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Abstract

We develop the theory of set-indexed families of sets within the informal Bishop Set Theory
(BST), a reconstruction of Bishop’s theory of sets,. The latter is the informal theory of sets
and functions underlying Bishop-style constructive mathematics (BISH) and it is developed in
Chapter 3 of Bishop’s seminal book Foundations of Constructive Analysis [9] and in Chapter
3 of Constructive Analysis [19] that Bishop co-authored with Bridges.

In the Introduction we briefly present the relation of Bishop’s set theory to the set-theoretic
and type-theoretic foundations of mathematics, and we describe the features of BST that
“complete” Bishop’s theory of sets. These are the explicit use of the class “universe of sets”, a
clear distinction between sets and classes, the explicit use of dependent operations, and the
concrete formulation of various notions of families of sets.

In Chapter 2] we present the fundamentals of Bishop’s theory of sets, extended with the
features which form BST. The universe Vg of sets is implicit in Bishop’s work, while the
notion of a dependent operation over a non-dependent assignment routine from a set to Vg is
explicitly mentioned, although in a rough way. These concepts are necessary to a concrete
definition of a set-indexed family of sets, the main object of our study, which is only mentioned
by Bishop.

In Chapter [3| we develop the basic theory of set-indexed families of sets and of family-maps
between them. We study the exterior union of a family of sets A, or the > -set of A, and
the set of dependent functions over A, or the [[-set of A. We prove the distributivity of
[] over > for families of sets indexed by a product of sets, which is the translation of the
type-theoretic axiom of choice into BST. Sets of sets are special set-indexed families of sets
that allow “lifting” of functions on the index-set to functions on them. The direct families
of sets and the set-relevant families of sets are introduced. The index-set of the former is
a directed set, while the transport maps of the latter are more than one and appropriately
indexed. With the use of the introduced universe V%]m of sets and impredicative sets we study
families of families of sets, the next rung of the ladder of set-like objects in V%)m.

In Chapter [4| we develop the basic theory of set-indexed families of subsets and of the
corresponding family-maps between them. In contrast to set-indexed families of sets, the
properties of which are determined “externally” through their transport maps, the properties
of a set-indexed family A(X) of subsets of a given set X are determined “internally” through
the embeddings of the subsets of A(X) to X. The interior union of A(X) is the internal
analogue to the ) -set of a set-indexed family of sets A, and the intersection of A(X) is the
internal analogue to the [[-set of A. Families of sets over products, sets of subsets, and direct
families of subsets are the internal analogue to the corresponding notions for families of sets.
Set-indexed families of partial functions and set-indexed families of complemented subsets,
together with their corresponding family-maps, are studied.

In Chapter [5| a form of proof-relevance is added to BISH through BST, which is both
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separate from its standard mathematical part, and also expressible in it. The distinctive
feature of intensional Martin-Lof Type Theory (MLTT) is its proof-relevance, the fact that
proof-objects are considered as “first-class citizens”. The various kinds of moduli, like the
moduli of uniform continuity, of convergence etc., which witness that a function is uniformly
continuous, a sequence converges etc., form a trace of proof-relevance in BISH. We make the
algorithmic content of several constructive proofs explicit by defining a BHK-interpretation
of certain formulas of BISH within BST. We define the notion of a set with a proof-relevant
equality and the notion of a Martin-Lof set, which translates the first level of the identity type
of intensional MLTT. As a result, notions and facts from homotopy type theory are translated
in BISH.

In Chapter [6] we connect various notions and results from the theory of families of sets and
subsets to the theory of Bishop spaces, a function-theoretic approach to constructive topology.
Associating in an appropriate way to each set \g(7) of an I-family of sets A a Bishop topology
F;, a spectrum S(A) of Bishop spaces is generated. The ) -set and the []-set of a spectrum
S(A) are equipped with canonical Bishop topologies. A direct spectrum of Bishop spaces is a
family of Bishop spaces associated to a direct family of sets. The direct and inverse limits
of direct spectra of Bishop spaces are studied. Direct spectra of Bishop subspaces are also
examined. Many Bishop topologies used in this chapter are defined inductively within the
extension BISH* of BISH with inductive definitions with rules of countably many premises.

In Chapter [7] we study the Borel and Baire sets within Bishop spaces as a constructive
counterpart to the study of Borel and Baire algebras within topological spaces. As we use the
inductively defined least Bishop topology, and as the Borel and Baire sets over a family of
F-complemented subsets are defined inductively, we work again within BISH*. In contrast
to the classical theory, we show that the Borel and the Baire sets of a Bishop space coincide.
Finally, our reformulation within BST of the Bishop-Cheng definition of a measure space and of
an integration space, based on the notions of families of complemented subsets and of families
of partial functions, facilitates a predicative reconstruction of the originally impredicative
Bishop-Cheng measure theory.

Papers related to this Thesis. Section is included, in a slightly different form, in [95],
most of the material of Chapter [f]is found in [96], sections and are included in [92],
most of Chapter 5|is found in [101], and sections are included in [102].



Chapter 1

Introduction

Bishop’s theory of sets is Bishop’s account of the informal theory of sets and functions that
underlies Bishop-style constructive mathematics BISH. We briefly present the relation of
this theory to the set-theoretic and type-theoretic foundations of mathematics. Bishop Set
Theory (BST) is our “completion” of Bishop’s theory of sets with a universe of sets, with a
clear distinction between sets and classes, with an explicit use of dependent operations, and
with a concrete formulation of various notions of families of sets. We explain how the theory
of families of sets within BST that is elaborated in this Thesis is used, in order to reveal
proof-relevance in BISH, to develop the theory of spectra of Bishop spaces, and to reformulate
predicatively the fundamental notions of the impredicative Bishop-Cheng measure theory.

1.1 Bishop’s theory of sets

The theory of sets underlying Bishop-style constructive mathematics (BISH) was only sketched
in Chapter 3 of Bishop’s seminal book [9]. Since Bishop’s central aim in [9] was to show that
a large part of advanced mathematics can be done within a constructive and computational
framework that does not contradict the classical practice, the inclusion of a detailed account
of the set-theoretic foundations of BISH could possibly be against the effective delivery of his
message.

The Bishop-Cheng measure theory, developed in [18], was very different from the measure
theory of [9], and the inclusion of an enriched version of the former into [19], the book on
constructive analysis that Bishop co-authored with Bridges later, affected the corresponding
Chapter 3 in two main respects. First, the inductively defined notion of the set of Borel sets
generated by a given family of complemented subsets of a set X, with respect to a set of
real-valued functions on X, was excluded, as unnecessary, and, second, the operations on the
complemented subsets of a set X were defined differently, and in accordance to the needs of
the new measure theory.

Yet, in both books many issues were left untouched, a fact that often was a source of
confusion. In many occasions, especially in the measure theory of [I8] and [19], the powerset
was treated as a set, while in the measure theory of [9], Bishop generally avoided the powerset
by using appropriate families of subsets instead. In later works of Bridges and Richman, like
[20] and [76], the powerset was clearly used as a set, in contrast though, to the predicative
spirit of [9].

The concept of a family of sets indexed by a (discrete) set, was asked to be defined in [9]
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(Exercise 2, p. 72), and a definition, attributed to Richman, was given in [19] (Exercise 2,
p. 78). An elaborate study though, of this concept within BISH is missing, despite its central
character in the measure theory of [9], its extensive use in the theory of Bishop spaces [88] and
in abstract constructive algebra [76]. Actually, in [76] Richman introduced the more general
notion of a family of objects of a category indexed by some set, but the categorical component
in the resulting mixture of Bishop’s set theory and category theory was not explained in
constructive termdl

Contrary to the standard view on Bishop’s relation to formalisation, Bishop was very
interested in it. In [I2], p. 60, he writes:

Another important foundational problem is to find a formal system that will
efficiently express existing predictive mathematics. I think we should keep the
formalism as primitive as possible, starting with a minimal system and enlarging
it only if the enlargement serves a genuine mathematical need. In this way the
formalism and the mathematics will hopefully interact to the advantage of both.

Actually, in [I2] Bishop proposed ¥, a variant of Godel’s T', as a formal system for BISH. In
the last two pages of [12] he sketched very briefly how ¥ can be presented as a functional
programming language, like fortran and algol. In p. 72 he also added:

It would be interesting to take ¥ as the point of departure for a reasonable
programming language, and to write a compiler.

Bishop’s views on a full-scale program on the foundations of mathematics are realised in a
more developed form in his, unfortunately, unpublished papers [10] and [II]. In the first,
Bishop elaborated a version of dependent type theory with one universe, in order to formalise
BISH. This was the first time that some form of type theory is used to formalise constructive
mathematics.

As Martin-Lof explains in [71], p. 13, he got access to Bishop’s book only shortly after his
own book on constructive mathematics [71] was finished. Bishop’s book [9] also motivated
his version of type theory. Martin-Lof opened his first published paper on type theory ([72],
p. 73) as follows.

The theory of types with which we shall be concerned is intended to be a full scale
system for formalizing intuitionistic mathematics as developed, for example, in the
book of Bishop.

The type-theoretic interpretation of Bishop’s set theory into the theory of setoids (see
especially the work of Palmgren [81]-[87]) has become nowadays the standard way to understand
Bishop sets (as far as I know, this is a term due to Palmgren). A setoid is a type A in a
fixed universe U equipped with a term ~: A — A — U that satisfies the properties of an
equivalence relation. The identity type of Martin-Lof’s intensional type theory (MLTT)
(see [74]), expresses, in a proof-relevant way, the existence of the least reflexive relation on
a type, a fact with no counterpart in Bishop’s set theory. As a consequence, the free setoid
on a type is definable (see [85], p. 90), and the presentation axiom in setoids is provable (see
Note . Moreover, in MLTT the families of types over a type [ is the type I — U, which
belongs to the successor universe U’ of U. In Bishop’s set theory though, where only one
universe of sets is implicitly used, the set-character of the totality of all families of sets indexed

!This was done e.g., in the the formulation of category theory in homotopy type theory (Chapter 9 in [124]).
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by some set I is questionable from the predicative point of view (see our comment after the
Definition .

The quest @ of finding a formal system suitable for Bishop’s system of informal constructive
mathematics BISH dominated the foundational studies of the 1970’s. Myhill’s system CST,
introduced in [80], and later Aczel’s CZF (see [I]), Friedman’s system B, developed in [51],
and Feferman’s system of explicit mathematics Ty (see [48] and [49]), are some of the systems
related to @, but soon developed independently from it. These systems were influenced
a lot from the classical Zermelo-Fraenkel set theory, and could be described as “top-down’
approaches to the goal of @, as they have many “unexpected” features with respect to BISH.
Using Feferman’s terminology from [49], these formal systems are not completely faithful to
BISH. If T is a formal theory of an informal body of mathematics M, Feferman gave in [49]
the following definitions.

?

(i) T is adequate for M, if every concept, argument, and result of M is represented by a (basic
or defined) concept, proof, and a theorem, respectively, of T

(ii) T is faithful to M, if every basic concept of T' corresponds to a basic concept of M and
every axiom and rule of T' corresponds to or is implicit in the assumptions and reasoning
followed in M (i.e., T' does not go beyond M conceptually or in principle).

In [5], p. 153, Beeson called T suitable to M, if T is adequate for M and faithful to M.

Beeson’s systems S and Sy in [5], and Greenleaf’s system of liberal constructive set theory
LCST in [55] were dedicated to Q. Especially Beeson tried to find a faithful and adequate
formalisation of BISH, and, by including a serious amount of proof relevance, his systems
stand in between the set-theoretic, proof-irrelevant point of view and the type-theoretic,
proof-relevant point of view.

All aforementioned systems though, were not really “tested” with respect to BISH. Only
very small parts of BISH were actually implemented in them, and their adequacy for BISH
was mainly a claim, rather than a shown fact. The implementation of Bishop’s constructivism
within a formal system for it was taken seriously in the type-theoretic formalisations of BISH,
and especially in the work of Coquand (see e.g., [37] and [40]), Palmgren (see e.g., [62] and the
collaborative work [39]), the Nuprl research group of Constable (see e.g., [36]), and of Sambin
and Maietti within the Minimalist Foundation (see [I11] and [70]).

1.2 Bishop Set Theory (BST) and Bishop’s theory of sets

Bishop set theory (BST) is an informal, constructive theory of totalities and assignment
routines that serves as a “completion” of Bishop’s theory of sets. Its first aim is to fill in the
“gaps”, or highlight the fundamental notions that were suppressed by Bishop in his account of
the set theory underlying BISH. Its second aim is to serve as an intermediate step between
Bishop’s theory of sets and a suitable, in Beeson’s sense, formalisation of BISH. To assure
faithfulness, we use concepts or principles that appear, explicitly or implicitly, in BISH. Next
we describe briefly the features of BST that “complete” Bishop’s theory of sets.

1. Explicit use of a universe of sets. Bishop used a universe of sets only implicitly. E.g.,
he “roughly” describes in [9], p. 72, a set-indexed family of sets as

... a rule which assigns to each ¢ in a discrete set T" a set A(t).
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Every other rule, or assignment routine mentioned by Bishop is from one given totality, the
domain of the rule, to some other totality, its codomain. The only way to make the rule of
a family of sets compatible with this pattern is to employ a totality of sets. In [10] Bishop
explicitly used a universe in his type theory. Here we use the totality Vg of sets, which is
defined in an open-ended way, and it contains the primitive set N and all defined sets. Vj itself
is not a set, but a class. It is a notion instrumental to the definition of dependent operations,
and of a set-indexed family of sets.

2. Clear distinction between sets and classes. A class is a totality defined through a
membership condition in which a quantification over Vo occurs. The powerset P(X) of a set
X, the totality PIL(X) of complemented subsets of a set X, and the totality F(X,Y) of partial
functions from a set X to a set Y are characteristic examples of classes. A class is never used
here as the domain of an assignment routine, only as a codomain of an assignment routine.

