(l)

= λrii′ ◦ λtli

i.e., the middle above diagram commutes. Since all the above inner diagrams commute, the
above outer diagram commutes, hence s ◦ r ∼ s′ ◦ r′.



160 CHAPTER 5. PROOF-RELEVANCE IN BISH

As Palmgren commented on this issue in a personal communication, what we finally get is
an almost category, and not a category.

Note 5.7.15. As we have already remarked in Note 2.9.13, Proposition 5.5.1 is an example
of a result in BST the analogue of which in HoTT is shown with the axiom of univalence UA

in book-HoTT (the axiom FunExt can also be used instead). Theorem 5.5.5 is the translation
of Theorem 4.9.4 in book-HoTT, where the universe in its hypothesis is supposed to be
univalent. Corollary 5.5.6 is the translation in BST of the fact that UA implies the weak
function extensionality.

Note 5.7.16. Further results from book-HoTT can be translated in BISH through BST. E.g.,
Lemmata 4.8.1 and 4.8.2 in book-HoTT take the following form in BST. If Λ̂ := (λ0, λ1) ∈
Fam(Î), where Î is a Martin-Löf set, then, for every i ∈ I, we have that fibpr

Λ̂
1 (i) =V0 λ0(i),

while if f̂ : X̂ → Ŷ , then X =V0

∑̂
y∈Y fib

f (y). Following the book-HoTT, we can use the
translation of the “left universal property of identity types” in BST, namely the equality(∑

j∈I

∑
p∈PrfEqlI0(j,i)

λ0(j)

)
=V0 λ0(i).

Families of Martin-Löf sets over some Martin-Löf set Î can also be studied along this direction.



Chapter 6

Families of sets and spectra of
Bishop spaces

We connect various notions and results from the theory of families of sets and subsets to the
theory of Bishop spaces, a function-theoretic approach to constructive topology. Associating in
an appropriate way to each set λ0(i) of an I-family of sets Λ a Bishop topology Fi a spectrum
S(Λ) of Bishop spaces is generated. The

∑
-set and the

∏
-set of a spectrum S(Λ) are equipped

with canonical Bishop topologies. A direct spectrum of Bishop spaces is a family of Bishop
spaces associated to a direct family of sets. The direct and inverse limits of direct spectra
of Bishop spaces are studied. Direct spectra of Bishop subspaces are also examined. For all
notions and facts on Bishop spaces mentioned in this chapter we refer to section 9.1 of the
Appendix. Many Bishop topologies are defined inductively within the extension BISH∗ of
BISH with inductive definitions with rules of countably many premises. For all notions and
facts on directed sets mentioned in this chapter we refer to section 9.2 of the Appendix.

6.1 Spectra of Bishop spaces

Roughly speaking, if S is a structure on some set, an S-spectrum is an I-family of sets Λ such
that each set λ0(i) is equipped with a structure Si, which is compatible with the transport
maps λij of Λ. Accordingly, a spectrum of Bishop spaces is an I-family of sets Λ such that each
set λ0(i) is equipped with a Bishop topology, which is compatible with the transport maps of
Λ. As expected, in the case of a spectrum of Bishop spaces this compatibility condition is that
the transport maps λij are Bishop morphisms i.e. λij ∈ Mor(Fi,Fj). It is natural to associate
to Λ an I-family of sets Φ := (φΛ

0 , φ
Λ
1 ) such that Fi :=

(
λ0(i), φΛ

0 (i)
)

is the Bishop space
corresponding to i ∈ I. If i =I j, and if we put no restriction to the definition of φΛ

ij : Fi → Fj ,
we need to add extra data in the definition of a map between spectra of Bishop spaces. Since
the map λ∗ji : Fi → Fj , where λ∗ji is the element of F(Fi, Fj) induced by the Bishop morphism
Λji ∈ Mor(Fj ,Fi), is generated by the data of Λ, it is natural to define φij := λ∗ji. In this way
proofs of properties of maps between spectra of Bishop spaces become easier. If X is a set, we
use the notation F(X) := F(X,R), and every subset of F(X) considered in this chapter is an
extensional subset of it.

Definition 6.1.1. Let Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I). A family of Bishop topologies as-
sociated to Λ is a pair ΦΛ :=

(
φΛ

0 , φ
Λ
1

)
, where φΛ

0 : I  V0 and φΛ :
c

(i,j)∈D(I) F
(
φλ0(i), φΛ

0 (j)
)
,
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such that the following conditions hold:

(i) φΛ
0 (i) := Fi ⊆ F(λ0(i)), and Fi := (λ0(i), Fi) is a Bishop space, for every i ∈ I.

(ii) λij ∈ Mor(Fi,Fj), for every (i, j) ∈ D(I).

(iii) φΛ
1 (i, j) := λ∗ji, for every (i, j) ∈ D(I), where, if f ∈ Fi, the induced map λ∗ji : Fi → Fj

from λji is defined by λ∗ji(f) := f ◦ λji, for every f ∈ Fi.
The structure S(Λ) := (λ0, λ1, φ

Λ
0 , φ

Λ
1 ) is called a spectrum of Bishop spaces over I, or an

I-spectrum with Bishop spaces (Fi)i∈I and Bishop isomorphisms (λij)(i,j)∈D(I). If S(M) :=

(µ0, µ1, φ
M
0 , φM1 ) is an I-spectrum with Bishop spaces (Gi)i∈I and Bishop isomorphisms

(µij)(i,j)∈D(I), a spectrum-map Ψ from S(Λ) to S(M), in symbols Ψ: S(Λ) ⇒ S(M), is
a family-map Ψ: Λ ⇒ M . The totality of spectrum-maps from S(Λ) to S(M) is denoted
by MapI(S(Λ), S(M)) and it is equipped with the equality of MapI(Λ,M). A spectrum-map
Φ: S(Λ)⇒ S(M) is called continuous, if Ψi ∈ Mor(Fi,Gi), for every i ∈ I, and we denote by
ContI(S(Λ), S(M)) their totality, which is equipped with the equality of MapI(Λ,M). The
totality Spec(I) of I-spectra of Bishop spaces is equipped with the equality S(Λ) =Spec(I) S(M)
if and only if there exist continuous spectrum-maps Φ: S(Λ)⇒ S(M) and Ψ: S(M)⇒ S(Λ)
such that Φ ◦Ψ =MapI (M,M) IdM and Ψ ◦ Φ =MapI (Λ,Λ) IdΛ.

As the identity map idX ∈ Mor(F ,F), where F := (X,F ) is a Bishop space, the identity
family-map idΛ : Λ⇒ Λ is a continuous spectrum-map from S(Λ) to S(Λ). As the composition
of Bishop morphism is a Bishop morphism, if Φ: S(Λ) ⇒ S(M) and Ξ: S(M) ⇒ S(N) are
continuous spectrum-maps, then Ξ ◦ Φ: S(Λ)⇒ S(N) is a continuous spectrum-map.

Definition 6.1.2. The structure S(2) :=
(
λ2

0 , λ
2
1 , φ

Λ2

0 , φΛ2

1

)
, where Λ2 := (λ2

0 , λ
2
1) is the 2-

family of X and Y , and ΦΛ2
:=
(
φΛ2

0 , φΛ2

1

)
is the 2-family of the sets F and G, φΛ2

0 (0) := F

is a topology on X, and φΛ2

0 (1) := G is a topology on Y , is the 2-spectrum of F and G.

Since idX ∈ Mor(F ,F), idY ∈ Mor(G,G), φΛ2

1 (0, 0) := id∗X with id∗X := idF , and similarly,
φΛ2

1 (1, 1) := id∗Y with id∗Y := idG, we conclude that S(2) is a 2-spectrum with Bishop spaces
F ,G and Bishop isomorphisms idX , idY .

Remark 6.1.3. Let S(Λ) := (λ0, λ1, φ
Λ
0 , φ

Λ
1 ) be an I-spectrum with Bishop spaces Fi and

Bishop isomorphisms λij, S(M) := (µ0, µ1, φ
M
0 , φM1 ) an I-spectrum with Bishop spaces Gi and

Bishop isomorphisms µij, and Ψ: S(Λ)⇒ S(M). Then ΦΛ :=
(
φΛ

0 , φ
Λ
1

)
∈ Fam(I), and if Ψ is

continuous, then, for every (i, j) ∈ D(I), the following diagram commutes

Fi Fj.

GjGi

λ∗ji

µ∗ji

Ψ∗i Ψ∗j

Proof. If i ∈ I, then φΛ
ii(f) := f ◦ λii := f ◦ idλ0(i) := f . If i =I j =I k and f ∈ Fi, then

Fj Fk

Fi

λ∗kj

λ∗ji λ∗ki
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λ∗kj
(
λ∗ji(f)

)
:= λ∗kj(f ◦ λji) := (f ◦ λji) ◦ λkj = f ◦ (λji ◦ λkj) = f ◦ λki := λ∗ki(f). By the

definition of a continuous spectrum-map we have that if (j, i) ∈ D(I), then

Ψ∗j (µ
∗
ji(g)) := Ψ∗j (g ◦ µji) := (g ◦ µji) ◦Ψj = g ◦ (µji ◦Ψj) = g ◦ (Ψi ◦ λji)

= (g ◦Ψi) ◦ λji := λ∗ji(g ◦Ψi) := λ∗ji(Ψ
∗
i (g)).

6.2 The topology on the
∑

- and the
∏
-set of a spectrum

Remark 6.2.1. Let S(Λ) := (λ0, λ1, φ
Λ
0 , φ

Λ
1 ) ∈ Spec(I) with Bishop spaces (Fi)i∈I and Bishop

isomorphisms (λij)(i,j)∈D(I). If Θ ∈
∏
i∈I Fi, the following operation is a function

fΘ :

(∑
i∈I

λ0(i)

)
 R, fΘ(i, x) := Θi(x); (i, x) ∈

∑
i∈I

λ0(i).

Proof. If (i, x) =∑
i∈I λ0(i) (j, y) :⇔ i =I j & λij(x) =λ0(j) y, by the definition of

∏
i∈I Fi we

have that Θi =Fi φ
Λ
ji(Θj) := λ∗ij(Θj) := Θj ◦ λij , hence fΘ(i, x) := Θi(x) =R [Θj ◦ λij ](x) =R

Θj(y) := fΘ(j, y).

Definition 6.2.2. Let S(Λ) := (λ0, λ1, φ
Λ
0 , φ

Λ
1 ) ∈ Spec(I) with Bishop spaces (Fi)i∈I and

Bishop isomorphisms (λij)(i,j)∈D(I). The sum Bishop space of S(Λ) is the pair

∑
i∈I
Fi :=

(∑
i∈I

λ0(i),

∫
i∈I

Fi

)
, where

∫
i∈I

Fi :=
∨

Θ∈
∏
i∈I Fi

fΘ,

and the dependent product Bishop space of S(Λ) is the pair

∏
i∈I
Fi :=

(∏
i∈I

λ0(i),

∮
i∈I

Fi

)
, where

∮
i∈I

Fi :=

f∈Fi∨
i∈I

(
f ◦ πΛ

i

)
,

and πΛ
i is the projection function defined in Proposition 3.3.5(i).

Proposition 6.2.3. Let S(Λ) := (λ0, λ1, φ
Λ
0 , φ

Λ
1 ) ∈ Spec(I) with Bishop spaces (Fi)i∈I and

Bishop isomorphisms (λij)(i,j)∈D(I), S(M) := (µ0, µ1, φ
M
0 , φM1 ) ∈ Spec(I) with Bishop spaces

(Gi)i∈I and Bishop isomorphisms (µij)(i,j)∈D(I), and Ψ: S(Λ)⇒ S(M).

(i) If i ∈ I, then eΛ
i ∈ Mor

(
Fi,
∑

i∈I Fi
)
.

(ii) If Ψ is continuous, then ΣΨ ∈ Mor
(∑

i∈I Fi,
∑

i∈I Gi
)
.

(iii) If Ψ is continuous, then ΠΨ ∈ Mor
(∏

i∈I Fi,
∏
i∈I Gi

)
.

Proof. (i) By the
∨

-lifting of morphisms it suffices to show that ∀Θ∈
∏
i∈I Fi

(
fΘ ◦ eΛ

i ∈ Fi
)
. If

x ∈ λ0(i), then
(
fΘ ◦ eΛ

i

)
(x) := fΘ(i, x) := Θi(x), and fΘ ◦ eΛ

i := Θi ∈ Fi.
(ii) By the

∨
-lifting of morphisms it suffices to show that ∀Θ′∈

∏
i∈I Gi

(
fΘ′◦ΣΨ ∈

∫
i∈I Fi

)
. If i ∈ I

and x ∈ λ0(i), we have that
(
fΘ′ ◦ ΣΨ

)
(i, x) := fΘ′

(
i,Ψi(x)

)
:= Θi

′(Ψi(x)
)

:= fΘ(i, x), where
Θ :

c
i∈I Fi is defined by Θi := Θi

′ ◦Ψi, for every i ∈ I. By the continuity of Ψ we get Θi ∈ Fi.
We show that Θ ∈

∏
i∈I Fi. If i =I j, by the commutativity of the diagram of Remark 6.1.3

we get φΛ
ij(Θi) := λ∗ji(Θi) := Θi ◦ λji := (Θi

′ ◦Ψi) ◦ λji := (Θi
′ ◦ µji) ◦Ψj = Θj

′ ◦Ψj := Θj .

(iii) By the
∨

-lifting of morphisms it suffices to show that ∀i∈I∀g∈Gi
(
(g ◦πMi ) ◦

∏
Ψ ∈

∮
i∈I Fi

)
.
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If Θ ∈
∏
i∈I λ0(i), then

[
(g ◦ πMi ) ◦ ΠΨ

]
(Θ) := g(Ψi(Θi)) :=

[
(g ◦ Ψi) ◦ πΛ

i

]
(Θ), hence

(g ◦ πMi ) ◦ΠΨ = (g ◦Ψi) ◦ πΛ
i . By the continuity of Ψ we have that Ψi ∈ Mor(Fi,Gi), hence

g ◦Ψi ∈ Fi, and (g ◦Ψi) ◦ πΛ
i ∈

∮
i∈I Fi.

If S(Λ2) is the spectrum of the Bishop spaces F and G, its sum Bishop space

F + G :=

(∑
i∈2

λ2
0(i),

∫
i∈2

φΛ2

0 (i)

)
:= (X + Y, F +G)

is called the coproduct of F and G. By definition of the sum Bishop topology

F +G :=
∨

f∈F,g∈G
f ⊕ g,

(f ⊕ g)(w) :=

{
f(x) , ∃x∈X

(
w := (0, x)

)
g(y) , ∃y∈Y

(
w := (1, y)

) ; f ∈ F, g ∈ G.

The coproduct Bishop space is the coproduct in the category of Bishop spaces.

Proposition 6.2.4. Let F := (X,F ) and G := (Y,G) be Bishop spaces.

(i) The function iX : X → X+Y , defined by x 7→ (0, x), for every x ∈ X, is in Mor(F ,F+G).

(ii) The function iY : Y → X +Y , defined by y 7→ (1, y), for every y ∈ Y , is in Mor(G,F +G).

(iii) If H := (Z,H) is a Bishop space, φX ∈ Mor(F ,H) and φY ∈ Mor(G,H), there is a unique
φ ∈ Mor(F + G,H) such that the following inner diagrams commute

X X + Y

Z

Y.

φφX

iX iY

φY

Proof. (i) By definition iX ∈ Mor(F ,F + G) if and only if ∀f∈F∀g∈G
(
(f ⊕ g) ◦ iX ∈ F

)
. It is

immediate to see that (f ⊕ g) ◦ iX := f ∈ F . Case (ii) is shown similarly.
(iii) We define φ : X + Y → R by

φ(w) :=

{
φX(x) , ∃x∈X

(
w := (0, x)

)
φY (y) , ∃y∈y

(
w := (1, y)

)
,

and since φ ◦ iX := φX and φ ◦ iY := φY , the diagrams commute. If h ∈ H, then

(h ◦ φ)(w) :=

{
h(φX(x)) , ∃x∈X

(
w := (0, x)

)
h(φY (y)) , ∃y∈Y

(
w := (1, y)

)
,

and since h ◦ φX ∈ F and h ◦ φY ∈ G, we get h ◦ φ := (h ◦ φX) ⊕ (h ◦ φY ) ∈ F + G. The
uniqueness of φ is immediate to show.

Proposition 6.2.5. If F is a topology on X, G is a topology on Y , F0 ⊆ F(X,R), and
G0 ⊆ F(Y,R) are inhabited, then(∨

F0

)
+G =

∨
f0∈F0,g∈G

f0 ⊕ g := F0 +G,
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F +

(∨
G0

)
=

∨
f∈F,g0∈G0

f ⊕ g0 := F +G0.

Proof. We prove only the first equality, and the proof of the second is similar. Clearly,
F0 + G ⊆

(∨
F0

)
+ G. Since

(∨
F0

)
+ G :=

∨
f∈

∨
F0,g∈G f ⊕ g, and since F0 + G is a

topology, for the converse inclusion it suffices to show inductively that ∀f∈∨F0
P (f), where

P (f) :⇔
(
∀g∈G

(
f ⊕ g ∈ F0 +G

))
. If f0 ∈ F0, then P (f0) follows immediately. If a ∈ R and

g ∈ G, we show that aX ⊕ g ∈ F0 + G. Since g
3 − a

Y ∈ G, by the inductive hypothesis on
f0 ∈ F0, we get f0 ⊕

(g
3 − a

Y
)
∈ F0 +G. Since

(∗) (f1 ⊕ g1) + (f2 ⊕ g2) = (f1 + f2)⊕ (g1 + g2),

and since aX⊕aY = aX+Y ∈ F0+G, by (∗) we get
(
f0+aX

)
⊕ g

3 =
(
f0⊕

(g
3−a

Y
))

+
(
aX⊕aY

)
∈

F0+G. Since by the inductive hypothesis
(
f0⊕−2g

3

)
∈ F0+G, and since−(f⊕g) = (−f)⊕(−g),

we also get
(
− f0 ⊕ 2g

3

)
∈ F0 +G, hence by (∗)

a⊕ g =
[
(f0 + aX)⊕ g

3

]
+
[(
− f0 ⊕

2g

3

)]
∈ F0 +G.

Let f1, f2 ∈
∨
F0 such that P (f1) and P (f2). If g ∈ G, by these hypotheses we get f1 ⊕ g

2 ∈
F0 +G and f2 ⊕ g

2 ∈ F0 +G. Hence by (∗)

(f1 + f2)⊕ g =
(
f1 ⊕

g

2

)
+
(
f2 ⊕

g

2

)
∈ F0 +G.

If φ ∈ Bic(R) and f ∈
∨
F0 such that P (f), we show P (φ ◦ f). If g ∈ G, then

(∗∗) φ ◦ (f ⊕ g) := (φ ◦ f)⊕ (φ ◦ g).

By P (f) we get f ⊕ 0
Y ∈ F0 +G, and since φ ◦ 0

Y
= φ(0)

Y ∈ F0 +G, by (∗∗)

(φ ◦ f)⊕ φ(0)
Y

=
(
φ ◦ f

)
⊕
(
φ ◦ 0

Y )
= φ ◦

(
f ⊕ 0

Y ) ∈ F0 +G.

By the case of constant functions 0
X ⊕

(
g − φ(0)

Y ) ∈ F0 +G, hence by (∗)

(φ ◦ f)⊕ g =
[
(φ ◦ f)⊕ φ(0)

Y ]
+
[
0
X ⊕

(
g − φ(0)

Y )] ∈ F0 +G.

If f ∈
∨
F0 such that for every n ≥ 1 there is some fn ∈

∨
F0 such that P (fn) and

U
(
X; f, fn,

1
n

)
, then, for every g ∈ G, we get U

(
X + Y ; f ⊕ g, fn ⊕ g, 1

n

)
, and since F0 +G is

a Bishop topology, by BS4 we get f ⊕ g ∈ F0 +G, hence P (f).

6.3 Direct spectra of Bishop spaces

As in the case of a family of Bishop spaces associated to an I-family of sets, the family of
Bishop spaces associated to an (I,4)-family of sets is defined in a minimal way from the
data of Λ4. According to these data, the corresponding functions φ4ij behave necessarily in

a contravariant manner i.e., φΛ4

ij : Fj → Fi. Moreover, the transport maps λ4ij are Bishop
morphisms, and not necessarily Bishop isomorphisms.



166 CHAPTER 6. FAMILIES OF SETS AND SPECTRA OF BISHOP SPACES

Definition 6.3.1. Let (I,4) be a directed set, and let Λ4 := (λ0, λ
4
1 ),M4 := (µ0, µ

4
1 ) ∈

Fam(I,4I). A family of Bishop topologies associated to Λ4 is a pair ΦΛ4
:=
(
φΛ4

0 , φΛ4

1

)
, where

φΛ4

0 : I  V0 and φΛ4

1 :
c

(i,j)∈4(I) F
(
φΛ4

0 (j), φΛ4

0 (i)
)
, such that the following conditions hold:

(i) φΛ4

0 (i) := Fi ⊆ F(λ0(i)), and Fi := (λ0(i), Fi) is a Bishop space, for every i ∈ I.

(ii) λ4ij ∈ Mor(Fi,Fj), for every (i, j) ∈ D4(I).

(iii) φΛ4

1 (i, j) :=
(
λ4ij
)∗

, for every (i, j) ∈ D4(I), where, if f ∈ Fj,
(
λ4ij
)∗

(f) := f ◦ λ4ij.

The structure S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) is called a direct spectrum over (I,4), or an (I,4)-
spectrum with Bishop spaces (Fi)i∈I and Bishop morphisms (λ4ij)(i,j)∈D4(I). If S(M4) :=

(µ0, µ1, φ
M4

0 , φM
4

1 ) is an (I,4)-spectrum with Bishop spaces (Gi)i∈I and Bishop morphisms
(µ4ij)(i,j)∈D4(I), a direct spectrum-map Ψ from S(Λ4) to S(M4), in symbols Ψ: S(Λ4) ⇒
S(M4), is a direct family-map Ψ : Λ4 ⇒ M4. The totality of direct spectrum-maps from
S(Λ4) to S(M4) is denoted by Map(I,4I)(S(Λ4), S(M4)) and it is equipped with the equality

of MapI(Λ
4,M4). A direct spectrum-map Ψ : S(Λ4) ⇒ S(M4) is called continuous, if

∀i∈I
(
Ψi ∈ Mor(Fi,Gi)

)
, and let Cont(I,4I)(S(Λ4), S(M4)) be their totality, equipped with the

equality of MapI(Λ
4,M4). The totality Spec(I,4I) of direct spectra over (I,4I) is equipped

with an equality defined similarly to the equality on Spec(I). A contravariant direct spectrum

S(Λ<) := (λ0, λ
<
1 ;φΛ<

0 , φΛ<

1 ) over (I,4), a contravariant direct spectrum-map Ψ : S(Λ<) ⇒
S(M<), and their totalities Map(I,4I)(S(Λ<), S(M<)), Spec(I,<I) are defined similarly.

Remark 6.3.2. Let (I,4) be a directed set, S(Λ4) := (λ0, λ1;φΛ4

0 , φΛ4

1 ) ∈ Spec(I,4I) with

Bishop spaces (Fi)i∈I and Bishop morphisms (λ4ij)(i,j)∈D4(I), S(M4) := (µ0, µ1, φ
M4

0 , φM
4

1 ) ∈
Spec(I,4I) with Bishop spaces (Gi)i∈I and Bishop morphisms (µ4ij)(i,j)∈D4(I), and Ψ: S(Λ4)⇒
S(M4). Then ΦΛ4

:=
(
φΛ4

0 , φΛ4

1

)
is an (I,<)-family of sets, and if Ψ is continuous, then,

for every (i, j) ∈ D4(I), the following diagram commutes

Fj Fi.

GiGj

(
λ4ij
)∗

(
µ4ij
)∗

(
Ψj

)∗ (
Ψi

)∗

Proof. Since (λ4ii)
∗(f) := f ◦ λ4ii := f ◦ idλ0(i) := f , for every f ∈ Fi, we get (λ4ii)

∗ := idFi . If
i 4 j 4 k and f ∈ Fk, the required commutativity of the following diagram is shown:

Fj Fk

Fi

(
λ4jk
)∗

(
λ4ij
)∗ (

λ4ik
)∗

(
λ4ij
)∗((

λ4jk
)∗

(f)
)

:=
(
λ4ij
)∗

(f ◦ λ4jk) := (f ◦ λ4jk) ◦ λ
4
ij := f ◦ (λ4jk ◦ λ

4
ij) = f ◦ λ4ik :=

(
λik
)∗

(f).

To show the required commutativity, if g ∈ Gj , then(
λ4ij
)∗((

Ψ4j
)∗

(g)
)

:=
(
Ψj

)∗
(g) ◦ λ4ij :=

(
g ◦Ψj

)
◦ λ≺ij =Fi g ◦

(
Ψj ◦ λ4ij

)
=Fi g ◦

(
µ4ij ◦Ψi

)
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=Fi

(
g ◦ µ4ij

)
◦Ψi :=

(
Ψi

)∗(
g ◦ µ4ij

)
:=
(
Ψi

)∗((
µ4ij
)∗

(g)
)
.

6.4 The topology on the
∑

-set of a direct spectrum

Remark 6.4.1. Let (I,4) be a directed set and S(Λ4) := (λ0, λ1, φ
Λ4

0 , φΛ4

1 ) ∈ Spec(I,D4(I))
with Bishop spaces (Fi)i∈I and Bishop morphisms (λ4ij)(i,j)∈ D4(I). If Θ ∈

∏<
i∈I Fi, the

following operation is a function

fΘ :

( 4∑
i∈I

λ0(i)

)
 R, fΘ(i, x) := Θi(x), (i, x) ∈

4∑
i∈I

λ0(i).

Proof. Let (i, x) =∑4
i∈I λ0(i)

(j, y) :⇔ ∃k<i,j
(
λ4ik(x) =λ0(k) λ

4
jk(y)

)
. Since Θi = φ<ki(Θk) :=

(λ4ik)
∗(Θk) := Θk ◦ λ4ik, and similarly Θj = Θk ◦ λ4jk, we have that

Θi(x) =
[
Θk ◦ λ4ik

]
(x) := Θk

(
λ4ik(x)

)
= Θk

(
λ4jk(y)

)
:=
[
Θk ◦ λ4jk

]
(y) = Θj(y).

Definition 6.4.2. Let (I,4) be a directed set and S(Λ4) := (λ0, λ1, φ
Λ4

0 , φΛ4

1 ) ∈ Spec(I,4I)
with Bishop spaces (Fi)i∈I and Bishop morphisms (λ4ij)(i,j)∈D4(I). The Bishop space

4∑
i∈I
Fi :=

( 4∑
i∈I

λ0(i),

∫ 4
i∈I

Fi

)
where

∫ 4
i∈I

Fi :=
∨

Θ∈
∏<
i∈I Fi

fΘ,

is the sum Bishop space of S(Λ4). If S< is a contravariant direct spectrum over (I,4), the
sum Bishop space of S(Λ<) is defined dually.

Lemma 6.4.3. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ), S(M4) := (µ0, µ
4
1 , φ

M4

0 , φM
4

1 ) ∈ Spec(I,4I
), and let Ψ : S(Λ4) → S(M4) be continuous. If H ∈

∏<
i∈I Gi, the dependent operation

H∗ :
c
i∈I Fi, defined by H∗i := Ψ∗i (Hi) := Hi ◦Ψi, for every i ∈ I, is in

∏<
i∈I Fi.

Proof. If i 4 j, we need to show that H∗i = (λ4ij)
∗(H∗j ) = H∗j ◦ λ

4
ij . Since H ∈

∏<
i∈I Gi, we

have that Hi = Hj ◦ µ4ij , and by the continuity of Ψ and the commutativity of the diagram

µ0(i) µ0(j),

λ0(j)λ0(i)

µ4ij

λ4ij

Ψi Ψj

H∗j ◦ λ
4
ij := Ψ∗j (Hj) ◦ λ4ij :=

(
Hj ◦Ψj

)
◦ λ4ij := Hj(0) ◦

(
Ψj ◦ λ4ij

)
= Hj ◦

(
µ4ij ◦Ψi

)
=
(
Hj ◦

(
µ4ij
)
◦Ψi = Hi ◦Ψi := Ψ∗i (Hi) := H∗i .
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Proposition 6.4.4. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) and S(M4) := (µ0, µ
4
1 , φ

M4

0 , φM
4

1 ) be
spectra over (I,4I), and let Ψ : S(Λ4)⇒ S(M4).

(i) If i ∈ I, then eΛ4

i ∈ Mor
(
Fi,
∑4

i∈I Fi
)
.

(ii) If Ψ is continuous, then Σ4Ψ ∈ Mor
(∑4

i∈I Fi,
∑4

i∈I Gi
)
.

Proof. (i) By the
∨

-lifting of morphisms it suffices to show that ∀
Θ∈

∏<
i∈I Fi

(
fΘ ◦ eΛ4

i ∈ Fi
)
. If

x ∈ λ0(i), then
(
fΘ ◦ eΛ4

i

)
(x) := fΘ(i, x) := Θi(x), hence fΘ ◦ eΛ4

i := Θi ∈ Fi.
(ii) By the

∨
-lifting of morphisms it suffices to show that

∀
H∈

∏<
i∈I Gi

(
gH ◦ Σ4Ψ ∈

∫ 4
i∈I

Fi

)
.

If i ∈ I and x ∈ λ0(i), and if H∗ ∈
∏<
i∈I Fi, defined in Lemma 6.4.3, then

(
gH ◦Σ4Ψ

)
(i, x) :=

gH(i,Ψi(x)) := Hi(Ψi(x)) := (Hi ◦Ψi)(x) := fH∗(i, x), and gH ◦ Σ4Ψ := fH∗ ∈
∫ 4
i∈I Fi.

6.5 Direct limit of a covariant spectrum of Bishop spaces

If X is a set, by Corollary 4.7.3 the family Eql(X) :=
(
eqlX0 , EX , eqlX1

)
∈ Set(X,X),

where eqlX0 (x) := {y ∈ X | y =X x}. Consequently, if f : X → Y , there is unique
eql0f : eql0X(X)→ Y such that the following diagram commutes

eql0X(X)

X Y,

eql0feql∗0

f

where eql0X(X) is the totality X with the equality x =eql0X(X) x
′ :⇔ eqlX0 (x) =P(X)

eqlX0 (x′). As Eql(X) ∈ Set(X,X), we get eqlX0 (x) =P(X) eql
X
0 (x′) ⇔ x =X x′. The map

eql∗0 : X → eql0X(X) is defined by the identity map-rule, written in the form x 7→ eqlX0 (x),
for every x ∈ X. We use the set eql0X(X) to define the direct limit of a direct spectrum of
Bishop spaces. In what follows we avoid including the superscript X in our notation.

Definition 6.5.1. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4I) and eql0 :
∑4

i∈I λ0(i)  
V0, defined by

eql0(i, x) :=

{
(j, y) ∈

4∑
i∈I

λ0(i) | (j, y) =∑4
i∈I λ0(i)

(i, x)

}
; (i, x) ∈

4∑
i∈I

λ0(i), .

The direct limit Lim
→
λ0(i) of S(Λ4) is the set

Lim
→
λ0(i) := eql0

4∑
i∈I

λ0(i)

( 4∑
i∈I

λ0(i)

)
,

eql0(i, x) =Lim
→
λ0(i) eql0(j, y) :⇔ eql0(i, x) =

P
(∑4

i∈I λ0(i)
) eql0(j, y)⇔ (i, x) =∑4

i∈I λ0(i)
(j, y).

We write eqlΛ4

0 when we need to express the dependence of eql0 from Λ4.
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Remark 6.5.2. If S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4I) and i ∈ I, the operation
eqli : λ0(i) Lim

→
λ0(i), defined by eqli(x) := eql0(i, x), for every x ∈ λ0(i), is a function.

Proof. If x, x′ ∈ λ0(i) such that x =λ0(i) x
′, then

eqli(x) =Lim
→
λ0(i) eqli(x

′) :⇔ eql0(i, x) =Lim
→
λ0(i) eql0(i, x′)

⇔ (i, x) =∑4
i∈I λ0(i)

(i, x′)

:⇔ ∃k∈I
(
i 4 k & λ4ik(x) =λ0(k) λ

4
ik(x

′)
)
,

which holds, since λ4ik is a function, and hence if x =λ0(i) x
′, then λ4ik(x) =λ0(k) λ

4
ik(x

′), for
every k ∈ I such that i 4 k. Such a k ∈ I always exists e.g., one can take k := i.

Definition 6.5.3. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4I) with Bishop spaces (Fi)i∈I
and Bishop morphisms (λ4ij)(i,j)∈D4(I). The direct limit of S(Λ4) is the Bishop space

Lim
→
Fi :=

(
Lim
→
λ0(i),Lim

→
Fi
)
, where

Lim
→
Fi :=

∨
Θ∈

∏<
i∈I Fi

eql0fΘ,

eql0fΘ

(
eql0(i, x)

)
:= fΘ(i, x) := Θi(x); eql0(i, x) ∈ Lim

→
λ0(i)

Lim
→
λ0(i)

∑4
i∈I λ0(i) R.

eql0fΘeql∗0

fΘ

Remark 6.5.4. If (I,4) is a directed set, G := (Y,G) is a Bishop space, and S(Λ4,Y ) is
the constant direct spectrum over (I,4I) with Bishop space G and Bishop morphism idY , the
direct limit Lim

→
G of S(Λ4,Y ) is Bishop-isomorphic to G. Moreover, every Bishop space is

Bishop-isomorphic to the direct limit of a direct spectrum over any given directed set.

Proof. The proof is straightforward.

Proposition 6.5.5 (Universal property of the direct limit). If S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈
Spec(I,4I) with Bishop spaces (Fi)i∈I and Bishop morphisms (λ4ij)(i,j)∈4(I), its direct limit
Lim
→
Fi satisfies the universal property of direct limits i.e.,

(i) For every i ∈ I, we have that eqli ∈ Mor(Fi,Lim
→
Fi).

(ii) If i 4I j, the following left diagram commutes

Lim
→
λ0(i)

λ0(j)λ0(i) λ0(i) λ0(j).

Y

eqljeqli

λ4ij

εjεi

λ4ij
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(iii) If G := (Y,G) is a Bishop space and εi : λ0(i) → Y ∈ Mor(Fi,G), for every i ∈ I, such
that if i 4 j, the above right diagram commutes, there is a unique function h : Lim

→
λ0(i) →

Y ∈ Mor(Lim
→
Fi,G) such that the following diagrams commute

Y

λ0(j),λ0(i)

Lim
→
λ0(i).

εjεi

λ4ij eqljeqli

h

Proof. For the proof of (i), we use the
∨

-lifting of morphisms. We have that

eqli ∈ Mor(Fi,Lim
→
Fi)⇔ ∀Θ∈

∏4
i∈I Fi

(
eql0fΘ ◦ eqli ∈ Fi

)
.

If x ∈ λ0(i), then
(
eql0fΘ ◦ eqli

)
(x) := eql0fΘ

(
eql0(i, x)

)
:= fΘ(i, x) := Θi(x) hence

eql0fΘ ◦ eqli := Θi ∈ Fi. For the proof of (ii), if x ∈ λ0(i), then

eqlj(λ
4
ij(x)) =Lim

→
λ0(i) eqli(x) :⇔ eql0

(
j, λ4ij(x)

)
=Lim
→
λ0(i) eql0(i, x)

⇔
(
j, λ4ij(x)

)
=∑4

i∈I λ0(i)
(i, x)

:⇔ ∃k∈I
(
i 4 k & j 4 k & λ4ik(x) =λ0(k) λ

4
jk(λ

4
ij(x))

)
,

which holds, since if k ∈ I with j 4 k, the equality λ4ik(x) =λ0(k) λ
4
jk(λ

4
ij(x)) holds by the

definition of a direct family of sets, and by the definition of a directed set such a k always
exists. To prove (iii) let the operation h : Lim

→
λ0(i) Y , defined by h

(
eql0(i, x)

)
:= εi(x), for

every ω(i, x) ∈ Lim
→
λ0(i). First we show that h is a function. Let

eql0(i, x) =Lim
→
λ0(i) eql0(j, y)⇔ ∃k∈I

(
i, j 4 k & λ4ik(x) =λ0(k) λ

4
jk(y)

)
.

By the supposed commutativity of the following diagrams

Y

λ0(k)λ0(i) λ0(j) λ0(k)

Y

εkεi

λ4ik

εkεj

λ4jk

we get h
(
ω(i, x)

)
:= εi(x) = εk

(
λ4ik(x)

)
= εk

(
λ4jk(y)

)
= εj(y) := h

(
ω(j, y)

)
. Next we show that

h is a Bishop morphism. By the
∨

-lifting of morphisms we have that h ∈ Mor(Lim
→
Fi,G)⇔

∀g∈G
(
g ◦ h ∈ Lim

→
Fi
)
. If g ∈ G, we show that the dependent operation Θg :

c
i∈I Fi, defined

by Θg(i) := g ◦ εi, for every i ∈ I, is well-defined, since εi ∈ Mor(Fi,G), and Θg ∈
∏<
i∈I Fi.

To prove the latter, if i 4 k, we show that Θg(i) = Θg(k) ◦ λ4ik. By the commutativity of the
above left diagram we have that Θg(k) ◦ λ4ik := (g ◦ εk) ◦ λ4ik := g ◦ (εk ◦ λ4ik) = g ◦ εi := Θg(i),
Hence fΘg ∈ Lim

→
Fi. Since (g ◦ h)

(
eql0(i, x)

)
:= g(εi(x)) := (g ◦ εi)(x) := [Θg(i)](x) :=
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fΘg

(
(eql0(i, x)

)
, we get g ◦ h := fΘg ∈ Lim

→
Fi. The uniqueness of h, and the commutativity

of the diagram in property (iii) follow immediately.

The uniqueness of Lim
→
λ0(i), up to Bishop isomorphism, is shown easily from its universal

property. Note that if i, j ∈ I, x ∈ λ0(i) and y ∈ λ0(j), we have that

eqli(x) =Lim
→
λ0(i) eqlj(y) :⇔ eql0(i, x) =Lim

→
λ0(i) eql0(j, y)

⇔ (i, x) =∑4
i∈I λ0(i)

(j, y)

:⇔ ∃k∈I
(
i 4 k & j 4 k & λ4ik(x) =λ0(k) λ

4
jk(y)

)
.

Definition 6.5.6. Let S4 := (λ0, λ
4
1 ;φΛ4

0 , φΛ4

1 ) be a direct spectrum over (I,4). If i ∈ I, an
element x of λ0(i) is a representative of ω(z) ∈ Lim

→
λ0(i), if ωi(x) =Lim→ λ0(i) ω(z).

Although an element eql0(z) ∈ Lim
→
λ0(i) may not have a representative in every λ0(i), it

surely has one at some λ0(i). Actually, the following holds.

Proposition 6.5.7. For every n ≥ 1 and every eql0(z1), . . . , eql0(zn) ∈ Lim
→
λ0(i) there are

i ∈ I and x1, . . . , xn ∈ λ0(i) such that xl represents eql0(zl), for every l ∈ {1, . . . , n}.

Proof. The proof is by induction on N+. We present only the case n := 2. Let z :=
(j, y), z′ := (j′, y′) ∈

∑4
i∈I λ0(i), and k ∈ I with j 4 k and j′ 4 k. By definition we have

that λ4jk(y) ∈ λ0(k) and λ4j′k(y′) ∈ λ0(k). We show that λ4jk(y) represents eql0(z) and λ4j′k(y′)
represents eql0(z′). By our remark right before Definition 6.5.6 for the first representation we
need to show that

ωk
(
λ4jk(y)

)
=Lim
→
λ0(i) ωj(y)⇔ ∃k′∈I

(
k 4 k′ & j 4 k′ & λ4kk′(λ

4
jk(y)) =λ0(k′) λ

4
jk′(y)

)
.

By the composition of the transport maps it suffices to take any k′ ∈ I with k 4 k′ & j 4 k′,
and for the second representation it suffices to take any k′′ ∈ I with k 4 k′′ & j′ 4 k′′.

Theorem 6.5.8. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4I) with Bishop spaces (Fi)i∈I
and Bishop morphisms (λ4ij)(i,j)∈D4(I), S(M4) := (µ0, µ

4
1 , φ

M4

0 , φM
4

1 ) ∈ Spec(I,4I) with

Bishop spaces (Gi)i∈I and Bishop morphisms (µ4ij)(i,j)∈D4(I), and Ψ: S(Λ4)⇒ S(M4).

(i) There is a unique function Ψ→ : Lim
→
λ0(i) → Lim

→
µ0(i) such that, for every i ∈ I, the

following diagram commutes

Lim
→
λ0(i) Lim

→
µ0(i).

µ0(i)λ0(i)

Ψ→

Ψi

eqlΛ4

i eqlM
4

i

(ii) If Ψ is continuous, then Ψ→ ∈ Mor(Lim
→
Fi,Lim

→
Gi).

(iii) If Ψi is an embedding, for every i ∈ I, then Ψ→ is an embedding.
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Proof. (i) The following well-defined operation Ψ→ : Lim
→
λ0(i) Lim

→
µ0(i), given by

Ψ→
(
eqlΛ4

0 (i, x)
)

:= eqlM
4

0 (i,Ψi(x)); eqlΛ4

0 (i, x) ∈ Lim
→
λ0(i)

is a function, since, if eqlΛ4

0 (i, x) =Lim→ λ0(i) eqlΛ4

0 (j, y) ⇔ (i, x) =∑≺
i∈I λ0(i) (j, y), which is

equivalent to ∃k∈I
(
i 4 k & j 4 k & λ4ik(x) =λ0(k) λ

4
jk(y)

)
, we show that

Ψ→
(
eqlΛ4

0 (i, x)
)

=Lim→ µ0(i) Ψ→
(
eqlΛ4

0 (j, y)
)

:⇔ eqlM
4

0

(
i,Ψ4i (x)

)
=Lim→ µ0(i) eql

M4

0

(
j,Ψj(y)

)
⇔ (i,Ψi(x)) =∑4

i∈I µ0(i)
(j,Ψj(y))

:⇔ ∃i∈I
(
i, j 4 k & µ4ik(Ψi(x)) =µ0(k) µ

4
jk(Ψj(y)

)
.

By the commutativity of the following diagrams, and since Ψk is a function,

µ0(i) µ0(k)

λ0(k)λ0(i)

µ0(j)

λ0(j)

µ0(k),

λ0(k)

µ4ik

λ4ik

Ψi Ψk

µ4jk

λ4jk

Ψj Ψk

we get µ4ik
(
Ψi(x)

)
=µ0(k) Ψk

(
λ4ik(x)

)
=µ0(k) Ψk

(
λ4jk(y)

)
=µ0(k) µ4jk

(
Ψj(y)

)
.

(ii) By the
∨

-lifting of morphisms it suffices to show that ∀
H∈

∏<
i∈I Gi

(
(eqlM

4

0 gH) ◦ Ψ→ ∈
Lim
→
Fi
)
. By Definition 6.5.3 we have that

(
(eqlM

4

0 gH) ◦Ψ→
)(
eqlΛ4

0 (i, x)
)

:=
(
eqlΛ4

0 gH
)(
eqlM

4

0 (i,Ψi(x))
)

:= gH(i,Ψi(x))

:= Hi(Ψi(x)) = (Hi ◦Ψi)(x) := H∗i (x) := fH∗(i, x) :=
(
eqlΛ4

0 fH∗
)(
eqlΛ4

0 (i, x)
)
,

where H∗ ∈
∏<
i∈I Fi is defined in Lemma 6.4.3, and (eqlM

4

0 gH∗) ◦Ψ→ := eqlΛ4

0 fH∗ ∈ Lim
→
Fi.

(iii) If Ψ→
(
eqlΛ4

0 (i, x) =Lim→ µ0(i) Ψ→
(
eqlΛ4

0 (j, y) i.e., µ4ik(Ψi(x)) =µ0(k) µ
4
jk(Ψj(y))

)
, for some

k ∈ I with i, j 4 k, by the proof of case (ii) we get Ψk

(
λ4ik(x)

)
=µ0(k) Ψk

(
λ4jk(y)

)
, and since

Ψk is an embedding, we conclude that λ4ik(x) =λ0(k) λ
4
jk(y) i.e., (i, x) =∑≺

i∈I λ0(i) (j, y).

Proposition 6.5.9. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4I) with Bishop spaces (Fi)i∈I
and Bishop morphisms (λ4ij)(i,j)∈D4(I), S(M4) := (µ0, µ

4
1 , φ

M4

0 , φM
4

1 ) ∈ Spec(I,4I) with

Bishop spaces (Gi)i∈I and Bishop morphisms (µ4ij)(i,j)∈D4(I), and S(N4) := (ν0, ν
4
1 , φ

N4

0 , φN
4

1 ) ∈
Spec(I,4I) with Bishop spaces (Hi)i∈I and Bishop morphisms (ν4ij)(i,j)∈D4(I). If Ψ: S(Λ4)⇒
S(M4) and Ξ: S(M4)⇒ S(N4), then (Ξ ◦Ψ)→ := Ξ→ ◦Ψ→
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λ0(i) µ0(i)

Lim
→
λ0(i) Lim

→
µ0(i)

ν0(i)

Lim
→
ν0(i).

Ψi Ξi

Ξ→Ψ→

eqlΛ4

i eqlM
4

i eqlN
4

i

(Ξ ◦Ψ)→

(Ξ ◦Ψ)i

Proof. If eqlΛ4

0 (i, x) ∈ Lim
→
λ0(i), then

(Ξ ◦Ψ)→[eqlΛ4

0 (i, x)] := eqlN
4

0 (i, (Ξ ◦Ψ)i(x))

:= eqlN
4

0 (i, (Ξi ◦Ψi)(x))

:= eqlN
4

0 (i, (Ξi(Ψi(x))))

:= Ξ→
(
eqlM

4

0 (i,Ψi(x))
)

:= Ξ→
(
Ψ→

(
eqlΛ4

0 (i, x)
))

:= (Ξ→ ◦Ψ→)
(
eqlΛ4

0 (i, x)
)
.

Definition 6.5.10. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4I) and (J, e, cofJ) ⊆cof I, a
cofinal subset of I with modulus of cofinality e : J ↪→ I. The relative spectrum of S(Λ4) to J

is the e-subfamily S(Λ4) ◦ e :=
(
λ0 ◦ e, λ1 ◦ e, φΛ4

0 ◦ e, φΛ4

1 ◦ e
)

of S(Λ4), where ΦΛ4 ◦ e :=(
φΛ4

0 ◦ e, φΛ4

1 ◦ e
)

is the e-subfamily of ΦΛ4
.

Lemma 6.5.11. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4I), (J, e, cofJ) ⊆cof I, and

S(Λ4) ◦ e :=
(
λ0 ◦ e, λ1 ◦ e, φΛ4

0 ◦ e, φΛ4

1 ◦ e
)

the relative spectrum of S(Λ4) to J .

(i) If Θ ∈
∏<
i∈I Fi, then ΘJ ∈

∏<
j∈J Fj, where for every j ∈ J we define ΘJ

j := Θe(j).

(ii) If HJ ∈
∏<
j∈J Fj, then H ∈

∏<
i∈I Fi, where, for every i ∈ I, let Hi := HJ

cofJ (i) ◦ λ
4
ie(cofJ (i))

R.

λ0(e(cofJ(i)))λ0(i)

HJ
cofJ (i)Hi

λ4ie(cofJ (i))

Proof. (i) It suffices to show that if j 4 j′ :⇔ e(j) 4 e(j′), then ΘJ
j = ΘJ

j′ ◦ λ
4
jj′ . Since

Θ ∈
∏<
i∈I Fi we have that ΘJ

j := Θe(j) = Θe(j′) ◦ λ4e(j)e(j′) := ΘJ
j′ ◦ λ

4
jj′ .

(ii) By definition HJ
cofJ (i) ∈ FcofJ (i) := Fe(cofJ (i)), and since i 4 e(cofJ(i)), we get Hi ∈

Mor(Fi,R) = Fi i.e., H :
c
i∈I Fi. Next we show that if i 4 i′, then Hi = Hi′ ◦ λ4ii′ . By (Cof3)

and (Cof2) we have that
i 4 i′ 4 e(cofJ(i′)), (6.1)
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and i 4 i′ ⇒ cofJ(i) 4 cofJ(i′) :⇔ e(cofJ(i)) 4 e(cofJ(i′)), hence we also get

i 4 e(cofJ(i)) 4 e(cofJ(i′)). (6.2)

Since HJ ∈
∏<
j∈J Fj , we have that

Hi′ ◦ λ4ii′ :=
[
HJ

cofJ (i′) ◦ λ
4
i′e(cofJ (i′))

]
◦ λ4ii′

:= HJ
cofJ (i′) ◦

[
λ4i′e(cofJ (i′)) ◦ λ

4
ii′
]

(6.1)
= HJ

cofJ (i′) ◦ λ
4
ie(cofJ (i′))

(6.2)
= HJ

cofJ (i′) ◦
[
λ4e(cofJ (i))e(cofJ (i′)) ◦ λ

4
ie(cofJ (i))

]
:=
[
HJ

cofJ (i′) ◦ λ
4
e(cofJ (i))e(cofJ (i′))

]
◦ λ4ie(cofJ (i))

:=
[
HJ

cofJ (i′) ◦ λ
4
cofJ (i)cofJ (i′)

]
◦ λ4ie(cofJ (i))

:= HJ
cofJ (i) ◦ λ

4
ie(cofJ (i))

:= Hi.

Theorem 6.5.12. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4I), (J, e, cofJ) ⊆cof I, and

S(Λ4) ◦ e :=
(
λ0 ◦ e, λ1 ◦ e, φΛ4

0 ◦ e, φΛ4

1 ◦ e
)

the relative spectrum of S(Λ4) to J . Then

Lim
→
Fj ' Lim

→
Fi.

Proof. We define the operation φ : Lim
→
λ0(j) Lim

→
λ0(i) by φ

(
eqlΛ4◦e

0 (j, y)
)

:= eqlΛ4

0 (e(j), y)

Lim
→
λ0(j) Lim

→
λ0(i),

λ0(j)

φ

eqlΛ4◦e
j eqlΛ4

e(j)

for every eqlΛ4◦e
0 (j, y) ∈ Lim

→
λ0(j), where, if j ∈ J and y ∈ λ0(j), we have that

eqlΛ4◦e
0 (j, y) :=

{
(j′, y′) ∈

4∑
j∈J

λ0(j) | (j′, y′) =∑4
j∈J λ0(j)

(j, y)

}
,

eqlΛ4

0 (e(j), y) :=

{
(i, x) ∈

4∑
i∈I

λ0(i) | (i, x) =∑4
i∈I λ0(i)

(e(j), y)

}
.

First we show that φ is a function. By definition we have that

eqlΛ4◦e
0 (j, y) =Lim→ λ0(j) eql

Λ4◦e
0 (j′, y′)⇔ (j, y) =∑4

j∈J λ0(j)
(j′, y′)

⇔ ∃j′′∈J
(
j, j′ 4 j′′ & λ4jj′′(y) =λ0(j′′) λ

4
j′j′′(y

′)
)

(1)

eqlΛ4

0 (e(j), y) =Lim→ λ0(i) eql
Λ4

0 (e(j′), y′)⇔ (e(j), y) =∑4
i∈I λ0(i)

(e(j′), y′)

⇔ ∃k∈I
(
e(j), e(j′) 4 k & λ4e(j)k(y) =λ0(k) λ

4
e(j′)k(y

′)
)
. (2)
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If k := e(j′′), then (1) implies (2), and hence φ is a function. To show that φ is an embedding,
we show that (2) implies (1). Since e(j), e(j′) 4 k 4 e(cofJ(k)), we get j, j′ 4 cofJ(k) := j′′.
By the commutativity of the following diagrams

λ0(e(j))

λ0(k) λ0(e(cofJ(k))) λ0(k)

λ0(e(j′))

λ0(e(cofJ(k)))

λ4e(j)k
λ4e(j)e(cofJ (k))

λ4ke(cofJ (k))

λ4e(j′)k

λ4ke(cofJ (k))

λ4e(j′)e(cofJ (k))

λ4jj′′(y) := λ4e(j)e(cofJ (k))(y)

=
[
λke(cofJ (k)) ◦ λ4e(j)k

]
(y)

= λke(cofJ (k))

(
λ4e(j)k(y)

)
= λke(cofJ (k))

(
λ4e(j′)k(y

′)
)

:=
[
λke(cofJ (k)) ◦ λ4e(j′)k

]
(y′)

= λ4e(j′)e(cofJ (k))(y
′)

:= λj′j′′(y
′).

By the
∨

-lifting of morphisms we have that

φ ∈ Mor(Lim
→
Fj ,Lim

→
Fi) :⇔ ∀

Θ∈
∏<
i∈I Fi

(
eql0fΘ ◦ φ ∈ Lim

→
Fj
)
.

If Θ ∈
∏<
i∈I Fi, we have that

(eql0fΘ ◦ φ)
(
eqlΛ4◦e

0 (j, y)
)

:= (eql0fΘ)
(
eqlΛ4

0 (e(j), y)
)

:= Θe(j)(y) := ΘJ
j (y) := (eql0fΘJ )

(
eqlΛ4◦e

0 (j, y)
)
,

where ΘJ ∈
∏4
j∈J Fj is defined in Lemma 6.5.11(i). Hence, eql0fΘ ◦ φ = eql0fΘJ ∈ Lim

→
Fj .

Next we show that φ is a surjection. If eqlΛ4

0 (i, x) ∈ Lim
→
λ0(i), we find eqlΛ4◦e

0 (j, y) ∈

Lim
→
λ0(j) such that φ

(
eqlΛ4◦e

0 (j, y)
)

:= eqlΛ4

0 (e(j), y) =Lim→ λ0(i) eql
Λ4

0 (i, x) i.e., we find k ∈ I
such that i, e(j) 4 k and λ4ik(x) =λ0(k) λ

4
e(j)k(y). If j := cofJ(i), by (Cof3) we have that

i 4 e(cofJ(i)), and by the reflexivity of 4 we have that e(cofJ(i)) 4 e(cofJ(i)) := k. If
y := λie(cofJ (i))

4(x) ∈ λ0(e(cofJ(i))) := (λ0 ◦ e)(cofJ(i)), then

λ4e(cofJ (i))e(cofJ (i))

(
λ4ie(cofJ (i))(x)

)
=λ0(k) λ

4
ie(cofJ (i))(x).

We can use the
∨

-lifting of openness to show that φ is an open morphism, and hence a Bishop
isomorphism, but it is better to define directly its inverse Bishop morphism using the previous
proof of the surjectivity of φ. Let the operation θ : Lim

→
λ0(i) Lim

→
λ0(j), defined by

θ
(
eqlΛ4

0 (i, x)
)

:= eqlΛ4◦e
0

(
cofJ(i), λie(cofJ (i))(x)

)
; eqlΛ4

0 (i, x) ∈ Lim
→
λ0(i).
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First we show that θ is a function. We have that

eqlΛ4

0 (i, x) =Lim→ λ0(i) eql
Λ4

0 (i′, x′)⇔ ∃k∈I
(
i 4 k & i′ 4 k & λ4ik(x) =λ0(k) λ

4
i′k(x

′)
)
,

eqlΛ4◦e
0

(
cofJ(i), λie(cofJ (i))(x)

)
=Lim→ λ0(j) eql

Λ4◦e
0

(
cofJ(i′), λi′e(cofJ (i′))(x

′)
)
⇔

∃j′∈J
(
cofJ(i) 4 j′ & cofJ(i′) 4 j′ &

λ4e(cofJ (i))e(j′)

(
λ4ie(cofJ (i))(x)

)
=λ0(e(j′) λ

4
e(cofJ (i′))e(j′)

(
λ4i′e(cofJ (i′))(x

′)

)
.

If j′ := cofJ(k), then by (Cof2) we get cofJ(i) 4 j′ and cofJ(i′) 4 j′. Next we show that

λ4e(cofJ (i))e(cofJ (k))

(
λ4ie(cofJ (i))(x)

)
=λ0(e(cofJ (k)) λ

4
e(cofJ (i′))e(cofJ (k))

(
λ4i′e(cofJ (i′))(x

′).

By the following order relations, the two terms of the required equality are written as

e(cofJ(k))

k e(cofJ(i′))e(cofJ(i))

i i′

λ4ie(cofJ (k))(x) = λ4ke(cofJ (k))

(
λ4ik(x)

)
, and λ4i′e(cofJ (k))(x

′) = λ4ke(cofJ (k))

(
λ4i′k(x

′)
)
. By the

equality λ4ik(x) =λ0(k) λ
4
i′k(x

′) we get the required equality. Next we show that

θ ∈ Mor
(
Lim
→
Fi,Lim

→
Fj
)
⇔ ∀

HJ∈
∏<
j∈J Fj

(
eql0fHJ ◦ θ ∈

∨
Θ∈

∏<
i∈I Fi

eql0fΘ

)
.

If we fix HJ ∈
∏<
j∈J Fj , and if H ∈

∏<
i∈I Fi, defined in Lemma 6.5.11(ii), then

(
eql0fHJ ◦ θ

)(
eqlΛ4

0 (i, x)
)

:= eql0fHJ

(
eqlΛ4◦e

0

(
cofJ(i), λie(cofJ (i))(x)

))
:= fHJ

(
cofJ(i), λie(cofJ (i))(x)

)
:= HJ

cofJ (i)

(
λie(cofJ (i))(x)

)
:=
[
HJ

cofJ (i) ◦ λie(cofJ (i))

]
(x)

:= Hi(x)

:= fH(i, x)

:= eql0fH
(
eqlΛ4

0 (i, x)
)
,

hence eql0fHJ ◦ θ := eql0fH ∈ Lim
→
Fi. Next we show that φ and θ are inverse to each other.

φ
(
θ
(
eqlΛ4

0 (i, x)
))

:= φ
(
eqlΛ4◦e

0

(
cofJ(i), λie(cofJ (i))(x)

)
:= eqlΛ4

0

(
e(cofJ(i)), λie(cofJ (i))(x)

)
,
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which is equal to eqlΛ4

0 (i, x) if and only if there is k ∈ I with i 4 k and e(cofJ(i)) 4 k and

λ4ik(x) =λ0(k) λ
4
e(cofJ (i))k

(
λie(cofJ (i))(x)

)
,

which holds for every such k ∈ I. As by (Cof3) we have that i 4 e(cofJ(i)), the existence of
such a k ∈ I follows trivially. Similarly,

θ
(
φ
(
eqlΛ4◦e

0 (j, y)
))

:= θ
(
eqlΛ4

0

(
e(j), y)

)
:= eqlΛ4◦e

0

(
cofJ(e(j)), λe(j)e(cofJ (e(j)))(y)

)
,

which is equal to eqlΛ4◦e
0 (j, y) if and only if there is j′ ∈ J with j 4 j′, (cofJ(e(j))) 4 j′ and

λ4e(j)e(j′)(y) =λ0(e(j′)) λ
4
e(cofJ (e(j)))e(j′)

(
λe(j)e(cofJ (e(j)))(y)

)
,

which holds for every such j′ ∈ J . As by (Cof1) we have that j =J cofJ(e(j)), the existence
of such a j′ ∈ J follows trivially.

For simplicity we use next the same symbol for different orderings.

Proposition 6.5.13. If (I,4), (J,4) are directed sets, i ∈ I and j ∈ J , let

(i, j) 4 (i′, j′) :⇔ i 4 i′ & j 4 j′.

If (K, iK , cofK) ⊆cof I and (L, iL, cofL) ⊆cof J , let iK×L : K × L ↪→ I × J and cofK×L :
I × J → K × L, defined, for every k ∈ K and l ∈ L, by

iK×L(k, l) :=
(
iK(k), iL(l)

)
& cofK×L(i, j) :=

(
cofK(i), cofL(j)

)
.

Let Λ4 := (λ0, λ
4
1 ) ∈ Fam(I,4) and M4 := (µ0, µ

4
1 ) ∈ Fam(J,4) an (J,4). Let also

S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4) with Bishop spaces (Fi)i∈I and Bishop morphisms

(λii′)(i,i′)∈D4(I×J), and S(M4) := (µ0, µ
4
1 , φ

M4

0 , φM
4

1 ) ∈ Spec(J,4) with Bishop spaces (Gj)j∈J
and Bishop morphisms (µjj′)

4
(j,j′)∈4(J).

(i) (I × J,4) is a directed set, and (K × L, iK×L, cofK×L) ⊆cof I × J .

(ii) The pair Λ4 ×M4 := (λ0 × µ0, (λ1 × µ1)4) ∈ Fam(I × J,4), where

(λ0 × µ0)
(
(i, j)

)
:= λ0(i)× µ0(j),

(λ1 × µ1)4
(
(i, j), (i′, j′)

)
:= (λ1 × µ1)4(i,j),(i′,j′),

(λ1 × µ1)4(i,j),(i′,j′)
(
(x, y)

)
:=
(
λ4ii′(x), µ4jj′(y)

)
.