3. Explicit use of dependent operations. The standard view, even among practicioners
of Bishop-style constructive mathematicians, is that dependency is not necessary to BISH.
Dependent functions though, do appear explicitly in Bishop’s definition of the intersection
MNier A(t) of a family X of subsets of some set X indexed by an inhabited set 1" (see [9], p. 65,
and [19], p. 70). We show that the elaboration of dependency within BISH is only fruitful
to it. Dependent functions are not only necessary to the definition of products of families
of sets indexed by an arbitrary set, but as we show throughout this Thesis in many areas
of constructive mathematics. Some form of dependency is also formulated in Bishop’s type
theory [10]. The somewhat “silent” role of dependency within Bishop’s set theory is replaced
by a central role within BST.

4. Elaboration of the theory of families of sets. With the use of the universe Vy, of
the notion of a non-dependent assignment routine \g from an index-set I to Vg, and of a
certain dependent operation \i, we define explicitly in Definition the notion of a family
of sets indexed by I. Although an I-family of sets is a certain function-like object, it can be
understood also as an object of a one level higher than that of a set. The corresponding notion
of a “function” from an I-family A to an I-family M is that of a family-map. Operations
between sets generate operations between families of sets and their family-maps. If the
index-set I is a directed set, the corresponding notion of a family of sets over it is that of a
direct family of sets. The constructions for families of sets can be generalised appropriately
for families of families of sets (see Section [3.10). Families of subsets of a given set X over
an index-set I are special I-families that deserve an independent treatment. Families of
equivalence classes, families of partial functions, families of complemented subsets and direct
families of subsets are some of the variations of set-indexed families of subsets that are studied
here and have many applications in constructive mathematics.

Here we apply the general theory of families of sets, in order:

I. To reveal proof-relevance in BISH. Classical mathematics is proof-irrelevant, as it is
indifferent to objects that “witness” a relation or a more complex formula. On the other
extreme, Martin-Lof type theory is proof-relevant, as every element of a type A is a proof of the
“proposition” A. Bishop’s presentation of BISH was on purpose closer to the proof-irrelevance
of classical mathematics, although a form of proof-relevance was evident in the use of several
notions of moduli (of convergence, of uniform continuity, of uniform differentiability etc.).
Focusing on membership and equality conditions for sets given by appropriate existential
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formulas we define certain families of proof-sets that provide a BHK-interpretation within
BST of formulas that correspond to the standard atomic formulas of a first order theory. With
the machinery of the general theory of families of sets this BHK-interpretation within BST is
extended to complex formulas. Consequently, we can associate to many formulas ¢ of BISH a
set Prf(¢) of “proofs” or witnesses of ¢. Abstracting from several examples of totalities in
BISH we define the notion of a set with a proof-relevant equality, and of a Martin-Lof set, a
special case of the former, the equality of which corresponds to the identity type of a type
in intensional MLTT. Through the concepts and results of BST notions and facts of MLTT
and its extensions (either with the axiom of function extensionality, or with Vooevodsky’s
axiom of univalence) can be translated into BISH. While Bishop’s theory of sets is standardly
understood through its translation to MLTT (see e.g., [39]), the development of BST offers a
(partial) translation in the converse direction.

II. To develop the theory of spectra of Bishop spaces. A Bishop space is a constructive,
function-theoretic alternative to the notion of a topological space. A Bishop topology F on a
set X is a subset of the real-valued function F(X) on X that includes the constant functions
and it is closed under addition, composition with Bishop continuous functions Bic(R) from R
to R, and uniform limits. Hence, in contrast to topological spaces, continuity of real-valued
functions is a primitive notion and a concept of open set comes a posteriori. A Bishop topology
on a set can be seen as an abstract and constructive approach to the ring of continuous
functions C'(X) of a topological space X. Associating appropriately a Bishop topology to the
set \g(i) of a family of sets over a set I, for every i € I, the notion of a spectrum of Bishop
spaces is defined. If I is a directed set, we get a direct spectrum. The theory of direct spectra
of Bishop spaces and their limits is developed in Chapter [6] in analogy to the classical theory
of spectra of topological spaces and their limits. The constructive theory of spectra of other
structures, like groups, or rings, or modules, can be developed along the same lines.

ITI. To reformulate predicatively the basics of Bishop-Cheng measure theory. The
standard approach to measure theory (see e.g., [123], [57]) is to take measure as a primitive
notion, and to define integration with respect to a given measure. An important alternative,
and, as argued by Segal in [118] and [119], a more natural approach to measure theory, is
to take the integral on a certain set of functions as a primitive notion, extend its definition
to an appropriate, larger set of functions, and then define measure at a later stage. This is
the idea of the Daniell integral, defined by Daniell in [43], which was taken further by Weil,
Kolmogoroff, and Carathéodory (see [127], [67], and [29], respectively).

In the general framework of constructive-computable mathematics, there are many ap-
proaches to measure and probability theory. There is an extended literature in intuitionistic
measure theory (see e.g., [59]), in measure theory within the computability framework of
Type-2 Theory of Effectivity (see e.g., [46]), in Russian constructivism (especially in the work
of Sanin [I12] and Demuth [21]), in type theory, where the main interest lies in the creation of
probabilistic programming (see e.g., [§]), and recently also in homotopy type theory (see [47]),
where homotopy type theory (see [124]) is applied to probabilistic programming.

Within BISH, measure and probability theory have taken two main directions. The first
direction, developed by Bishop and Cheng in [I8] and by Chan in [30]—[34], is based on the
notion of integration space, a constructive version of the Daniell integral, as a starting point
of constructive measure theory. Following the aforementioned spirit of classical algebraic
integration theory, Bishop and Cheng defined first the notion of an integrable function through
the notion of an integration space, and afterwords the measure of an integrable set. In their
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definition of integration space though, Bishop and Cheng used the impredicative concept
§(X) of all partial functions from a set X to R. Such a notion makes the extraction of
the computational content of CMT and the implementation of CMT in some programming
language impossible. The second direction to constructive measure theory, developed by
Coquand, Palmgren and Spitters in [38], [121I] and [41], is based on the recognition of the
above problem of the Bishop-Cheng theory and of the advantages of working within the
abstract, algebraic, and point-free framework of Boolean rings or of vector lattices. In analogy
to Segal’s notion of a probability algebra, the starting notion is a boolean ring equipped with
an inequality and a measure function, which is called a measure ring, on which integrable and
measurable functions can be defined. One can show that the integrable sets of Bishop-Cheng
form a measure ring. In general, the second direction to constructive measure theory is
considered technically and conceptually simpler.

In Chapter [7] we reconstruct the Bishop-Cheng notion of measure space within BST,
where a set of measurable sets is not an appropriate set of complemented subsets, as it is
usually understood, but an appropriate set-indexed family of complemented subsets. This
fact is acknowledged by Bishop in [12], but it is completely suppressed later by him and his
collaborators (Cheng and Chan). A similar indexing appears in a predicative formulation of
the Bishop-Cheng notion of an integration space.

The notions of a set-indexed family of sets and of a set-indexed family of subsets of a given
set are shown here to be important tools in the precise formulation of abstract notions in
constructive mathematics. Avoiding them, makes the reading of constructive mathematics
easier and very close to the reading of classical mathematics. Using them, makes the writing
of constructive mathematics more precise, and seriously enriches its content.

As the fundamental notion of a family of sets can be described both in categorical and
type-theoretic terms, many notions and constructions from category theory and dependent type
theory are represented in BST. While category theory and standard set-theory, or dependent
type theory and standard set-theory do not match perfectly, large parts of category theory
and dependent type theory are reflected naturally in Bishop Set Theory (see also section .

1.3 Notes

Note 1.3.1. Regarding the exact time that Bishop’s unpublished papers [10] and [11] were
written, it was difficult to find an answer. Bishop’s scheme of presenting a formal system
for BISH and of elaborating its implementation in some functional programming language is
found both in [12] and in Bishop’s unpublished papers. The first is Bishop’s contribution to
the proceedings of the Buffalo meeting in 1968 that were published in [66]. As Per Martin-
Lof informed me, Bishop was not present at the meeting. The presentation of the formal
system X and its presentation as a programming language in [12] is very sketchy. Instead,
the presentation of the type theory for BISH in [10], and its presentation as a programming
language in [I1] is an elaborated enterprise. I have heard a story of an unsuccessful effort of
Bishop to publish [10], due to some parallels between [10] and de Bruijn’s work. According to
that story, Bishop was unwilling to pursue the publication of his type-theoretic formalism after
that rejection. In any event, Bishop’s unpublished papers must have been written between
1967 and 1970. Maybe, the period between 1968 and 1969 is a better estimation. In October
1970 Bishop and Cheng sent to the editors of the Memoirs of the American Mathematical
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Society their short monograph [I8], a work that deviates a lot from the predicative character
of [9]. In my view, the papers [10] and [I1] do not fit to Bishop’s period after 1970.

Note 1.3.2 (The presentation axiom for setoids). If A : U, then, by Martin-Lof’s J-rule, =4
is the least reflexive relation on A, and €A := (A,=4) is the free setoid on A. According
to the universal property of a free setoid, for every setoid B := (B, ~p) and every function
f: A — B, there is a setoid-map €f: A — B such that the following left diagram commutes

ALB A—f»B.
idAJ ////Ef hi ﬁ
A P

To show this, let (¢f)(a) := f(a), and since =p is the least reflexive relation on B, we get
a=4d = (ef)(a) =g (ef)(d'), hence f(a) ~p f(a'). A setoid A is a choice setoid, if every
f: X — A, has a right inverse i.e., there g: A — X such that f o g = id4. With the use of
the type-theoretic axiom of choice (see [124], section 1.6) one can show that the free setoid
(A,=4) is a choice setoid. Using the identity map, every setoid A is the quotient of the free
setoid on A, hence every setoid is the quotient of a choice setoid. If C is a category, an object
P of C is called projective, if for every objects A, B of C and every arrow f : A — B and
g: P — B, there is h: P — A such that the above right diagram commutes. A category C
satisfies the presentation axiom, if for every object C in C there is f : P — C, where P is
projective. For the relation between the presentation axiom and various choice principles
see [103]. It is immediate to show that a projective setoid is a choice setoid. For the converse,
and following [39], p. 74, let (P, ~p) be a choice setoid. To show that it is a projective, we
need to define a setoid-map h, given setoid maps f and g as above. Let

Q= > fla)=pyg(p),

(a,p):Ax P

and let the projections p; : Q — A,, where pi(a,p,e) := a, and p2: Q — P, where ps(a,p,e) :=
p. By the definition of ) we get f op; = go ps. Since py: Q = P and P is a choice set, there
is k: P — @ such that pook =idp. If h := py ok, then

) P
p/ %
P—— QP

fo(piok)=(fopi)ok=(gops)ok=go(paok)=goidp = g. Consequently, every setoid
is the surjective image of a choice setoid, hence of a projective setoid.

Note 1.3.3. A very first and short presentation of BST is found in [95], where there we
write CSFT instead of BST. In [05] we also expressed dependency through the universe of
functions V; i.e., the totality of triplets (A, B, f), where A, B are sets and f is a function from
A to B. Since dependent operations are explicitly used by Bishop e.g., in the definition of
the intersection (),cp A(t) of a T-family of subsets (A(t));er of a set X, while V is neither
explicitly, nor implicitly, mentioned, we use here the former concept.
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Note 1.3.4. As it is noted by Palmgren in [82], p. 35, in ZF, and also in its constructive
version CZF, a family of sets is represented by the fibers of a function A: B — I, where the
fibers \; := {b € B | A(b) =i} of A, for every i € I, represent the sets of the family. Hence the
notion of a family of sets is reduced to that of a set. As this reduction rests on the replacement
scheme, such a reduction is not possible neither in MLTT nor in BST.



Chapter 2

Fundamentals of Bishop Set Theory

We present the basic elements of BST, a reconstruction of Bishop’s informal theory of sets, as
this is developed in chapters 3 of [9] and [19]. The main new features of BST, with respect
to Bishop’s account, are the explicit use of the universe V( of sets and the elaboration of the
study of dependent operations over a non-dependent assignment routines from a set to Vjp.
The first notion is implicit in Bishop’s work, while the second is explicitly mentioned, although
in a rough way. These concepts are necessary to the concrete definition of a set-indexed family
of sets, the main object of our study, which is only roughly mentioned by Bishop. The various
notions of families of sets introduced later, depend on the various notions of sets, subsets and
assignment routines developed in this chapter.

2.1 Primitives

The logical framework of BST is first-order intuitionistic logic with equality (see [L16], chapter
1). This primitive equality between terms is denoted by s := t, and it is understood as a
definitional, or logical, equality. l.e., we read the equality s :=t as “the term s is by definition
equal to the term t”. If ¢ is an appropriate formula, for the standard axiom for equality
[a:=b & ¢(a)] = ¢(b) we use the notation [a := b & ¢(a)] := ¢(b). The equivalence notation
:& is understood in the same way. The set (N =, #n) of natural numbers, where its canonical
equality is given by m =N n :< m := n, and its canonical inequality by m #n n < —=(m =N n),
is primitive. The standard Peano-axioms are associated to N.

A global operation (-, -) of pairing is also considered primitive. Le., if s, ¢ are terms, their pair
(s,t) is a new term. The corresponding equality axiom is (s,t) := (s/,t') & s: =5 &t :=1'.
The n-tuples of given terms, for every n larger than 2, are definable. The global projection
routines pry(s,t) := s and pry(s,t) := ¢t are also considered primitive. The corresponding
global projection routines for any n-tuples are definable.

An undefined notion of mathematical construction, or algorithm, or of finite routine is
considered as primitive. The main primitive objects of BST are totalities and assignment
routines. Sets are special totalities and functions are special assignment routines, where an
assignment routine is a a special finite routine. All other equalities in BST are equalities on
totalities defined though an equality condition. A predicate on a set X is a bounded formula
P(z) with z a free variable ranging over X, where a formula is bounded, if every quantifier
occurring in it is over a given set.
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2.2 Totalities

Definition 2.2.1. (i) A primitive set A is a totality with a given membership x € A, and a
given equality x =p vy, that satisfies axiomatically the properties of an equivalence relation.
The set N of natural numbers is the only primitive set considered here.