(iii) The structure S(Λ4×M4) :=
(
λ0×µ0, λ

4
1 ×µ

4
1 ;φΛ4×M4

0 , φΛ4×M4

1

)
∈ Spec(I×J,4) with

Bishop spaces (Fi ×Gj)(i,j)∈I×J and Bishop morphisms (λ1 × µ1)(
(i,j)(i′,j′)

)
∈D4(I×J)

, where

φΛ4×M4

0 (i, j) := Fi ×Gj ,

φΛ4×M4

1

(
(i, j), (i′, j′)

)
:= [(λ1 × µ1)4(i,j)(i′,j′)]

∗ : Fi′ ×Gj′ → Fi ×Gj .
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Proof. (i) is immediate to show. For the proof of case (ii) we have that (λ1×µ1)4(i,j),(i,j)
(
(x, y)

)
:=(

λ4ii(x), µ4jj(y)
)

:= (x, y), and if (i, j) 4 (i′, j′) 4 (i′′, j′′), then the commutativity of the

λ0(i)× µ0(j)

λ0(i′)× µ0(j′) λ0(i′′)× µ0(j′′)

(λ1×µ1)4
(i,j),(i′,j′)

(λ1×µ1)4
(i,j),(i′′,j′′)

(λ1×µ1)4
(i′,j′),(i′′,j′′)

above diagram follows from the equalities λ4ii′′ = λ4i′i′′ ◦ λ
4
ii′ and µ4jj′′ = µ4j′j′′ ◦ µ

4
jj′ .

(iii) We show that (λ1 × µ1)4(i,j)(i′,j′) ∈ Mor(Fi × Gj ,Fi′ × Gj′). By the
∨

-lifting of morphisms

it suffices to show that ∀f∈Fi′
(
(f ◦π1)◦ (λ1×µ1)4(i,j)(i′,j′) ∈ Fi×Gj

)
and ∀g∈Gj′

(
(g ◦π2)◦ (λ1×

µ1)4(i,j)(i′,j′) ∈ Fi×Gj
)
. If f ∈ Fi′ , then (f ◦π1)◦(λ1×µ1)4(i,j)(i′,j′) := (f ◦λ4ii′)◦π1 ∈ Fi×Gj , as

f ◦λ4ii′ ∈ Fi and [(f ◦ π1) ◦ (λ1×µ1)4(i,j)(i′,j′)](x, y) := (f ◦ π1)
(
λ4ii′(x), µ4jj′(y)

)
:= f

(
λ4ii′(x)

)
:=

[(f ◦λ4ii′)◦π1](x, y). If g ∈ Gj′ , we get (g◦π2)◦(λ1×µ1)4(i,j)(i′,j′) := (g◦λ4jj′)◦π2 ∈ Fi×Gj .

Lemma 6.5.14. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4) with Bishop spaces (Fi)i∈I and

Bishop morphisms (λii′)
4
(i,i′)∈D4(I)

, S(M4) := (µ0, µ
4
1 , φ

M4

0 , φM
4

1 ) ∈ Spec(J,4) with Bishop

spaces (Gj)j∈J and Bishop morphisms (µjj′)(j,j′)∈D4(J), Θ ∈
∏<
i∈I Fi and Φ ∈

∏<
j∈J Gj,. Then

Θ1 ∈
<∏

(i,j)∈I×J

Fi ×Gj & Φ2 ∈
<∏

(i,j)∈I×J

Fi ×Gj ,

Θ1(i, j) := Θi ◦ π1 ∈ Fi ×Gj & Φ2(i, j) := Φj ◦ π2 ∈ Fi ×Gj ; (i, j) ∈ I × J.

Proof. We prove that Θ1 ∈
∏<

(i,j)∈I×J Fi×Gj , and for Φ2 we proceed similarly. If (i, j) 4 (i′, j′),

we need to show that Θ1(i, j) = Θ1(i′, j′) ◦ (λ1 × µ1)4(i,j),(i′,j′). Since Θ ∈
∏<
i∈I Fi, we have

that Θi = Θi′ ◦ λ4ii′ . If x ∈ λ0(i) and y ∈ µ0(j), we have that[
Θ1(i′, j′) ◦ (λ1 × µ1)4(i,j),(i′,j′)](x, y) :=

[
Θi′ ◦ π1

](
λ4ii′(x), µ4jj′(y)

)
:= Θi′

(
λ4ii′(x)

)
:=
[(

Θi′ ◦ λ4ii′
)
◦ π1

]
(x, y)

:=
(
Θi ◦ π1

)
(x, y)

:=
[
Θ1(i, j)

]
(x, y).

Proposition 6.5.15. If S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4) with Bishop spaces (Fi)i∈I
and Bishop morphisms (λii′)

4
(i,i′)∈D4(I)

, and S(M4) := (µ0, µ
4
1 , φ

M4

0 , φM
4

1 ) ∈ Spec(J,4) with

Bishop spaces (Gj)j∈J and Bishop morphisms (µjj′)(j,j′)∈D4(J), there is a bijection

θ : Lim
→

(
λ0(i)× µ0(j)

)
→ Lim

→
λ0(i)× Lim

→
µ0(j) ∈ Mor

(
Lim
→

(Fi × Gj),Lim
→
Fi × Lim

→
Gj
)
.

Proof. Let the operation θ : Lim
→

(
λ0(i)× µ0(j)

)
 Lim

→
λ0(i)× Lim

→
µ0(j), defined by

θ
(
eqlΛ4×M4

0

(
(i, j), (x, y)

))
:=
(
eqlΛ4

0 (i, x), eqlM
4

0 (j, y)
)
.



6.6. INVERSE LIMIT OF A CONTRAVARIANT SPECTRUM OF BISHOP SPACES 179

First we show that θ is an embedding as follows:

eqlΛ4×M4

0

(
(i, j), (x, y)

)
= eqlΛ4×M4

0

(
(i′, j′), (x′, y′)

)
:⇔

:⇔ ∃(k,l)∈I×J
(
(i, j), (i′, j′) 4 (k, l) & (λ1 × µ1)4(i,j)(k,l)(x, y) = (λ1 × µ1)4(i′,j′)(k,l)(x

′, y′)
)

:⇔ ∃(k,l)∈I×J
(
(i, j), (i′, j′) 4 (k, l) &

(
λ4ik(x), µ4jl(y)

)
=
(
λ4i′k(x

′), µ4j′k(y
′)
)

⇔ ∃k∈I
(
i, i′ 4 k & λ4ik(x) = λ4i′k(x

′)
)

& ∃l∈J
(
j, j′ 4 l & λ4jk(y) = λ4j′k(y

′)
)

:⇔ eqlΛ4

0 (i, x) = eqlΛ4

0 (i′, x′) & eqlM
4

0 (j, y) = eqlM
4

0 (j′, y′)

:⇔
(
eqlΛ4

0 (i, x), eqlM
4

0 (j, y)
)

=
(
eqlΛ4

0 (i′, x′), eqlM
4

0 (j′, y′)
)

:⇔ θ
(
eqlΛ4×M4

0

(
(i, j), (x, y)

))
= θ
(
eqlΛ4×M4

0

(
(i′, j′), (x′, y′)

))
.

The fact that θ is a surjection is immediate to show. By definition of the direct limit and by
the ∨-lifting of the product Bishop topology we have that

Lim
→

(Fi × Gj) :=

(
Lim
→

(
λ0(i)× µ0(j)

)
,

∨
Ξ∈

∏<
(i,j)∈I×J Fi×Gj

eql0fΞ

)
,

Lim
→
Fi × Lim

→
Gj :=

(
Lim
→
λ0(i)× Lim

→
µ0(j),

H∈
∏<
j∈J Gj∨

Θ∈
∏<
i∈I Fi

eql0fΘ ◦ π1, eql0fH ◦ π2

)
.

To show that θ ∈ Mor
(
Lim
→

(Fi × Gj),Lim
→
Fi × Lim

→
Gj
)

it suffices to show that

∀
Θ∈

∏<
i∈I Fi

∀
H∈

∏<
j∈J Gj

(
eql0fΘ ◦ π1) ◦ θ ∈ Lim

→
(Fi ×Gj) & (eql0fH ◦ π2) ◦ θ ∈ Lim

→
(Fi ×Gj)

)
.

If Θ ∈
∏<
i∈I Fi, we show that (eql0fΘ ◦ π1) ◦ θ ∈ Lim

→
(Fi ×Gj) From the equalities

[(eql0fΘ< ◦ π1) ◦ θ]
(
eqlΛ4×M4

0

(
(i, j), (x, y)

))
:= (eql0fΘ< ◦ π1)

(
eqlΛ4

0 (i, x), eqlM
4

0 (j, y)
)

:= eql0fΘ<

(
eqlΛ4

0 (i, x)
)

:= Θi(x)

:=
(
Θi ◦ π1

)
(x, y)

:=
[
Θ1(i, j)

]
(x, y)

:= eql0fΘ1

(
eqlΛ4×M4

0

(
(i, j), (x, y)

)
,

where Θ1 ∈
∏<
i∈I Fi ×Gj is defined in Lemma 6.5.14, we conclude that (eql0fΘ< ◦ π1) ◦ θ :=

eql0fΘ1 ∈ Lim
→

(Fi ×Gj). For the second case we work similarly.

6.6 Inverse limit of a contravariant spectrum of Bishop spaces

Definition 6.6.1. If S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ) is a contravariant (I,4)-spectrum with
Bishop spaces (Fi)i∈I and Bishop morphisms (λ<ji)(i,j)∈D4(I), the inverse limit of SΛ(<) is the
Bishop space

Lim
←
Fi :=

(
Lim
←
λ0(i), Lim

←
Fi
)
,
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Lim
←
λ0(i) :=

<∏
i∈I

λ0(i) & Lim
←
Fi :=

f∈Fi∨
i∈I

f ◦ πΛ<

i .

For simplicity we write πi instead of πΛ<

i for the function πΛ<

i :
∏<
i∈I λ0(i)→ λ0(i), which

is defined, as its dual πΛ4

i in the Proposition 3.8.4(iv), by the rule Φ 7→ Φi, for every i ∈ I..

Proposition 6.6.2 (Universal property of the inverse limit). If S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ) is
a contravariant direct spectrum over (I,4) with Bishop spaces (Fi)i∈I and Bishop morphisms
(λ<ji)(i,j)∈4(I), its inverse limit Lim

←
Fi satisfies the universal property of inverse limits i.e.,

(i) For every i ∈ I, we have that πi ∈ Mor(Lim
←
Fi,Fi).

(ii) If i 4 j, the following left diagram commutes∏<
i∈I λ0(i)

λ0(j)λ0(i) λ0(i) λ0(j).

Y

πjπi

λ<ji

$j$i

λ4ji

(iii) If G := (Y,G) is a Bishop space and $i : Y → λ0(i) ∈ Mor(G,Fi), for every i ∈ I,
such that if i 4 j, the above right diagram commutes, there is a unique function h : Y →∏
i∈I λ0(i) ∈ Mor(G,Lim

←
Fi) such that the following diagrams commute

Y

λ0(j),λ0(i)

∏
i∈I λ0(i)

$j$i

λ<ji πjπi

h

Proof. The condition πi ∈ Mor(Lim
←
Fi,Fi) :⇔ ∀f∈Fi

(
f ◦πi ∈

∨f∈Fi
i∈I f ◦πi

)
is trivially satisfied,

and (i) follows. For (ii), the required equality λ<ji
(
πj(Φ)

)
=λ0(i) πi(Φ) :⇔ λ<ji(Φj) =λ0(i) Φi

holds by the definition of
∏<
i∈I λ0(i). To show (iii), let the operation h : Y  

∏<
i∈I λ0(i),

defined by h(y) := Φy, where Φy(i) := $i(y), for every y ∈ Y and i ∈ I. First we show that h
is well-defined i.e., h(y) ∈

∏<
i∈I λ0(i). If i 4 j, by the supposed commutativity of the above

right diagram we have that λ<ji
(
Φy(j)

)
:= λ<ji

(
$j(y)

)
= $i(y) := Φy(i). Next we show that h

is a function. If y =Y y′, the last formula in the following equivalences

Φy =∏<
i∈I λ0(i)

Φy′ :⇔ ∀i∈I
(
Φy(i) =λ0(i) Φy′(i)

)
:⇔ ∀i∈I

(
$i(y) =λ0(i) $i(y

′)
)

holds by the fact that $i is a function, for every i ∈ I. By the
∨

-lifting of morphisms we have
that h ∈ Mor(G,Lim

←
Fi)⇔ ∀i∈I∀f∈Fi

(
(f ◦ πi) ◦ h ∈ G

)
. If i ∈ I, f ∈ Fi, and y ∈ Y , then[

(f ◦ πi) ◦ h
]
(y) := (f ◦ πi)(Φy) := f

(
Φy(i)

)
:= f

(
$i(y)

)
:= (f ◦$i)(y),

hence (f ◦ πi) ◦ h := f ◦$i ∈ G, since $i ∈ Mor(G,Fi). The required commutativity of the
last diagram above, and the uniqueness of h follow immediately.
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The uniqueness of Lim
←
λ0(i), up to Bishop isomorphism, follows easily from its universal

property. Next follows the inverse analogue to the Theorem 6.5.8.

Theorem 6.6.3. Let S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ) be a contravariant (I,4)-spectrum with

Bishop spaces (Fi)i∈I and Bishop morphisms (λ<ji)(i,j)∈D4(I), S(M<) := (µ0, µ1, φ
M<

0 , φM
<

1 ) a

contravariant (I,4)-spectrum with Bishop spaces (Gi)i∈I and Bishop morphisms (µ<ji)(i,j)∈D4(I),

and Ψ: S(Λ<)⇒ S(M<).

(i) There is a unique function Ψ← : Lim
←
λ0(i) → Lim

←
µ0(i) such that, for every i ∈ I, the

following diagram commutes

Lim
←
λ0(i) Lim

←
µ0(i).

µ0(i)λ0(i)

Ψ←

Ψi

πΛ<

i πM
<

i

(ii) If Ψ is continuous, then Ψ← ∈ Mor(Lim
←
Fi,Lim

←
Gi).

(iii) If Ψi is an embedding, for every i ∈ I, then Ψ← is an embedding.

Proof. (i) Let the assignment routine Ψ← : Lim
←
λ0(i) Lim

←
µ0(i), defined by

Θ 7→ Ψ←(Θ),
[
Ψ←(Θ)

]
i

:= Ψi(Θi); Θ ∈ Lim
←
λ0(i), i ∈ I.

First we show that Ψ← is well-defined i.e., Ψ←(Θ) ∈
∏<
i∈I µ0(i). If i 4 j, since Θ ∈

∏<
i∈I λ0(i),

we have that Θi = λ<ji(Θj), and since Ψ: S(Λ<)⇒ S(M<)

µ0(i) µ0(j),

λ0(i) λ0(j)

µ<ji

λ<ji

Ψi Ψj

[
Ψ←(Θ)

]
i

:= Ψi(Θi) = Ψi

(
λ<ji(Θj)

)
:=
(
Ψi ◦ λ<ji

)
(Θj) =

(
µ<ji ◦ Ψj

)
(Θj) := µ<ji

(
Ψj(Θj)

)
:=

µ<ji
([

Ψ←(Θ)
]
j

)
. Next we show that Ψ← is a function: Θ =Lim← λ0(i) Φ :⇔ ∀i∈I

(
Θi =λ0(i) Φi

)
⇒

∀i∈I
(
Ψi(Θi) =µ0(i) Ψi(Φi)

)
:⇔ ∀i∈I

([
Ψ←(Θ)

]
i

=µ0(i)

[
Ψ←(Φ)

]
i

)
:⇔ Ψ←(Θ) =Lim← µ0(i) Ψ←(Φ).

The commutativity of the diagram and the uniqueness of Ψ← are immediate to show.
(ii) By the

∨
-lifting of morphisms we have that Ψ← ∈ Mor(Lim

←
Fi,Lim

←
Gi)⇔ ∀i∈I∀g∈Gi

(
(g ◦

πM
<

i ) ◦ Ψ← ∈ Lim
←
Fi
)
. If i ∈ I and g ∈ Gi, then [(g ◦ πM<

i ) ◦ Ψ←](Θ) := g
(
[Ψ←(Θ)

]
i

)
:=

g
(
Ψi(Θi)

)
:=
(
g ◦ Ψi

)
(Θi) :=

[(
g ◦ Ψi

)
◦ πΛ<

i

]
(Θ), and g ◦ Ψi ∈ Fi, by the continuity of Ψ,

hence (g ◦ πM<

i ) ◦Ψ← :=
(
g ◦Ψi

)
◦ πΛ<

i ∈ Lim
←
Fi.

(iii) By definition we have that Ψ←(Θ) =Lim← µ0(i) Ψ←(Φ) :⇔ ∀i∈I
(
Ψi(Θi) =µ0(i) Ψi(Φi)

)
⇒

∀i∈I
(
Θi =λ0(i) Φi

)
:⇔ Θ =Lim← λ0(i) Φ.
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Proposition 6.6.4. If S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ), S(M<) := (µ0, µ
<
1 , φ

M<

0 , φM
<

1 ) and

S(N<) := (ν0, ν
<
1 , φ

N<

0 , φN
<

1 ) are contravariant direct spectra over (I,4), and if Ψ: S(Λ<)⇒
S(M<) and Ξ: S(M<)⇒ S(N<), then (Ξ ◦Ψ)← := Ξ← ◦Ψ←

λ0(i) µ0(i)

Lim
←
λ0(i) Lim

←
µ0(i)

ν0(i)

Lim
←
ν0(i).

Ψi Ξi

Ξ←Ψ←

πΛ4

i πM
4

i πN
4

i

(Ξ ◦Ψ)←

(Ξ ◦Ψ)i

Proof. The required equality is reduced to ∀i∈I
([

(Ξ◦Ψ)←(Θ)
]
i

=ν0(i)

[
Ξ←(Ψ←(Θ))

]
i

)
. If i ∈ I,

then
[
(Ξ ◦Ψ)←(Θ)

]
i

:= (Ξ ◦Ψ)i(Θi) := Ξi(Ψi(Θi)) := Ξi
([

Ψ←(Θ)
]
i

)
:=
[
Ξ←(Ψ←(Θ))

]
i
.

Theorem 6.6.5. Let S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ) be a contravariant direct spectrum over

(I,4), (J, e, cofJ) a cofinal subset of I, and S(Λ< ◦ e) :=
(
(λ0 ◦ e, λ1 ◦ e, φΛ<◦e

0 , φΛ<◦e
1

)
the

relative spectrum of S(Λ<) to J . Then

Lim
←
Fj ' Lim

←
Fi.

Proof. If Θ ∈
∏<
j∈J λ0(j), then, if j 4 j′, we have that Θj = λ<j′j

(
Θj′
)

:= λ<e(j′)e(j)
(
Θj′
)
. If

i ∈ I, then cofJ(i) ∈ J and ΘcofJ (i) ∈ λ0(e(cofJ(i))). Since i 4 e(cofJ(i)), we define the
operation φ : Lim

←
λ0(j) Lim

←
λ0(i), by the rule Θ 7→ φ(Θ), for every Θ ∈ Lim

←
λ0(j), where

[φ(Θ)]i := λ<e(cofJ (i))i

(
ΘcofJ (i)

)
∈ λ0(i); i ∈ I.

First we show that φ is well-defined i.e., φ(Θ) ∈
∏<
i∈I λ0(i) i.e., for every i, i′ ∈ I, i 4 i′ ⇒

[φ(Θ)]i = λ<i′i
(
[φ(Θ)]i′

)
. Working as in the proof of Lemma 6.5.11(ii), we get

λ<i′i
(
[φ(Θ)]i′

)
:= λ<i′i

(
λ<e(cofJ (i′))i′

(
ΘcofJ (i′)

))
:=
[
λ<i′i ◦ λ

<
e(cofJ (i′))i′

](
ΘcofJ (i′)

)
(6.1)
= λ<e(cofJ (i′))i

(
ΘcofJ (i′)

)
(6.2)
=
[
λ<e(cofJ (i))i ◦ λ

<
e(cofJ (i′))e(cofJ (i))

](
ΘcofJ (i′)

)
:= λ<e(cofJ (i))i

(
λ<e(cofJ (i′))e(cofJ (i))

(
ΘcofJ (i′)

))
= λ<e(cofJ (i))i

(
ΘcofJ (i)

)
:= [φ(Θ)]i.
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To show that φ is a function we consider the following equivalences:

φ(Θ) =Lim← λ0(i) φ(H) :⇔ ∀i∈I
([
φ(Θ)

]
i

=λ0(i)

[
φ(H)

]
i

)
:⇔ ∀i∈I

(
λ<e(cofJ (i))i

(
ΘcofJ (i)

)
=λ0(i) λ

<
e(cofJ (i))i

(
HcofJ (i)

))
, (1)

Θ =Lim← λ0(j) H :⇔ ∀j∈J
(
Θj =λ0(e(j)) Hj

)
(2).

To show that (1) ⇒ (2) we use the fact that e(cofJ(j)) = j, and since j 4 j, by the
extensionality of 4 we get j 4 e(cofJ(j)). Since Θj = λ<e(cofJ (i))i

(
ΘcofJ (i)

)
, and Hj =

λ<e(cofJ (i))i

(
HcofJ (i)

)
, we get (2). By the

∨
-lifting of morphisms φ ∈ Mor(Lim

←
Fj ,Lim

←
Fi) ⇔

∀i∈I∀f∈Fi
(
(f ◦ πS<

i ) ◦ φ ∈ Lim
←
Fj
)
. If Θ ∈

∏<
j∈J λ0(j), we have that

[(f ◦ πS
(Λ<)

i ) ◦ φ](Θ) := f
(
π
S(Λ<)
i (φ(Θ))

)
:= f

([
φ(Θ)

]
i

)
:= f

(
λ<e(cofJ (i))i

(
ΘcofJ (i)

))
:=
(
f ◦ λ<e(cofJ (i))i

)(
ΘcofJ (i)

)
:=
[(
f ◦ λ<e(cofJ (i))i

)
◦ πS(Λ<)◦e

cofJ (i)

]
(Θ),

hence
(
f ◦ πS(Λ<)

i

)
◦ φ :=

(
f ◦ λ<e(cofJ (i))i

)
◦ πS(Λ<)◦e

cofJ (i) ∈ Lim
←
Fj , as by definition λ<e(cofJ (i))i ∈

Mor(Fe(cofJ (i)),Fi), and hence

λ0(e(cofJ(i))) λ0(i)

R

λ<e(cofJ (i))i

ff ◦ λ<e(cofJ (i))i

f ◦ λ<e(cofJ (i))i ∈ Fe(cofJ (i)) := FcofJ (i). Let the operation θ : Lim
←
λ0(i) Lim

←
λ0(j), defined by

the rule H 7→ θ(H) := HJ , for every H ∈
∏<
i∈I λ0(i), where HJ

j := He(j) ∈ λ0(e(j)), for every

j ∈ J . We show that HJ ∈
∏
j∈J λ0(j). If j 4 j′, then

HJ
j = λ<e(j′)e(j)

(
HJ
j′
)

:⇔ He(j) = λ<e(j′)e(j)
(
He(j′)

)
,

which holds by the hypothesis H ∈
∏<
i∈I λ0(i). Moreover, we have that φ(HJ) = H :⇔

∀i∈I
([
φ(HJ)

]
i

=λ0(i) Hi

)
. If i ∈ I, and since i 4 e(cofJ(i)), we have that[

φ(HJ)
]
i

:= λ<e(cofJ (i))i

(
HJ

cofJ (i)

)
:= λ<e(cofJ (i))i

(
He(cofJ (i))

)
= Hi.

It is immediate to show that θ is a function. Moreover, θ(φ(Θ) = Θ, as if j ∈ J , then

φ(Θ)Jj := φ(Θ)e(j) := λ<e(cofJ (e(j))e(j)

(
ΘcofJ (e(j))

)
= Θj ,
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as by hypothesis Θj = λ<e(j′)e(j)(Θj′), with j 4 j′, and by (Cof1) we have that j =J (cofJ(e(j)),

hence by the extensionality of 4 we get j 4 (cofJ(e(j)). Finally, θ ∈ Mor
(
Lim
←
Fi,Lim

←
Fj
)
⇔

∀j∈J∀f∈Fj
((
f ◦ πS(Λ<)

j

)
◦ θ ∈ Lim

←
Fi
)
, which follows from the equalities

[(
f ◦ πS(Λ<)

j

)
◦ θ
]
(H) :=

(
f ◦ πS(Λ<)

j

)
(HJ)

:= f
(
HJ
j

)
:= f

(
He(j)

)
:=
(
f ◦ πS(Λ<)

e(j)

)
(H).

Proposition 6.6.6. If (I,4), (J,4) are directed sets, S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ) is a con-
travariant direct spectrum over (I,4) with Bishop spaces (Fi)i∈I and Bishop morphisms

(λ<i′i)(i,i′)∈D4(I), and S(M<) := (µ0, µ
<
1 , φ

M<

0 , φM
<

1 ) is a contravariant direct spectrum over

(J,4) with Bishop spaces (Gj)j∈J and Bishop morphisms (µ<j′j)(j,j′)∈D4(J), there is a function

× :

<∏
i∈I

λ0(i)×
<∏
j∈J

µ0(j)→
<∏

(i,j)∈I×J

λ0(i)× µ0(j) ∈ Mor
(
Lim
←
Fi × Lim

←
Gj ,Lim

←
(Fi × Gj)

)
.

Proof. We proceed as in the proof of Proposition 6.5.15.

6.7 Duality between direct and inverse limits of spectra

Proposition 6.7.1. Let F := (X,F ),G := (Y,G) and H := (Z,H) be Bishop spaces, and let
λ ∈ Mor(G,H), µ ∈ Mor(H,G). We define the mappings

λ+ : Mor(H,F)→ Mor(G,F), λ+(φ) := φ ◦ λ; φ ∈ Mor(H,F),

µ− : Mor(F ,H)→ Mor(F ,G), µ−(θ) := µ ◦ θ; θ ∈ Mor(F ,H),

Y

Z X Z

Y .

λ

φ

φ◦λ µ◦θ

θ

µ

+ : Mor(G,H)→ Mor(H → F ,G → F), λ 7→ λ+; λ ∈ Mor(G,H),

− : Mor(H,G)→ Mor(F → H,F → G), µ 7→ µ−; µ ∈ Mor(H,G).

Then + ∈ Mor
(
G → H, (H → F)→ (G → F)

)
and − ∈ Mor

(
H → G, (F → H)→ (F → G)

)
.

Proof. By definition and the
∨

-lifting of the exponential topology we have that

G → H :=

(
Mor(G,H),

h∈H∨
y∈Y

φy,h

)
, H → F :=

(
Mor(H,F),

f∈F∨
z∈Z

φz,f

)
,
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G → F :=

(
Mor(G,F),

f∈F∨
y∈Y

φy,f

)
,

(H → F)→ (G → F) :=

(
Mor((H,F)→ G → F)),

e∈G→F∨
ϕ∈Mor(H,F)

φϕ,e

)
,

e∈G→F∨
ϕ∈Mor(H,F)

φϕ,e =

y∈Y,f∈F∨
ϕ∈Mor(H,F)

φϕ,φy,f .

By the
∨

-lifting of morphisms we have that

+ ∈ Mor
(
G → H, (H → F)→ (G → F)

)
⇔ ∀ϕ∈Mor(H,F)∀y∈Y ∀f∈F

(
φϕ,φy,f ◦

+ ∈ G→ H
)
.

If λ ∈ Mor(G,H), we have that φϕ,φy,f ◦ +](λ) := φϕ,φy,f (λ+) := (φy,f ◦λ+)(ϕ) := (φy,f (ϕ◦λ) :=
[f ◦ (ϕ ◦ λ)](y) := [(f ◦ ϕ) ◦ λ](y) := φy,f◦ϕ(λ) i.e., φϕ,φy,f ◦ + := φy,f◦ϕ ∈ G → H, since
ϕ ∈ Mor(H,F) and hence f ◦ ϕ ∈ H. For the mapping − we work similarly.

Next we see how with the use of the exponential Bishop topology we can get a contravatiant
spectrum from a covariant one, and vice versa.

Proposition 6.7.2. (A) Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4) and F := (X,F ) a
Bishop space.

(i) If S(Λ4) → F := (µ0, µ
<
1 , φ

M<

0 , φM
<

1 ), where M< := (µ0, µ
<
1 ) is a contravariant direct

family of sets over (I,4) with µ0(i) := Mor(Fi,F) and

µ<1 (i, j) :=
(
Mor(Fj ,F),Mor(Fi,F), (λ4ij)

+
)
,

and if φM
<

0 (i) := Fi → F and φM
<

1 (i, j) :=
(
Fi → F, Fj → F, [(λ4ij)

+]∗
)
, then S4 → F is

a contravariant (I,4)-spectrum with Bishop spaces (Mor(Fi,F))i∈I and Bishop morphisms(
(λ4ij)

+
)

(i,j)∈D4(I)
.

(ii) If F → S4 := (ν0, ν
4
1 , φ

N4

0 , φN
4

1 ), where N4 := (ν0, ν
4
1 ) is a direct family of sets over

(I,4) with ν0(i) := Mor(F ,Fi) and

ν41 (i, j) :=
(
Mor(F ,Fi),Mor(F ,Fj), (λ4ij)

−),
and if φN

4

0 (i) := F → Fi and φN
4

1 (i, j) :=
(
F → Fj , F → Fi, [(λ

4
ij)
−]∗
)
, then F → S4

is a covariant (I,4)-spectrum with Bishop spaces (Mor(F ,Fi))i∈I and Bishop morphisms(
(λ4ij)

−)
(i,j)∈D4(I)

.

(B) Let S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ) be a contravariant (I,4)-spectrum, and F := (X,F ) a
Bishop space.

(i) If S(Λ<)→ F := (µ0, µ
4
1 , φ

M4

0 , φM
4

1 ), where M4 := (µ0, µ
4
1 ) is a direct family of sets over

(I,4) with µ0(i) := Mor(Fi,F) and

µ41 (i, j) :=
(
Mor(Fi,F),Mor(Fj ,F), (λ<ji)

+
)
,

and if φM
4

0 (i) := Fi → F and φM
4

1 (i, j) :=
(
Fj → F, Fi → F, [(λ<ji)

+]∗
)
, then S< → F is an

(I,4)-spectrum with Bishop spaces (Mor(Fi,F))i∈I and Bishop morphisms
(
(λ<ji)

+
)

(i,j)∈D4(I)
.
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(ii) If F → S(N<) := (ν0, ν
<
1 , φ

N<

0 , φN
<

1 ), where N< := (ν0, ν
<
1 ) is a contravariant direct family

of sets over (I,4) with ν0(i) := Mor(F ,Fi) and

ν<1 (i, j) :=
(
Mor(F ,Fj),Mor(F ,Fi), (λ<ji)

−),
and if φN

<

0 (i) := F → Fi and φN
<

1 (i, j) :=
(
F → Fi, F → Fj , [(λ

<
ji)
−]∗
)
, then F → S4 is

a contravariant (I,4)-spectrum with Bishop spaces (Mor(F ,Fi)i∈I and Bishop morphisms(
(λ4ij)

−)
(i,j)∈D4(I)

.