(ii) A (non-inductive)defined totality X is defined by a membership condition x € X =& Mx(x),
where Mx is a formula with x as a free variable. If X, Y are defined totalities with membership
conditions Mx and My, respectively, we define X :=Y & [Mx(z) & My (z)], and in this
case we say that X and Y are definitionally equal.

(iii) There is a special “open-ended” defined totality Vo, which is called the universe of sets.
Vo is not defined through a membership-condition, but in an open-ended way. When we say
that a defined totality X is considered to be a set we “introduce” X as an element of Vo. We
do not add the corresponding induction, or elimination principle, as we want to leave open the
possibility of adding new sets in V.

(iv) A defined preset X, or simply, a preset, is a defined totality X the membership condition
Mx of which expresses a construction that can, in principle, be carried out in a finite time.
Formally this is expressed by the requirement that no quantification over Vg occurs in Mx.

(v) A defined totality X with equality, or simply, a totality X with equality is a defined
totality X equipped with an equality condition x =x y <= Ex(z,y), where Ex(x,y) is a
formula with free variables x and y that satisfies the conditions of an equivalence relation
i.e., Ex(z,x) and Ex(z,y) = Ex(y,z), and [Ex(z,y) & Ex(y,2)] = Ex(x,y). Two defined
totalities with equality (X, =x) and (Y,=y) are definitionally equal, if Mx(x) := My (z) and
Ex(z,y) & & (z,y).

(vi) A defined set is a preset with a given equality.

(vii) A set is either a primitive set, or a defined set.

(vill) A totality is a class, if it is the universe Vg, or if quantification over Vo occurs in its
membership condition.

Definition 2.2.2. If X,Y are sets, their product X x Y is the defined totality with equality
(r,y) e X xY xecA&yecB,
zeX XY & EIIEAEIyeB(z = (:c,y))
X x Y is considered to be a set, and its membership condition is written simpler as follows:
(z,y) =xxy (@"y) e r=x’ &y=yy.
Definition 2.2.3. A bounded formula on a set X is called an extensional property on X, if
Vm,ex([x =xy & P(x)] = P(y))
The totality Xp generated by P(x) is defined by x € Xp = x € X & P(x),
reXp:sreX & Px),

and the equality of X p is inherited from the equality of X. We also write Xp := {x € X | P(z)}.
The totality Xp is considered to be a set, and it is called the extensional subset of X generated
by P.
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Using the properties of an equivalence relation, it is immediate to show that an equality
condition Ex(z,y) on a totality X is an extensional property on the product X x X i.e.,
[(z,y) =xxy (¢/,y) & x =x y] = 2/ =x ¢/. Let the following extensional subsets of N:

1:={zeN|z=N0}:={0},
2:={zeN|z=N0 Vz=N1}:={0,1}.
Since n =N m < n = m, the property P(z) < =Ny 0 Vx =N 1 is extensional.
Definition 2.2.4. If (X,=x) is a set, its diagonal is the extensional subset of X x X
D(X,=x) ={(z,y) e X x X |z =x y}.
If =x is clear from the context, we just write D(X).

Definition 2.2.5. Let X be a set. An inequality on X, or an apartness relation on X, is a
relation x #x y such that the following conditions are satisfied:

(Apl) vm,yGX(m =X Y & x #X Yy = J_).
(Aps) Voyex (z #x y =y #x ).
(Aps) Ve yex (l‘ #x y=>Veex(z#x v V 2z #x y))

We write (X,=x,#x) to denote the equality-inequality structure of a set X, and for simplicity
we refer the set (X,=x,#x). The set (X,=x,#x) is called discrete, if

vx,yeX (.Z' =Xy s #X y)
An inequality #x on X is called tight, if ~(x #x y) = x =x vy, for every x,y € X.
Remark 2.2.6. An inequality relation © #x y is extensional on X x X.

Proof. We show that if z,y € X such that z # y, and if 2’,y’ € X such that 2/ =x x and
Yy =x vy, then 2/ # y'. By Aps we have that 2/ # z, which is excluded from Ap,, or 2’ # y,
which has to be the case. Hence, y' # 2/, or 3/ # y. Since the last option is excluded similarly,
we conclude that v’ # 2/, hence 2’ # ¥/. O

If #x is an inequality on X, and P(z) is an extensional property on X, then Xp inherits
the inequality from X. Since n #n m < —(n =Ny m), the sets N, 1, and 2 are discrete. Clearly,
if (X,=x,#x) is discrete, then #x is tight.

Remark 2.2.7. Let the sets (X,=x,#x) and (Y,=y,#y).
(i) The canonical inequality on X XY induced by #x and #y, which is defined by

(z,y) #xxy (@ y) v #x 2" V y#y Y,

for every (z,y) and (2',y') € X XY, is an inequality on X X Y.
(i) If (X,=x,#x) and (Y,=y,#y) are discrete, then (X X Y,=xxy,#xxy) is discrete.

Proof. The proof of (i) is immediate. To show (ii), let (z,y),(z',y’) € X x Y. By our
hypothesis z =x 2’ V z #x 2’ and y =y v V y #y ¢y. If x =x 2/ and y =y ¥/, then
(z,y) =xxy (2/,9). In any other case we get (x,y) Zxxy (2',9). O
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Uniqueness of an element of a set X with respect to some property P(z) on X means that
all elements of X having this property are =x-equal. We use the following abbreviation:

Jizex P(x) & Hzex(P(JU) & Vzex(P(z) = 2z=x az))

Definition 2.2.8. Let (X,=x) be a set.

(i) X is inhabited, if Fpex (z =x ).

(ii) X is a singleton, or contractible, or a (—2)-set, if IpoexVaecx (wo =x :c) In this case, xg
is called a centre of contraction for X.

(ili) X is a subsingleton, or a mere proposition, or a (—1)-set, if Yy yex (x =x y).
(iv) The truncation of (X,=x) is the set (X, |1=xlI), where

rl=xllyor=xr&y=xy
We use the symbol || X|| to denote that the set X is equipped with the truncated equality |1=x|I.

Clearly, = =x1 y, for every x,y € X, and (X, =) is a subsingleton.

2.3 Non-dependent assignment routines

Definition 2.3.1. Let X,Y be totalities. A non-dependent assignment routine f from X to
Y, in symbols f: X ~~ Y, is a finite routine that assigns an element y of Y to each given
element x of X. In this case we write f(x) :=y. If g: X ~Y, let

f=g9:% Yaex (f(x) = g(x)).

If f := g, we say that f and g are definitionally equal. If (X,=x) and (Y,=y) are sets, an
operation from X toY is a non-dependent assignment routine from X to Y, while a function
from X toY, in symbols f: X — Y, is an operation from X to Y that respects equality i.e.,

vx,x’GX (.%' =X :L'/ = f(m) =Y f(.f/))

If f: X ~Y is a function from X toY, we say that f is a function, without mentioning the
expression “from X to Y ”. A function f: X — Y is an embedding, in symbols f: X — Y, if

vm,r’EX (f(l’) =Y f(.’E/) =T =X .%'/>.

Let the sets (X,=x,#x) and (Y,=y,#y). A function f: X =Y is strongly extensional, if

vx,x’eX (f(l‘) #Y f(l’,) = #X x/)'

If ~x is another equality on X, we use a new symbol e.g., X*, for the same totality X. When
we write f: X* =Y, then f is a function from X, equipped with the equality ~x, to Y.

If X is a set, the identity map idx on X is the operation idx: X ~~ X, defined by
idx(x) := z, for every x € X. Clearly, idx is an embedding, which is strongly extensional, if
#x is a given inequality on X. If Y is also a set, the projection maps pry and pry on X and
Y, respectively, are the operations pry: X xY ~» X and pry: X xY ~ Y, where

pry(z,y) :=pri(z,y) =z & pry(z,y) :=pry(z,y) =y; (z,y)e X xY.
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Clearly, the operations pry and pry are functions, which are strongly extensional, if #x, #y
are inequalities on X,Y, and #xxy is the canonical inequality on X x Y induced from
them. After introducing the universe Vg of sets in section we shall define non-dependent
assignment routines from a set to a totality, like Vg, which is not considered to be a set. In most
of the cases the non-dependent assignment routines defined here have a set as a domain.There
are cases though, see e.g., Definitions [2.6.5|[2.6.6] [£.2.1], and [£.3.1] where a non-dependent
assignment routine is defined on a totality, before showing that this totality is a set. We never
define a non-dependent assignment routine from a class to a totality.

Let the operation m*: R ~» Q, defined by m*(a) := ¢,,, where a real number a is a regular
sequence of rational numbers (g,), (see [19], p. 18), and g, is the m-term of this sequence.
for some fixed m. The operation m”* is an example of an operation, which is not a function,
since unequal real numbers, with respect to the definition of =g in [19], p. 18, may have equal
m-terms in Q. To define a function f: X — Y, first we define the operation f: X ~» Y, and
afterwords we prove that f is a function (from X to Y).

The composition g o f of the operations f: X ~ Y and ¢g: Y ~ Z is the operation
go f: X ~ Z, defined by (go f)(z) := g(f(z)), for every x € X. Clearly, g o f is a function,
if f and g are functions. If h: Z ~» W notice the following definitional equalities

foidy:=f, idyof:=f, ho(gof):=(hog)of.

A diagram commutes always with respect to the equalities of the related sets. E.g., the
commutativity of the following diagram is the equality e(f(z)) =w g(h(x)), for every x € X.

x -

1

Definition 2.3.2. Let X,Y be sets, and #y an inequality on Y. The totality O(X,Y) of
operations from X to'Y is equipped with the following canonical equality and inequality:

f =o(x,y) 9+ Vaex (f(z) =y f(z)),

Fe—

—
g

[ #Fox,y) 9 Juex (f(f’?) #y f($))

The totality O(X,Y) is considered to be a set. The set F(X,Y) of functions from X toY
is defined by separation on O(X,Y') through the extensional property P(f) :< Vyprex (a: =x
= f(x) =y f(:v’)). The equality =p(xy) and the inequality #r(x yy are inherited from
=o(x,y) and #o(x,y), respectively.

Remark 2.3.3. Let the sets (X =x) and (Y,=y,#y). If f: X = Y, let o1 7%2 Ty &
f(x1) £y f(x2), for every x1,x9 € X.

(i) =1 7%[( T9 is an inequality on X.

(ii) If (Y, =y, #y) is discrete, then (X =x, 7%(() is discrete if and only if f is an embedding.
(ii) If #y is tight, then 755( is tight if and only if [ is an embedding.
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Proof. (i) Conditions (Ap;)-(Aps) for 7%2 are reduced to conditions (Ap;)-(Aps) for #y.
(i) If (X =x, 7%2) is discrete, let f(x1) =x f(x2), for some 1,22 € X. Since the possibility
1 ;é_{( x9 < f(x1) #y f(z2) is impossible, we conclude that z; =x zo. If f is an embedding,
and since f(z1) =x f(x2) or f(x1) #y f(x2), either z1 =x x2, or o1 ;ég( x3.

(iii) If 7%0( is tight, and f(z1) =x f(z2), then —(x; 7%; x9), hence x1 =x xo. If f is an
embedding and —(xy 7%[( x2) & —(f(21) £y f(x2)), then f(z1) =x f(x2), and z1 =x 2. O

Definition 2.3.4. A function f: X — Y is called surjective, if VyecyIpex (f(a:) =y y). A
function g: Y — X is called a modulus of surjectivity for f, if the following diagram commutes

y ox dy
\/’
idy

If g is a modulus of surjectivity for f, we also say that f is a retraction and Y is a retract of
X. Ify €Y, the fiber £ib/(y) of f at y is the following extensional subset of X

£ib/ (y) i={z € X | f(z) =y y}.

A function f: X —'Y is contractible, if £ibf (y) is contractible, for every y € Y. If #y is an
inequality on'Y , the cofiber cofib/ (y) of f at y is the following extensional subset of X

cofibf (y) = {a € X | f(z) #v y}.

2.4 The universe of sets
The totality of all sets is the universe Vg of sets, equipped with the canonical equality

X =v, Y i Fpepxy)Igervix) (9o f =idx & fog=idy)

idy
f /9\
X Y X Y
\_/ f

In this case we write (f,¢g) : X =y, Y. If X, Y € Vj such that X =y, Y, we define the set
PrfEqly(X,Y) = {(f,9) € F(X,Y) x F(Y,X) | (f,9): X =y, Y}

of all objects that “witness”, or “realise”, or prove the equality X =y, Y. The equal-
ity of PrfEqly(X,Y) is the canonical one i.e., (f,9) =preeqi,(xv) (f'19) & f =rxy)
f" & g =rx,x) ¢'- Notice that, in general, not all elements of PrfEql,(X,Y’) are equal. As
in [124], Example 3.1.9, if X := Y := 2 := {0, 1}, then (idp,id2) € PrfEql(2,2), and if
swp :2 — 2 maps 0 to 1 and 1 to 0, then (swp, sw2) € PrfEql,(2,2), while swy # id>.

It is expected that the proof-terms in PrfEql,(X,Y") are compatible with the properties of
the equivalence relation X =y, Y. This means that we can define a distinguished proof-term
refl(X) € PrfEqly(X, X) that proves the reflexivity of X =y, Y, an operation ~!, such
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that if (f,g) : X =y, Y, then (f,g)"! : Y =y, X, and an operation of “composition” x of
proof-terms, such that if (f,g) : X =y, Y and (h, k) : Y =y, Z, then (f,g) % (h, k) : X =y, Z.
If h € F(Y,W) and k € F(W,Y), let

refl(X) = (idx,idx) & (f.9)7" = (9.f) & (f.9)* (h.k):= (ho f.gok).
It is immediate to see that these operations satisfy the groupoid laws:

(i) refl(X) = (f,9) =PrfEqly(X,Y) (f,g) and (f,g) * refl(Y) =PrfEql,y(X,Y) (f,9)-

(i) (f,9) * (f.9)" =PrfEqly(X,X) ref1(X) and (f,9)~' * (f,9) =PrfEqly(Y,Y) refl(Y).