Proof. We prove only the case (A)(i) and for the other cases we work similarly. It suffices to
show that if i 4 j 4 k, then the following diagram commutes

Mor(Fj ,F) Mor(Fk,F).

Mor(Fi,F)

(
λ4jk
)+

(
λ4ij
)+ (

λ4ik
)+

If φ ∈ Mor(Fk,F), then
(
λ4ij
)+[(

λ4jk
)+

(φ)
]

:=
(
λ4ij
)+

[φ◦λ4jk] := (φ◦λ4jk)◦λ4ij := φ◦(λ4jk◦λ
4
ij) =

φ ◦ λ4ik :=
(
λ4ik
)+

(φ).

Similarly to the
∨

-lifting of the product topology, if S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ) a con-
travariant direct spectrum over (I,4) with Bishop spaces

(
Fi =

∨
F0i

)
i∈I , then

<∏
i∈I

Fi =

f∈F0i∨
i∈I

(
f ◦ πΛ<

i

)
.

Theorem 6.7.3 (Duality principle). Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I,4) with
Bishop spaces (Fi)i∈I and Bishop morphisms (λ4ij)(i,j)∈D4(I). If F := (X,F ) is a Bishop space

and S(Λ4)→ F := (µ0, µ
<
1 , φ

M<

0 , φM
<

1 ) is the contravariant direct spectrum over (I,4) defined
in Proposition 6.7.2 (A)(i), then

Lim
←

(Fi → F) ' [(Lim
→
Fi)→ F ].

Proof. First we determine the topologies involved in the required Bishop isomorphism. By
definition and by the above remark on the

∨
-lifting of the

∏<-topology we have that

Lim
←

(Fi → F) :=

( <∏
i∈I

µ0(i),

g∈Fi→F∨
i∈I

g ◦ πS(Λ4)→F
i

)
,

Fi → F :=

f∈F∨
x∈λ0(i)

φx,f ,

g∈Fi→F∨
i∈I

g ◦ πS4→F
i =

x∈λ0(i),f∈F∨
i∈I

φx,f ◦ π
S(Λ4)→F
i ,
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Lim
→
Fi :=

(
Lim
→
λ0(i),

∨
Θ∈

∏4
i∈I Fi

eql0fΘ

)
,

(
Lim
→
Fi
)
→ F :=

(
Mor(Lim

→
Fi,F),

f∈F∨
eqlΛ

4
0 (i,x)∈Lim→ λ0(i)

φ
eqlΛ

4
0 (i,x),f

)
,

φ
eqlΛ

4
0 (i,x),f

(h) := (f ◦ h)
(
eqlΛ4

0 (i, x)
)

R.

XLim
→
λ0(i)

f ∈ Ff ◦ h

h∈Mor(Lim
→
Fi,F)

If H ∈
∏<
i∈I Mor(Fi,F), let the operation θ(H) : Lim

→
λ0(i) X, defined by

θ(H)
(
eqlΛ4

0 (i, x)
)

:= Hi(x); eqlΛ4

0 (i, x) ∈ Lim
→
λ0(i).

We show that θ(H) is a function. If

eqlΛ4

0 (i, x) =Lim→ λ0(i) eql
Λ4

0 (j, y)⇔ ∃k∈I
(
i, j 4 k & λ4ik(x) =λ0(k) λ

4
jk(y)

)
,

we show that θ(H)
(
eqlΛ4

0 (i, x)
)

:= Hi(x) =X Hj(y) =: θ(H)
(
eqlΛ4

0 (j, y)
)
. By the equalities

Hi =
(
λ4ik
)+

(Hk) = Hk ◦ λ4ik and Hj =
(
λ4jk
)+

(Hk) = Hk ◦ λ4jk we get

Hi(x) =
(
Hk ◦ λ4ik

)
(x) := Hk

(
λ4ik(x)

)
=X Hk

(
λ4jk(y)

)
:=
(
Hk ◦ λ4jk

)
(y) := Hj(y).

Next we show that θ(H) ∈ Mor(Lim
→
Fi,F) :⇔ ∀f∈F

(
f ◦ θ(H) ∈ Lim

→
Fi
)
. If f ∈ F , then the

dependent assignment routine Θ :
c
i∈I Fi, defined by Θi := f ◦Hi, for every i ∈ I

R

Xλ0(i)

f ∈ Ff ◦Hi

Hi∈Mor(Fi,F)

is in
∏4
i∈I Fi i.e., if i 4 j, then Θi =

(
λ4ij
)∗

(Θj) = Θj ◦λ4ij , since Θi := f ◦Hi = f ◦
(
Hj ◦λ4ij

)
=

(f ◦Hj) ◦ λ4ij := Θj ◦ λ4ij . Hence f ◦ θ(H) := eql0fΘ ∈ Lim
→
Fi, since

[f ◦ θ(H)]
(
eqlΛ4

0 (i, x)
)

:= f
(
Hi(x)

)
:= (f ◦Hi)(x) := fΘ(i, x) := eql0fΘ

(
eqlΛ4

0 (i, x)
)
.

Consequently, the operation θ :
∏<
i∈I Mor(Fi,F)  Mor(Lim

→
Fi,F), defined by the rule

H 7→ θ(H), is well-defined. Next we show that θ is an embedding.

θ(H) = θ(K) :⇔ ∀
eqlΛ

4
0 (i,x)∈Lim→ λ0(i)

(
θ(H)(eqlΛ4

0 (i, x)) = θ(K)(ωS4(i, x))
)

:⇔ ∀i∈I
(
Hi(x) =X Ki(x)

)
:⇔ H = K.
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Next we show that θ ∈ Mor
(
Lim
←

(Fi → F), (Lim
→
Fi)→ F

)
i.e.,

∀
eqlΛ

4
0 (i,x)∈Lim→ λ0(i)

∀f∈F
(
φ

eqlΛ
4

0 (i,x),f
◦ θ ∈

f∈F∨
i∈I,x∈λ0(i)

φx,f ◦ π
S(Λ4)→F
i

)
.

By the equalities

[φ
eql

Λ4(i,x)
0 ,f

◦ θ](H) := φ
eqlΛ

4
0 (i,x),f

(θ(H)) := [f ◦ θ(H)]
(
eqlΛ4

0 (i, x)
)

:= f
(
Hi(x)

)
,

[φx,f ◦ πS
4→F

i ](H) := φx,f
(
Hi)
)

:= f
(
Hi(x)

)
,

we get φ
eqlΛ

4
0 (i,x),f

◦θ = φx,f ◦π
S(Λ4)→F
i . Let φ : Mor(Lim

→
Fi,F) 

∏<
i∈I Mor(Fi,F) be defined

by h 7→ φ(h) := Hh, where Hh :
c
i∈I Mor(Fi,F) is defined by Hh

i := h ◦ eqli, for every i ∈ I

X.

Lim
→
λ0(i)λ0(i)

hHh
i

eqli

By Proposition 6.5.5(i) Hi ∈ Mor(Fi,F), as a composition of Bishop morphisms. To show
that Hh ∈

∏
i∈I Mor(Fi,F), let i 4 j, and by Proposition 6.5.5(ii) we get Hh

i := h ◦ eqli =

h◦
(
eqlj◦λ

4
ij

)
:= (h◦eqlj)◦λ

4
ij := Hj◦λ4ij . Moreover, θ(Hh) := h, since θ(Hh)

(
eqlΛ4

0 (i, x)
)

:=

Hi(x) := (h ◦ eqli(x) := h
(
eqlΛ4

0 (i, x)
)
. Clearly, φ is a function. Moreover Hθ(H) := H, as,

for every i ∈ I we have that
(
H
θ(H)
i

)
(x) := (θ(H) ◦ eqli)(x) := θ(H)

(
eqlΛ4

0 (i, x)
)

:= Hi(x).
Finally we show that φ ∈ Mor

(
(Lim

]to
Fi)→ F ,Lim

←
(Fi → F)

)
if and only if

∀i∈I∀x∈λ0(i)∀f∈F
(
φx,f ◦ φ ∈

f∈F∨
eqlΛ4

0 (i,x)∈Lim
→
λ0(i)

φ
eqlΛ4

0 (i,x),f

)
.

If h ∈ Mor(Lim
→
Fi,F), then

[
φx,f ◦ π

S(Λ4)→F
i ) ◦ φ

]
(h := (φx,f ◦ π

S(Λ4)→F
i )(Hh) := φx,f

(
Hh
i

)
:= φx,f (h ◦ eqli) := f

[
(h ◦ eqli)(x)

]
:= (f ◦ h)

(
eqlΛ4

0 (i, x)
)

:= φ
eqlΛ4

0 (i,x),f
(h).

With respect to the possible dual to the previous theorem i.e., the isomorphism Lim
→

(Fi →
F) ' [(Lim

←
Fi)→ F ], what we can show is the following proposition.

Proposition 6.7.4. Let S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ) be a contravariant direct spectrum over
(I,4) with Bishop spaces (Fi)i∈I and Bishop morphisms (λ�ji)(i,j)∈D4(I). If F := (X,F ) is a

Bishop space and S(Λ<)→ F := (µ0, µ
4
1 , φ

M4

0 , φM
4

1 ) is the (I,4)-directed spectrum defined in
Proposition 6.7.2 (B)(i), there is a function ̂ : Lim

→
[Mor(Fi,F)]→ Mor(Lim

←
Fi,F) such that
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the following hold:

(i) ̂ ∈ Mor
(
Lim
→

(Fi → F), (Lim
←
Fi)→ F

)
.

(ii) If for every j ∈ J and every y ∈ λ0(j) there is Θy ∈
∏<
i∈I λ0(i) such that Θy(j) =λ0(j) y,

then ̂ is an embedding of Lim
→

[Mor(Fi,F)] into Mor(Lim
←
Fi,F).

Proof. We proceed similarly to the proof of Theorem 6.7.3.

Theorem 6.7.5. Let S(Λ<) := (λ0, λ
<
1 , φ

Λ<

0 , φΛ<

1 ) be a contravariant direct spectrum over
(I,4) with Bishop spaces (Fi)i∈I and Bishop morphisms (λ≺ji)(i,j)∈D4(I). If F := (X,F ) is a

Bishop space and F → S(Λ<) := (ν0, ν
<
1 , φ

<

0 , φ
N<

1 ) is the contravariant direct spectrum over
(I,4), defined in Proposition 6.7.2 (B)(ii), then

Lim
←

(F → Fi) ' [F → Lim
←
Fi].

Proof. First we determine the topologies involved in the required Bishop isomorphism:

Lim
←

(F → Fi) :=

( <∏
i∈I

Mor(F ,Fi),
g∈F→Fi∨
i∈I

g ◦ πF→S(Λ<)
i

)
,

g∈F→Fi∨
i∈I

g ◦ πF→S<

i =

f∈Fi∨
i∈I,x∈λ0(i)

φx,f ◦ π
F→S(Λ<)
i ,

Lim
←
Fi :=

( <∏
i∈I

λ0(i),

f∈Fi∨
i∈I

f ◦ πS(Λ<)
i

)
,

F → Lim
←
Fi :=

(
Mor(F ,Lim

←
Fi),

g∈Lim
←
Fi∨

x∈X
φx,g

)
,

g∈Lim
←
Fi∨

x∈X
φx,g =

f∈Fi∨
x∈X,i∈I

φ
x,f◦πS(Λ<)

i

.

If H ∈
∏<
i∈I Mor(F ,Fi), and if i 4 j, then Hi = ν<ji(Hj) =

(
λ<ji
)−

(Hj) = λ<ji ◦Hj

λ0(i).

λ0(j)X

λ<jiHi

Hj

Let the operation e(H) : X  
∏<
i∈I λ0(i), defined by x 7→ [e(H)](x), where

[
[e(H)](x)

]
i

:=

Hi(x), for every i ∈ I. First we show that [e(H)](x) ∈
∏<
i∈I λ0(i). If i 4 j, then[

[e(H)](x)
]
i

:= Hi(x) =
(
λ<ji ◦Hj

)
(x) := λ<ji

(
Hj(x)

)
:= λ<ji

([
[e(H)](x)

]
j

)
. Next we show that

e(H) is a function. If x =X x′, then ∀i∈I
(
Hi(x) =λ0(i) Hi(x

′)
)

:⇔ ∀i∈I
([

[e(H)](x)
]
i

=λ0(i)[
[e(H)](x′)

]
i

)
:⇔ [e(H)](x) =∏<

i∈I λ0(i)
[e(H)](x′). By the

∨
-lifting of morphisms e(H) ∈
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Mor(F ,Lim
←
Fi)⇔ ∀i∈I∀f∈Fi

((
f ◦ πS(Λ<)

i

)
◦ e(H) ∈ F

)
. Since [(f ◦ πS(Λ<)

i ) ◦ e(H)](x) :=
(
f ◦

π
S(Λ<)
i

)(
[e(H)](x)

)
:= f

(
Hi(x)

)
:= (f ◦Hi)(x), we get

(
f ◦πS(Λ<)

i

)
◦ e(H) := f ◦Hi ∈ F , since

f ∈ Fi and Hi ∈ Mor(F ,Fi). Hence, the operation e :
∏<
i∈I Mor(F ,Fi)  Mor(F ,Lim

←
Fi),

defined by the rule H 7→ e(H), is well-defined. Next we show that e is an embedding. If
H,K ∈

∏<
i∈I Mor(F ,Fi), then

e(H) = e(K) :⇔ ∀x∈X
(
[e(H)](x) =∏<

i∈I λ0(i)
[e(K)](x)

)
:⇔ ∀x∈X∀i∈I

(
Hi(x) =λ0(i) Ki(x)

)
:⇔ ∀i∈I∀x∈X

(
Hi(x) =λ0(i) Ki(x)

)
:⇔ ∀i∈I

(
Hi =Mor(F,Fi) Ki

)
:⇔ H =∏<

i∈I Mor(F,Fi)
K.

By the
∨

-lifting of morphisms we show that

e ∈ Mor(Lim
←

(F → Fi),F → Lim
←
Fi)⇔ ∀i∈I∀f∈Fi

(
φ
x,f◦πS(Λ<)

i

◦ e ∈ Lim
←

(F → Fi)
)

(
φ
x,f◦πS(Λ<)

i

◦ e
)
(H) := φ

x,f◦πS(Λ<)
i

(
e(H)

)
:=
[
(f ◦ πS(Λ<)

i ) ◦ e(H)
]
(x)

:= (f ◦ πS(Λ<)
i )

(
[e(H)](x)

)
:= f

(
[e(H)(x)]i

)
:= f

(
Hi(x)

)
:= (f ◦Hi)(x)

:= φx,f
(
Hi

)
:=
[
φx,f ◦ π

F→S(Λ<)
i

]
(H)

we get φ
x,f◦πS(Λ<)

i

◦ e := φx,f ◦ π
F→S(Λ<)
i ∈ Lim

←
(F → Fi). Let φ : Mor(F ,Lim

←
Fi)  ∏<

i∈I Mor(F ,Fi), defined by the rule µ 7→ Hµ, where for every µ : X →
∏<
i∈I λ0(i) ∈

Mor(F ,Lim
←
Fi) i.e., ∀i∈I∀f∈Fi

((
f ◦ πS(Λ<)

i

)
◦ µ ∈ F

)
, let

Hµ :
k

i∈I
Mor(F ,Fi), [Hµ]i : X → λ0(i), Hµ

i (x) := [µ(x)]i; x ∈ X, i ∈ I.

First we show that Hµ
i ∈ Mor(F ,Fi) :⇔ ∀f∈Fi

(
f ◦ Hµ

i ∈ F
)
. If f ∈ Fi, and x ∈ X, then

[f ◦Hµ
i (x) := f

(
Hµ
i

)
:= f

(
[µ(x)]i

)
:=
[(
f ◦πS

(Λ<)
i

)
◦µ
]
(x) i.e., f ◦Hµ

i :=
(
f ◦πS(Λ<)

i

)
◦µ ∈ F ,

as µ ∈ Mor(F ,Lim
←
Fi). Since µ(x) ∈

∏<
i∈I λ0(i), [µ(x)]i = λ<ji

(
[µ(x)]j

)
, for every i, j ∈ I such

that i 4 j. To show that Hµ ∈
∏<
i∈I Mor(F ,Fi), let i 4 j. Then

Hµ
i = λ<ji ◦H

µ
j ⇔ ∀x∈X

(
Hµ
i (x) =λ0(i)

[
λ<ji ◦H

µ
j

]
(x)
)

:⇔ ∀x∈X
(
[µ(x)]i =λ0(i)

[
λ<ji
(
[µ(x)]j

))
,
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which holds by the previous remark on µ(x). It is immediate to show that φ is a function. To
show that φ ∈ Mor

(
[F → Lim

←
Fi],Lim

←
(F → Fi)

)
, we show that

∀i∈I∀f∈Fi∀x∈λ0(i)

([
φx,f ◦ π

F→S(Λ<)
i

]
◦ φ ∈

f∈Fi∨
x∈X,i∈I

φ
x,f◦πS(Λ<)

i

)
,

[[
φx,f ◦ π

F→S(Λ<)
i

]
◦ φ
]
(µ) :=

[
φx,f ◦ π

F→S(Λ<)
i

]
(Hµ)

:= φx,f
(
Hµ
i

)
:= (f ◦Hµ

i )(x)

:= f
(
µ(x)i

)
:= (f ◦ πS(Λ<)

i ◦ µ)(x)

:=
[
φ
x,f◦πS(Λ<)

i

]
(µ).

Moreover, φ(e(H)) := H, as H
e(H)
i (x) := [e(H)(x)]i := Hi(x), and e(φ(µ)) = µ, as

e(Hµ) = µ :⇔ ∀x∈X
(
[e(Hµ)](x) =∏<

i∈I λ0(i)
µ(x)

)
:⇔ ∀x∈X∀i∈I

(
Hµ
i (x) =λ0(i) [µ(x)]i

)
:⇔ ∀x∈X∀i∈I

(
[µ(x)]i =λ0(i) [µ(x)]i

)
.

With respect to the possible dual to the previous theorem i.e., the isomorphism Lim
→

(F →
Fi) ' (F → Lim

→
Fi), what we can show is the following proposition.

Proposition 6.7.6. Let S(Λ4) := (λ0, λ
4
1 , φ

Λ4

0 , φΛ4

1 ) ∈ Spec(I) with Bishop spaces (Fi)i∈I
and Bishop morphisms (λ≺ij)(i,j)∈D4(I). If F := (X,F ) is a Bishop space and F → S(Λ4) :=

(ν0, ν
4
1 , φ

N4

0 , φN
4

1 ) is the (I,4)-direct spectrum defined in Proposition 6.7.2 (A)(ii), there is a
map ̂ : Lim

→
[Mor(F ,Fi)]→ Mor(F ,Lim

→
Fi) with ̂ ∈ Mor

(
(Lim
→

(F → Fi),F → Lim
→
Fi
)
.

Proof. We proceed similarly to the proof of Theorem 6.7.5.

6.8 Spectra of Bishop subspaces

Definition 6.8.1. If Λ(X) := (λ0, EX , λ1) ∈ Fam(I,X), a family of Bishop subspaces of

the Bishop space F := (X,F ) associated to Λ(X) is a pair ΦΛ(X) :=
(
φ

Λ(X)
0 , φ

Λ(X)
1

)
, where

φ
Λ(X)
0 : I  V0 and φ

Λ(X)
1 :

c
(i,j)∈D(I) F

(
φ

Λ(X)
0 (i), φ

Λ(X)
0 (j)

)
such that the following conditions

hold:

(i) φ
Λ(X)
0 (i) := Fi := F|λ0(i) :=

∨
f∈F f ◦ EXi , for every i ∈ I.

(ii) φ
Λ(X)
1 (i, j) := λ∗ji, for every (i, j) ∈ D(I).

We call the structure SF (Λ(X)) := (λ0, EX , λ1, F, φ
Λ(X)
0 , φ

Λ(X)
1 ) a spectrum of subspaces of F

over I, or an I-spectrum of subspaces of F with Bishop subspaces (Fi)i∈I and Bishop morphisms

(EXi )i∈I . If SF (M(X)) := (µ0,ZX , µ1, F, φ
M(X)
0 , φ

M(X)
1 ) is an I-spectrum of subspaces of F

with Bishop subspaces (Gi)i∈I and Bishop morphisms (ZXi )i∈I , a subspaces spectrum-map
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Ψ from SF (Λ(X)) to SF (M(X)), in symbols Ψ: SF (Λ(X)) ⇒ SF (M(X)), is a family of
subsets-map Ψ: Λ(X)⇒M(X). If F is clear from the context, we may omit the symbol F as
a subscript in the above notations.

The topology Fi on λ0(i) is the relative Bishop topology of F to λ0(i), and it is the least
topology that makes the embedding EXi a Bishop morphism from Fi to F . In contrast to the
external framework of a spectrum of Bishop spaces, we can prove that the transport maps λij
of a spectrum of subspaces SF (Λ(X)) are always Bishop morphisms. The extensionality of a
Bishop topology F on a set X as a subset of F(X) is crucial to the next proof.

Remark 6.8.2. Let SF (Λ(X)) := (λ0, EX , λ1, F, φ
Λ(X)
0 , φ

Λ(X)
1 ) be an I-spectrum of sub-

spaces of F := (X,F ) with Bishop subspaces (Fi)i∈I and Bishop morphisms (EXi )i∈I , and

SF (M(X)) := (µ0,ZX , µ1, F, φ
M(X)
0 , φ

M(X)
1 ) an I-spectrum of subspaces of F with Bishop

subspaces (Gi)i∈I and Bishop morphisms (ZXi )i∈I .

(i) S(Λ) := (λ0, λ1, φ
Λ(X)
0 , φ

Λ(X)
1 ) is an I-spectrum with Bishop spaces (Fi)i∈I and Bishop

isomorphisms (λij)(i,j)∈D(I).

(ii) If Ψ: S(Λ(X))⇒ S(M(X)), then Ψ is continuous i.e., Ψi ∈ Mor(Fi,Gi), for every i ∈ I.

Proof. (i) It suffices to show that λij ∈ Mor(Fi,Fj), for every (i, j) ∈ D(I). By the
∨

-lifting of
morphisms we have that λij ∈ Mor(Fi,Fj)⇔ ∀f∈F

(
(f◦EXj )◦λij ∈ Fi

)
:⇔ ∀f∈F

(
f◦(EXj ◦λij) ∈

Fi
)
. If we fix some f ∈ F , and as EXj ◦λij =F(λ0(i),X) EXi , we get f ◦ (EXj ◦λij) =F(λ0(i)) f ◦EXi .

Since f ◦ EXi ∈ Fi by the extensionality of Fi we get f ◦ (EXj ◦ λij) ∈ Fi.
(ii) By the

∨
-lifting of morphisms we have that Ψi ∈ Mor(Fi,Gi) ⇔ ∀f∈F

(
(f ◦ ZXi ) ◦ Ψi ∈

Fi
)

:⇔ ∀f∈F
(
f ◦ (ZXi ◦Ψi) ∈ Fi

)
. Since Ψ: Λ(X) ⇒ M(X), we get ZXi ◦Ψi =F(λ0(i),X) EXi ,

and hence f ◦ (ZXi ◦ Ψi) =F(λ0(i)) f ◦ EXi , for every i ∈ I and f ∈ F . By the definition

of Fi we have that f ◦ EXi ∈ Fi, and hence by the extensionality of Fi we conclude that
f ◦ (ZXi ◦Ψi) ∈ Fi.

Definition 6.8.3. Let SpecF (I,X) be the totality of spectra of subspaces of the Bishop space
F := (X,F ) over I, equipped with the equality of Spec(I,X).

Definition 6.8.4. Let SF (Λ(X)) :=
(
λ0, EX , λ1, F, φ

Λ(X)
0 , φ

Λ(X)
1

)
∈ SpecF (I,X) with Bishop

subspaces (Fi)i∈I and Bishop morphisms (EXi )i∈I . The canonical Bishop topology on the
interior union

⋃
i∈I λ0(i) is the relative topology of F to it i.e.,

⋃
i∈I
Fi :=

(⋃
i∈I

λ0(i),
⋃
i∈I

Fi

)
,

⋃
i∈I

Fi :=
∨
f∈F

f ◦ eΛ(X)⋃ ,

(
f ◦ eΛ(X)⋃ )

(i, x) := f(EXi (x)); (i, x) ∈
⋃
i∈I

λ0(i).

The canonical Bishop topology on
⋂
i∈I λ0(i) is the relative topology of F to it i.e.,

⋂
i∈I
Fi :=

(⋂
i∈I

λ0(i),
⋂
i∈I

Fi

)
,
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⋂
i∈I

Fi :=
∨
f∈F

f ◦ eΛ(X)⋂ ,

(
f ◦ eΛ(X)⋂ )

(Φ) := f(EXi0 (Φi0)); Φ ∈
⋂
i∈I

λ0(i).

Next follows the continuous-analogue to Proposition 4.3.6, using repeatedly the
∨

-lifting
of morphisms and the extensionality of a Bishop topology.

Proposition 6.8.5. Let S(Λ(X)) := (λ0, EX , λ1, F, φ
Λ(X)
0 , φ

Λ(X)
1 ) ∈ SpecF (I,X) with Bishop

subspaces (Fi)i∈I and Bishop morphisms (EXi )i∈I , S(M(X)) := (µ0,ZX , µ1, F, φ
M(X)
0 , φ

M(X)
1 ) ∈

SpecF (I,X) with Bishop subspaces (Gi)i∈I and Bishop morphisms (ZXi )i∈I , and Ψ: S(Λ(X))⇒
S(M(X)).

(i) e
Λ(X)
i ∈ Mor(Fi,

⋃
i∈I Fi), for every i ∈ I.

(ii)
⋃

Ψ ∈ Mor(
⋃
i∈I Fi,

⋃
i∈I Gi).

(iii) π
Λ(X)
i ∈ Mor(

⋂
i∈I Fi,Fi), for every i ∈ I.

(iv)
⋂

Ψ ∈ Mor(
⋂
i∈I Fi,

⋂
i∈I Gi).

Proof. (i) e
Λ(X)
i ∈ Mor(Fi,

⋃
i∈I Fi) ⇔ ∀f∈F

((
f ◦ eΛ(X)⋃ )

◦ eΛ(X)
i ∈ Fi

)
. If f ∈ F , then(

f ◦ eΛ(X)⋃ )
◦ eΛ(X)

i := f ◦ EXi ∈ Fi, since, for every x ∈ λ0(i), we have that
[(
f ◦ eΛ(X)⋃ )

◦
e

Λ(X)
i

]
(x) :=

(
f ◦ eΛ(X)⋃ )

(i, x) :=
(
f ◦ EXi )(x).

(ii)
⋃

Ψ ∈ Mor(
⋃
i∈I Fi,

⋃
i∈I Gi)⇔ ∀f∈F

((
f ◦eM(X)⋃ )

◦
⋃

Ψ ∈
⋃
i∈I Fi

)
, and

(
f ◦eM(X)⋃ )

◦
⋃

Ψ =

f ◦ eΛ(X)⋃ ∈
⋃
i∈I Fi, as[(
f ◦ eM(X)⋃ )

◦
⋃

Ψ
]
(i, x) :=

(
f ◦ eM(X)⋃ )(

(i,Ψi(x))
)

:= f
(
ZXi (Ψi(x))

)
=
(
(f ◦ EXi ) ◦Ψi

)
(x) = (f ◦ EXi )(x) :=

(
f ◦ eΛ(X)⋃ )

(i, x).

(iii) π
Λ(X)
i ∈ Mor(

⋂
i∈I Fi,Fi) ⇔ ∀f∈F

(
(f ◦ EXi ) ◦ πΛ(X

i ) ∈
⋂
i∈I Fi

)
, and (f ◦ EXi ) ◦ πΛ(X)

i =

f ◦ eΛ(X)⋂ ∈
⋂
i∈I Fi, as

[
(f ◦ EXi ) ◦ πΛ(X)

i

]
(Φ) := f(EXi (Φi)) = f(EXi0 (Φi0)) :=

(
f ◦ eΛ(X)⋂ )

(Φ).

(iv)
⋂

Ψ ∈ Mor(
⋂
i∈I Fi,

⋂
i∈I Gi) ⇔ ∀f∈F

((
f ◦ eM(X)⋂ )

◦
⋂

Ψ ∈
⋂
i∈I Fi

)
, and

(
f ◦ eM(X)⋂ )

◦⋂
Ψ = f ◦ eΛ(X)⋃ ∈

⋃
i∈I Fi, as

[(
f ◦ eM(X)⋂ )

◦
⋂

Ψ
]
(Φ) :=

(
f ◦ eM(X)⋂ )(

ZXi0 (Ψi0(Φi0))
)

=(
f ◦ eM(X)⋂ )(

EXi0 (Φi0)
)

:= f
(
EXi0 (Φi0)

)
:=
((
f ◦ eM(X)⋂ )

(Φ).

The notions mentioned in the next proposition were defined in Proposition 4.3.8.

Proposition 6.8.6. Let F := (X,F ), (G := (Y,G) be Bishop spaces, h : X → Y ∈ Mor(F ,G),

S(Λ(X)) := (λ0, EX , λ1, F ;φ
Λ(X)
0 , φ

Λ(X)
1 ) ∈ SpecF (I,X) with Bishop subspaces (Fi)i∈I and

Bishop morphisms (EXi )i∈I , S(M(Y )) := (µ0,ZY , µ1, G, φ
M(Y )
0 , φ

M(Y )
1 ) ∈ SpecG(I, Y ) with

Bishop subspaces (Gi)i∈I and Bishop morphisms (ZYi )i∈I , and Ψ : Λ(X)
h⇒M(Y ).

(i) Ψ is continuous i.e., Ψi ∈ Mor(Fi,Gi), for every i ∈ I.

(ii)
⋃
h Ψ ∈ Mor(

⋃
i∈I Fi,

⋃
i∈I Gi).

(iii)
⋂
h Ψ ∈ Mor(

⋂
i∈I Fi,

⋂
i∈I Gi).
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Proof. (i) Ψi ∈ Mor(Fi,Gi) ⇔ ∀g∈G
(
(g ◦ Ei) ◦ Ψi ∈ Fi, and if g ∈ G, then (g ◦ ZYi ) ◦ Ψi :=

g ◦ (ZYi ◦Ψi) = g ◦ (h ◦ EXi ) := (g ◦ h) ◦ EXi ∈ Fi, as h ∈ Mor(F ,G), and hence g ◦ h ∈ F .

(ii) and (iii) Working as in the proof of the Proposition 6.8.5(ii) and (iv), we get
(
g ◦ eM(X)⋃ )

◦⋃
h Ψ = (g ◦ h) ◦ eΛ(X)⋃ and

(
f ◦ eM(X)⋂ )

◦
⋂
h Ψ = (g ◦ h) ◦ eΛ(X)⋂ , for every g ∈ G.

6.9 Direct spectra of Bishop subspaces

Definition 6.9.1. If Λ4(X) := (λ0, EX , λ41 ) ∈ Fam(I,4, X), a family of Bishop subspaces

of the Bishop space F := (X,F ) associated to Λ4(X) is a pair ΦΛ4(X) :=
(
φ

Λ4(X)
0 , φ

Λ4(X)
1

)
,

where φ
Λ4(X)
0 : I  V0 and φ

Λ4(X)
1 :

c
(i,j)∈D4(I) F

(
φ

Λ4(X)
0 (j), φ

Λ4(X)
0 (i)

)
such that the follow-

ing conditions hold:

(i) φ
Λ4(X)
0 (i) := Fi := F|λ0(i) :=

∨
f∈F f ◦ EXi , for every i ∈ I.

(ii) φ
Λ4(X)
1 (i, j) :=

(
λ4ij
)∗

, for every (i, j) ∈ D4(I).

We call the structure SF (Λ4(X)) := (λ0, EX , λ41 , F, φ
Λ4(X)
0 , φ

Λ4(X)
1 ) a (covariant)direct spec-

trum of subspaces of F over I, or an (I,4I)-spectrum of subspaces of F with Bishop subspaces

(Fi)i∈I and Bishop morphisms (EXi )i∈I . If SF (M4(X)) := (µ0,ZX , µ41 , F, φ
M4(X)
0 , φ

M4(X)
1 )

is an (I,4I)-spectrum of subspaces of F with Bishop subspaces (Gi)i∈I and Bishop mor-
phisms (ZXi )i∈I , a subspaces direct spectrum-map Ψ from SF (Λ4(X)) to SF (M4(X)), in
symbols Ψ: SF (Λ4(X)) ⇒ SF (M4(X)), is a direct family of subsets-map Ψ: Λ4(X) ⇒
M4(X) (see Definition 4.10.3). If F is clear from the context, we may omit he symbol
F as a subscript in the above notations. A contravariant direct spectrum SF (Λ<(X)) :=

(λ0, EX , λ<1 , F, φ
Λ<(X)
0 , φ

Λ<(X)
1 ) of subspaces of F over (I,4I) and a subspaces contravariant

direct spectrum-map are defined similarly.

Remark 6.9.2. Let SF (Λ4(X)) := (λ0, EX , λ41 , F, φ
Λ4(X)
0 , φ

Λ4(X)
1 ) be an (I,4I)-spectrum of

subspaces of F := (X,F ) with Bishop subspaces (Fi)i∈I and Bishop morphisms (EXi )i∈I , and

SF (M4(X)) := (µ0,ZX , µ41 , F, φ
M4(X)
0 , φ

M4(X)
1 ) an (I,4I)-spectrum of subspaces of F with

Bishop subspaces (Gi)i∈I and Bishop morphisms (ZXi )i∈I .

(i) S(Λ4) := (λ0, λ
4
1 , φ

Λ4(X)
0 , φ

Λ4(X)
1 ) is an (I,4I)-spectrum with Bishop spaces (Fi)i∈I and

Bishop morphisms (λ4ij)(i,j)∈D4(I).

(ii) If Ψ: S(Λ4(X))⇒ S(M4(X)), then Ψ is continuous.

Proof. We proceed as in the proof of Remark 6.8.2.

Definition 6.9.3. Let SpecF (I,4, X) be the totality of covariant direct spectra of subspaces
of the Bishop space F := (X,F ) and let SpecF (I,<, X) be the totality of contravariant
direct spectra of subspaces of F over (I,4I , equipped with the equality of Fam(I,4, X) and
Fam(I,<, X), respectively.

Definition 6.9.4. If S(Λ<(X)) := (λ0, E , λ<1 , F, φ
Λ<(X)
0 , φ

Λ<(X)
1 ) is contravariant direct spec-

trum of subspaces of the Bishop space F := (X,F ) over (I,4) with Bishop subspaces (Fi)i∈I
and Bishop morphisms (Ei)i∈I , its inverse limit is the following Bishop space

Lim
←
S(Λ<(X)) := Lim

←X

Fi :=

(⋂
i∈I

λ0(i),
∨
f∈F

f ◦ eΛ<(X)⋂
)
.
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Next we show the universal property of the inverse limit for Lim
←X

Fi

Proposition 6.9.5. If S(Λ<(X)) :=
(
λ0, E , λ<1 , F, φ

Λ<(X)
0 , φ

Λ<(X)
1

)
∈ Spec(I,<, X) with

Bishop subspaces (Fi)i∈I and Bishop morphisms (EXi )i∈I , its inverse limit Lim
←
Fi satisfies the

universal property of inverse limits i.e., if i 4j, the following left diagram commutes⋂
i∈I λ0(i)

λ0(j)λ0(i) λ0(i) λ0(j),

Y

π
Λ<(X)
jπ

Λ<(X)
i

λ<ji

$j$i

λ<ji

and for every Bishop space G := (Y,G) and a family ($i)i∈I , where $i ∈ Mor(G,Fi), for
every i ∈ I, such that the above right diagram commutes, there is a unique Bishop morphism
h : Y →

⋂
i∈I λ0(i) such that the following diagrams commute

Y

λ0(j),λ0(i)

⋂
i∈I λ0(i)

$j$i

λ<ji
π

Λ<(X)
jπ

Λ<(X)
i

h

Proof. For the commutativity of the first diagram, we have that if Φ ∈
⋂
i∈I λ0(i), then

π
Λ<(X)
i (Φ) := Φi, and λ<ji

(
πΛ<

j (Φ)
)

:= λ<ji(Φj), and since EXj = EXi ◦ λ
<
ji, we have that

EXj (Φj) = EXi
(
λ<ji(Φj)

)
, hence by the definition of

⋂
i∈I λ0(i) we get EXi (Φi) = EXj (Φj) =

EXi
(
λ<ji(Φj)

)
, and since EXi is an embedding we get Φi = λ<ji(Φj) =: λ<ji

(
π

Λ<(X)
j (Φ)

)
. Let a

Bishop space G := (Y,G) and a family of Bishop morphisms ($i)i∈I , where $i : Y → λ0(i),
for every i ∈ I, such that the above right diagram commutes. Let also the operation
h : Y  

⋂
i∈I λ0(i), defined by the rule y 7→ h(y), where

h(y) :
k

i∈I
λ0(i), h(y)i := $i(y); i ∈ I.

To show that h(y) ∈
⋂
i∈I λ0(i) we need to show that

EXi
(
h(y)i

)
=X EXi′

(
h(y)i′

)
⇔ EXi ($i(y)) =X EXi′ ($i′(y)),

for every i, i′ ∈ I. Since (I,4I) is directed, there is k ∈ I such that i 4I k and i′ 4I k, hence

EXi ($i(y)) =X EXi
(
λ<ki($k(y))

)
=X EXk

(
$k(y)

)
=X EXi′

(
λ<ki′($k(y))

)
=X EXi′ ($i′(y)).

It is immediate to show that h is a function. Finally, we show that h ∈ Mor(G,Lim
←X

Fi) ⇔

∀f∈F
((
f ◦ eΛ<(X)⋂ )

◦ h ∈ G
)
. If y ∈ Y , then[(

f ◦ eΛ<(X)⋂ )
◦ h
]
(y) := f

(
EXi0 ($i0(y))

)
:= [(f ◦ EXi0 ) ◦$i0 ](y),

hence
(
f ◦ eΛ<(X)⋂ )

◦ h := (f ◦ EXi0 ) ◦$i0 ∈ G, as by our hypothesis $i0 ∈ Mor(G,Fi0).
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6.10 Notes

Note 6.10.1. The theory of Bishop spaces, that was only sketched by Bishop in [9], and
revived by Bridges in [26], and Ishihara in [63], was developed by the author in [88]-[96]
and [98]-[100]. Since inductive definitions with rules of countably many premises are used,
for the study of Bishop spaces we work within BST∗, which is BST extended with such
inductive definitions. A formal system for BISH extended with such definitions is Myhill’s
formal system CST∗ with dependent choice, where CST∗ is Myhill’s extension of his formal
system of constructive set theory CST with inductive definitions (see [80]). A variation of
CST∗ is Aczel’s system CZF together with a very weak version of Aczel’s regular extension
axiom (REA), to accommodate these inductive definitions (see [1]).

Note 6.10.2. In contrast to topological spaces, in the theory of Bishop spaces continuity of
functions is an a priori notion, while the concept of an open set comes a posteriori, through
the neighbourhood space induced by a Bishop topology. The theory of Bishop spaces can be
seen as an abstract and constructive approach to the theory of the ring C(X) of continuous
functions of a topological space (X, T ) (see [52] for a classical treatment of this subject).

Note 6.10.3. The results on the direct and inverse limits of direct spectra of Bishop spaces
are the constructive analogue to the classical theory of direct and inverse limits of (spectra
of) topological spaces, as this is developed e.g., in the Appendix of [45]. As in the case of
the classic textbook of Dugundji, we avoid here possible, purely categorical arguments in our
proofs. One of the advantages of working with a proof-relevant definition of a cofinal subset is
that the proof of the cofinality theorem 6.5.12 is choice-free.

Note 6.10.4. The notion of a spectrum of Bishop spaces can be generalised by considering a
family of Bishop spaces associated to a set-relevant family of sets over some set I. In this case,
all transport maps λmij are taken to be Bishop morphisms. The direct versions of set-relevant
spectra of Bishop spaces can be defined, and their theory can be developed in complete analogy
to the theory of direct spectra of Bishop spaces, as in the case of generalised direct spectra of
topological spaces (see [45], p. 426).

Note 6.10.5. The formulation of the universal properties of the various limits of spectra
of Bishop spaces included here is impredicative, as it requires quantification over the class
of Bishop spaces. A predicative formulation of a universal property can be given, if one is
restricted to a given set-indexed family of Bishop spaces.

Note 6.10.6. The study of the direct limit of a spectrum of Bishop subspaces is postponed for
future work. The natural candidate

⋃
i∈I λ0(i), equipped with the relative topology, “almost”

satisfies the universal property of the direct limit.



Chapter 7

Families of subsets in measure
theory

We study the Borel and Baire sets within Bishop spaces as a constructive counterpart to the
study of Borel and Baire algebras within topological spaces. As we use the inductively defined
least Bishop topology, and as the Borel and Baire sets over a family of F -complemented
subsets are defined inductively, we work within the extension BISH∗ of BISH with inductive
definitions with rules of countably many premises. In contrast to the classical theory, we show
that the Borel and the Baire sets of a Bishop space coincide. Our reformulation within BST
of the Bishop-Cheng definition of a measure space and of an integration space, based on the
notions of families of complemented subsets and of families of partial functions, facilitates a
predicative reconstruction of the originally impredicative Bishop-Cheng measure theory.

7.1 The Borel sets of a Bishop space

The Borel sets of a topological space (X, T ) is the least set of subsets of X that includes the
open (or, equivalently the closed) sets in X and it is closed under countable unions, countable
intersections and relative complements. The Borel sets of a Bishop space (X,F ) is the least
set of complemented subsets of X that includes the basic F -complemented subsets of X that
are generated by F , and it is closed under countable unions and countable intersections. As
the Borel sets of (X,F ) are complemented subsets, it is not a coincidence that their closure
under complements is provable. In the next two sections F denotes a Bishop topology on a
set X and G a Bishop topology on a set Y . For simplicity, we denote the constant function
on X with value a ∈ R also by a, and we may write equalities between elements of PKJF (X)
and equalities between elements of F without denoting the corresponding subscripts.

Definition 7.1.1. If a, b ∈ R, let a 6=R b :⇔ |a− b| > 0 ⇔ a > b ∨ b < a. For simplicity we
may write a 6= b, instead of a 6=R b. The inequality x 6=F

X y on X generated by F is defined by

x 6=F
X y :⇔ ∃f∈F

(
f : x 6=F

X y
)
, where f : x 6=F

X y :⇔ f(x) 6=R f(y).

A complemented subset A of X with respect to 6=F
X is called an F -complemented subset of X,

and their totality is denoted by PKJF (X). An F -complemented subset A of X is uniformly
F -complemented, if

∃f∈F
(
f : A1KJFA

0
)
, where f : A1KJFA

0 :⇔ ∀x∈A1∀y∈A0

(
f : x 6=F

X y
)
,
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and A is strongly F -complemented, if there is f ∈ F such that f : A1KJFA
0, f(x) = 1, for

every x ∈ A1, and f(y) = 0, for every y ∈ A0.

Remark 7.1.2. If h ∈ Mor(F ,G) and A ∈ PKJG(Y ), then h−1(A) ∈ PKJF (X).

Proof. Let x ∈ h−1(A1) and y ∈ h−1(A0) i.e., h(x) ∈ A1 and h(y) ∈ A0. Let g ∈ G such that
g(h(x)) 6= g(h(y)). Hence, g ◦ h ∈ F and (g ◦ h)(x) 6= (g ◦ h)(y).

Definition 7.1.3. We denote by Fam(I, F,X) and Set(I, F,X) the sets of families and sets of
F -complemented subsets of X, respectively. Let OF (X) :=

(
o1,F

0 ,O1,X , o1,F
1 , o0,F

0 ,O0,X , o0,F
1

)
∈

Fam(F, F,X) be the family of basic open F -complemented subsets of X, where

oF (f) :=
(
o1,F

0 (f), o0,F
0 (f)

)
:=
(
[f > 0], [f ≤ 0]

)
,

[f > 0] := {x ∈ X | f(x) > 0}, [f ≤ 0] := {x ∈ X | f(x) ≤ 0},
and, as [f > 0, [f ≤ 0] are extensional subsets of X, the dependent operations O1,X ,O0,X , o1,F

1 ,

and o0,F
1 are defined by the identity map-rule. If F is clear from the context, we may write

OF (X) :=
(
o1

0,O1,X , o1
1, o

0
0,O0,X , o0

1

)
.

Clearly, f : o1
0(f)KJF o

0
0(f), for every f ∈ F . Recall that a sequence of F -complemented

subsets of X is a structure B(X) :=
(
β1

0 ,B1,X , β1
1 , β

0
0 ,B0,X , β0

1

)
∈ Fam(N+, F,X), where

β(n) :=
(
β1

0(n), β0
0(n)

)
∈ PKJF (X), and β1

nn : β1
0(n) → β1

0(n) and β0
nn : β0

0(n) → β0
0(n) are

given by β1
nn := idβ1

0(n) and β0
nn := idβ0

0(n), respectively, for every n ∈ N+. We also write⋃∞
n=1 β0(n) and

⋂∞
n=1 β0(n), instead of

⋃
n∈N+ β0(n) and

⋂
n∈N+ β0(n), respectively. A family

A(X) :=
(
α1

0,A1,X , α1
1, α

0
0,A0,X , α0

1

)
∈ Fam(1, F,X) is defined similarly.

Definition 7.1.4. If Λ(X) :=
(
λ1

0, E1,X , λ1
1, λ

0
0, E0,X , λ0

1

)
∈ Fam(I, F,X), the set Borel(Λ(X))

of Borel sets generated by Λ(X) is defined inductively by the following rules:

(Borel1)
i ∈ I

λ0(i) ∈ Borel(Λ(X))
,

(Borel2)
β0(1) ∈ Borel(Λ(X)), β0(2) ∈ Borel(Λ(X)), . . .⋃∞

n=1 β0(n) ∈ Borel(Λ(X)) &
⋂∞
n=1 β0(n) ∈ Borel(Λ(X))

B(X)∈Fam(N+,F,X),

(Borel3)
B ∈ Borel(Λ(X)), α0(0) =PKJF (X) B

α0(0) ∈ Borel(Λ(X))
A(X)∈Fam(1,F,X).

The corresponding induction principle IndBorel(Λ(X)) is the formula

∀i∈I
(
P (λ0(i))

)
& ∀B(X)∈Fam(N+,F,X)

[
∀n∈N+

(
β0(n) ∈ Borel(Λ(X)) & P (β0(n))

)
⇒

P

( ∞⋃
n=1

β0(n)

)
& P

( ∞⋂
n=1

β0(n)

)]
&

∀A(X)∈Fam(1,F,X)∀B∈Borel(Λ(X))

(
[P (B) & α0(0) =PKJF (X) B]⇒ P (α0(0))

)
⇒ ∀B∈Borel(Λ(X))

(
P (B)

)
,

where P is any bounded formula. Let

Borel(F) := Borel(OF (X)),

and we call its elements the Borel sets of F .
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In IndBorel(Λ(X)) we quantify over the sets Fam(N+, F,X) and Fam(1, F,X), avoiding

quantification over PKJF (X) in condition (Borel3) and treating PKJF (X) as a set in (Baire2).

Proposition 7.1.5. (i) OF (X) is not in Set(F, F,X).

(ii) If f, g ∈ F , then o(f) ∪ o(g) = o(f ∨ g).

(iii) If B ∈ Borel(F), then −B ∈ Borel(F).

(iv) There are Bishop space (X,F ) and f ∈ F such that ¬[−o(f) = o(g)], for every g ∈ F .

(v) o(f) = o([f ∨ 0] ∧ 1).

Proof. (i) If f ∈ F , then o(f) = o(2f), but ¬(f = 2f).
(iii) This equality is implied from the following properties for reals a ∨ b > 0⇔ a > 0 ∨ b > 0
and a ∨ b ≤ 0⇔ a ≤ 0 ∧ b ≤ 0.
(iv) If a ∈ R, then a ≤ 0⇔ ∀n≥1

(
a < 1

n

)
and a > 0⇔ ∃n≥1

(
a ≥ 1

n

)
, hence

−o(f) :=
(
[f ≤ 0], [f > 0]

)
=

( ∞⋂
n=1

[( 1

n
− f

)
> 0
]
,
∞⋃
n=1

[( 1

n
− f

)
≤ 0
])

:=

∞⋂
n=1

o
( 1

n
− f

)
∈ Borel(F ).

If P (B) :⇔ −B ∈ Borel(F), the above equality proves the first step of the corresponding
induction on Borel(F). The rest of the inductive proof is straightforward.
(v) Let the Bishop space (R,Bic(R)). If we take o(idR) :=

(
[x > 0], [x ≤ 0]

)
, and if we suppose

that −o(idR) :=
(
[x ≤ 0], [x > 0]

)
=
(
[φ > 0], [φ ≤ 0]

)
=: o(φ), for some φ ∈ Bic(R), then

φ(0) > 0 and φ is not continuous at 0, which contradicts the fact that φ is uniformly continuous,
hence pointwise continuous, on [−1, 1].
(vi) The proof is based on basic properties of R, like a ∧ 1 = 0⇒ a = 0.

Since Borel(F) is closed under intersections and complements, if A,B ∈ Borel(F), then
A−B ∈ Borel(F). Constructively, we cannot show, in general, that o(f) ∩ o(g) = o(f ∧ g).
If f := idR ∈ Bic(R) and g := −idR ∈ Bic(R), then o(idR) ∩ o(−idR) =

(
[x > 0] ∩ [x < 0], [x ≤

0] ∪ [−x ≤ 0]
)

=
(
∅, [x ≤ 0] ∪ [x ≥ 0]

)
Since x ∧ (−x) = −|x|, we get o(idR ∧ (−idR)) =

o(−|x|) =
(
∅, [|x| ≥ 0]

)
. The supposed equality implies that |x| ≥ 0⇔ x ≤ 0 ∨ x ≥ 0. Since

|x| ≥ 0 is always the case, we get ∀x∈R
(
x ≤ 0 ∨ x ≥ 0

)
, which implies LLPO (see [24], p. 20).

If one add the condition |f |+ |g| > 0, then o(f) ∩ o(g) = o(f ∧ g) follows constructively. The
condition (BS4) in the definition of a Bishop space is crucial to the next proof.

Proposition 7.1.6. If (fn)∞n=1 ⊆ F , then f :=
∑∞

n=1(fn ∨ 0) ∧ 2−n ∈ F and

o(f) =
∞⋃
n=1

o(fn) =

( ∞⋃
n=1

[fn > 0],

∞⋃
n=1

[fn ≤ 0]

)
.

Proof. The function f is well-defined by the comparison test (see [19], p. 32). If gn :=
(fn ∨ 0) ∧ 2−n, for every n ≥ 1, then∣∣∣∣ ∞∑

n=1

gn −
N∑
n=1

gn

∣∣∣∣ =

∣∣∣∣ ∞∑
n=N+1

gn

∣∣∣∣ ≤ ∞∑
n=N+1

|gn| ≤
∞∑

n=N+1

1

2n
N−→ 0,
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the sequence of the partial sums
∑N

n=1 gn ∈ F converges uniformly to f , hence by BS4 we
get f ∈ F . Next we show that [f > 0] ⊆

⋃∞
n=1[fn > 0]. If x ∈ X such that f(x) > 0, there

is N ≥ 1 such that
∑N

n=1 gn(x) > 0. By Proposition (2.16) in [19], p. 26, there is n ≥ 1 and
n ≤ N with gn(x) > 0, hence (fn(x) ∨ 0) ≥ gn(x) > 0, which implies fn(x) > 0. For the
converse inclusion, if fn(x) > 0, for some n ≥ 1, then gn(x) > 0, hence f(x) > 0. To show
[f ≤ 0] ⊆

⋃∞
n=1[fn ≤ 0], let x ∈ X such that f(x) ≤ 0, and suppose that fn(x) > 0, for some

n ≥ 1. By the previous argument we get f(x) > 0, which contradicts our hypothesis f(x) ≤ 0.
For the converse inclusion, let fn(x) ≤ 0, for every n ≥ 1, hence fn(x) ∨ 0 = 0 and gn(x) = 0,
for every n ≥ 1. Consequently, f(x) = 0.

Proposition 7.1.7. If h ∈ Mor(F ,G) and B ∈ Borel(G), then h−1(B) ∈ Borel(F).

Proof. By the definition of h−1(B), if g ∈ G, then

h−1(oG(g)) := h−1
(
[g > 0], [g ≤ 0]

)
:=
(
h−1[g > 0], h−1[g ≤ 0]

)
=
(
[(g ◦ h) > 0], [(g ◦ h) ≤ 0]

)
:= oF (g ◦ h) ∈ Borel(F).

If P (B) := h−1(B) ∈ Borel(F), the above equality is the first step of the corresponding in-
ductive proof on Borel(G). The rest of the proof follows from the properties h−1

(⋃∞
n=1Bn

)
=⋃∞

n=1 h
−1(Bn) and h−1

(⋂∞
n=1Bn

)
=
⋂∞
n=1 h

−1(Bn) of complemented subsets.

Definition 7.1.8. If Φ is an extensional subset of F and if idFΦ : Φ ↪→ F is defined by the
identity map-rule, let OΦ(X) := OF (X) ◦ idFΦ be the idFΦ-subfamily of OF (X). We write
oΦ(f) := oF (f), for every f ∈ Φ, and let

Borel(Φ) := Borel(OΦ(X)).

If F0 is a subbase of F , then, Borel(F0) ⊆ Borel(F ). More can be said on the relation
between Borel(Φ) and Borel(F), when Φ is a base of F .

Proposition 7.1.9. Let Φ be a base of F .

(i) If for every f ∈ F , oF (f) ∈ Borel(Φ), then Borel(F) = Borel(Φ).

(ii) If for every g ∈ Φ and f ∈ F , f ∧ g ∈ Φ, then Borel(F) = Borel(Φ).

(iii) If for every g ∈ B and every n ≥ 1, g − 1
n ∈ Φ, then Borel(F) = Borel(Φ).

Proof. (i) It follows by a straightforward induction on Borel(F ).
(ii) and (iii) Let f ∈ F and (gn)∞n=1 ⊆ Φ such that ∀n≥1

(
U(f, gn,

1
n)
)
. Then we have tha

oF (f) ⊆
∞⋃
n=1

oΦ(gn) :=

( ∞⋃
n=1

[gn > 0],
∞⋂
n=1

[gn ≤ 0]

)
i.e., [f > 0] ⊆

⋃∞
n=1[gn > 0] and

⋂∞
n=1[gn ≤ 0] ⊆ [f ≤ 0]; if x ∈ X with f(x) > 0 there is n ≥ 1

with gn(x) > 0, and if ∀n≥1

(
gn(x) ≤ 0

)
, then for the same reason ¬[f(x) > 0, hence f(x) ≤ 0.

Because of (i), for (ii), it suffices to show that oF (f) ∈ Borel(Φ). We show that

oF (f) =

∞⋃
n=1

oΦ(f ∧ gn) :=

( ∞⋃
n=1

[(f ∧ gn) > 0],

∞⋂
n=1

[(f ∧ gn) ≤ 0]

)
∈ Borel(Φ).
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If f(x) > 0, then we can find n ≥ 1 such that gn(x) > 0, hence f(x) ∧ gn(x) > 0. Hence we
showed that [f > 0] ⊆

⋃∞
n=1[(f∧gn) > 0]. For the converse inclusion, let x ∈ X and n ≥ 1 such

that (f ∧gn)(x) > 0. Then f(x) > 0 and x ∈ [f > 0]. If f(x) ≤ 0, then ∀n≥1

(
f(x)∧gn(x) ≤ 0

)
.

Suppose next that ∀n≥1

(
f(x) ∧ gn(x) ≤ 0

)
. If f(x) > 0, there is n ≥ 1 with gn(x) > 0, hence

f(x) ∧ gn(x) > 0, which contradict the hypothesis f(x) ∧ gn(x) ≤ 0. Hence f(x) ≤ 0.
Because of (i), for (iii), it suffices to show that oF (f) ∈ Borel(Φ). We show that

oF (f) =
∞⋃
n=1

oΦ

(
gn −

1

n

)
:=

( ∞⋃
n=1

[(
gn −

1

n

)
> 0
]
,
∞⋂
n=1

[(
gn −

1

n

)
≤ 0
])
∈ Borel(Φ).

First we show that [f > 0] ⊆
⋃∞
n=1

[(
gn − 1

n

)
> 0
]
. If f(x) > 0, there is n ≥ 1 with f(x) > 1

n ,
hence, since − 1

2n ≤ g2n(x)− f(x) ≤ 1
2n , we get

g2n(x)− 1

2n
≥
(
f(x)− 1

2n

)
− 1

2n
= f(x)− 1

n
> 0

i.e., x ∈
[(
g2n − 1

2n

)
> 0

]
. For the converse inclusion, let x ∈ X and n ≥ 1 such that

gn(x) − 1
n > 0. Since 0 < gn(x) − 1

n ≤ f(x), we get x ∈ [f > 0]. Next we show that
[f ≤ 0] ⊆

⋂∞
n=1[

(
gn − 1

n

)
≤ 0]. Let x ∈ X with f(x) ≤ 0, and suppose that n ≥ 1 with

gn(x) − 1
n > 0. Then 0 ≥ f(x) > 0. By this contradiction we get gn(x) − 1

n ≤ 0. For the
converse inclusion let x ∈ X such that gn(x) − 1

n ≤ 0, for every n ≥ 1, and suppose that
f(x) > 0. Since we have already shown that [f > 0] ⊆

⋃∞
n=1

[(
gn − 1

n

)
> 0

]
, there is some

n ≥ 1 with gn(x)− 1
n > 0, which contradicts our hypothesis, hence f(x) ≤ 0.

7.2 The Baire sets of a Bishop space

One of the definitions1 of the set of Baire sets in a topological space (X, T ), which was given
by Hewitt in [60], is that it is the least σ-algebra of subsets of X that includes the zero sets
of X i.e., the sets of the form f−1({0}), where f ∈ C(X). Clearly, a Baire set in (X, T ) is a
Borel set in (X, T ), and for many topological spaces, like the metrisable ones, the two classes
coincide. In this section we adopt Hewitt’s notion in Bishop spaces and the framework of
F -complemented subsets.

Definition 7.2.1. Let ZF (X) :=
(
ζ1,F

0 ,Z1,X , ζ1,F
1 , ζ0,F

0 ,Z0,X , ζ0,F
1

)
∈ Fam(F, F,X) be the

family of zero F -complemented subsets of X, where

ζF (f) :=
(
ζ1,F

0 (f), ζ0,F
0 (f)

)
:=
(
[f = 0], [f 6= 0]

)
,

[f = 0] := {x ∈ X | f(x) = 0}, [f ≤ 0] := {x ∈ X | f(x) 6= 0},

and, as [f = 0, [f 6= 0] are extensional subsets of X, the dependent operations Z1,X ,Z0,X , ζ1,F
1 ,

and ζ0,F
1 are defined by the identity map-rule. If F is clear from the context, we may write

ZF (X) :=
(
ζ1

0 ,Z1,X , ζ1
1 , ζ

0
0 ,Z0,X , ζ0

1

)
. Let

Baire(F) := Borel(ZF (X)),

and we call its elements the Baire sets of F .

1A different definition is given in [57]. See [109] for the relations between these two definitions.
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Since a 6= 0 :⇔ |a| > 0⇔ a < 0 ∨ a > 0, for every a ∈ R, we get

ζ(f) =
(
[f = 0], [|f | > 0]

)
=
(
[f = 0], [f > 0] ∪ [f < 0]

)
.

Proposition 7.2.2. (i) Baire(F) is not in Set(F, F,X).

(ii) If f, g ∈ F , then ζ(f) ∩ ζ(g) = ζ(|f | ∨ |g|).
(iii) If B ∈ Baire(F), then −B ∈ Baire(F).

(iv) There are Bishop space (X,F ) and f ∈ F such that ¬[−ζ(f) = ζ(g), for every g ∈ F .

(vi) ζ(f) = ζ(|f | ∧ 1).

Proof. (i) If f ∈ F , then ζ(f) = ζ(2f), but ¬(f = 2f).
(ii) This equality is implied from the following property for reals |a|∨ |b| = 0⇔ |a| = 0∧|b| = 0
and |a| ∨ |b| 6= 0⇔ |a| > 0 ∨ |b| > 0.
(iii) If f ∈ F , then −ζ0(f) :=

(
[f 6= 0], [f = 0]

)
. If, for every n ≥ 1,

gn :=

(
|f | ∧ 1

n

)
− 1

n
∈ F,

∞⋃
n=1

ζ(gn) :=

( ∞⋃
n=1

[gn = 0],
∞⋂
n=1

[gn 6= 0]

)
= −ζ(f) ∈ Baire(F).

First we show that [f 6= 0] =
⋃∞
n=1[gn = 0]. If |f(x)| > 0, there is n ≥ 1 such that |f(x)| > 1

n ,
hence |f(x)|∧ 1

n = 1
n , and gn(x) = 0. For the converse inclusion, let x ∈ X and n ≥ 1 such that

gn(x) = 0⇔ |f(x)| ∧ 1
n = 1

n , hence |f(x)| ≥ 1
n > 0. Next we show that [f = 0] =

⋂∞
n=1[gn 6= 0].