(i) ((F.9) * (. £)) * (5,8) =peszaayccavy (F29) * (b ) * (5,1)).

Moreover, the following compatibility condition is satisfied:

(iv) If (f,9), (f',g') € PrfEqly(X,Y) and (h, k), (', k') € PrfEqly(Y, Z), then if (f, 9) =prspq1,(x.v)
(f',g") and (R, k) =PrfEql,(Y,Z) (W, k'), then (f,g) = (h, k) =PrfEql,(X,Z) (f,g") = (W, K).

Proposition 2.4.1. Let X,Y be sets, f e F(X,Y) and g € F(Y, X). If (f,9): X =v, Y, then
the set £ib/ (y) is contractible, for everyy € Y.

Proof. If y € Y, then g(y) € £ib/(y), as f(g(y)) =y idy(y) :=y. If x € X, x € £ib/ (y) :&
f(z) =y y, and  =x g(f(z)) =x g(y) i.e., g(y) is a centre of contraction for fib/(y). O

Definition 2.4.2. Let X,Y be sets. The evaluation map evxy : F(X,Y) x X ~» Y is defined
by evxy(f,z) = f(x), for every f e F(X,Y) and z € X.

Proposition 2.4.3. Let X,Y, Z be sets.
(i) The evaluation map evxy is a function from F(X,Y) x X to Y.

(i) For every function h: Z x X =Y, there is a unique function h : Z — F(X,Y) such that
for every z € Z and x € X evxy (h(z),z) =y h(z,z).

Proof. (i) By definition (f,r) =rxy)xx (f';2") if and only if f =rxy) f and z =x 2.
Hence evxy (f,z) := f(z) =y f'(z) =y ['(z) == evxy ([, 2)).

(ii) For every z € Z, we define the assignment routine h from Z to F(X,Y) by z — h(z), where
h(z) is the assignment routine from X to Y, defined by h(z )( ) := h(z,z), for every z € X.
First we show that h( ) is a function from X to Y if x =x 2/, then (z,2) =z« x (2,2’), hence
h(z)(x) := h(z,z) =y h(z,2) := h(z)(z’). Next we show that the assignment routine £ is a
function from Z to F(X,Y); if 2 =z 2/, then, if z € X, and since then (z,z) =z« x (2, z), we
have that h(z)(z) := h(z,z) =y h(z/,z) := h(z')(z). Since = € X is arbitrary, we conclude
that h(z) =F(X,Y) h(z'). Since evy.y (ﬁ(z),x) := h(z)(x) := h(z,z), we get the strong from
of the required equality evxy o (hx1x) :=h. If g: Z — F(X,Y) satisfying the required
equality, and if z € Z, then, for every z € X we have that g(z)(z) := evxy(9(2),z) =y

h(z,z) =y evxy (ﬁ(z),x) := h(z)(x), hence g(2) =F(X.Y) h(z). O

2.5 Dependent operations

Definition 2.5.1. Let I be a set and A\g: I ~» Vy a non-dependent assignment routine from I
to Vo. A dependent operation ® over \g, in symbols

@\ Aold),

el
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is an assignment routine that assigns to each element i in I an element ®(i) in the set \o(7).
Ifi € I, we call ®(i) the i-component of ®, and we also use the notation ®; := ®(i). An
assignment routine is either a non-dependent assignment routine, or a dependent operation
over some non-dependent assignment routine from a set to the universe. If W: \,.; Ao(i), let
D=V & Vg (<I>Z- = \Ifl) If ® := V¥, we say that ® and ¥ are definitionally equal.

Let the non-dependent assignment routines Ag: I ~» Vg, pg: I ~» Vg,19: I ~ Vg and
ko: I ~» Vo. Let F(Ag, o) : I ~ Vg be defined by F(Xo, po)(2) := F(Xo(2), po(2), for every i € I.
The identity operation Idy, over Ag is the dependent operation

Idy,: A F(ho(d), po(d)  Tdxg(i) :=idy 5 i€ 1.
el

Let W: A,;crF(ro(), (7)) and @: A,c; F(Xo(7), to(é)). Their composition W o @ is defined by
Vod: A F(Xo(i),w(i) (Pod):=V0d; icl.

el
If 20 N;er F(vo(i), ko()), notice the following definitional equalities
Poldy, :==®, Idyo®:=®, Zo(Vod):=(Z0V)od.

Definition 2.5.2. If I is a set and g : I ~> Vg, let A(I, o) be the totality of dependent
operations over Ay, equipped with the canonical equality:

D =p100) ¥ Vier (P =x,0) i)

The totality A(I, Ng) is considered to be a set. If Fao(i) 18 an inequality on Xo(i), for everyi € I,
the canonical inequality #acr x,) on A(L, Xo) is defined by @ #a(rx,) ¥ & Jier (113 Zo0(i) Z)

Clearly, ® =a(z,),) ¥ is an equivalence relation, and ® #4(7 »,) ¥ is an inequality relation.
If ¢ € I, the i-projection map on A(I, \g) is the operation pr?oz A(I, Ng) ~ Ao(7), defined by
prl’-\o(q>) := ®,;, for every ¢ € I. The operation prf‘0 is a function. If ®: A, F(Ao(4), (7)),
a modulus of surjectivity for ® is a dependent operation W: A,.;F(uo(é), Ao(4) such that
D oW =p(1F(ro,n0) 1dxo- In this case, ¥; is a modulus of surjectivity for @, for every i € I. If
f: X =Y, let fibf: Y ~ Vg be defined by y +— £ibf (y), for every y € Y. If f is contractible,
then by Definition every fiber £ib/(y) of f is contractible. A modulus of centres of
contraction for a contractible function f is a dependent operation centre/: Ayey fib/(y),

such that centrei: := centre’(y) is a centre of contraction for f.

2.6 Subsets

Definition 2.6.1. Let X be a set. A subset of X is a pair (A,i%), where A is a set and
151 A = X is an embedding of A into X. If (A,i%) and (B,ix) are subsets of X, then A
is a subset of B, in symbols (A,i%) C (B,ix), or simpler A C B, if there is f: A — B such
that the following diagram commutes

A—>B

M\ /
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In this case we use the notation f: A C B. Usually we write A instead of (A,i% ). The totality
of the subsets of X is the powerset P(X) of X, and it is equipped with the equality

(A,i%) =px) (B,i3) > AC B & BC A.
If f: AC B and g: B C A, we write (f,g): A =p(x) B.

Since the membership condition for P(X) requires quantification over Vy, the totality P(X)
is a class. Clearly, (X,idy) € X. If Xp is an extensional subset of X (see Definition ,
then (Xp,i%) C X, where i%: Xp ~» X is defined by i (z) := z, for every x € Xp.

Proposition 2.6.2. If A,BC X, and f,g: A C B, then f is an embedding, and f =ga,p) h

f
/_\
A B
h
i iz
X.

=x ip(f(a') & i} (a) =x ij(a’),

Proof. If a,a’ € A such that f(a) =p f(d’), then z'B( (a)) =x1
i3 (h(a), then f{a) = h(a). O

which implies a =4 a’. Moreover, if i%(f(a)) =x i (a)

The “internal” equality of subsets implies their “external” equality as sets i.e., (f,g) :
A =pix) B= (f,9) : A=y, B. If a € A, then i} (g9(f(a))) =x ix(f(a)) = i} (a), hence
g(f(a)) =a a, and then go f =g(4 4) ida. Similarly we get f o g = p)idp. Let the set

PrfEqly(A, B) := {(f,9) € F(A,B) x F(B,A) | f: AC B & g: B C A},

equipped with the canonical equality of pairs as in the case of PrfEql,(X,Y’). Because of the
Proposition the set PrfEql,(A, B) is a subsingleton i.e.,

(fag): A:P(X) B & (flv.g,): A:'P(X) B = (fvg) = (f,ag,)‘

If f € F(A,B),g € F(B,A),h € F(B,C), and k € F(C, B), let ref1(A) := (ida,id4) and
(f,9)"L:= (g, f), and (f, g)*(h, k) := (hof, gok), and the properties (i)-(iv) for PrfEqly(A, B)
hold by the equality of all their elements.

X
Corollary 2.6.3. Let the set (X,=x,#x) and (A,=a,i%,#4 ) € X, where the canonical
X - X
inequality #7 on A is given by a £ d & i%(a) #x i) (d), for every a,d’ € A. If
X - X
(X,=x,#x) is discrete, then (A, =a,i%,# 4 ) is discrete, and if #x is tight, # 4 is tight.

Proof. Since ii‘( is an embedding, it follows immediately from Remark O

Remark 2.6.4. If P,Q are extensional properties on the set X, then

Xp =P(X) XQ & Veex (P(.’B) = Q(.’L‘))
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Proof. The implication (<) is immediate to show, since the corresponding identity maps
witness the equality Xp =p(x) Xq. For the converse implication, let (f,g) : Xp =p(x) Xq-
Let z € X such that P(x). By the commutativity of the following outer diagram

Xp Xg

U

X

we get f(x) := zg(f(:v)) =x i¥(z) := x, and by the extensionality of @ and the fact that
Q(f(x)) holds we get Q(x). By the commutativity of the above inner diagram and the
extensionality of P we get similarly the inverse implication. O

Definition 2.6.5. If (A,i%), (B,ix) C X, their union AU B is the totality defined by
z€e AUB:<z2€ AV z€B,

equipped with the non-dependent assignment routz'n i,)4(uB : AU B ~ X, defined by

iix(uB(z) =
ix(2) ,z€B.

If z,w € AU B, we define z =aup w & i 5(2) =x i5,5(w).

Clearly, = sup is an equality on AU B, which is considered to be a set, ifu p is an embedding
of AUB into X, and the pair (A uB, i,)q(u B) is a subset of X. Note that if P, Q) are extensional
properties on X, then Xp U X := Xpyq, since z € Xpyg & (PVQ)(z) & P(z) or Q(z) &
z € Xp U X, and the inclusion map 7 : Xp U X < X is the identity, as it is for Xpyq
(see Definition . If #x is a given inequality on X, the canonical inequality on AU B is
determined in Corollary

Definition 2.6.6. If (A,i%), (B,ix) C X, their intersection AN B is the totality defined by
separation on A X B as follows:

ANB = {(a,b) € Ax B|i¥(a) =x iX(b)}.

Let the non-dependent assignment routine i : AN B ~ X, defined by i4~p(a,b) := i3 (a),
for every (a,b) € AN B. If (a,b) and (a’,b") are in AN B, let

(a7 b) —ANB (a/7 b/) = iix(mB(% b) =X ime(a’, b/) = Zil((a) =X 2})4((@/)

We write A () B to denote that the intersection AN B is inhabited.

'Here we define a non-dependent assignment routine on the totality A U B, without knowing beforehand
that AU B is a set. It turns out that AU B is set, but for that we need to define i35 first.



2.6. SUBSETS 19

Clearly, =np is an equality on AN B, which is considered to be a set, ii‘{m g is an embedding
of AN B into X, and (A N B,ifgﬂB) is a subset of X. If #x is a given inequality on X,
the canonical inequality on A N B is determined in Corollary If P,Q are extensional
properties on X, then Xp N Xq has elements in X x X, while Xp,g has elements in X, hence
the two subsets are not definitionally equal. Next we show that they are “externally” equal
i.e., equal in Vy.

Remark 2.6.7. If P,() are extensional properties on the set X, then Xpprg =v, Xp N Xq.

Proof. Since the inclusion maps corresponding to Xp and Xg are the identities, let f :
Xprg = Xp N Xg with f(2) := (2, 2), for every z € Xppg, and let g : Xp N Xg — Xprg
with g(a,b) := a, for every (a,b) € Xp N Xq. Hence, f(g(a,b)) := f(a) := (a,a), and since
(a,b) € Xp N Xg, we have by definition that P(a), Q(b) and a =x b, hence (a,a) =xxx (a,b).
If z € Xppg, then g(f(2)) :=g(z,2) := z. O

Clearly, X N X =p(x) X, while pr,: (AN B,i%5) C (A,ia) and the identity map
ea: A — AU B witnesses the inequality (A4,i%) C (AU B,i} )

Pry €A
N
ANB 1< TAuB
Xnp \ iy %o
X

The following properties of the union and intersection of subsets are easy to show.

Proposition 2.6.8. Let A, B and C be subsets of the set X.

(i) AUB =pxy BUA and AN B =p(x) BN A.

(ii) AU(BUC) =px) (AUB)UC and AN(BNC) =px) (ANB)NC.

(ii)) AN (BUC) =px) (ANB)U(ANC) and AU(BNC) =px) (AUB)N(AUC).

Definition 2.6.9. Let X,Y be sets, (A4,i%)(C,i%) C X, e: (4,i%) C (C,i&), f: C =Y,

and (B,i%) C Y. The restriction fia of f to A is the function f, := foe

AS cfy
\/’
fla

The image f(A) of A under f is the pair f(A) := (A, f,), where A is equipped with the equality
a =y a & f,(a) =y fi,(a'), for every a,a’ € A. We denote {f(a) | a € A} := f(A). The
pre-image f~Y(B) of B under f is the set

fH(B) = {(e,;b) € C x B| f(e) =y ip(h)}.
Let ifc_1(B)i f~YB) < C, defined by i¢ )(c, b) :=c, for every (c,b) € f~Y(B). The equality

fl

of the extensional subset f~Y(B) of C x B is inherited from the equality of C x B.
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Clearly, the restriction f|, of f: X — Y to (A,14) C X is the function f, := fo ix. It is
immediate to show that f(A) CY and f~(B) C C. Notice that

(A,i%) =px) (B,i3) = i) (A) =p(x) i (B),

since, if (f,g) : (A4,i%) =p(X) (B,i%), then i (a) =x i%(f(a)) and iX(b) =x i (9(b)), for
every a € A and b € B, respectively. If #y is a given inequality on Y, the canonical inequality
on f(A) is determined in Corollary Similarly, if #x is an inequality on X, f: X — Y, and
(B,i}) C Y, the canonical inequality on f~*(B) is given by (z,b) #s-1(p) (2/,V) :& x #x @,
and not by the canonical inequality on X x B.
Proposition 2.6.10. Let X, Y be sets, A, B subsets of X, C, D subsets of Y, and f : X = Y.
) [THCUD) =px) fTHO)UfHD).
11) (C N D) P(X) f71<C) N fﬁl(D).
iii) f(AUB) = P(Y) f(A)Uf(B)
iv) f(ANB) =p) f(A) N f(B).
v) AC fTH(f(A)).

i) fF(fHC)NA) =py) C N f(A), and f(f(C)) =pr) C N f(X).
Proposition 2.6.11. Let (A,i%), (B,i%), (A,i%)), (B zB,) C X, such that A =p(xy A’ and
B =p(x) B'. Let also (C,i%), (C',if.), (D, i) C Y such that C =pyy C’, and let f: X =Y.
(1) ANB =P(X) A’ﬂB’, and AUB =P(X) A UB
(ii) f(A) =p) F(A), and f1(C) =px) fH(C).
(iii) (A x C,i% x %) C X x Y, where the map i% xi5: Ax C — X XY is defined by

(ix x i¢)(a,c) = (i% (a),ic(0));  (a,¢) € AxC.