If x ∈ X such that f(x) = 0, and n ≥ 1, then gn(x) = − 1
n < 0. For the converse inclusion,

let x ∈ X such that for all n ≥ 1 we have that gn(x) 6= 0. If |f(x)| > 0, there is n ≥ 1 such
that |f(x)| > 1

n , hence gn(x) = 0, which contradicts our hypothesis. Hence, |f(x)| ≤ 0, which
implies that |f(x)| = 0⇔ f(x) = 0. If P (B) := −B ∈ Baire(F), the above equality proves
the first step of the corresponding induction on Baire(F ). The rest of the inductive proof is
straightforward2.
(v) Let the Bishop space (R,Bic(R)). If we take ζ(idR) :=

(
[x = 0], [x 6= 0]

)
, and if we suppose

that −ζ(idR) :=
(
[x 6= 0], [x = 0]

)
=
(
[φ = 0], [φ 6= 0]

)
=: ζ(φ), for some φ ∈ Bic(R), then

φ(0) > 0 ∨ φ(0) < 0 and φ(x) = 0, if x < 0 or x > 0. Hence φ is not continuous at 0, which
contradicts the fact that φ is uniformly continuous on [−1, 1].
(v) Using basic properties of R, this proof is straightforward.

As in the case of Borel(F), we cannot show constructively that ζ(f) ∪ ζ(g) = ζ(|f | ∧ |g|).
If we add the condition |f |+ |g| > 0 though, this equality is constructively provable.

Proposition 7.2.3. If (fn)∞n=1 ⊆ F , then f :=
∑∞

n=1 |fn| ∧ 2−n ∈ F and

ζ(f) =
∞⋂
n=1

ζ(fn) =

( ∞⋂
n=1

[fn = 0],
∞⋃
n=1

[fn 6= 0]

)
.

2Hence, if we define the set of Baire sets over an arbitrary family Θ of functions from X to R, a sufficient
condition so that Baire(Θ) is closed under complements is that Θ is closed under |.|, under wedge with 1

n
and

under subtraction with 1
n

, for every n ≥ 1. If Θ := F(X, 2), then −oF(X,2)(f) = oF(X,2)(1− f) = ζF(X,2)(f),
hence by Proposition 7.1.7(ii) we get Borel(F(X, 2)) = Baire(F(X, 2)).
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Proof. Proceeding as in the proof of Proposition 7.1.6, f is well-defined, and if gn := |fn|∧2−n,
for every n ≥ 1, the sequence of the partial sums

∑N
n=1 gn ∈ F converges uniformly to f ,

and by (BS4) we get f ∈ F . Since f(x) = 0 ⇔ ∀n≥1(gn(x) = 0) ⇔ ∀n≥1(fn(x) = 0), we get
[f = 0] =

⋂∞
n=1[fn = 0]. To show [f 6= 0] ⊆

⋃∞
n=1[fn 6= 0], if |f(x)| > 0, there is N ≥ 1 such

that
∑N

n=1 gn(x) > 0. By Proposition (2.16) in [19], p. 26, there is some n ≥ 1 and n ≥ N
such that gn(x) > 0, hence |fn(x)| ≥ gn(x) > 0. The converse inclusion follows trivially.

Let F∗ := (X,F ∗) be the Bishop space generated by the bounded functions F ∗ in F .

Theorem 7.2.4. (i) If B ∈ Baire(F), then B ∈ Borel(F).

(ii) If o(f) ∈ Baire(F), for every f ∈ F , then Baire(F) = Borel(F).

(iii) If f ∈ F , then o(f) = −ζ
(
(−f) ∧ 0

)
.

(iv) Baire(F∗) = Baire(F) = Borel(F) = Borel(F∗).

Proof. (i) By Proposition 7.1.5(iv) −o(f) =
(
[f ≤ 0], [f > 0]

)
∈ Borel(F), for every f ∈ F ,

hence −o(−f) =
(
[f ≥ 0], [f < 0] ∈ Borel(F) too. Consequently

−o(f) ∩ −o(−f) =
(
[f ≤ 0] ∩ [f ≥ 0], [f > 0] ∪ [f < 0]

)
= ζ(f) ∈ Borel(F).

If P (B) := B ∈ Borel(F), the above equality is the first step of the corresponding inductive
proof on Baire(F). The rest of the inductive proof is straightforward.
(ii) The hypothesis is the first step of the obvious inductive proof on Borel(F), which shows
that Borel(F) ⊆ Baire(F). By (i) we get Baire(F) ⊆ Borel(F).
(iii) We show that (

[f > 0], [f ≤ 0]
)

=
(
[(−f) ∧ 0 6= 0], [(−f) ∧ 0 = 0]

)
.

First we show that [f > 0] ⊆ [(−f)∧ 0 6= 0]; if f(x) > 0, then −f(x)∧ 0 = −f(x) < 0. For the
converse inclusion, let −f(x)∧ 0 6= 0⇔ −f(x)∧ 0 > 0 or −f(x)∧ 0 < 0. Since 0 ≥ −f(x)∧ 0,
the first option is impossible. If −f(x) ∧ 0 < 0, then −f(x) < 0 or 0 < 0, hence f(x) > 0.
Next we show that [f ≤ 0] = [(−f) ∧ 0 = 0]; since f(x) ≤ 0⇔ −f(x) ≥ 0⇔ −f(x) ∧ 0 = 0
(see [24], p. 52), the equality follows.
(iv) Clearly, Baire(F∗) ⊆ Baire(F). By Proposition 7.2.2(vi) ζ(f) = ζ(|f | ∧ 1), where
|f | ∧ 1 ∈ F ∗. Continuing with the obvious induction we get Baire(F) ⊆ Baire(F∗). By
case (iii) and Proposition 7.2.2(iv) we get o(f) ∈ Baire(F), hence by case (ii) we conclude
that Baire(F) = Borel(F). Clearly, Borel(F∗) ⊆ Borel(F). By Proposition 7.1.5(vi)
o(f) = o((f ∨ 0) ∧ 1), where (f ∨ 0) ∧ 1 ∈ F ∗. Continuing with the obvious induction we get
Borel(F) ⊆ Borel(F∗).

Either by definition, as in the proof of Proposition 7.1.7, or by Theorem 7.2.4(iii) and
Proposition 7.1.7, if h ∈ Mor(F ,G) and B ∈ Baire(G), then h−1(B) ∈ Baire(F). Suppose
next that A is strongly F -complemented i.e., there is f ∈ F such that f : A1KJFA

0 and
f(x) = 1, for every x ∈ A1, and f(y) = 0, for every y ∈ A0. If g := (f ∨ 0) ∧ 1 ∈ F , then
0 ≤ g ≤ 1 and ∀x∈A1∀y∈A0

(
g(x) = 1 & g(y) = 0

)
. In [18], p. 55, the following relation between

complemented subsets is defined:

A ≤ B :⇔ A1 ⊆ B1 & A0 ⊆ B0.

IfA is strongly F -complemented, thenA ≤ o(f). According to the classical Urysohn lemma for
C(X)-zero sets, the disjoint zero sets of a topological space X are separated by some f ∈ C(X)
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(see [52], p. 17). Next we show a constructive version of this result, where disjointness is
replaced by a stronger, but positively defined form of it.

Theorem 7.2.5 (Urysohn lemma for zero complemented subsets). If A := (A1, A0) ∈ P ][F (X),
then A is strongly F -complemented if and only if

∃f,g∈F∃c>0

(
A ≤ ζ(f) & −A ≤ ζ(g) & |f |+ |g| ≥ c

)
.

Proof. (⇒) Let h ∈ F such that 0 ≤ h ≤ 1, A1 ⊆ [h = 1] and A0 ⊆ [h = 0]. We take
f := 1 − h ∈ F, g := h and c := 1. First we show that A ≤ ζ(f). If x ∈ A1, then h(x) = 1,
and f(x) = 0. If y ∈ A0, then h(y) = 0, hence f(y) = 1 and y ∈ [f 6= 0]. Next we show that
−A ≤ ζ(g). If y ∈ A0, then h(y) = 0 = g(y). If x ∈ A1, then h(x) = 1 = g(y) i.e., x ∈ [g 6= 0].
If x ∈ X, then 1 = |1− h(x) + h(x)| ≤ |1− h(x)|+ |h(x)|.
(⇐) Let h := 1 −

(
1
c |f | ∧ 1

)
∈ F . If x ∈ A1, then f(x) = 0, and hence h(x) = 1. If y ∈ A0,

then g(y) = 0, hence |f(y)| ≥ c, and consequently h(y) = 0.

The condition (BS3) of a Bishop space is crucial to the next proof.

Corollary 7.2.6. ILetA := (A1, A0) ∈ P ][F (X) and f ∈ F . If f(A) :=
(
f(A1), f(A0)

)
is

strongly Bic(R)-complemented, then A is strongly F -complemented.

Proof. By the Urysohn lemma for zero complemented subsets there are φ, θ ∈ Bic(R) and c > 0
with f(A) ≤ ζ(φ),−f(A) ≤ ζ(θ) and |φ|+ |θ| ≥ c. Consequently, A ≤ ζ(φ◦f),−A ≤ ζ(θ ◦f)
and |φ ◦ f | + |θ ◦ f | ≥ c. Since by (BS3) we have that φ ◦ f ∈ F and θ ◦ f ∈ F , by the
other implication of the Urysohn lemma for zero complemented subsets we conclude that A is
strongly F -complemented.

7.3 Measure and pre-measure spaces

There are two, quite different, notions of measure space in traditional Bishop-style constructive
mathematics. The first, which was introduced in [9] as part of Bishop’s measure theory (BMT)
(see Note 7.6.6), is an abstraction of the measure function A 7→ µ(A), where A is a member of a
family of complemented subsets of a locally compact metric space X. The use of complemented
subsets in order to overcome the difficulties generated in measure theory by the use of negation
and negatively defined concepts is one of Bishop’s great conceptual achievements, while the use
of the concept of a family of complemented subsets is crucial to the predicative character of
this notion of measure space3. The indexing required behind this first notion of measure space
is evident in [9], and sufficiently stressed in [12] (see Note 7.6.7). The second notion of measure
space, introduced in [18] and repeated in [19] as part of the far more general Bishop-Cheng
measure theory (BCMT), is highly impredicative, as the necessary indexing for its predicative
reformulation is missing. A lack of predicative concern is evident also in the integration theory
of BCMT. Next we define a predicative variation of the Bishop-Cheng notion of measure space
using the predicative conceptual ingredients of the initial Bishop notion of measure space. We
also keep the operations of complemented subsets introduced in [9], and not the operations
used in [18] and [19]. Following Bishop’s views in [12], we introduce the notion of pre-measure
space, which is understood though, in a way different from the classical term.

3Myhill’s impredicative interpretation in [80] of Bishop’s first definition is discussed in Note 7.6.8.
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As in Definition 4.6.3, if Λ(X) := (λ1
0, E1,X , λ1

1, λ
0
0, E0,X , λ0

1) ∈ Fam(I,X), the set λ0I(X)

of complemented subsets of X is the totality I, equipped with the equality i =
Λ(X)
I j :⇔

λ0(i) =PKJ(X) λ0(j), for every i, j ∈ I. For simplicity we write λ0(i) := (λ1
0(i), λ0

0(i)) instead
of i for an element of λ0I(X).

Definition 7.3.1 (Measure space within BST). Let (X,=X , 6=X) be an inhabited set, Λ(X) :=
(λ1

0, E1,X , λ1
1;λ0

0, E0,X , λ0
1) ∈ Fam(I,X), and let µ : λ0I(X)→ [0,+∞) such that the following

conditions hold:

(MS1) ∀i,j∈I∃k,l∈I
(
λ0(i)∪λ0(j) = λ0(k) & λ0(i)∩λ0(j) = λ0(l) &

µ
(
λ0(i)

)
+ µ

(
λ0(j)

)
= µ

(
λ0(k)

)
+ µ

(
λ0(l)

))
.

(MS2) ∀i∈I∀A(X)∈Fam(1,X)

[
∃k∈I

(
λ0(i)∩α0(0) = λ0(k)

)
⇒

(
∃l∈I

(
λ0(i)−α0(0) = λ0(l)

)
& µ

(
λ0(i)

)
= µ

(
λ0(k)

)
+ µ

(
λ0(l)

)]
.

(MS3) ∃i∈I
(
µ
(
λ0(i)

)
> 0.

(MS4) ∀α∈F(N,I)

{
∀β∈F(N,I)

[
∀m∈N

( m⋂
n=1

λ0(α(n)) = λ0(β(m))

)
&

∃ lim
m→+∞

µ
(
λ0(β(m))

)
& lim

m→+∞
µ
(
λ0(β(m))

)
> 0⇒ ∃x∈X

(
x ∈

⋂
n∈N

λ1
0(α(n))

)]}
.

The triplet M := (X,λ0I(X), µ) is called a measure space with λ0I(X) its set of integrable,
or measurable sets, and µ its measure.

With respect to condition (MS1), we do not say that the set λ0I(X) is closed under the union
or intersection of complemented subsets (as Bishop-Cheng do in their definition). This amounts
to the rather strong condition ∀i,j∈I∃k,l∈I

(
λ0(i)∪λ0(j) := λ0(k) & λ0(i)∩λ0(j) := λ0(l)

)
. The

weaker condition (MS1) states that the complemented subsets λ0(i) ∪ λ0(j) and λ0(i) ∩ λ0(j)
“pseudo-belong” to λ0I(X) i.e., there are elements of it, which are equal to them in PKJ(X). In
contrast to the formulation of condition (MS2) by Bishop and Cheng, we avoid quantification
over the class PKJ(X), by quantifying over the set Fam(1,X). In our formulation of (MS4) we
quantify over F(N, I), in order to avoid the use of some choice principle. If we had written

∀m∈N∃k∈N

( m⋂
n=1

λ0(α(n)) =
PKJ6= λ0(k)

)
instead, we would need countable choice to express the limit to infinity of the terms µ

(
λ0(k)

)
.

Next we define the notion of a pre-measure space, giving an explicit formulation of Bishop’s
idea, expressed in [12], p. 67, and quoted in Note 7.6.7, to formalise his first definition of
measure space, applied though, to Definition 7.3.1. The main idea is to define operations on I
that correspond to the operations on complemented subsets, and reformulate accordingly the
clauses for the measure µ. The fact that µ is defined on the index-set is already expressed in
the definition of the set λ0I(X). The notion of a pre-measure space provides us a method to
generate measure spaces.
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Definition 7.3.2 (Pre-measure space within BST). Let (X,=X , 6=X) be an inhabited set, and
let (I,=I) be equipped with operations ∨ : I × I  I,∧ : I × I  I, and ∼ : I  I. If i, j ∈ I
and i1, . . . , im ∈ I, where m ≥ 1, let4

i ∼ j := i ∧ (∼ j) & i ≤ j :⇔ i ∧ j = i,

m∨
n=1

in := i1 ∨ . . . ∨ im &

m∧
n=1

in := i1 ∧ . . . ∧ im.

Let Λ(X) := (λ1
0, E1,X , λ1

1;λ0
0, E0,X , λ0

1) ∈ Set(I,X), and µ : I → [0,+∞) such that the
following conditions hold:

(PMS1) ∀i,j∈I
(
λ0(i)∪λ0(j) = λ0(i∨ j) & λ0(i)∩λ0(j) = λ0(i∧ j) & −λ0(i) = λ0(∼ i) &

µ(i) + µ(j) = µ(i ∨ j) + µ(i ∧ j)
)
.

(PMS2) ∀i∈I∀A(X)∈Fam(1,X)

[
∃k∈I

(
λ0(i) ∩ α0(0) = λ0(k)

)
⇒

λ0(i)−α0(0) = λ0(i ∼ k) & µ(i) = µ(k) + µ(i ∼ k)

]
.

(PMS3) ∃i∈I
(
µ(i)

)
> 0.

(PMS4) ∀α∈F(N,I)

[
∃ lim
m→+∞

µ

( m∧
n=1

α(n)

)
& lim

m→+∞
µ

( m∧
n=1

α(n)

)
> 0⇒

⇒ ∃x∈X
(
x ∈

⋂
n∈N

λ1
0(α(n))

)]
.

The triplet M(Λ(X)) := (X, I, µ) is called a pre-measure space, the function µ a pre-measure,
and the index-set I a set of integrable, or measurable indices.

Corollary 7.3.3. Let M(Λ) := (X, I, µ) be a pre-measure space and i, j ∈ I.

(i) The operations ∨, ∧ and ∼ are functions.

(ii) The triplet (I,∨,∧) is a distributive lattice.

(iii) ∼ (∼ i) =I i.

(iv) ∼ (i ∧ j) =I (∼ i) ∨ (∼ j).
(v) i ≤ j ⇔ ∼ j ≤ ∼ i.
(vi) i ≤ j ⇔ λ0(i) ⊆ λ0(j).

(vii) λ0(i)− λ0(j) = λ0(i ∼ j).

Proof. We show that ∨ is a function, and for ∧ and ∼ we proceed similarly.

i = i′ & j = j′ ⇒ λ0(i) = λ0(i′) & λ0(j) = λ0(j′)

⇒ λ0(i) ∪ λ0(j) = λ0(i′) ∪ λ0(j′)

⇒ λ0(i ∨ j) = λ0(i′ ∨ j′)
⇒ i ∨ j = i′ ∨ j′.

4The operations
∨m
n=1 in and

∨m
n=1 in are actually recursively defined.
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(ii) The defining clauses of a distributive lattice follow from the corresponding properties
of complemented subsets for A ∩ B and A ∪ B, from (PMS1), and from the fact that
Λ(X) ∈ Set(I,X). E.g., to show i∨ j = j ∨ i, we use the equalities λ0(i∨ j) = λ0(i)∪λ0(j) =
λ0(j) ∪ λ0(i) = λ0(j ∨ i). For the rest of the proof we proceed similarly.

In the next example of a pre-measure space the index-set I is a Boolean algebra.

Proposition 7.3.4. Let
(
X,=X , 6=F(X,2)

X

)
be a set, and ∆(X) :=

(
δ1

0 , E1,X , δ1
1 , δ

0
0 , E0,X , δ0

1

)
∈

Set(F(X,2),X) the family of complemented detachable subsets of X, where by Remark 4.6.9

δ0(f) :=
(
δ1

0(f), δ0
0(f)

)
:=
(
[f = 0], [f = 1]

)
.

If x0 ∈ X and µx0 : F(X,2) [0,+∞) is defined by the rule

µx0(f) := f(x0); f ∈ F(X,2),

then the triplet M(∆(X)) := (X,F(X,2), µx0) is a pre-measure space.

Proof. We define the maps ∨,∧ : F(X,2)× F(X,2)→ F(X,2) and ∼ : F(X,2)→ F(X,2) by

f ∨ g := f + g − fg, f ∧ g := fg, ∼ f := 1− f ; f, g ∈ F(X,2),

where 1 also denotes the constant function on X with value 1. By definition of the union and
intersection of complemented subsets we have that

δ0(f) ∪ δ0(g) :=
(
δ1

0(f) ∪ δ1
0(g), δ0

0(f) ∩ δ0
0(g)

)
=
(
δ1

0(f) ∪ δ1
0(g), δ1

0(1− f) ∩ δ1
0(1− g)

)
=
(
δ1

0(f + g − fg), δ1
0((1− f)(1− g))

)
=
(
δ1

0(f + g − fg), δ1
0(1− (f + g − fg))

)
=
(
δ1

0(f + g − fg), δ0
0(f + g − fg)

)
:= δ0(f ∨ g).

δ0(f) ∩ δ0(g) :=
(
δ1

0(f) ∩ δ1
0(g), δ0

0(f) ∪ δ0
0(g)

)
=
(
δ1

0(f) ∩ δ1
0(g), δ1

0(1− f) ∪ δ1
0(1− g)

)
=
(
δ1

0(fg), δ1
0((1− f) + (1− g)− (1− f)(1− g))

)
=
(
δ1

0(fg), δ1
0(1− fg)

)
=
(
δ1

0(fg), δ0
0(fg)

)
:= δ0(f ∧ g).

Clearly, δ0(∼ f) := δ0(1− f) = −δ0(f). Clearly, the operation µx0 is a function. As

µx0(f) + µx0(g) = µx0(f + g − fg) + µx0(fg)⇔

f(x0) + g(x0) = f(x0) + g(x0)− f(x0)g(x0) + f(x0)g(x0),

which is trivially the case, (PMS1) follows. Let f ∈ F(X,2) and B := (B1, B0) a given
complemented subset of X with α0(0) := B. If g ∈ F(X,2) such that

δ0(f) ∩B :=
(
δ1

0(f) ∩B1, δ1
0(1− f) ∪B0

)
=
(
δ1

0(g), δ1
0(1− g)

)
⇔
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δ1
0(f) ∩B1 = δ1

0(g) & δ1
0(1− f) ∪B0 = δ1

0(1− g),

δ0(f(1− g)) :=
(
δ1

0(f(1− g)), δ0
0(f(1− g))

)
=
(
δ1

0(f) ∩ δ1
0(1− g), δ0

0(f) ∪ δ1
0(1− g)

)
=
(
δ1

0(f) ∩ [δ1
0(1− f) ∪B0], δ0

0(f) ∪ [δ1
0(f) ∩B1]

)
=
(
[δ1

0(f) ∩ δ1
0(1− f)] ∪ [δ1

0(f) ∩B0], [δ0
0(f) ∪ δ1

0(f) ∩ [δ0
0(f) ∪B1]

)
=
(
∅ ∪ [δ1

0(f) ∩B0], X ∩ [δ0
0(f) ∪B1]

)
=
(
δ1

0(f) ∩B0, δ0
0(f) ∪B1

)
:= δ0(f)−B.

To complete the proof of (PMS2), we need to show

µx0(f) = µx0(g) + µx0(f(1− g))⇔ f(x0) = g(x0) + f(x0)(1− g(x0)).

If g(x0) = 0, the equality holds trivially. If g(x0) = 1, and since δ1
0(g) = δ1

0(f) ∩B1, we also
have that f(x0) = 1, and the required equality holds. As µx0(1) = 1 > 0, (PMS3) follows. For
the proof of (PMS4) we fix α : N→ F(X,2), and we suppose that

∃ lim
m→+∞

µx0

( m∧
n=0

αn

)
& lim

m→+∞
µx0

( m∧
n=0

αn

)
> 0 ⇔

∃ lim
m→+∞

( m∧
n=0

αn

)
(x0) & lim

m→+∞

( m∧
n=0

αn

)
(x0) > 0 ⇔

∃ lim
m→+∞

m∏
n=0

αn(x0) & lim
m→+∞

m∏
n=0

αn(x0) > 0.

Finally, we have that

lim
m→+∞

m∏
n=0

αn(x0) > 0⇒ lim
m→+∞

m∏
n=0

αn(x0) = 1

⇔ ∃m0∈N∀m≥m0

( m∏
n=0

αn(x0) = 1

)
⇒ ∀n∈N

(
αn(x0) = 1

)
⇔ x0 ∈

⋂
n∈N

δ1
0(αn).

Proposition 7.3.5. LetM(Λ(X)) := (X, I, µ) be a pre-measure space. If µ∗ : λ0I  [0,+∞),
where µ∗(λ0(i)) := µ(i), for every λ0(i) ∈ λ0I, then M := (X,λ0I(X), µ∗) is a measure
space.

Proof. By Proposition 4.6.4 µ∗ is a function. For the proof of (MS1) we fix i, j ∈ I and we
take k := i ∨ j and l := i ∧ j. From (PMS1) and (PMS4) we get

µ∗(λ0(i)) + µ∗(λ0(j)) := µ(i) + µ(j)

= µ(i ∨ j) + µ(i ∧ j)
:= µ∗(λ0(i ∨ j)) + µ∗(λ0(i ∧ j)).
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For the proof of (MS2) we fix i ∈ I and A ∈ Fam(1,X) with α0(0) := B. If λ0(i) ∩ B = λ0(k),
for some k ∈ I, we take l := i ∼ k ∈ I and by (PMS2) µ∗(λ0(i)) := µ0(i) = µ(k) +µ(i ∼ k) :=
µ∗(λ0(k)) + µ∗(λ0(i ∼ k)). Condition (MS3) follows immediately from (PMS3). For the proof
of (MS4), we fix α, β ∈ F(N, I), and we suppose that

∀m∈N

( m⋂
n=1

λ0(α(n)) = λ0(β(m))

)
& ∃ lim

m→+∞
µ∗
(
λ0(β(m))

)
& lim

m→+∞
µ∗
(
λ0(β(m))

)
> 0⇔

∀m∈N

( m⋂
n=1

λ0(α(n)) = λ0(β(m))

)
& ∃ lim

m→+∞
µ
(
β(m)

)
& lim

m→+∞
µ
(
β(m)

)
> 0.

If m ≥ 1, by (PMS1) we have that

λ0(β(m)) =

m⋂
n=1

λ0(α(n)) = λ0

( m∧
n=1

α(n)

)
,

hence, since λ0 is a set of complemented subsets, β(m) =
∧m
n=1 α(n), and consequently

µ
(
β(m)

)
= µ

(∧m
n=1 α(n)

)
. Hence

∃ lim
m→+∞

µ

( m∧
n=1

α(n)

)
& lim

m→+∞
µ

( m∧
n=1

α(n)

)
> 0.

By (PMS4) we conclude that there is some x ∈ X such that x ∈
⋂
n∈N λ

1
0(α(n)).

Corollary 7.3.6. Let M(∆(X)) := (X,F(X,2), µx0) be the pre-measure space of comple-
mented detachable subsets of X. If µ∗x0

: δ0F(X,2)(X) [0,+∞) is defined by µ∗x0

(
δ0(f)

)
:=

µx0(f) := f(x0), for every δ0(f) ∈ δ0F(X,2)(X), then M(X) := (X, δ0F(X,2)(X), µ∗x0
) is a

measure space.

Next we formulate in our framework the definition of a complete measure space given by
Bishop and Cheng5 (see Note 7.6.5).

Definition 7.3.7. A measure space M := (X,λ0I(X), µ) is called complete, if the following
conditions hold:

(CM1) ∀i∈I∀A(X)∈Fam(1,X)

(
λ1

0(i) ⊆ α1
0(0) & λ0

0(i) ⊆ α0
0(0)⇒ ∃k∈I

(
α0(0) = λ0(k)

))
.

(CM2) ∀α∈F(N,I)

{
∀β∈F(N,I)∀l∈[0,+∞]

[
∀m∈N

( m⋃
n=1

λ0(α(n)) = λ0(β(m))

)
&

∃ lim
m→+∞

µ
(
λ0(β(m))

)
& lim

m→+∞
µ
(
λ0(β(m))

)
= l

⇒ ∃k∈I
( ⋃
n∈N

λ0(α(n)) = λ0(k) & µ
(
λ0(k)

)
= l

)]}
.

(CM3) ∀i,j∈I∀A(X)∈Fam(1,X)

(
λ0(i) ⊆ α0(0) ⊆ λ0(j) & µ

(
λ0(i)

)
= µ

(
λ0(j)

)
⇒ ∃k∈I

(
α0(0) = λ0(k)

))
.

5In the definition of Bishop and Cheng the symbol of definitional equality l := limm→+∞ µ
(
λ0(β(m))

)
is

used, but as this a convergence condition, one can use the equality of R for the same purpose
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Regarding the completeness conditions and the space M(X), we show the following.

Proposition 7.3.8. Let M(X) := (X, δ0F(X,2)(X), µ∗x0
) be the measure space of comple-

mented detachable subsets of X.

(i) M(X) satisfies condition (CM1).

(ii) The limited principle of omniscience (LPO) implies that M(X) satisfies condition (CM2).

(iii) In general, M(X) does not satisfy condition (CM3).

Proof. (i) Let f ∈ F(X,2), let B := (B1, B0) be a given complemented subset of X with
α0(0) := B, and let δ1

0(f) ⊆ B1 and δ0
0(f) ⊆ B0. Since X = δ1

0(f) ∪ δ0
0(f) ⊆ (B1 ∪B0) ⊆ X,

we get B1 ∪B0 = X, and hence B = δ0(χB).
(ii) Let α, β : N→ F(X,2), and l ∈ (0,+∞) such that

∀m∈N

( m⋃
n=1

δ0(αn) = δ0(βm)

)
& ∃ lim

m→+∞
βm(x0) & lim

m→+∞
βm(x0) = l.

The last conjunct is equivalent to ∃m0∈N∀m≥m0

(
βm(x0) = l

)
, and since βm(x0) ∈ 2, we get

l ∈ 2. For every x ∈ X the sequence n 7→ αn(x) is in F(N, 2), hence by (LPO) we define the
function f from X to 2 by the rule

f(x) :=

{
1 , ∃n∈N

(
αn(x) = 1

)
0 , ∀n∈N

(
αn(x) = 0

)
.

By the definition of interior union and intersection it is immediate to show that⋃
n∈N

δ0(αn) = δ0(f)⇔
⋃
n∈N

δ1
0(αn) = δ1

0(f) &
⋂
n∈N

δ0
0(αn) = δ0

0(f).

It remains to show that f(x0) = l. If l = 0, then ∃m0∈N∀m≥m0

(
βm(x0) = 0

)
, which implies

that ∀n∈N
(
αn(x0) = 0

)
:⇔ f(x0) := 0. If l = 1, then ∃m0∈N∀m≥m0

(
βm(x0) = 1

)
, which implies

that ∃n∈{1,...,m0}
(
αn(x0) = 1

)
⇒ f(x0) := 1.

(iii) If X := 3, let f : 3 → 2 be defined by f(0) := 1, f(1) := 0 =: f(2) and let g : 3 → 2 be
the constant function with value 1. If B :=

(
{0}, {1}

)
, then δ1

0(f) := {0} = B1 ⊆ δ1
0(g) and

∅ = δ0
0(g) ⊆ B0 ⊆ δ0

0(f). If x0 := 0, then µ0(f) = µ0(g), but B cannot “pseudo-belong” to
D(3), since B1 ∪B0 is a proper subset of 3.

7.4 Real-valued partial functions

We present here all facts on real-valued partial functions necessary to the definition of an
integration space within BST (Definition 7.5.1).

Definition 7.4.1. If (X,=X , 6=X) is an inhabited set, we denote by fA := (A, iXA , f
R
A) a

real-valued partial function on X

A X

R.

iXA

fR
A
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We say that fA is strongly extensional, if fR
A is strongly extensional, where A is equipped with

its canonical inequality as a subset of X i.e., for every a, a′ ∈ A

fR
A(a) 6=R f

R
A(a′)⇒ iXA (a) 6=X iXA (a′).

Let F(X) := F(X,R) be the class of partial functions from X to R, and Fse(X) the class of
strongly extensional partial functions from (X =X , 6=X) to (R,=R, 6=R).

Definition 7.4.2. Let fA := (A, iXA , f
R
A), fB := (B, iXB , f

R
B) in F(X)

A X B

R.

iXA iXB

fR
A fR

B

If λ ∈ R, let λfA := (A, iXA , λf
R
A) ∈ F(X), and fA � fB :=

(
A ∩B, iXA∩B,

(
fR
A � fR

B

)R
A∩B

)
,

(fR
A � fR

B

)R
A∩B := fR

A(a) � fR
B(b); (a, b) ∈ A ∩B, � ∈ {+, ·,∧,∨}.