<1V) AxC =P(XxY) A’ x Cl.
(V) A x (CUD) =P(XxY) (A X C) U (A X D)
(Vl) A X (C’ﬂ _D) =P(XxY) (A X C) N (Aﬂ _D)

Proof. All cases are straightforward to show. O

(i
(
(
(
(
(v

2.7 Partial functions

Definition 2.7.1. Let X,Y be sets. A partial function from X to'Y is a triplet (A,i%, f}),
where (A,i%) C X, and f} € F(A,Y). Often, we use only the symbol fY instead of the
triplet (A, i, fY), and we also write f¥: X =Y. If (A,i%, fY) and (B, iy, f%) are partial
functions from X to Y, we call f¥ a subfunction of f, in symbols (A,i%, fY) < (B,i%, f5),
or simpler f}( < fg, if there is eap: A — B such that the following inner diagrams commute

A—>B

5
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In this case we use the notation eap: f}( < f}g The totality of partial functions from X toY
is the partial function space §(X,Y), and it is equipped with the equality

(A%, fX) =3xy) (Boin. f5) & fx < f & f§ < fX.

Ifean: fX < f}g and ega: fg < fX, we write (esp,€pA) : fX =3(X,Y) f}gf

Since the membership condition for F(X,Y") requires quantification over Vo, the totality
F(X,Y) is a class. Clearly, if f: X — Y, then (X,idy, f) € §(X,Y). If (eap,eBa) :
fx =3(X.Y) f¥, then (eap,epa): A =p(x) B, and (eap,epa) : A=y, B. Let the set

PrEqlo(fi, f5) = {(f.9) € F(A, B) xF(B,A) | f: fi < fy & g: f5 < fA},

equipped with the canonical equality of the product. All the elements of PrfEql,( fX, flg) are
equal to each other. If f € F(A,B),g € F(B,A),h € F(B,C), and k € F(C, B), let

refl(f)) := (ida,ida) & (f,9)7":=(9,f) & (f,9)* (h,k):=(ho f,gok),
and the groupoid-properties for PrfEql,( fX, f}g/) hold by the equality of its elements.

Proposition 2.7.2. Let (A,i%, fY) € F(X,Y) and (B,i%, g4) € §(Y, Z). Their composition
-1 . A
o 13 = ()7 B, Koy Who )i ) uher

(1) 7H(B) = {(a,b) € Ax B fX(a) =y i5(b)},
eyt (M) (B)= A (ab) e (ab) e (f1) 7 (B),

(950 £X) Gy 1o (@b) == gB(®): (ad) € (£X) ' (B),

is a partial function that belongs to F(X,Z). If (A,i%,i%) € F(X, X), (B,i%,i5) € V., Y),
and (C, ig, h‘év) € §(Z,W), the following properties hold:

(1) fX @ i) =xy) fA andip o fi =gxy) fi-

(i) (b © 98) © f3 =5x.2) WE © (95 © f4).

Proof. (i) We show only the first equality and for the second we work similarly. By definition
Y X . X\ —1 X A Y _X\Y
fa iy = ((ZA) (A), i oegx 1y (fa OZA)(i§>—1(A)>7 where

(i%) 7' (4) = {(a.d) € Ax A iX(a) =x iX(a)},
: (ii\()*l(A) — A, (a,d)—~a; (a,d)e€ (if)fl(A),

CaX)—teay
(fXoid)(a,a) = fi(a);  (a,a) € (%) (A).

Let the operations ¢: A ~ (if)_l(A), defined by ¢(a) := (a,a), for every a € A, and

6: (ii‘{)_l(A) ~ A, defined by 6(a,d’) := a, for every (a,a’) € (if)_l(A). It is immediate to

show that ¢ and 0 are well-defined functions. It is straightforward to show the commutativity
of the following inner diagrams
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xy—1
! \e/@) (A)
.X f
/I/A\ (/1)4( O eéfg)_l(A)
v X
f :
A fX oy
Y.
. —1 . w
(ii) We have that h{¥ o g% = <(gg) (C), i%o egg),l(c), (R © gg)(g@l(m)’ where

(92)71(C) = {(b,c) € Bx C | g&(b) =7 i¥(c)},
ez 10 (95) Q)= B, (b= by (be) € (5)(O),

(R o gZ)(b.c) == (c):  (b.e) € (98)1(O).

Hence, (h‘év o gg) o fff = (D,z‘f o e’g, [(h‘év ogg) o fé(]g/), where

B)

D= (X)) ") = {<a7d> e Ax [(9) (O] | F(a) =y (i%0e?, _1(0))<d>},

with d := (b,c) € B x C such that g4(b) =z i%4(c). The map ef: D < A is defined by the
rule (a,d) — a, for every (a,d) € D, and

[(hé" 0 gB) o fx](a,d) == (h¢ 0 gF)(d) :=h¢¥ (c);  (a,d) := (a,(b,¢)) € D.

: ¥t w
Moreover, hf! o (95 o f)) = <E iXoel g oest 7 [ o (gh o H)]g > where

-1
B (o i) | (© = {wa e (1) 7B x 1 Gho ) =2 (o) .

¢H Y, Y\y—1 .
ep : E < ((f)))"!(B) is defined by the rule (u,c) — u, for every (u,c) € E, and

[0 o (g0 £Y)](usc) = h¥ () (u,c) € E.

Let the operations ¢: D ~» E, defined by ¢(a, (b,¢c)) := ((a,b), ¢), for every (a, (b,c)) € D, and
0: E ~~ D, defined by 0((a,b),c) := (a, (b, c)), for every ((a,b),c) € E. It is straightforward to
show that ¢ and 6 are well-defined functions, and that the following inner diagrams commute

. . ¢Ht»
X

(he o g5) © fx he o (950 f2)
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The next proposition is straightforward to show.
Proposition 2.7.3. Let (A,i%, f}), (B,i%, fa) € §(X,Y)

X X
A C

) B
X > B
fy /fg
Y.

Their left f}; Ny fg and right intersection f}( Ny f}; are the partial functions

) Y
fX N f}g = (AﬂB, zme, (f}{/ n; fg)AmE;), where

(FX N0 fE) doplad) = fX () (a,b) € ANB,  and
f}( Ny fg = (AHB, iil(mBa (f}( Ny f};)sz>, where

(f3 Ny fg)ZmB(a,b) = fY(b); (a,b) € ANB.

Their union fX U fg is the partial function
. Y
fX Ufg = (AUB, zi(UB, (fX Ufg)AUB>, where

o= {30 15
D) fX N fy < FX and £ 00 fi < fi
ii) If f} (a) =y f5(b), for every (a,b) € AN B, then f N, % =3(X.Y) o fx.
it) £ < Y ULy and f§ < 5Y 0SS
iv) fi U fy =sxy) f5 U LY

Definition 2.7.4. Let the operation of multiplication on 2, defined by 0-1:=1-0:=0-0:=0
and 1-1:=1. If (A,i%, f3),(B,ix,93) € §(X,2), let

(
(
(
(

fa-gs = (AN B.i%ng, (fa-98)30m).
where (fa-gp)ing: AN DB — 2 is defined, for every (a,b) € AN B, by
(fa-98)anp(a,b) := fi(a) - g5(b).

By the equality of the product on A N B, it is immediate to show that the operation
(fa- 93)1240 p 1s a function. More generally, operations on Y induce operations on §(X,Y).
The above example with Y := 2 is useful to the next section.
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2.8 Complemented subsets

An inequality on a set X induces a positively defined notion of disjointness of subsets of X.

Definition 2.8.1. Let (X,=x,#x) be a set, and (A %), (B,ix) C X. We say that A and
B are disjoint with respect to #x, in symbols A][ 2B if

AJ[B 1 VaeaVoen (i) (a) #x i (b))

If #x is clear from the context, we only write A][B.

Clearly, if A]J[B, then AN B is not inhabited. The positive disjointness of subsets of X
induces the notion of a complemented subset of X, and the negative notion of the complement
of a set is avoided. We use bold letters to denote a complemented subset of a set.

Definition 2.8.2. A complemented subset of a set (X,=x,#x) is a pair A := (A, A?),
where (A',i%%,) and (A°,i%,) are subsets of X such that AMJ[A°. We call A the 1-component
of A and A" the 0-component of A. If Dom(A) := A' U A® is the domain of A, the indicator
function, or characteristic function, of A is the operation x a : Dom(A) ~~ 2 defined by

1 ,zeAl
xa(z) = 0 ,zec A",

Letvc A:sxc Al andav ¢ A= x € A, If A, B are complemented subsets of X, let
ACB:= A'c B! & BY C A°

Let PI(X) be their totality, equipped with the equality A =pli(x) B & ACB& BCA.
Let PrfEql (A, B) := PrfEql, (A, BY) x PrfEql,(A° B%). A map f: A — B from A to B
is a pair (f, f°), where f': A — B! and f°: A° — BY.

Clearly, A =pji(x) B < Al =p(X) B! & A =p(X) B, and PrfEql,(A, B) is a subsin-
gleton, as the product of subsingletons. Since the membership condition for PI(X) requires
quantification over Vy, the totality P![(X) is a class. The operation x 4 is a function, actually,
XA is a partial function in F(X,2). Let z,w € A' U A° such that z = 41,40 w i.e.,

i%.(z) ,ze Al i (w) ,we Al
= ZKIUAO(Z) =X ZfluAO (w) :=
i%o(z) ,z€ A° Ko(w) , we AL,

Let z € A'. If w € A%, then i}, (2) 1= i, 410(2) =x 1 40(W) 1= i%(w) Le., (z,w) € ATNAC,
which contradicts the hypothesis A!J[A°. Hence w € A, and ya(z) = xa(w). If z € A%, we
proceed similarly.

Definition 2.8.3. If (X,=x) is a set, let the inequality on X defined by
v #5002 e Frepxo) (f(@) =2 1 & f(2') =, 0)
If f € F(X,2), the following extensional subsets of X
o0(f) ={w e X | flx) =1},

%0(f) = {w € X | f(z) = 0},
are called detachable, or free subsets of X. Let also their pair 8(f) = (63(f),00(f))-
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Clearly, = #;X’Z) v’ Jrerx2) (f(x) %9 f(a:/)), and 0(f) is a complemented subset of X

F(X,2)

with respect to the inequality #%*'. The characteristic function xss) of §(f) is definitionally
equal to f (recall that f(z) =, 1:& f(z) := 1), and 63(f) U (f) = X.

Definition 2.8.4. If A, B € PI(X) and C € PI(Y), let
AUB:= (A'UB', A°n BY),
ANB:=(A'nB' A°uBY),
—A:= (A" A,
A-B:=(A'nB° A°u B,
AxC:=(A'xC", [A°xY]U[X x C7)).
The following diagrams depict AU B, AN B, A — B, and A x C, respectively.

Bl

Al AD

Bl

Al A°

Bl

Al A°
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Remark 2.8.5. If A, B € PI(X) and C € PI(Y), then AUB, ANB, —A, and A — B
are in PI(X) and A x C is in PII(X x Y).

Proof. We show only the last membership. If (a1,b1) € A x B! and (ag, by) € A x BY, then
% (a1) #x 50(ao) and i, (b1) #y ik50(bo). By definition

Y (ar, b)) o= (1 (), i (b))

If (ag,y) € A% x Y, then (i}, x idy)(ao,y) := (i%0(ao),y), and if (2,by) € X x B, then
dx X ipo)(2,00) ;= (2,250(bp)). In both cases we get the required inequality.
id 'g b 'g b In both h ired i li O

Remark 2.8.6. Let A, B and C be in P{(X). The following hold:
(i) —(—A) := A.

(i) —(AUB) :=(-A)N (—B).

(iii) —=(ANB):=(—A)U (—B).

(iv) AU(BNC) =pjix) (AUB)N(AUC).

(v) AN(BUC) =pjix) (ANB)U(ANC).

(vij A—B:=An(-B).

(

(

(

Proposition 2.8.7. Let A € PII(X) and B,C € PI(Y).
() A (BUC) =piiixry, (Ax B)U(Ax C).
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Proof. We prove only (i). We have that

Ax (BUC):= (A A% x (Btuct, B'n Y
= (A' x (B'uCh), (A" x Y)U[X x (BN %))
=pll(xxY) (A' x BHyu(A' x C1),[(A° x Y)U (X x BY)] n
N[A° x Y)U (X x C?))
= (Ax B)x (AxC). O

Proposition 2.8.8. Let the sets (X, :X,#g() and (Y,=y,#y), where f: X — Y (see Re-
mark|2.3.5). Let also A := (A', A®) and B := (B, B®) in PI(Y).

(i) f7HA) == (f7H(AY), f71(AY) e PI(X).
(ii) fHAUB) =, fH(A) U fU(B).
(i) f7HANB) =1, fHA) N FYB).
(iv) F7H=A) =p1, —fHA).

(v) [THA = B) =11, [T (A) = f71(B).