The operation (fR
A � fR

B

)R
A∩B : A∩B  R is a function, as if (a, b) =A∩B (a′, b′) :⇔ iXA =X

iXA (a′), and since iXB (b) =X iXA (a) and iXB (b′) =X iXA (a′), we get a =A a
′, hence fR

A(a) =R f
R
A(a′),

and b =B b′, hence fR
B(b) =R f

R
B(b′). If λ denotes also the constant function λ ∈ R on X

A X X

R,

iXA idX

fR
A λ

we get as a special case the partial function fA ∧ λ :=
(
A ∩ X, iXA∩X ,

(
fR
A ∧ λ

)R
A∩X

)
, where

A ∩ X := {(a, x) ∈ A × X | iXA (a) =X x}, iA∩X(a, x) := iXA (a), and
(
fR
A ∧ λ

)R
A∩X(a, x) :=

fR
A(a) ∧ λ(x) := fR

A(a) ∧ λ, for every (a, x) ∈ A ∩ X. By Definition 4.8.1, if Λ(X,R) :=
(λ0, EX , λ1,PR) ∈ Fam(I,X,R), if (i, j) ∈ D(I), the following diagram commutes

λ0(i) λ0(j)

X

R,

λij

λji

fR
i fR

j

EXi EXj

fi :=
(
λ0(i), EXi , fR

i

)
∈ F(X), fR

i := PR
i : λ0(i)→ R; i ∈ I.

If fR
i is strongly extensional, then, for every u,w ∈ λ0(i), we have that fR

i (u) 6=R f
R
i (w) ⇒

EXi (u) 6=X EXi (w). As in Definition 4.1.11, If κ : N+ → I, the family Λ(X,R) ◦ κ :=
(
λ0 ◦

κ, EX ◦ κ, λ1 ◦ κ,PR ◦ κ
)
∈ Fam(N+, X,R) is the κ-subsequence of Λ(X,R), where

(λ0 ◦ κ)(n) := λ0(κ(n)),
(
EX ◦ κ

)
n

:= EXκ(n), (λ1 ◦ κ)(n, n) := λκ(n)κ(n) := idλ0(κ(n)),
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(
PR ◦ κ

)
n

:= PR
κ(n) := fR

κ(n); n ∈ N+.

Let λ0I(X,R) be the totality I, and we write fi ∈ λ0I(X,R), instead of i ∈ I, as we define

i =λ0I(X,R) j :⇔ fi =F(X) fj .

If we consider the intersection
⋂
n∈N+(λ0 ◦ κ)(n) :=

⋂
n∈N+ λ0(κ(n)), by Definition 4.3.1

Φ:
⋂
n∈N+

λ0(κ(n)) :⇔ Φ:
k

n∈N+

λ0(κ(n)) & ∀n,m∈N+

(
EXκ(n)(Φn) =X EXκ(m)(Φm)

)
,

Φ =⋂
n∈N+ λ0(κ(n)) Θ :⇔ EXκ(1)(Φ1) =X EXκ(1)(Θ1),

e
Λ(X,R)◦κ⋂ :

⋂
n∈N+

λ0(κ(n)) ↪→ X, e
Λ(X,R)◦κ⋂ (Φ) :=

(
EX ◦ κ)1(Φ1) := EXκ(1)(Φ1).

Definition 7.4.3. Let Λ(X,R) := (λ0, EX , λ1,PR) ∈ Fam(I,X,R), κ : N+ → I, and Λ(X,R)◦κ
the κ-subsequence of Λ(X,R). If (A, i

⋂
A) ⊆

⋂
n∈N+ λ0(κ(n)), we define the function

A∑
n∈N+

fR
κ(n) : A→ R,

( A∑
n∈N+

fR
κ(n)

)
(a) :=

∑
n∈N+

fR
κ(n)

([
i
⋂
A(a)

]
n

)
; a ∈ A,

under the assumption that the series on the right converge in R, for every a ∈ R.

In the special case
⋂
n∈N+ λ0(κ(n)), id⋂

n∈N+ λ0(κ(n))) ⊆
⋂
n∈N+ λ0(κ(n)), we get the function

⋂∑
n∈N+

fR
κ(n) :

⋂
n∈N+

λ0(κ(n))→ R,

( ⋂∑
n∈N+

fR
κ(n)

)
(Φ) :=

∑
n∈N+

fR
κ(n)

(
Φn

)
; Φ ∈

⋂
n∈N+

λ0(κ(n)),

under the assumption on the convergence of the corresponding series.

Proposition 7.4.4. If in Definition 7.4.3 the partial functions fκ(n) :=
(
λ0(κ(n)), EXκ(n), f

R
κ(n)

)
are strongly extensional, for every n ∈ N+, then the real-valued partial function

A
⋂
n∈N+ λ0(κ(n)) X

R

i
⋂
A e

Λ(X,R)◦κ⋂

∑A
n∈N+ fR

κ(n)

fA :=

(
A, e

Λ(X,R)◦κ⋂ ◦ i
⋂
A,

A∑
n∈N+

fR
κ(n)

)
is strongly extensional.

Proof. Let a, a′ ∈ A such that( A∑
n∈N+

fR
κ(n)

)
(a) := l 6=R l

′ :=

( A∑
n∈N+

fR
κ(n)

)
(a′).



7.4. REAL-VALUED PARTIAL FUNCTIONS 213

There is N ∈ N+ such that, if ε := |l − l′| > 0, then

ε ≤
∣∣∣∣l − N∑

n=1

fR
κ(n)

([
i
⋂
A(a)

]
n

)∣∣∣∣+

∣∣∣∣ N∑
n=1

fR
κ(n)

([
i
⋂
A(a)

]
n

)
−

N∑
n=1

fR
κ(n)

([
i
⋂
A(a′)

]
n

)∣∣∣∣
+

∣∣∣∣ N∑
n=1

fR
κ(n)

([
i
⋂
A(a′)

]
n

)
− l′
∣∣∣∣

≤ ε

4
+

∣∣∣∣ N∑
n=1

fR
κ(n)

([
i
⋂
A(a)

]
n

)
−

N∑
n=1

fR
κ(n)

([
i
⋂
A(a′)

]
n

)∣∣∣∣+
ε

4
⇒

0 <

∣∣∣∣ N∑
n=1

fR
κ(n)

([
i
⋂
A(a)

]
n

)
−

N∑
n=1

fR
κ(n)

([
i
⋂
A(a′)

]
n

)∣∣∣∣
=

∣∣∣∣ N∑
n=1

[
fR
κ(n)

([
i
⋂
A(a)

]
n

)
− fR

κ(n)

([
i
⋂
A(a′)

]
n

)]∣∣∣∣
≤

N∑
n=1

∣∣∣∣fR
κ(n)

([
i
⋂
A(a)

]
n

)
− fR

κ(n)

([
i
⋂
A(a′)

]
n

)∣∣∣∣.
By the property of positive real numbers x+ y > 0⇒ [x > 0 ∨ y > 0 (see [20], p. 13), then

0 <

∣∣∣∣fR
κ(n)

([
i
⋂
A(a)

]
n

)
− fR

κ(n)

([
i
⋂
A(a′)

]
n

)∣∣∣∣,
for some n ∈ N+ with 1 ≤ n ≤ N . Since fR

κ(n) is strongly extensional, by Definition 7.4.1

EXκ(1)

([
i
⋂
A(a)

]
1

)
=X EXκ(n)

([
i
⋂
A(a)

]
n

)
6=X EXκ(n)

([
i
⋂
A(a′)

]
n

)
=X EXκ(1)

([
i
⋂
A(a′)

]
1

)
,

which is the required canonical equality of a, a′ in A as a subset of X.

Clearly, we have that (see Definition 2.7.1)

A
⋂
n∈N+ λ0(κ(n))

X

R

i
⋂
A

∑A
n∈N+ fR

κ(n) ∑⋂
n∈N+ f

R
κ(n)

e
Λ(X,R)◦κ⋂ ◦i

⋂
A

e
Λ(X,R)◦κ⋂

(
A, e

Λ(X,R)◦κ⋂ ◦ i
⋂
A,

A∑
n∈N+

fR
κ(n)

)
≤
( ⋂
n∈N+

λ0(κ(n)), e
Λ(X,R)◦κ⋂ ,

⋂∑
n∈N+

fR
κ(n)

)
.
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7.5 Integration and pre-integration spaces

Next we reformulate predicatively the Bishop-Cheng definition of an integration space (see
Note 7.6.10 to compare it with the original definition).

Definition 7.5.1 (Integration space within BST). Let (X,=X , 6=X) be an inhabited set,
Λ(X,R) := (λ0, EX , λ1,PR) ∈ Fam(I,X,R), such that fi :=

(
λ0(i), EXi , fR

i

)
is strongly exten-

sional, for every i ∈ I, let λ0I(X,R) be the totality I, equipped with the equality i =λ0I(X,R)

j :⇔ fi =F(X) fj, for every i ∈ I, and let a mapping∫
: λ0I(X,R)→ R, fi 7→

∫
fi; i ∈ I,

such that the following conditions hold:

(IS1) ∀i∈I∀a∈R∃j∈I
(
afi =F(X) fj &

∫
fj =R a

∫
fi

)
.

(IS2) ∀i,j∈I∃k∈I
(
fi+fj =F(X) fk &

∫
fk =R

∫
fi +

∫
fj

)
.

(IS3) ∀i∈I∃j∈I
(
|fi| =F(X) fj

)
.

(IS4) ∀i∈I∃j∈I
(
fi∧1 =F(X) fj

)
.

(IS5) ∀i∈I∀κ∈F(N+,I)

{[ ∑
n∈N+

∫
fκ(n) ∈ R &

∑
n∈N+

∫
fκ(n) <

∫
fi

]
⇒

∃
(Φ,u) ∈

(⋂
n∈N+ λ0(κ(n))

)
∩ λ0(i)

(( ⋂∑
n∈N+

fκ(n)

)
(Φ) :=

∑
n∈N+

fR
κ(n)(Φn) ∈ R &

∑
n∈N+

fR
κ(n)(Φn) < fR

i (u).

)}

(IS6) ∃i∈I
(∫

fi =R 1

)
.

(IS7) ∀i∈I∀α∈F(N+,I)

(
∀n∈N+

(
n

(
1

n
fi ∧ 1

)
=F(X) fα(n)

)
⇒

lim
n−→+∞

∫
fα(n) ∈ R & lim

n−→+∞

∫
fα(n) =R

∫
fi

)
.

(IS8) ∀i∈I∀α∈F(N+,I)

(
∀n∈N+

(
1

n

(
n|fi| ∧ 1

)
=F(X) fα(n)

)
⇒

lim
n−→+∞

∫
fα(n) ∈ R & lim

n−→+∞

∫
fα(n) =R 0

)
.

We call the triplet L := (X,λ0I(X,R),
∫

) an integration space.

In the formulation of (IS5) we have that( ⋂
n∈N+

λ0(κ(n))

)
∩ λ0(i) :=

{
(Φ, u) ∈

( ⋂
n∈N+

λ0(κ(n))

)
× λ0(i) | EXκ(1)(Φ) =X EXi (u)

}
,
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λ0(κ(n)) X λ0(i)

R.

EXκ(n) EXi

fR
κ(n) fR

i

If, for every a ∈ R, such that a > 0, and every i ∈ I, we define

fi ∧ a := a

(
1

a
fi ∧ 1

)
,

the formulation of (IS7) and (IS8) becomes, respectively,

∀i∈I∀α∈F(N+,I)

(
∀n∈N+

(
fi ∧ n =F(X) fα(n)

)
⇒ lim

n−→+∞

∫
fα(n) =R

∫
fi

)
,

∀i∈I∀α∈F(N+,I)

(
∀n∈N+

(
|fi| ∧

1

n

)
=F(X) fα(n)

)
⇒ lim

n−→+∞

∫
fα(n) =R 0

)
,

where, for simplicity, we skip to mention he existence of the corresponding limits in R. We
also quantify over F(N+, I), in order to avoid the use of countable choice. If we had written in
its premise the formula ∀n∈N+∃j∈I

(
fi ∧ n =F(X) fj

)
, we would need countable choice (N−I)

to generate a sequence in I to describe the limit of the corresponding integrals. Moreover, by
(IS1), (IS3) and (IS4), and the definition of f ∧ a above we get ∀i∈I∀a∈R+∃j∈I

(
fi ∧ a =F(X) fj

)
.

Definition 7.5.2 (Pre-integration space within BST). Let (X,=X , 6=X) be an inhabited set,
and let the set (I,=I) be equipped with operations ·a : I  I, for every a ∈ R, +: I × I  I,
|.| : I  I, and ∧1 : I  I, where

·a(i) := a · i, +(i, j) := i+ j, |.|(i) := |i|; i ∈ I, a ∈ R.

Let also the operation ∧a : I  I, defined by the previous operations with the rule

∧a := ·a ◦ ∧1 ◦ ·a−1 ; a ∈ R & a > 0.

Let Λ(X,R) := (λ0, EX , λ1,PR) ∈ Set(I,X,R) i.e., fi =F(X) fj ⇒ i =I j, for every i, j ∈ I,

and fi :=
(
λ0(i), EXi , fR

i

)
is strongly extensional, for every i ∈ I. Let also a mapping∫

: I → R, i 7→
∫
i; i ∈ I,

such that the following conditions hold:

(PIS1) ∀i∈I∀a∈R

(
afi =F(X) fa·i &

∫
a · i =R a

∫
i

)
.

(PIS2) ∀i,j∈I
(
fi+fj =F(X) fi+j &

∫
(i+j) =R

∫
i +

∫
j

)
.

(PIS3) ∀i∈I
(
|fi| =F(X) f|i|

)
.

(PIS4) ∀i∈I
(
fi∧1 =F(X) f∧1(i)

)
.
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(PIS5) ∀i∈I∀κ∈F(N+,I)

{[ ∑
n∈N+

∫
κ(n) ∈ R &

∑
n∈N+

∫
κ(n) <

∫
i

]
⇒

∃
(Φ,u) ∈

(⋂
n∈N+ λ0(κ(n))

)
∩ λ0(i)

(( ⋂∑
n∈N+

fκ(n)

)
(Φ) :=

∑
n∈N+

fR
κ(n)(Φn) ∈ R &

∑
n∈N+

fR
κ(n)(Φn) < fR

i (u).

)}

(PIS6) ∃i∈I
(∫

i =R 1

)
.

(PIS7) ∀i∈I
(

lim
n−→+∞

∫
∧n(i) ∈ R & lim

n−→+∞

∫
∧n(i) =R

∫
i

)
.

(PIS8) ∀i∈I
(

lim
n−→+∞

∫
∧ 1
n

(|i|) ∈ R & lim
n−→+∞

∫
∧ 1
n

(|i|) =R 0

)
.

We call the triplet L0 := (X, I,
∫

) a pre-integration space.

All the operations on I defined above are functions. E.g., since Λ(X,R) ∈ Set(I,X,R),

i =I i
′ ⇒ fi =F(X) fi′ ⇒ afi =F(X) afi′ ⇒ fa·i =F(X) fa′·i ⇒ a · i =I a

′ · i.

It is immediate to see that a pre-integration space induces an integration space, if

∀i∈I∀a∈R+

(
fi ∧ a =F(X) fj ⇒ ∧a(i) =I j

)
,

and hence (PIS7) and (PIS8) imply (IS7) and (IS8), respectively, with the integral∫ ∗
fi :=

∫
i; i ∈ I.

The notion of a pre-integration space is simpler than that of an integration space, and also
closer to the Bishop-Cheng notion of an integration space. One could say that a pre-integration
space is the “right” notion of integration space within BST. In [18], p. 52 Bishop and Cheng
formulate the non-trivial theorem that a measure space induces the integration space of the
corresponding simple functions (see also [19], p. 285). In [129] Zeuner interpreting the various
constructions of Bishop and Cheng into the framework of pre-measure and pre-integration
spaces6 gave a proof of this theorem within BST. Here we only sketch this construction.

Let Λ(X) :=
(
λ1

0, E1,X , λ1
1, λ

0
0, E0,X , λ0

1) ∈ Fam(I,X) and i0 ∈ I. To each i ∈ I corresponds
the real-valued partial function

χi :=
(
λ1

0(i) ∪ λ0
0(i), EXi , χR

i

)
∈ F(X),

6The notion of pre-measure space used in [129], which is a bit different from the one included here, is an
appropriate copy of Bishop’s definition of a measure space given in [9] (see Note 7.6.6).
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λ1
0(i) ∪ λ0

0(i) X

λ0
0(i)

λ1
0(i)

R.

EXi

χR
i

E0,X
i

E1,X
iid

id

where EXi is the canonical embedding of λ1
0(i) ∪ λ0

0(i) into X, and χR
i is given by the rule of

the partial function χλ0(i). The symbol id in the above diagram denotes the corresponding
function defined by the identity-map rule. If m,n ∈ N+, i1, . . . , in, j1, . . . , jm ∈ I, and
a1i , . . . ain , b1, . . . , bm ∈ R, the equality of the following real-valued partial functions is given
by the commutativity of the following diagram

n∑
k=1

aikχik :=

( n⋂
k=1

(
λ1

0(ik) ∪ λ0
0(ik)

)
, iX⋂n

k=1(λ1
0(ik)∪λ0

0(ik))
,

n∑
k=1

aikχ
R
ik

)
∈ F(X),

m∑
l=1

bjlχjl :=

( m⋂
l=1

(
λ1

0(jl) ∪ λ0
0(jl)

)
, iX⋂m

l=1(λ1
0(jl)∪λ

0
0(jl)

,
m∑
l=1

bjlχ
R
jl

)
∈ F(X),

⋂n
k=1

(
λ1

0(ik) ∪ λ0
0(ik)

) ⋂m
l=1

(
λ1

0(jl) ∪ λ0
0(jl)

)
X

R,

e

e′

∑n
k=1 aikχ

R
ik

∑m
l=1 bjlχ

R
jl

iX⋂n
k=1(λ1

0(ik)∪λ0
0(ik))

iX⋂m
l=1(λ1

0(jl)∪λ
0
0(jl))

for some (unique up to equality) functions e and e′. If µ0 : N+  V0 is defined by the rule
µ0(n) := (R × I)n, for every n ∈ N+, and if the corresponding dependent operation µ1 is
defined in the obvious way, let the totality

S(I,Λ(X)) :=
∑
n∈N+

(R× I)n,

(n, u) =S(I,Λ(X)) (m,w) :⇔
n∑
k=1

aikχik =F(X)

m∑
l=1

bjlχjl ; ,

where u :=
(
(a1, i1), . . . , (an, in)

)
and w :=

(
(b1, j1), . . . , (bm, jm)

)
. The family of simple

functions generated by the family Λ(I,X) of complemented subsets of X is the structure
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∆(X,R) :=
(
dom0,ZX , dom1,PR

)
∈ Fam

(
S(I,Λ(X), X,R

)
, where dom0 : S(I,Λ(X)) V0 is

defined by the rule

dom0(n, u) :=

n⋂
k=1

(
λ1

0(ik) ∪ λ0
0(ik)

)
; u :=

(
(a1, i1), . . . , (an, in)

)
, n ∈ N+,

the embedding ZXn,u : dom0(n, u) ↪→ X is defined in a canonical way through the embed-

dings E1,X
ik

and E0,X
ik

, where k ∈ {1, . . . , n}. If (n, u) =S(I,Λ(X)) (m,w), the mapping
dom(n,u)(m,w) : dom0(n, u)→ dom0(m,w) is defined, in order to avoid choice, as the mapping
E(n,u)(m,w), where E is a modulus of equality for D(S(I,Λ(X))) with E(n,u)(n,u) := iddom0(n,u),
for every (n, u) ∈ S(I,Λ(X)). The fact that ∆(X,R) ∈ Set

(
S(I,Λ(X), X,R

)
is immediate to

show. Hence, to every (n, u) ∈ S(I,Λ(X)) corresponds the partial function

s(n,u) :=

(
dom0(n, u),ZX(n,u),

n∑
k=1

aikχ
R
ik

)
∈ F(X); u :=

(
(a1, i1), . . . , (an, in)

)
.

If M(Λ(X)) := (X, I, µ) is a pre-measure space, then M(Λ(X)) induces the pre-integration
space L(Λ(X)) := (X,S(I,Λ(X)),

∫
µ), where∫

µ
: S(I,Λ(X))→ R, (n, u) 7→

∫
µ
(n, u),

∫
µ
(n, u) :=

n∑
k=1

akµ(ik); u :=
(
(a1, i1), . . . , (an, in)

)
.

The many steps of this involved proof of Bishop and Cheng, appropriately translated into the
predicative framework of BST, are found in [129], pp. 34–45.

7.6 Notes

Note 7.6.1. The set of Borel sets generated by a given family of complemented subsets of a
set X, with respect to a set Φ of real-valued functions on X, was introduced in [9], p. 68. This
set is inductively defined and plays a crucial role in providing important examples of measure
spaces in Bishop’s measure theory developed in [9]. As this measure theory was replaced in [19]
by the Bishop-Cheng measure theory, an enriched version of [18] that made no use of Borel sets,
the Borel sets were somehow “forgotten” in the constructive literature. In the introduction
of [18], Bishop and Cheng explained why they consider their new measure theory “much more
natural and powerful theory”. They do admit though, that some results are harder to prove
(see [18], p. v). As it is also noted in [120], p. 25, the Bishop-Cheng measure theory is highly
impredicative, while Bishop’s measure theory in [9] is highly predicative. This fact makes the
original Bishop-Cheng measure theory hard to implement in some functional-programming
language, a serious disandvantage from the computational point of view. This is maybe why,
later attempts to develop constructive measure theory were done within an abstract algebraic
framework (see [38], [41] and [121]). Despite the above history of measure theory within
Bishop-style constructive mathematics the set of Borel sets is interestingly connected to the
theory of Bishop spaces.



7.6. NOTES 219

Note 7.6.2. The definition of Borel(Λ(X)) is given by Bishop in [9], p. 68, although a rough
notion of a family of complemented subsets is used, condition (Borel3) is not mentioned, and
F is an arbitrary subset of F(X), and not necessarily a Bishop topology. If we want to avoid
the extensionality of Borel(Λ(X)), we need to introduce a “pseudo”-membership condition

A ∈̇ Borel(Λ(X)) :⇔ ∃B∈Borel(Λ(X))

(
A =PKJF (X) B

)
.

A similar condition is necessary, if we want to avoid extensionality in the definition the least
Bishop topology

∨
F0. Such an approach though, is not practical, and not compatible to the

standard practice to study extensional subsets of sets. The quantification over Fam(1, F,X) is
not equivalent to the quantification over the class PKJF (X), as in order to define a family in
Fam(1, F,X), we need to have already constructed an F -complemented subset of X. I.e., an
element of Fam(1, F,X) is generated by an already constructed, or given element of PKJF (X),
and not from an abstract element of it. Recall that we never define an assignment routine
from a class, like PKJF (X), to a set like Fam(1, F,X).

Note 7.6.3. The notion of a least Bishop topology generated by a given set of function from
X to R, together with the set of Borel sets generated by a family of complemented subsets of
X, are the main two inductively defined concepts found in [9]. The difference between the two
inductive definitions is non-trivial. The first is the inductive definition of a subset of F(X),
while the second is the inductive definition of a subset of the class PKJF (X).

Note 7.6.4. As Bishop remarks in [9], p. 69, the proof of Proposition 7.1.5(iii) rests on the
property of F that

(
1
n − f

)
∈ F , for every f ∈ F and n ≥ 1. If we define similarly the Borel

sets generated by any set of real-valued functions Θ on X, then we can find Θ such that
Borel(Θ) is closed under complements without satisfying the condition f ∈ Θ⇒

(
1
n − f

)
∈ Θ.

Such a set is F(X,2). In this case we have that

oF(X,2)(f) :=
(
[f = 1], [f = 0]

)
& − oF(X,2)(f) = oF(X,2)(1− f).

Hence, the property mentioned by Bishop is sufficient, but not necessary.

Note 7.6.5. A measure space is defined in [19], p. 282, and a complete measure space in [19],
p. 289. These definitions appeared first in [18] p. 47 and p. 55, respectively7.

Bishop-Cheng definition of a measure space. A measure space is a triplet (X,M,µ)
consisting of a nonvoid set X with an inequality 6=, a set M of complemented sets in X, and
a mapping µ of M into R0+, such that the following properties hold.

(BCMS1) If A and B belong to M , then so do A ∨ B and A ∧ B, and µ(A) + µ(B) =
µ(A ∨B) + µ(A ∧B).

(BCMS2) If A and A∧B belong to M , then so does A−B, and µ(A) = µ(A∧B) +µ(A−B).

(BCMS3) There exists A in M such that µ(A) > 0.

(BCMS4) If (An) is a sequence of elements of M such that limk→∞ µ
(∧k

n=1An
)

exists and is
positive, then

⋂
nA

1
n is nonvoid.

We then call µ the measure, and the elements of M the integrable sets, of the measure space
(X,M,µ). For each A in M the nonnegative number µ(A) is called the measure of A.

7In [18], p. 55, condition (BCM1) appears in the equivalent form: if B is an element of M such that B1 ⊆ A1

and B0 ⊆ A0, then A ∈M , where we have used the terminology that corresponds to the formulation of (BCM1)
in the definition of Bishop-Cheng.
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Bishop-Cheng definition of a complete measure space. A measure space (X,M,µ) is
complete if the following three conditions hold.

(BCCMS1) If A is a complemented set, and B is an element of M such that χA = χB on
B1 ∪B0, then A ∈M .

(BCCMS2) If (An) is a sequence of elements of M such that

l := lim
N→∞

µ

( N∨
n=1

An

)

exists, then
∨
nAn belongs to M and has measure l.

(BCCMS3) If A is a complemented set, and if B,C are elements of M such that B < A < C
and µ(B) = µ(C), then A ∈M .

As there is no indication of indexing in the description of M , the Bishop-Cheng definition of a
measure space seems to employ the powerset axiom in the formulation of M . The powerset
axiom is clearly used in (BMS1) and BCM3.

Note 7.6.6. The following definition of Bishop is given in [9], p. 183.

Bishop definition of a measure space. Let F be a nonvoid family of real-valued functions
on a set X, such that ε − f ∈ F whenever ε > 0 and f ∈ F . Let F be any family of
complemented subsets of X (relative to F ), closed with respect to countable unions, countable
intersections, and complementation. Let M be a subfamily of F closed under finite unions,
intersections, and differences. Let the function µ : M→ R0+ satisfy the following conditions:

(BMS1) There exists a sequence S1 ⊂ S2 ⊂ . . . of elements of M such that8
⋃∞
n=1 Sn = X0

and limn→∞ µ(A ∩ Sn) = µ(A) for all A in M.

(BMS2) If A ∈ F, and if there exist B and N in M such that (i) µ(N) = 0, (ii) x ∈ A whenever
x ∈ B −N , and (iii) x ∈ −A whenever x ∈ −B −N , then A ∈M and µ(A) = µ(B).

(BMS3) If A ∈M, if B ∈ F, and if A∩B ∈M, then A−B ∈M and µ(A) = µ(A−B)+µ(A∩B).

(BMS4) We have µ(A) + µ(B) = µ(A ∪B) + µ(A ∩B) for all A and B in M.

(BMS5) For each sequence {An} of sets in M such that c := limn→∞ µ
(⋃n

k=1Ak
)

[respectively,
c := limn→∞ µ

(⋂n
k=1Ak

)
] exists, the set A :=

⋃∞
k=1Ak (respectively, A :=

⋂∞
k=1Ak) is in M,

and µ(A) = c.

(BMS6) Each A in M with µ(A) > 0 is nonvoid.

Then the quintuple (X,F,F,M, µ) is called a measure space, µ is the measure, F is the class
of Borel sets, and M is the class of integrable sets.

If in Bishop’s definition we understand the families of complemented subsets F and M as
indexed families (A)i∈I , (A)j∈J over some sets I and J , respectively, with J ⊆ I, then the
quantifications involved in the clauses of Bishop’s definition are over I and J , and not over
some class. Since in [9], p. 65, a family of subsets of X is defined as an appropriate set-indexed
family of sets, Bishop’s first definition of measure space is predicative.

Note 7.6.7. Regarding the exact definition of a measure space within the formal system Σ
introduced by Bishop in [12], Bishop writes in [12], p. 67, the following:

8Bishop here means
⋃∞
n=1 Sn = X.
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To formalize in Σ the notion of an abstract measure space, definition 1 of chapter
7 of [9] must be rewritten as follows. A measure space is a family M≡ {At}t∈T
of complemented subsets of a set X relative to a certain family F of real-valued
function on X, a map µ : T → R0+, and an additional structure as follows: The
void set ∅ is an element At0 ofM, and µ(t0) = 0. If s and t are in T , there exists an
element s∨t of T such that As∨t < As ∪At. Similarly, there exist operations ∧ and
∼ on T , corresponding to the set theoretic operations ∩ and −. The usual algebraic
axioms are assumed, such as ∼(s ∨ t) = ∼s ∧ ∼t. Certain measure-theoretic
axioms, such as µ(s ∨ t) + µ(s ∧ t) = µ(s) + µ(t), are also assumed. Finally,
there exist operations ∨ and ∧. If, for example, {tn} is a sequence such that
C ≡ limk→∞ µ(t1 ∨ . . . ∨ tk) exists, then ∨{tn} is an element of T with measure
C. Certain axioms for ∨ and ∧ are assumed. If T is the family of measurable
sets of a compact space relative to a measure µ, and the set-theoretic function
µ : T → R0+ and the associated operations are defined as indicated above, the
result is a measure space in the sense just described.

Considerations such as the above indicate that essentially all of the material in [9],
appropriately modified, can be comfortably formalised in Σ.

The expression As∨t < As ∪At is probably a typo (it is the writing As∨t = As ∪At, which
expresses the “weak belongs to” relation for λ0I). Bishop does not mention that M is a set of
complemented subsets of X, he only says that it is a family of such sets. This is not the case
in [19], p. 282. This explanation given by Bishop regarding the explicit and unfolded writing
of many of the definitions in constructive mathematics refer to [9]. I have found no similar
comment of Bishop with respect to his later measure theory, developed with Cheng. Moreover,
I have found no such comment in the extensive work of Chan on Bishop-Cheng measure and
probability theory.

Note 7.6.8. In [80], p. 354, Myhill criticised Bishop for using a set of subsets M in the
definition of a measure space, hence, according to Myhill, Bishop used the powerset axiom.
Since M is an I-set of subsets of X, in the sense described in section 4.6, Myhill’s critique is
not correct. Bishop’s exaplanation in the previous extract is also a clear reply to a critique
like Myhill’s. Notice that Myhill’s paper [80] refers only to [9], and it does not mention [12],
which includes Bishop’s clear explanation. This is quite surprising, as Myhill’s paper, received
in January 1974, was surely written after the publication of [66], in which Bishop’s paper [12]
is included and Myhill is one of its three editors! Myhill’s critique would be correct, if he was
referring to the Bishop-Cheng measure space defined in [18], a work published quite some
time before Myhill submit [80]. Myhill though, does not refer to [18] in [80].