FHAY = {(z,a1) € X x A | f(z) =y i%i(a1)}, if_l(Al)(ac,al) =z,

fﬁl(AO) = ({(mvao) €X xA° | f(x) =y i)A(O(ao)}v i?(—l(AO)<x7a0) =Z.
Let (z,a1) € f~1(A') and (2,a9) € f1(A°). By the extensionality of #y we have that
Z.‘;il(Al)(x7a1) %fX i?(,l(A())(z,ao) S e #fX Z = f(fI,') #Y f(Z) <~ Zil (a’l) #Y Z‘:Z(()(GO),
and the last inequality holds by the hypothesis A € PI(Y). Next we show only (ii):
f Y (AuB) = f'(A'uB',A°n B
= (F1(ATUBY), FH(A N BY)
= (T AH U B, A N FH(BY)
= (A UF(B). n

Alternatively, one can define the following operations between complemented subsets.
Definition 2.8.9. If A, B € PI(X) and C € PI(Y), let
AV B:= ([A'nBu[A'nB U AN BY], AN BY),
AANB:=(A'nB', [A'nBuU[A’n B U4’ nBY),
Ao B:=AN(—B),
A®C = (A" xC, [A' x CYTU A x CM U [4° x C7)),

The following diagrams depict AV B, AN B, A& B, and A ® C, respectively.
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With the previous definitions the corresponding characteristic functions are expressed
through the characteristic functions of A and B.

Remark 2.8.10. If A, B are complemented subsets of X, then AV B,ANB,A— B and
—A are complemented subsets of X with characteristic functions

XAVB =§(x,2) XAV XB; XAAB =§(X,2) XA XB, XA-B =g(x2) Xa(l —xB),

XAxB(T,Y) =F(XxX,2) xa(™) - xB¥), x-a =3(X,2) 1= Xxa.

Proof. We show only the equality x anB =F(x,2) Xa-XB- By Definition the multiplication
of the partial maps xa: Dom(A) — 2 and xp: Dom(B) — 2 is the partial function

XA - XB = (Dom(A) N Dom(B), ifyn( ) pon(B): (XA - XB)IZ)om(A)ﬁDom(B))’

(XA - XB)Zon( a)pon(B) (4 @) = xa () - xB(w),
for every (u,w) € Dom(A) NDom(B). The partial function xaxp is the triplet

XAANB = (Dom(A A B)7 Zigf)m(A/\B)’ (XA/\B)gom(A/\B))'

Since Dom(A A B) =p(x) Dom(A) NDom(B), and if (f, g): Dom(A A B) =p(x) Dom(A)NDom(B),
it is straightforward to show that also the following outer diagram commutes

Dom(A) N Dom(B)

X

2
(XArB)on(arm) (XA XB)Bon4) on(B)

and hence the two partial functions are equal in F(X,2). O

2.9 Notes

Note 2.9.1. In [55] Greenleaf introduced predicates on objects through the totality Q2 of
propositions and then he defined P(X) as F(X, Q). A similar treatment of the powerset P(X)
is found in [I13]. For us a predicate on a set X is a bounded formula P(z) with = as a free
variable. In order to define new objects from X through P we ask P to be extensional.

Note 2.9.2. In [27], pp. 114-5, Cantor described a set as follows:

A manifold (a sum, a set) of elements belonging to some conceptual sphere is
called well-defined if, on the basis of its definition and in accordance with the
logical principle of the excluded third, it must be regarded as internally determined,
both whether any object of that conceptual sphere belongs as an element to the
mentioned set, and also whether two objects belonging to the set, in spite of formal
differences in the mode of givenness, are equal to each other or not.
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Bishop’s intuitive notion of set is similar to Cantor’s, except that he does not invoke the
principle of the excluded middle (PEM). As it was pointed to me by W. Sieg, Dedekind’s
primitive notions in [44] were “systems” and “transformations of systems”. Notice that here
we study defined totalities that are not defined inductively. The inductively defined sets are
expected to be studied in a future work within an extension BST* of BST.

Note 2.9.3. Although N is the only primitive set considered in BST, one could, in principle,
add more primitive sets. E.g., a primitive set of Booleans, of integers, and, more interestingly,
a primitive continuous interval, or a primitive real line (see [23] for an axiomatic treatment of
the set R of reals within BISH).

Note 2.9.4. In Martin-Lof type theory the definitional, or judgemental equality a := b, where
a, b are terms of some type A, is never used in a formula. We permit the use of the definitional
equality := for membership conditions only. In the membership condition for the product we
use the primitive notion of a pair. The membership condition for an extensional subset Xp of
X implies that an object x “has not unique typing”, as it can be an element of more than one
sets.

Note 2.9.5. The positively defined notion of discrete set used here comes from [76], p. 9.
There it is also mentioned that a set without a specified inequality i.e., a pair (X,=x), is
discrete, if Vo yex (z =x y V —(z =x y)). In [84] it is mentioned that the above discreteness
of F(N,N) implies the non-constructive principle “weak LPO”

VY rer(NN) <VneN(f(n) =N 0) V Vpen(f(n) =n 0)>

Because of a result of Bauer and Swan in [4], we cannot show in BISH the existence of
an uncountable separable metric space, hence, using the discrete metric, the existence of
an uncountable discrete set. Note that in [9], p. 66, a set S is called discrete, if the set
D :={(s,t) € Sx S| s =gt} is a free, or a detachable subset of S x S. In Definition [2.2.4] we
use the symbol D(S) for D and we call it the diagonal of S. We employ here the diagonal of
a set in the fundamental definition of a set-indexed family of sets (Definition [3.1.1]).

Note 2.9.6. In [9] and [19], the negation —¢ of a formula ¢ is not mentioned explicitly. E.g.,
the exact writing of condition (Ap;) in Definition is “if  =x y and = #x vy, then
0 =N 17. Similarly, the condition of tightness in Definition is written as follows: “if
x #x y entails 0 = 1, then z =x y”. hence, if #x is tight, the implication x #x y = 0=n 1
is logically equivalent to the (positively defined, if X is a defined totality) equality x =x y.
Within intuitionistic logic one defines =¢ := ¢ = L.

Note 2.9.7. The definitions of (—2)-sets and (—1)-sets are proof-irrelevant translations of
the corresponding notions in HoTT, which were introduced by Voevodsky (see [124]). The
definition of a 0-set requires to determine a set Prqulgf (z,y) of witnesses of the equality
x =x y. This is done in a universal way in MLTT, while in BST in a “local” way, and by
definition (see Definition [5.6.3)).

Note 2.9.8. In the literature of constructive mathematics (see e.g., [7], pp. 34-35) the term
preset is used for a totality. Also, the term operation is used for a non-dependent assignment
routine from a totality X to a totality Y (see [7], p. 44), while we use it only for a non-dependent
assignment routine from a set X to a set Y.
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Note 2.9.9. The notion of uniqueness associated to the definition of a function is local, in
the following sense: if f: X — Y, it is immediate to show that V,ecx3!y ey (f(:c) =y y). The
converse is the local version of Myhill’s axiom of non-choice (LANC). Let P(z,y) be an
extensional property on X x Y i.e., Vu oy vex([z =x 2’ & y =y ¢ & P(z,y)] = P(z',y)).
The principle (LANC) is the formula

Vaexyey P(2,y) = Jrer(xy)Vaex (P(x, f())).

Notice that LANC provides the existence of a function for which we only know how its outputs
behave with respect to the equality of Y, and it gives no information on how f behaves
definitionally. If we define Q. (y) := P(z,y), then if we suppose Q. (f(x)) and Q.(g(z)), for
some f,g € F(X,Y), we get f(z) =y y =y g(z), and then (LANC) implies

Veex3yey P(,y) = N rerix v Vaex (P(x, f())).

We can use (LANC) to view an arbitrary subset (4,47 ) of X as an extensional subset of X.
If (A,i%) € P(X), then the property P4 on X defined by Pa(z) := Jaea (il (a) =x ), is
extensional, and (i}, jX) : Xp, =p(x) (A, %), for some function j% : Xp, — A. To show
this, let 2,y € X such that P4(z) and 2 =y y. By transitivity of =y, if i} (a) =x z, then
i%(a) =x y. If * € X and a,b € A such that i (a) =x x =x 4 (b), then a =4 b i.e.,
Vaexp, Haca (X (a) =x z), and since the property Q(z,a) :< i’} (a) =x = is extensional on
Xp, x A, by (LANC) there is a (unique) function j¥ : Xp, — A, such that for every z € Xp
we have that i (j¥ (r)) =x z, and the required diagram commutes. The principle (LANC),
which is also considered in [5], is included in Myhill’s system CST (see [80]) as a principle of
generating functions. This is in contrast to Bishop’s algorithmic approach to the concept of
function.

Note 2.9.10. In [19], p. 67, a function f : A — B is defined as a finite routine which, applied
to any element of A, produces an element b = f(a) of B, such that f(a) =p f(a’), whenever
a=4d. In [19], p. 15, we read that f “affords an explicit, finite mechanical reduction of the
procedure for constructing f(a) to the procedure for constructing a”. The pattern of defining
a function f: X — Y by first defining an operation f: X ~» Y, and then proving that f is a
function, is implicit in the more elementary parts of [9] and [19], and more explicit in the later
parts of the books. E.g., in [19], p. 199, an inhabited subset U of C has the mazimal extent
property, if there is an operation p from U to RT satisfying certain properties. One can show
afterwords that U is open and p is a function on U. This property is used in Bishop’s proof of
the Riemann mapping theorem (see [19], pp. 209-210).

Note 2.9.11. Regarding the set-character of F(X,Y), Bishop, in [19], p. 67, writes:

When X is not countable, the set F(X,Y") seems to have little practical interest,
because to get a hold on its structure is too hard. For instance, it has been asserted
by Brouwer that all functions in F(R,R) are continuous, but no acceptable proof
of this assertion is known.

Similar problems occur though, in function spaces where the domain of the functions is a
countable set. E.g., we cannot accept constructively (i.e., in the sense of Bishop) that the
Cantor space F(N, 2) satisfies Markov’s principle, but no one that we know of has doubted
the set-character of F(N,2). The possibility of doubting the set-character of the Baire space
F(N,N) is discussed by Beeson in [7], p. 46.
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Note 2.9.12. In intensional Martin-Lof Type Theory the type

(gLﬂ@=M@)%f=g

is not provable (inhabited), and its inhabitance is known as the aziom of function extensionality
(FunExt). In BST this axiom is part of the canonical definition of the function space F(X,Y).
Because of this, many results in MLTT + FunExt are translatable in BST (see Chapter [5| ).

Note 2.9.13. The totality Vj is not mentioned by Bishop, although it is necessary, if we want
to formulate the fundamental notion of a set-indexed family of sets. The defined equality
on the universe Vi expresses that Vg is univalent, as isomorphic sets are equal in Vy. In
univalent type theory, which is MLTT extended with Voevodsky’s axiom of univalence UA
(see [124]), the existence of a pair of quasi-inverses between types A and B implies that they
are equivalent in Voevodsky’s sense, and by the univalence axiom, also propositionally equal.
The axiom UA is partially translated in BST as the canonical definition of Vy. Because of this,
results in MLTT + UA that do not raise the level of the universe are translatable in BST. For
example, Proposition is lemma 4.9.2 in book HoTT [124], where UA is used in its proof:
ife: X ~Y then Z - X ~ 7 — Y, and by UA we get e = idtoEqv(p), for some p: X =, Y.
Notice that in the formulation of this lemma the universe-level is not raised.

Note 2.9.14. The notion of a dependent operation is explicitly mentioned by Bishop in [9],
p. 65, and repeated in [19], p. 70, in the definition of the intersection of a family of subsets of
a set indexed by some set T

an element u of (,cp A(t) is a finite routine which associates an element x; of A(t)
with each element ¢ of T, such that i;(z;) = iy () whenever t,t' € T.

This definition corresponds to Definition in this Thesis.

Note 2.9.15. Bishop’s definition of a subset of a set is related to the notion of a subobject in
Category Theory (see [3], p. 89, and [54], p. 75). In practice the subsets of a set X are defined
through an extensional property on X. In [20], p. 7, this approach to the notion of a subset is
considered as its definition. Note that there the implication z =x y = (P(y) = P(z)) is also
included in the definition of an extensional property, something which follows though, from
the symmetry of =x. Such a form of separation axiom is used implicitly in [9] and in [I9].
Myhill used in his system CST the axiom of bounded separation to implement the notion of
an extensional subset of X. This axiom is also included in Aczel’s system CZF (see [1], p. 26).

Note 2.9.16. One could have defined the equality = 4,5 without relying on the non-dependent
assignment routine iﬁu p- If we define first

((#%(2) =x ia(w) ,zweA

if(z):XiB(w) ,ZGA&UJEB
Z =AUB W &=

in(2) =x ip(w) ,zweB

ix(2) =xia(w) ,2€B&wE A,
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we can define afterwords the operation iiu g AUB — X as in Definition In this way
the non-dependent assignment routine ifu g is defined on a set, and it is an operation. Bishop
avoids this definition, probably because this pattern cannot be extended to the definition of a
union of a family of subsets (see Definition [£.2.1)). In that case, we cannot write down the
corresponding case distinction for z =4yp w. Moreover, the proof of (A U B, ifu B) C Xis
immediate, if one uses Definition [2.6.5

Note 2.9.17. The definition of the empty subset @x of a set X, given in [9], p. 65, can
be formulated as follows. Let X be a set and 2o € X. The totality 0 x is defined by
z€0x =x90€ X & 0=N1. Let ’Lé( fx ~ X be the non-dependent assignment routine,
defined by i(2) := xo, for every z € 0x, and let z =y, w :& i(2) =x i(w) & 29 =x 9. The
pair (@X,ié() is the empty subset of X. One can show that =p, is an equality on 0x, and
hence ()x can be considered to be a set. The assignment routine zé( is an embedding of ) x into
X, and hence (0x, zé( ) is a subset of X. As Bishop himself writes in [9], p. 65, “the definition
of () is negativistic, and we prefer to mention the void set as seldom as possible”. In [19], p. 69,
Bishop and Bridges define two subsets A, B of X to be disjoint, when AN B “is the void
subset of X”. Clearly, this “is” cannot be AN B := (x. If we interpret it as AN B =p(X) Ox,
we need the existence of certain functions from @x to AN B and from AN B to @x. The
latter approach is followed in MLTT for the empty type. Following Bishop, we refrain from
elaborating this negatively defined notion.

Note 2.9.18. If (A,i%) C A, (B,i5) CY, and f: X — Y, the extensional image f[A] of A
under f is defined through the extensional property P(y) := Jaca(f(ia(a)) =y y). Similarly,
the extensional pre-image f~'[B] of B under f is defined through the extensional property
Q(z) := Jpen(f(x) =y ip(b)). The subset f(A) of Y contains exactly the outputs f (i} (a)) of
f, for every a € A, while the subset f[A] of Y contains all the elements of Y that are =y-equal
to some output f(ia(a)) of f, for every a € A. It is useful to keep the “distinction” between
the subsets f(A), f[A], and f~1(B), f~![B]. We need the equality in P(X) of a subset of X
to its extensional version (see Note , hence the principle LANC, to get f(A4) =p(y) f[4]

and f~1(B) =p(x) f'[B].

Note 2.9.19. There are instances in Bishop’s work indicating that the powerset of a set is
treated as a set. In [9], p. 68, and in [19], p. 74, the following “function” is defined

j:PlX) = P(X), (A, A% — Al

This is in complete contrast to our interpretation of a function as an operation between sets.
Of course, such a rule is an exception in [9] and [19]. In the definition of an integration space,
see [19], p. 216, the “set” §(X,Y) of all strongly extensional partial functions from X to Y
requires quantification over Vy. Such a quantification is also implicit in the definition of a
measure space given in [19], p. 282, and in the definition of a complete measure space in [19],
p. 289. These definitions appeared first in [I8], p. 47, and p. 55, respectively. The powerset is
repeatedly used as a set in [20] and [76]. It is not known if the treatment of the powerset as a
set implies some constructively unacceptable principle.

Note 2.9.20. There are instances in Bishop’s work indicating that the powerset of a set is
not treated as a set. See e.g., the definition of a set-indexed family of sets in [19], p. 78 (our
Definition . Similarly, in the definition of a family of subsets of a set A indexed by some
set T (see [19], p. 69), the notion of a finite routine that assigns a subset of A to an element
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of T' is used, and not the notion of a function from 7" to P(A). In the definition of a measure
space in [9], p. 183, a subfamily of a given family of complemented sets is considered in order
to avoid quantification over the class of all complemented subsets in the formulations of the
definitional clauses of a measure space (see Note . The powerset axiom is also avoided
in Myhill’s formalization [80] of BISH and in Aczel’s subsequent system CZF of constructive
set theory (see [I]). Although, as we said, it is not known if the use of the powerset as a
set implies some constructively unacceptable principle, it is not accepted in any predicative
development of constructive mathematics.

Note 2.9.21. The notion of a partial function was introduced by Bishop and Cheng in [1§],
p. 1, and this definition, together with the introduced term “partial function”, was also
included in Chapter 3 of [19], p. 71. The totality of partial functions §(X) from a set X to R
is crucial to the definition of an integration space in the new measure theory developed in [1§],
and seriously extended in [19]. Only the basic algebraic operations on §F(X) were defined
in [19], p. 71. The composition of partial functions is mentioned in [39], pp. 66-67. A notion
of a partial dependent operation can be defined as follows. If A, I are sets, a partial dependent
operation is a triplet (A, i, @X’), where (A,i4) C I, N\g: A ~ Vg, and <I>j\4°: Aaca Mo(a). If
Xo(a) :=Y, for every a € A, then the corresponding partial dependent operation is reduced to
a partial function in §(Z,Y).

Note 2.9.22. In the study of various subsets of a set X we avoided to define the complement
of a subset, since this requires a negative definition. Recall that the negatively defined notion
of empty subset of a set is not really used. In [9] Bishop introduced a positive notion of
the complement of a subset of a set X, the notion of a complemented subset of X. For its
definition we need a notion of a fixed inequality on X, which is compatible with the given
equality of X. In this way we can express the disjointness of two subsets A, B of a set X in a
positive way. Usually, A, B are called disjoint, if AN B is not inhabited. It is computationally
more informative though, if a positive way is found to express disjointness of subsets. In [25]
a positive notion of apartness is used as a foundation of constructive topology.

Note 2.9.23. The definitions of ANB, AUB and A— B appear in [9], p. 66, where AUB and
AN B are special cases of the complemented subsets (J;.; Ao(i) and [);c; Ao(7), respectively
(see Proposition . There the inequality on X is induced by an inhabited set of functions
from X to R. The definition of A x C appears in [9], p. 206, in the section of the product
measures. One can motivate these definitions applying a “classical” thinking. If x € X, recall
the definitions

rcAesrcAl & ¢ Aeac A

Interpreting the connectives in a classical way, we get
t€cAUBsrecAV zeB:erecA v reB :oreAlUB,
tr¢d AUBss¢ A& r¢B:eorc A’ &reB :orecAnB,
teANBorcA&reB:wrec A &re B e xe A'NBL,
r¢ ANBoas¢d AV a¢B:orcA’ Vv reB i orecA'UBY
re-Asrd¢AcrcA’ & z¢d-AsrcAsxcAl,
(r,y)) EAxCorcA&yecC:arecA &yecB s (2,y) € A x BY,
(r,9) f AxCo2¢ AV y¢gC:orxcA’ Vv ycB o (v,y)c(AxY)U (X x BY).
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Note 2.9.24. In [I§], pp. 16-17, and in [19], p. 73, the operations between the complemented
subsets of a set X follow Definition [2.8.9] in order to employ the good behaviour of the
corresponding characteristic functions in the new measure theory. In the measure theory of [9],
where the characteristic functions of complemented subsets are not crucial, the operations
between complemented subsets are defined according to Definition [2.8.4] Bishop and Cheng
use the notation A x B instead of A ® B. As it is evident from the previous figures, the 1-
and 0-components of the complemented subsets in the Bishop-Cheng definition are subsets of
the corresponding 1- and 0-components of the complemented subsets in the Bishop definition
from [9]. Actually, the definitions of the operations of complemented subsets in [9] associate
to the 1-component of the complemented subset a maximal complement. The two sets of
operations though, share the same algebraic and set-theoretic properties. They only behave
differently with respect to their characteristic functions. Based on the work [I13] of Shulman,
we can motivate the second set of operations in a way similar to the motivation provided for
the first set of operations in Note Keeping the definitions of x € A and = ¢ B, we can
apply a “linear” interpretation of the connectives V and &. As it is mentioned in [113], p. 2,
the multiplicative version P par () of PV @ in linear logic represents the pattern “if not P,
then @; and if not @, then P”. Let

r€eAVB:o ¢ A=2eB]&x¢ B=uzc Al

With the use of Ex falsum quodlibet the implication x ¢ A = z € Bholdsifx € A 1< 2 € Al
orifr¢ A:oxc A andz € B:< x € Blie, if x € AN B!, Hence, the first implication
holds if z € A U (A% N BY). Similarly, the second holds if z € B! U (BN Al). Thus

r€ AVB e zc[AluA'nBYHn[B'U(BNAY),

and the last intersection is equal to Dom(A V B)! One then can define x ¢ AV B &z ¢
A&r¢B andre ANB:eorcA&kreB,ande ¢ ANB: s xe(—A)V(—B).
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Chapter 3

Families of sets

We develop the basic theory of set-indexed families of sets and of family-maps between them.
We study the exterior union of a family of sets A, or the > -set of A, and the set of dependent
functions over A, or the [[-set of A. We prove the distributivity of [] over ) for families of
sets indexed by a product of sets, which is the translation of the type-theoretic axiom of choice
into BST. Sets of sets are special set-indexed families of sets that allow “lifting” of functions
on the index-set to functions on them. The direct families of sets and the set-relevant families
of sets are introduced. The index-set of the former is a directed set, while the transport maps
of the latter are more than one and appropriately indexed. With the use of the introduced
universe VI of sets and impredicative sets we study families of families of sets.

3.1 Set-indexed families of sets

Roughly speaking, a family of sets indexed by some set I is an assignment routine Ag : I ~~ Vj
that behaves like a function i.e., if i =; 7, then Ao(i) =v, Ao(j). Next follows an exact
formulation of this description that reveals the witnesses of the equality Ao(7) =v, Ao (J)-

Definition 3.1.1. If I is a set, a family of sets indexed by I, or an I-family of sets, is a pair
A = (Xo, A1), where N\g: I ~ Vg, and A1, a modulus of function-likeness for X\, is given by

At A Fo(@),%0)), Ml g4) =Ny, (4,5) € D),
(i,)€D(I)
such that the transport maps A\;j of A satisfy the following conditions:
(a) For everyi € I, we have that Ay := idy, -
(b) If i =1 j and j =1 k, the following diagram commutes

Ao(7)

M| N

)\0(]) E— Ao(k)
Njk
I is the index-set of the family A. If X is a set, the constant I-family of sets X is the pair
CX = (A, M), where \o(i) := X, for everyi € I, and M\ (4,7) := idx, for every (i,5) € D(I)
(see the left diagram in Definition|3.1.2).
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The dependent operation A; should have been written as follows

Mz A F(ho(pri(2)): do(pra(2))),

zeD(I)

but, for simplicity, we avoid the use of the primitive projections pry, pry. Condition (a) of
Deﬁnition could have been written as \i; =¢(x,(i).50()) 1dx (). If @ =1 J, then by conditions
(b) and (a) of Deﬁnitionwe get id)\o(i) = )\ii = )\ji e} )\ij and id/\o(j) = )\jj = )\z’j 9} )\ji i.e.,
(Xijs Aji): Ao(i) =v, Ao(j). In this sense A; is a modulus of function-likeness for Ag.

Definition 3.1.2. The pair A% := (\3,)2), where A3: 2 ~ Vo with A3(0) := X, \3(1) := Y,
and X2(0,0) := idx and A2(1,1) :=idy, is the 2-family of X and Y

X Y
e v\
idx idy

The n-family A" of the sets X1, ... X,, where n > 1, and the N-family AN := (A}, \) of the
sets (Xn)nen are defined similarlgﬂ

Definition 3.1.3. Let A := (Ao, A1) and M := (uo, 1) be I-families of sets. A family-map
Jrom A to M, in symbols W: A = M is a dependent operation V: A;; F()\o(i),uo(i)) such
that for every (i,5) € D(I) the following diagram commutes

Aij
Ao(i) —— Ao(d)

fo (%) W to(g)-

Let Map; (A, M) be the totality of family-maps from A to M, which is equipped with the equality

U =pap, (A, M) E 1 Vier (5 =F(Xo(i),u0(i)) ).

If =2 : M = N, the composition family-map Zo ¥: A = N is defined, for every i € I, by
(E o \I/)Z = Ei o \I/i

>\ij
Ao(i) —— Ao(4)

(Eo¥); |po(i) —— po(§) | (Eo¥);

vo(7) T vo(J)-

Tt is immediate to show that A" is an n-family, and AN is an N-family.
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The identity family-map Ida: \;er F(Mo(i), Mo(i))on A, is defined by Ida(i) = idy, ), for
every i € I. Let Fam(I) be the totality of I-families, equipped with the canonical equality

A =pan(1) M : ocuap, (A1) Izemap, (11,4) (2, E) 2 A =pan(r) M),
(2,2): A =pan(y M =& (PoE =idy & Zo® =idy).

It is straightforward to show that the composition family-map = o ¥ is a family-map
from A to N, and that the equalities on Map;(A, M) and Fam([) satisfy the conditions of an
equivalence relation. It is natural to accept the totality Map(A, M) as a set. If Fam(/) was a set
though, the constant I-family with value Fam(I) would be defined though a totality in which
it belongs to. From a predicative point of view, this cannot be accepted. The membership
condition of the totality Fam(I) though, does not depend on the universe Vy, therefore it is
also natural not to consider Fam(/) to be a class. Hence, Fam(/) is a totality “between” a
(predicative) set and a class. For this reason, we say that Fam([) is an impredicative set. Next
follows an obvious generalisation of a family-map.

Definition 3.1.4. If A, M € Fam(I), such that A =p.;y M, we define the set
PrfEqly(A, M) := {(®,¥) € Map;(A, M) x Map;(M,A) | (®,¥) : A =pap(s) M},

equipped with the equality of the product of sets. If ® € Map;(A, M),V € Map[(M A),d €
Map;(M,N) and @' € Map;(N, M), let refl(A) := (Idp,Idy) and (®,0)"! := (¥, ®) and
(®, ) % (&, 0') := (D' 0 &, ¥ 0 U).

As in the case of Vj and the corresponding set PrfEql,(X,Y), in general, not all elements
of PrfEql (A, M) are equal. If I := 1 := {0}, and Xo(0) := 2, and if &y := idy and
Vg := swz, then (®,®) € PrfEqly(A, A) and (¥, ¥) € PriEqly(A, A), while ® #y.p (4 a) P,
since g #f(2,2) Yo. It is immediate to show the groupoid-properties (i)-(iv) for the equality
of the totality Fam([).