Note 7.6.9. Definition 7.4.3 is the explicit writing within BST of the corresponding definition
in [19], pp. 216–217.

Note 7.6.10. The following definition is given in [18], p. 2, and it is repeated in [19], p. 217.

Bishop-Cheng definition of an integration space. A triplet (X,L, I) is an integration
space if X is a nonvoid set with an inequality 6=, L is a subset of F(X) (this set is Fse(X) in
our terminology), and I is a mapping of L into R such that the following properties hold.

(BCIS1) If f, g ∈ L and α, β ∈ R, then αf + βg, |f |, and f ∧ 1 belong to L, and I(αf + βg) =
αI(f) + βI(g).
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(BCIS2) If f ∈ L and (fn) is a sequence of nonnegative functions in L such that
∑

n I(fn)
converges and

∑
n I(fn) < I(f), then there exists x ∈ X such that

∑
n fn(x) converges and∑

n fn(x) < f(x).

(BCIS3) There exists a function p in L with I(p) = 1.

(BCIS4) For each f in L, limn→∞ I(f ∧ n) = I(f) and limn→∞ I(|f | ∧ n−1) = 0.

The notion of an integration space is a constructive version of the Daniell integral, introduced
in [43]. The Bishop-Cheng definition of an integration space is impredicative, as the class F(X)
is treated as a set. The notion of a subset is defined only for sets, and L is considered a subset
of F(X). The extensional character of L is also not addressed. This impredicative approach
to L is behind the simplicity of the Bishop-Cheng definition. E.g., in (BCIS4) the formulation
of the limit is immediate as the terms f ∧ n ∈ L and I is defined on L. In Definition 7.5.1
though, we need to use an element α(n) of the index-set I such that f ∧ n =F(X) fα(n), in
order to express the limit.

Note 7.6.11. The Bishop-Cheng definition of the “set” L1 (or Lp, where p ≥ 1) of integrable
functions is also impredicative, as it rests on the use of the totality Fse(X) as a set (see
Definition (2.1) in [19], p. 222). In [129], pp. 49–60, the pre-integration space L1 of canonically
integrable functions is studied instead within BST, as the completion of an integration space.
The set L1 is predicatively defined in [9], p. 190, as an integrable function is an appropriate
measurable function, which is defined using quantification over the set-indexed family M of
integrable sets in a Bishop measure space (see Note 7.6.6).



Chapter 8

Epilogue

8.1 BST between dependent type theory and category theory

In this Thesis we tried to show how the elaboration of the notion of a set-indexed family of sets
within BST expands the range of BISH both in its foundation and its practice. Chapters 2-5
are concerned with the foundations of BISH, and chapters 6 and 7 with the practice of BISH.

Chapter 2 presents the set-like objects, the families of which are studied later: sets, subsets,
partial functions, and complemented subsets. Operations between these objects generate
corresponding operations between their families and family-maps. Chapter 3 includes the
fundamental notions and results about set-indexed families of sets. A family of sets Λ ∈ Fam(I),
together with its

∑
- and

∏
-set, and a family map Ψ: Λ⇒M , are examples of notions with

a strong type-theoretic, or categorical flavour, depending on the point of observation view.
This is not accident, as MLTT was motivated by Bishop’s book [9]. Moreover, BST can
roughly be described as a fundamental informal theory of totalities and assignment routines,
and (informal) category theory as a fundamental (informal) theory of objects and arrows. A
fundamental similarity between BST and MLTT is the explicit use of dependency, which is
suppressed in category theory. The fundamental categorical concepts of a functor and a natural
transformation, which are translated within BST as an I-family of sets and a family-map
between I-families of sets, have an immediate and explicit formulation within dependent type
theory or within BST (see Note 3.11.13). The formulation of dependency though, within
category theory is much more involved (see e.g., [85]). On the other hand, a fundamental
similarity between BST and category theory is the use of definitions that do not “force” facts
and results, as in the case of MLTT and its recent extension HoTT. While the language of
MLTT is clearly closer to BST, a large part of pure category theory, the size of the totalities
involved excluded, follows the “pattern” of doing constructive mathematics in the style of
BISH: all notions are defined, no powerful axioms are used, and despite the generality in the
categorical formulations, most results have a concrete algorithmic1 meaning.

The interconnections between category theory and dependent type theory is a standard
theme behind foundational studies on mathematics and theoretical computer science the
last forty years. The recent explosion of univalent foundations, spearheaded by the Fields

1The question of the constructive character of general category theory is addressed in [75]. There construc-
tivism in mathematics is identified with Brouwer’s intuitionism. The inclusion of Bishop-style constructivism
and of type-theoretic constructivism in the interpretation of mathematical constructivism is necessary and
sheds more light on the original question.



224 CHAPTER 8. EPILOGUE

medalist Vladimir Voevodsky, regenerated the study of these interconnections. The appropriate
categorical understanding of the univalence axiom brought category-theorists and type-theorists
even closer. BST seems to be in some kind of common territory between dependent type
theory and category theory. It also features simultaneously the proof-irrelevance of category
theory and classical mathematics, and the proof-relevance of MLTT. In contrast to HoTT,
where a type A has a rich space-structure due to the induction principle corresponding to the
introduction of the identity family =A : A → A → U on A, the notion of space in BISH, as
in classical set-based mathematics, is not identical to that of a set. This is also captured in
category theory, where the category of sets behaves differently from the category of topological
spaces. We need to add, by definition, extra structure to a set X, in order to acquire a
non-trivial space structure. In this Thesis the concept of space considered was that of a Bishop
space. This is one option, which is shown to be very fruitful, if we work within BISH∗, but it
is not the only one.

As in the case of MLTT or HoTT, a non-trivial part of category theory can be studied
within BST. We gave a glimpse of that in Note 3.11.13. Working in a similar fashion, most of
the theory of small categories can appropriately be translated into BST. This modelling of
pure category theory “suffers”, as any modelling, from the inclusion of features, like conditions
(Cat3), (Cat4), and (Funct3), that depend on the system BST itself and are not part of the
original theory. In any event, such a translation is not meant to be an attempt to replace pure
category theory, but to embed into BISH concepts and facts from category theory useful to
the practice of BISH. For example, all categorical notions and facts of constructive algebra
presented in [76], within a category theory irrelevant to the version of Bishop’s theory of sets
underlying [76], can, in principle, be approached within BST and the corresponding category
theory within BST. Unfolding proof-relevance in BISH through BST, categorical facts, like
the Yoneda lemma for Fam(Î) in section 5.4, are translated from MLTT + FunExt to BISH. It
remains to find though, interesting applications of such results to BISH.

Inductive definitions bring the language of BISH∗ closer to dependent type theory. The
induction principles that accommodate inductive definitions in the latter correspond to
universal properties in category theory. The formalisation of BST, and its possible extension
BST∗ with inductive definitions with rules of countably many premises, is an important open
problem. The natural requirement for a faithful and adequate formal system for BST and
BST∗ makes the choice of the formal framework even more difficult. It seems that a version of
a formal version of extensional Martin-Löf type theory, and the corresponding theory of setoids
within it, is a formal system very close to the informal system BST. As we have explained in
Note 1.3.2, a formal version of intensional MLTT does not seem to be a faithful formal system
for the informal theory BISH. The logical framework of an extensional version of dependent
type theory though, and the identification of propositions with types, is quite far from the
usual practice of BISH, which is, in this respect, close to the standard practice of classical
mathematics. It is natural to search for a formal system of BST where logic is not built in, as
in MLTT, and which reflects the way sets are defined in BST. We hope that the presentation
of BST in this Thesis will be helpful to the construction of such a formal counterpart.

Category theory can also be very helpful to the formulation of the properties of Bishop
sets and functions. The work of Palmgren [83] on the categorical properties of the category
of setoids and setoid maps within intensional MLTT is expected to be very useful to this.
A similar formulation of the categorical properties of the theory of setoids and setoid maps
within extensional MLTT could be even closer to the formulation of the categorical properties
of Bishop sets and functions.
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8.2 Further open questions and future tasks

We collect here some further open questions and future tasks stemming form this Thesis.

1. To develop the theory of neighbourhood spaces using the notion of a neighbourhood
family of subsets of a set X that covers X (see Note 4.11.2).

2. Is it possible to use families of complemented subsets to describe a neighbourhood space?
The starting idea is to assign to each i ∈ I a complemented subset ν0(i) :=

(
ν1

0(i), ν0
0(i)

)
of X, such that ν1

0(i) is open and ν0
0(i) is closed. The benefit of such an approach to

constructive topology is that the classical duality between open and closed sets is captured
constructively. E.g., the 1-component of the complement −ν0(i) :=

(
ν0

0(i), ν1
0(i)

)
of

ν0(i) is a closed set and its 0-component is an open set.

3. Can we use complemented subsets of N in a constructive reconstruction of recursion
theory, instead of just subsets of N? This question is inspired from the work of Nemoto
on recursion theory within intuitionistic logic.

4. To explore further the notion of an impredicative set, and the hierarchy mentioned in
Note 3.11.12.

5. To find interesting purely mathematical applications of set-relevant families of sets and
of families of families of sets.

6. To investigate the possibility of a BHK-interpretation of a negated formula (see Note 5.7.7).

7. To develop a (predicative) theory of ordinals within BST.

8. To study families of sets with a proof-relevant equality over an index-set with a proof-
relevant equality.

9. To translate more notions and results from MLTT and HoTT to BISH through BST.
As a special case, to translate higher inductive types (HITs) into BISH, other than the
truncation ||A|| of A. If we work directly with a space in BST i.e., with a Bishop space
F := (X,F ), and not with an arbitrary type, as in HoTT, we can define within BST
notions like the cone and the suspension of F . If I01 := [0, 1], we call I∪01 := {0}∪(0, 1)∪{1}
the pseudo-interval [0, 1]. To I∪01 we can associate the least Bishop topology generated
by the restriction of the identity map to it. The relation ∼τX on X × I∪01, defined by

(x, i) ∼τX (x′, i′) :⇔
(
i, i′ ∈ {0} ∪ (0, 1) & i =I∪01

i′ & x =X x′
)

or i =I∪01
1 =I∪01

i′,

is an extensional equivalence relation. If Y := X× I∪01 and τX0 : Y → τX0 Y is the function
that maps (x, i) to its equivalence class (see section 4.7), then τX0 Y (Y ), equipped with
an an appropriate Bishop topology, is the cone of F . For the suspension of F we work
similarly.

10. To find interesting mathematical applications of (−2), (−1)- and 0-sets in BISH.

11. To elaborate the study of category theory within BST. So far we have formulated
within BST most of the category theory formulated within the Calculus of Inductive
Constructions in [61].

12. To develop along the lines of Chapter 6 the theory of spectra of other structures, like
groups, rings, modules etc.
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13. To develop further the theory of Borel sets of a Bishop topology. E.g., to find the exact
relation between the Borel sets Borel(F) and Borel(G) and the Borel sets Borel(F ×G)
of the product Bishop space F × G. And similarly for all important constructions of
new Bishop spaces from given ones.

14. To formulate various parts of the constructive algebra developed in [76] and [68] within
BST.

15. To elaborate the theory of (pre-)measure spaces and (pre-)integrations spaces. The past
work [129] and the forthcoming work [102] are in this direction.

16. To approach Chan’s probability theory in [35], which is within BCMT, through a
predicative reconstruction of BCMT within BST.



Chapter 9

Appendix

9.1 Bishop spaces

We present the basic notions and facts on Bishop spaces that are used in the previous sections.
For all concepts and results from constructive real analysis that we use here without further
explanation we refer to [19]. For all proofs that are not included in this section we refer
to [88]. We work within the extension BISH∗ of BISH with inductive definitions with rules of
countably many premises. A Bishop space is a constructive, function-theoretic alternative
to the classical notion of a topological space, and a Bishop morphism is the corresponding
function-theoretic notion of “continuous function” between Bishop spaces.

Definition 9.1.1. If X is a set and R is the set of real numbers, we denote by F(X) the set
of functions from X to R, and by Const(X) the subset of F(X) of all constant functions on
X. If a ∈ R, we denote by aX the constant function on X with value a. We denote by N+ the
set of non-zero natural numbers. A function φ : R→ R is called Bishop continuous, or simply
continuous, if for every n ∈ N+ there is a function ωφ,n : R+ → R+, ε 7→ ωφ,n(ε), which is
called a modulus of continuity of φ on [−n, n], such that the following condition is satisfied

∀x,y∈[−n,n](|x− y| < ωφ,n(ε)⇒ |φ(x)− φ(y)| ≤ ε),

for every ε > 0 and every n ∈ N+. We denote by Bic(R) the set of continuous functions from
R to R, which is equipped with the equality inherited from F(R).

Note that we could have defined the modulus of continuity ωφ,n as a function from N+ to N+.
Clearly, a continuous function φ : R→ R is uniformly continuous on every bounded subset of R.
The latter is an impredicative formulation of uniform continuity, since it requires quantification
over the class of all subsets of R. The formulation of uniform continuity in the Definition 9.1.1
though, is predicative, since it requires quantification over the sets N+,F(R+,R+) and [−n, n].

Definition 9.1.2. If X is a set, f, g ∈ F(X), ε > 0, and Φ ⊆ F(X), let

U(X; f, g, ε) :⇔ ∀x∈X
(
|g(x)− f(x)| ≤ ε

)
,

U(X; Φ, f) :⇔ ∀ε>0∃g∈Φ

(
U(f, g, ε)

)
.

If the set X is clear from the context, we write simpler U(f, g, ε) and U(Φ, f), respectively.
We denote by Φ∗ the bounded elements of Φ, and its uniform closure Φ is defined by

Φ := {f ∈ F(X) | U(Φ, f)}.
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A Bishop topology on X is a certain subset of F(X). Since the Bishop topologies considered

here are all extensional subsets of F(X), we do not mention the embedding i
F(X)
F : F ↪→ F(X),

which is given in all cases by the identity map-rule.

Definition 9.1.3. A Bishop space is a pair F := (X,F ), where F is an extensional subset of
F(X), which is called a Bishop topology, or simply a topology of functions on X, that satisfies
the following conditions:

(BS1) If a ∈ R, then aX ∈ F .

(BS2) If f, g ∈ F , then f + g ∈ F .

(BS3) If f ∈ F and φ ∈ Bic(R), then φ ◦ f ∈ F

X R

R.

f

F 3 φ ◦ f φ ∈ Bic(R)

(BS4) F = F .

If F := (X,F ) is a Bishop space, then F∗ := (X,F ∗) is the Bishop space of bounded
elements of F . The constant functions Const(X) is the trivial topology on X, while F(X) is
the discrete topology on X. Clearly, if F is a topology on X, then Const(X) ⊆ F ⊆ F(X), and
the set of its bounded elements F ∗ is also a topology on X. It is straightforward to see that
the pair R := (R,Bic(R)) is a Bishop space, which we call the Bishop space of reals. A Bishop
topology F is a ring and a lattice; since |idR| ∈ Bic(R), where idR is the identity function on R,
by BS3 we get that if f ∈ F then |f | ∈ F . By BS2 and BS3, and using the following equalities

f ·g =
(f + g)2 − f2 − g2

2
∈ F,

f ∨ g = max{f, g} =
f + g + |f − g|

2
∈ F,

f ∧ g = min{f, g} =
f + g − |f − g|

2
∈ F,

we get similarly that if f, g ∈ F , then f ·g, f ∨g, f ∧g ∈ F . Turning the definitional clauses of a
Bishop topology into inductive rules, Bishop defined in [9], p. 72, the least topology including
a given subbase F0. This inductive definition, which is also found in [19], p. 78, is crucial to
the definition of new Bishop topologies from given ones.

Definition 9.1.4. The Bishop closure of F0, or the least topology
∨
F0 generated by some

F0 ⊆ F(X), is defined by the following inductive rules:

f0 ∈ F0

f0 ∈
∨
F0
,

a ∈ R

aX ∈
∨
F0
,

f, g ∈
∨
F0

f + g ∈
∨
F0
,

f ∈
∨
F0, g =F(X) f

g ∈
∨
F0

,

f ∈
∨
F0, φ ∈ Bic(R)

φ ◦ f ∈
∨
F0

,

(
g ∈

∨
F0, U(f, g, ε)

)
ε>0

f ∈
∨
F0

.

We call
∨
F0 the Bishop closure of F0, and F0 a subbase of

∨
F0.
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If F0 is inhabited, then (BS1) is provable by (BS3). The last, most complex rule above can
be replaced by the rule

g1 ∈
∨
F0 ∧ U

(
f, g1,

1
2

)
, g2 ∈

∨
F0 ∧ U

(
f, g2,

1
22

)
, . . .

f ∈
∨
F0

,

a rule with countably many premisses. The corresponding induction principle Ind∨
F0

is[
∀f0∈F0

(
P (f0)

)
& ∀a∈R

(
P (aX)

)
& ∀f,g∈∨F0

(
P (f) & P (g)⇒ P (f + g)

& ∀f∈∨F0
∀g∈F(X)

(
g =F(X) f ⇒ P (g)

)
& ∀f∈∨F0

∀φ∈Bic(R)

(
P (f)⇒ P (φ ◦ f)

)
& ∀f∈∨F0

(
∀ε>0∃g∈∨F0

(P (g) & U(f, g, ε))⇒ P (f)
)]

⇒ ∀f∈∨F0

(
P (f)

)
,

where P is any bounded formula. Next we define the notion of a Bishop morphism between
Bishop spaces. The Bishop morphisms are the arrows in the category of Bishop spaces Bis.

Definition 9.1.5. If F := (X,F ) and G = (Y,G) are Bishop spaces, a function h : X → Y
is called a Bishop morphism, if ∀g∈G(g ◦ h ∈ F )

X Y

R.

h

F 3 g ◦ h g ∈ G

We denote by Mor(F ,G) the set of Bishop morphisms from F to G. As F is an extensional
subset of F(X), Mor(F ,G) is an extensional subset of F(X,Y ). If h ∈ Mor(F ,G), the induced
mapping h∗ : G→ F from h is defined by the rule

h∗(g) := g ◦ h; g ∈ G.

If F := (X,F ) is a Bishop space, then F = Mor(F ,R), and one can show inductively that
if G := (Y,

∨
G0), then h : X → Y ∈ Mor(F ,G) if and only if ∀g0∈G0(g0 ◦ h ∈ F )

X Y

R.

h

F 3 g0 ◦ h g0 ∈ G0

We call this fundamental fact the
∨

-lifting of morphisms. A Bishop morphism is a Bishop
isomorphism, if it is an isomorphism in the category Bis. We write F ' G to denote that F
and G are Bishop isomorphic. If h ∈ Mor(F ,G) is a bijection, then h is a Bishop isomorphism
if and only if it is open i.e., ∀f∈F∃g∈G

(
f = g ◦ h

)
.
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Definition 9.1.6. Let F := (X,F ),G := (Y,G) be Bishop spaces, and (A, iA) ⊆ X inhabited.
The product Bishop space F × G := (X × Y, F × G) of F and G, the relative Bishop space
F|A := (A,F|A) on A, and the pointwise exponential Bishop space F → G = (Mor(F ,G), F →
G) are defined, respectively, by

F ×G :=
∨

[{f ◦ prX , | f ∈ F} ∪ {g ◦ prY | g ∈ G}] =:

g∈G∨
f∈F

f ◦ prX , g ◦ prY ,

F|A =
∨
{f|A | f ∈ F} =:

∨
f∈F

f|A

A X R,
iA f

f|A

F → G :=
∨{

φx,g | x ∈ X, g ∈ G
}

:=

g∈G∨
x∈X

φx,g,

φx,g : Mor(F ,G)→ R, φx,g(h) = g(h(x)); x ∈ X, g ∈ G.

One can show inductively the following
∨

-liftings∨
F0 ×

∨
G0 :=

∨
[{f0 ◦ prX , | f0 ∈ F0} ∪ {g0 ◦ prY | g0 ∈ G0}]

=:

g0∈G0∨
f0∈F0

f0 ◦ prX , g0 ◦ prY ,

(∨
F0

)
|A =

∨
{f0|A | f0 ∈ F0} =:

∨
f0∈F0

f0|A,

F →
∨
G0 =

∨{
φx,g0 | x ∈ X, g0 ∈ G0

}
:=

g0∈G0∨
x∈X

φx,g0 .

The relative topology FA is the least topology on A that makes iA a Bishop morphism, and the
product topology F ×G is the least topology on X × Y that makes the projections prX and
prY Bishop morphisms. The term pointwise exponential Bishop topology is due to the fact
that F → G behaves like the the classical topology of the pointwise convergence on C(X,Y ),
the set of continuous functions from the topological space X to the topological space Y .

9.2 Directed sets

Definition 9.2.1. Let I be a set and i 4I j a binary extensional relation on I i.e.,

∀i,j,i′,j′∈I
(
i =I i

′ & j =I j
′ & i 4I j ⇒ i′ 4I j

′).
If i 4I j is reflexive and transitive, then (I,4I) is called a a preorder. We call a preorder
(I,4I) a directed set, and inverse-directed, respectively, if

∀i,j∈I∃k∈I
(
i 4I k & j 4I k

)
,
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∀i,j∈I∃k∈I
(
i <I k & j <I k

)
.

The covariant covariant diagonal D4(I) of 4I , the contravariant diagonal D<(I) of 4I , and
the 4I-upper set I4ij of i, j ∈ I are defined, respectively, by

D4(I) :=
{

(i, j) ∈ I × I | i 4I j
}
,

D<(I) :=
{

(j, i) ∈ I × I | j <I i
}
,

I4ij := {k ∈ I | i 4I k & j 4I k}.

Since i 4I j is extensional, D4(I), D<(I), and I4ij are extensional subsets of I × I.

Definition 9.2.2. Let (I,4I) be a poset i.e., a preorder such that
[
i 4I j & j 4I i

]
⇒ i =I j,

for every i, j,∈ I. A modulus of directedness for I is a function δ : I × I → I, such that for
every i, j, k ∈ I the following conditions are satisfied:

(δ1) i 4I δ(i, j) and j 4I δ(i, j).

(δ2) If i 4I j, then δ(i, j) =I δ(j, i) =I j.

(δ3) δ
(
δ(i, j), k

)
=I δ

(
i, δ(j, k)

)
.

In what follows we avoid for simplicity the use of subscripts on the relation symbols.
If (I,4) is a preordered set and (J, e) ⊆ I, where e : J ↪→ I, and using for simplicity the
same symbol 4, if we define j 4 j′ :⇔ e(j) 4 e(j′), for every j, j′ ∈ J , then (J,4) is only a
preordered set. If J is a cofinal subset of I, which classically it is defined by the condition
∀i∈I∃j∈J

(
i 4 j

)
, then (J,4) becomes a directed set. To avoid the use of dependent choice, we

add in the definition of a cofinal subset J of I a modulus of cofinality for J .

Definition 9.2.3. Let (I,4) be a directed set and (J, e) ⊆ I, and let j 4 j′ :⇔ e(j) 4 e(j′),
for every j, j′ ∈ J . We say that J is cofinal in I, if there is a function cofJ : I → J , which
we call a modulus of cofinality of J in I, that satisfies the following conditions:

(Cof1) ∀j∈J
(
cofJ(e(j)) =J j

)
.

J I J .e cofJ

idJ

(Cof2) ∀i,i′∈I
(
i 4 i′ ⇒ cofJ(i) 4 cofJ(i′)

)
.

(Cof3) ∀i∈I
(
i 4 e(cofJ(i))

)
.

We denote the fact that J is cofinal in I by (J, e, cofJ) ⊆cof I, or, simpler, byJ ⊆cof I.

Taking into account the embedding e of J into I, the condition (iii) is the exact writing of
the classical defining condition ∀i∈I∃j∈J

(
i 4 j

)
. To add the condition (i) is harmless, since 4

is reflexive. If we consider the condition (iii) on e(j), for some j ∈ J , then by the condition (i)
we get the transitivity e(j) 4 e(cofJ(e(j))) = e(j). The condition (ii) is also harmless to add.
In the classical setting if i 4 i′, and j, j′ ∈ J such that i 4 j and i′ 4 j′, then there is some
i′′ ∈ I such that j′ 4 i′′ and j 4 i′′. If i′′ 4 j′′, for some j′′ ∈ J ,
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i

ji′

j′

i′′

j′′

then j 4 j′′. Since i′ 4 j′′ too, the condition (ii) is justified. The added conditions (i) and (ii)
are used in the proofs of Theorem 6.5.12 and Lemma 6.5.11(ii), respectively. Moreover, they
are used in the proof of Theorem 6.6.5. The extensionality of 4 is also used in the proofs of
Theorem 6.5.12 and Theorem 6.6.5.

E.g., if Even and Odd denote the sets of even and odd natural numbers, respectively, let
e : Even ↪→ N, defined by the identity map-rule, and cofEven : N→ 2N, defined by the rule

cof2N(n) :=

{
n , n ∈ Even

n+ 1 , n ∈ Odd.

Then (Even, e, cofEven) ⊆ N.

Remark 9.2.4. If (I,4) is a directed set and (J, e, cofJ) ⊆cof I, then (J,4) is directed.

Proof. Let j, j′ ∈ J and let i ∈ I such that e(j) 4 i and e(j′) 4 i. Since i 4 e(cofJ(i)), we
get e(j) 4 e(cofJ(i)) and e(j′) 4 e(cofJ(i)) i.e., j 4 cofJ(i) and j′ 4 cofJ(i).
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[27] G. Cantor: Über unendliche, lineare Punktmannichfaltigkeiten, Nummer 3. Mathematische
Annalen, 20, 1882, 113–121.

[28] D. S. Bridges, H. Ishihara, M. Rathjen, H. Schwichtenberg (Eds.): Handbook of Bishop
Constructive Mathematics, in preparation, expected year of publication 2021.
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family of sets, 161

family of complemented subsets, 121

family of complemented subsets-map, 122

family of contractible sets, 116

family of disjoint subsets of X, 92

family of domains of Λ(X,Y ), 119

family of families of sets, 69

family of families-map, 75

family of partial functions, 118

family of partial functions-map, 119

family of sets, 37

family of simple functions, 217

family of subsets, 85

family of subsets-map, 87

family of zero F -complemented subsets, 201

family-map, 38
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family-map over a function, 39
fiber, 14
first associate, 144
first projection, 47
free setoid, 7
free subset, 24, 30, 126
full subset, 142
function, 12
function space family, 40
function-like first associate, 144
function-like set-relevant family of sets, 65
functor, 82

groupoid laws, 15

hereditary subset, 139

identity family of families-map, 75
identity family-map, 39
identity map on a set, 12
identity operation, 16
identity set-relevant family-map, 66
image, 19
image of a family of subsets, 90
impredicative set, 39
index-set, 37
indicator function of a complemented subset,

24
induced mapping from a Bishop morphism,

229
inequality, 11
inhabited proof-relevant structure, 153
inhabited set, 12
integrable function, 222
integrable functions, 142
integrable set, 205
integration space, 142, 214
interior union, 91
intersection of a family of subsets, 97
intersection of subsets, 18
inverse limit of a contravariant direct spectrum

of Bishop spaces, 179
inverse limit of a contravariant direct spectrum

of subspaces, 194
inverse-direct sum, 79
inverse-directed set, 230

least Bishop topology, 228

left intersection of partial functions, 23
local version of Myhill’s axiom of non-choice,

31
logical equality, 9

map between complemented subsets, 24
Martin-Löf map, 144
Martin-Löf set, 143
measurable set, 205
measure of a measure space, 205
measure space, 205
mere proposition, 12
modulus of (uniform) continuity, 227
modulus of Cauchyness, 134
modulus of centres of contraction, 16, 116
modulus of contravariant transport maps, 125
modulus of convergence of a sequence of reals,

134
modulus of convergence of a sequence of reals

at a point, 134
modulus of covariant transport maps, 125
modulus of directedness, 231
modulus of embeddings, 86
modulus of function-likeness, 37
modulus of inhabitedness for X̂, 154
modulus of partial functions, 119
modulus of surjectivity, 14
modulus of surjectivity for a dependent opera-

tion, 16
modulus of transport maps, 62

naive BHK-interpretation of BISH, 131
non-dependent assignment routine, 12

open morphism, 229
operation, 12

pairing, 9
partial dependent operation, 34
partial function, 20
partial function space, 21
partition, 92
powerset, 17
pre-image, 19
pre-image of a family of subsets, 90
pre-integration space, 216
pre-measure, 206
pre-measure space, 206
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predicate on a set, 9

preorder, 230

presentation axiom, 7

preset, 10

presheaf, 127

primitive set, 10

product Bishop space, 230

product family-map, 41

product of I-families, 40

product of sets, 10

projective object of a category, 7

proof-irrelevant family of sets, 145

pseudo-interval [0, 1], 225

regular extension axiom, 196

relative Bishop space, 230

relative direct spectrum, 173

restriction, 19

retract, 14

retraction, 14

Richman ordinal, 139

right intersection of partial functions, 23

second projection, 47

set, 10

set of integrable indices, 206

set of sets, 59

set of sets generated by a family of sets, 60

set of subsets, 110

set of subsets generated by a family of subsets,
111

set with a proof-relevant equality, 143

set-relevant direct family of sets, 67

set-relevant family of sets, 64

sets of detachable subsets, 112

sheaf of sets, 127

singleton, 12

spectrum of metric spaces over a family of sets,
78

spectrum of posets, 82

spectrum of subspaces, 191

spectrum over a set, 162

spectrum-map, 162

strongly F -complemented, 198

strongly extensional function, 12

strongly extensional partial function, 211

subbase, 228

subset, 16
subsingleton, 12
subspaces direct spectrum-map, 194
subspaces spectrum-map, 191
sufunction, 20
sum Bishop space, 163
sum Bishop space of S4, 167
surjective function, 14
suspension of a Bishop space, 225

the I-family that corresponds to Λ(X), 86
tight inequality, 11
totality, 9
totality of I-families, 39
totality of covariant set-relevant family-maps,

65
totality of family-maps, 38
totality of set-relevant I-families, 66
totality with equality, 10
transport family-maps, 71
transport map of a direct family of sets, 62
transport map of a family of sets, 37
transport maps of a family of families of sets,

69
truncation, 12

uniform closure, 227
uniformly F -complemented subset, 197
union of a family of subsets, 91
union of partial functions, 23
union of subsets, 18
universal property of direct limits, 169
universe of sets, 14
universe of sets and impredicative sets, 69

well-founded relation, 139

Yoneda lemma for Fam(Î), 148
Yoneda lemma in MLTT, 148

Zeuner, 92
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