Definition 3.1.5. Let I,J, K be sets, h € F(J,I),g € F(K,J), A := (Ao, A1) € Fam({),
M := (po,p1) € Fam(J), and N := (v, v1) € Fa.m(K) A family-map from M to A over h
is a dependent operation V: \..;F (10(5), Mo(h(4))), such that for every (j,j') € D(J) the
following diagram commutes

Ao(h(5)) —— Ao(h(5")),

h(G)h(5")

where W; := W(j) is the j-component of ¥, for every j € J. We write U: M oA for such a

family-map. If U: M XA and=: N L M, the composition family-map Vo Z=: N h:mg A over
ho g is defined, for every k € K, by (Vo Z)y, 1= Wy 0 g
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Vik
vo(k) ————— wo(K)

Ek- Ek/
(WoB)y | molak) ———— pmolg®) | (Vo)

Hg(k)g(k")
Wy (k) Wy k)

Xo(h(g(k))) ———— Ao(h(g(K")))-
Ah(g(k))h(g (k")

Definition 3.1.6. Let A := (Ao, A1), M = (uo, 1) be I-families of sets.
(i) The product family of A and M is the pair A x M := (Ao X po, A1 X p1), where

(Ao X po)(4) := Ao(i) x po(i); i€,
(A1 x p1)50 Aold) X po(i) = Ao(d) x mo(5);  (i,4) € D(I),
(A x ) (2,y) = (Mg (@), i (y)); - @ € Mo(i) & y € po(i).
(ii) The function space family from A to M is the pair F(A, M) := (F(Xo, o), F(A1, 1)) where
[F(Xo, 0)] (1) == F(Xo(i), po(d)); i€,

Fowm) s A F(FO) ) F). (i) )

(i,5)eD(I)
F(AL 1) = FO, p1) (6, 5) : F(Xo(4), po(i)) = F(Xo(4), mo(4));  (4,5) € D),
F(A1, p1)ij (f) = pig o foNji

>
o
=
=
o
—
=

F(A1,11)i5(f)

(iii) If K is a set, ¥ := (09,01) is a K-family of sets and h : I — K, the composition family
of ¥ with h is the pair ¥ o h := (o9 o h,o1 0 h), where

(00 0 h)(i) == ao(h(i)); i€l
(o1 0h)ij = (o10Rh)(i,7): oo(h(i)) = ao(h(j));  (4,5) € D),
(O’l e} h)l] = Jh(i)h(j)'

It is straightforward to show that A x M, F(A, M), and ¥ o h are I-families. E.g., for
F(A,M), and if i, j,k € I and i =7 j =1 k, we have that

F(A1, p1)ii(f) 7= i o f o Nig :=1d 05 © f o idy, ) = f5



3.1. SET-INDEXED FAMILIES OF SETS 41

F(A, f1) ik <F()\17,U1)ij(f)> = ik © [pij o f o Nji] © Akj

= [k o pig] © f o [Nji 0 Aj]
= ik © f 0 Ak
= F(A1, )i (f)-
Proposition 3.1.7. Let X,Y, I be sets and CX,CY,CX*Y CFXY) the constant I-families
X, Y, X xY, and F(X,Y), respectively.
(i) cX x oY =Fan(I) CxXxY,
(if) F(CX,CY) =pan(ry CFEY).

Proof. (i) Let ®: CX xCY = C**Y and ¥: CX*Y = CX x CY be defined by ®; := X xY :=
U,;, for every ¢ € I, then by the commutativity of the following left diagram

x FOX, 1 )is
XXYMXXY F(X,Y)&F(X,Y)
id XYJ JidXXy dr(x,y) J JidF(X,Y)
XxY — 5 XxY FX,Y) — 5 F(X,Y),
ij v

®, U are well-defined family-maps and (®, ¥): CX x CY =ran(1) C XXy

(ii) Let ®: F(CX,CY) = CFXY) and w: CFNY) = F(CX,CY) be defined by ®; :=
F(X,Y) := U,, for every ¢« € I, then by the commutativity of the above right diagram
®, ¥ are well-defined family-maps and (®,¥): F(CX,CY) =Fan(I) CFY), O

The operations on families of sets generate operations on family-maps.

Proposition 3.1.8. Let A := (Ao, A1), M := (po, p1), N := (vo, 1), K := (ko, k1) € Fam([).
(i) If ®: N = A and ¥: N = M, then ® x ¥: N = A x M is the product family-map of ®
and ¥, where, for every i € I, the map (® x ¥);: v9(i) — Ao(i) X po(i) is defined by

(® x W)i(2) := (Pi(2), ¥i(2)); 2z € wold).

(i) f®: N=Aand ¥: K = M, then ® x U: N x K = A x M is the product family-map of
® and U, where, for every i € I, the map (® x U);: v(i) X ko(i) = No(7) X po(i) is defined by

(@ x W)i(z,y) == (Pi(x), ¥i(y));  (x,y) € vo(i) x ro(i).
(

(iii) If ®: N = A then F(®)¢: F(A, M) = F(N, M), where, for every i € I, the function
F(®)5: F(Xo(7), po(2)) = F(ro(i), po(i)) is defined by
(

F(®)S(f) == fo®i;  feF(Nl(i),po(i))
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If®: A= N, then F(®): F(M,A) = F(M, N), where, for everyi € I and f € F(uo(i), Mo(i)),
the function F(®)%: F(uo(i), Ao(i)) — F(po(i), v0(i)) is defined by F(®)¢(f) := ®; 0 f.

(iv) If &: N= A and V: M = K, then F(®,V): F(A, M) = F(N, K), where for every i € I,
the map F(®,W);: F(Xo(i), po(i) — F(ro(i), ko(i) is defined by

F(®,0);(f) :==W;0fods;  feF(A(),po(i))

Molt) ———— (i)
S
Vo(i) R Ho(i)

F(®,¥)i(f)

Proof. We prove (i) and (iii), as the proofs of (ii), (iv) are similar to that of (i), (iii), respectively.
(i) If i =1 j, the following diagram is commutative

(i) (i)
po() X Ao(3) W po(J) x Ao(J),

since by the commutativity of the following two diagrams

vo(1) —— 1o(J) vo(i) —— vo(J)
SR
Ao(7) T Ao(7) to (%) Ty o ),

(@ x 0);(ri5(2)) = (®j(vij(2)), ¥ (Vu(z)))
= ( 3 (@i(2)), pij (¥ 2)))

= (M1 % Ml)w( i(2), Z(z))

= (M x )i (@ x U)i(2)); 2z € wod).

(ii) If i =1 4, the following diagram is commutative

F(Xo(3), 10(3)) _Pwidy F(Mo(5), o(4))
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F(®)5(F(AL, 11)i5(f)) == F(®)5(1ij o f o Nji)
1= (ij 0 f o Aji) 0 @
= pij o f o (N\ji o @)
= pij o fo(®;ovy)
= pij o (fo®;) ovy
= F(v1, 11)i5(f o @)
i= F(v, )i (F(@)5(): f € F(ho(i), mo(d)).

The equality Aj; o ®; = ®; o v;; used above follows from the definition of ®: N = A on
(j,i) € D(I). The proof of F(®)4: F(M,A) = F(M, N) is similar. O

3.2 The exterior union of a family of sets

Definition 3.2.1. Let A := (Ao, A1) be an I-family of sets. The exterior union, or disjoint
union, or the Y -set ), .; Ao(i) of A, and its canonical equality are defined by

w e Z )\Q(Z) = Elieﬁz@o(i) (w = (i, JZ)),

(1,7) =50 000 (1hY) & i =17 & Nij(z) =x(5) Y-
The " -set of the 2-family A? of the sets X and Y is the coproduct of X and Y, and we write

X +Y:=) M)
€2

Proposition 3.2.2. (i) The equality on ), ; Xo(i) satisfies the conditions of an equivalence
relation.

(ii) Let (I,=r,7#1) be a discrete set and #y,(;) an inequality on A\o(7), for every i € I. If the
transport map \;; is strongly extensional, for every (i,j) € D(I), then the relation

(i,@) #5000 (Ghy) i #1§ V(i =17 & Nij() () ¥)

is an inequality on Y ;c; Ao(i). If (Mo(i), =xg(), Froi)) 8 a discrete set, for every i € I, then
(Ziel A0(1)s =5t 200> FSer 2ol ) is discrete. Moreover, if #1 is tight, and if, for every
i € I, the inequality #, () is tight, then the inequality #s,_, x ) 1S tight.

Proof. (i) Let (i,x),(j,y), (k,2) € D> ey Ao(i). Since i =; i and A; = idy), we get
(i,I) “ier 2o (Z’x) If (Z’x) —Sier 2o () (]’ y)v thenj = tand Ajl(y) = )‘]l()‘w(x» = A“(x) =
ld)\o(i) (.CE) := x, hence (]73/) “Xier Ao (7‘? .’IJ) If (’L,.CL‘) “Yierdo@® (jay) and (.77 y) “Xier Ao(®) (k7 Z)7
theni=75j & j=rk=1i=5k, and

Aik () =xom Nk © Xij) () = Aje(Nij () =xg0 Ak (Y) =50 2-

(ii) The condition (Ap;) of Definition is trivially satisfied. To show condition (Ap,), we
suppose first that ¢ #; j, hence by the corresponding condition of #; we get (j,y) FSier 2ol
(i,2). Ifi =1 j & Nij() #xo(5) Y» we show that \j;(y) #xy() z- By the extensionality of #y ;)
(Remark the inequality Aj;(z) #),(;) ¥ implies the inequality Aij(z) #xo(j) Aij(Aji(¥)),
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and since \;; is strongly extensional, we get = #5,;) Aji(y). To show condition (Aps), let
(4, %) #s5ier 200 (Jry), and let (k, 2) € > icp Ao(i). If @ #1 j, then by condition (Apg) of #; we
get k #14, or k #1 j, hence (k, 2) #x,_, 200 (5,7), or (k,2) #5500 (J,¥). Suppose next
i =1J & Nij(w) #xo(j) y- Since the set (I, =y, #) is discrete, k #7 4, or k =pi =1 j. If k #1 1,
then what we want to show follows immediately. If £ =; ¢ =7 j, then by the extensionality of
Fxo(j) @and the strong extensionality of the transport map Ax; we have that

Xij (2) #xo) ¥ = Mg (Min(2)) Fao) Mg (N () = Xie() Fao) Ak (Y)-

Hence, by condition (Aps) of #x k) We get A\ik(x) #xok) 2> OF Njk(y) #xok) 2, hence

(5, 7) Fsicirom (k2), or (4,Y) #s,cr00 (k,2). Suppose next that (Ao(i), =xy(xi), Zro(i))
is a discrete set, for every i € I. We show that (i,z) =y, 5@ (J,y) ie, i =7 j and

Aij(T) =xo() Y OF (4,7) Fx,o a0 (Uhy) Le, @ #1 jor i =1 j & Nij(w) #5() y- Since
(I,=r,#r) is discrete, i =7 j, or i # j. In the first case, and since (Ao(j), =xy(j) Zao(j)) i
discrete, we get \ij(x) =xy(j) ¥ O Aij(7) #x,(;) ¥, and what we want follows immediately. If
i #1 j, we get (i, ) #x,., 20 (J,y). Finally, we suppose that #; is tight, and that #) ;) is
tight, for every 7 € I. Let ﬂ[(z’, T) F5icr o) (j,y)] ie.,

[i#r7 v (i=17 & Nij(2) #x005) ¥)] = L.
From this hypothesis we get the conjunctiorﬂ
[i#15= L] & [(i=1] & Nj(2) #r() y) = L]

By the tightness of #; we get i =7 j. The implication (z =1 J & Nij (%) #x0(5) y) = | logically
implies the implication (i =; j) = ()\ij () #ro() ¥ = J_), and since its premiss ¢ =y j is
derived by the tightness of #;, by Modus Ponens we get A\ij(z) #),(jy ¥ = L. Since #, ) is
tight, we conclude that \jj(z) =y,(;) ¥, hence (i,2) =5, 5,0 (J,¥)- O

The totality ) . ; Ao(7) is considered to be a set. By the definition of X +Y
weX+Y & JicaTienz (w:= (i, )
© Toex(w=(0,2)) V Fyev (w:= (L)),
(i,2) =x4y (i,2') & (i=2i =2 0& v =x2") V (i=2i =21 & 2=y 2').
One could have defined X + Y independently from A2, and then prove X +Y =y, Y., A3(i).
Corollary 3.2.3. If (X,=x,#x), (Y,=y,#y) are discrete, (X+Y,=x1y,#x+y) is discrete.
Proof. Since (2,=2,#2) is a discrete set, we use Proposition [3.2.2(ii). O

Definition 3.2.4. Let A := (Ao, \1), M := (po, 1) be I-families of sets. The coproduct family
of A and M is the pair A+ M := (Ao + po, A1 + p1), where (Ao + o) (i) := Ao(2) + po(3), for
every i € I, and the map (A + Ml)ij: Ao (%) + po() = Xo(4) + po(j) is defined by

(0, Xij(x)) , w:=(0,3)
(Lo () w:=(1,y)

*Here we use the logical implication ((¢ v ¢)) = L) = [(¢ = 1) & (v = L1)].

(M + ul)ij(w) = { w € No(7) + po(i).
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It is straightforward to show that A + M is an I-family of sets.

Proposition 3.2.5. Let A := (Ao, A1), M := (po, p1), and N := (vy,v1) be I-families of sets.
Ifo: A= N and V: M = N, then ®+V: A+ M = N is the coproduct family-map of ®
and ¥, where, for every i € I, the map (P + ¥);: N\o(i) + po(i) — vo(i) is defined by

@+ )= { PO e+ ol

Proof. If i =y j, the following diagram is commutative

(A+p1)ij
Ao(8)+po (1) ———— Ao(5)+ro(d)

@y [@ew),

vo(i) ———— ld),

since by the commutativity of the following left diagram

)\z 17
M) =L () o) 2 o)
SR
(%) T v(J) vo(1) T]’ v (J),

(@ + W) (A + p2)i5 (0, 36)) = (‘I’ +0); (0, A ()
®; (A ()
= vij (®s (90))
By the commutativity of the right diagram, (®+W); (A1 +41)4 (1, y)) = v ((2+7);(1,y)). O
Proposition 3.2.6. If A := (Ao, A1), M := (uo, 1) € Fam([), then

> (Mold) + po(i)) =v, <Z)\o >+<Zuo(i)>~

el el el

Proof. Let f: 3 ,cr (Mo(i) 4+ po()) ~ > ier Ao(i) + 3ie; to(i) be defined by

i w) (O, (z,x)) ,wi=(0,z) ; w
)= { A O8 ie e () + ol

g
—~
=
~—

Clearly, f is a well-defined operation. To show that f is a function, we suppose that

(1, W) =5, ;0 @mon (s w) i =1 7 & (A + 1) i (W) =x0()+p00) s

and we show that f(i,w) = f(j,u). The equality (A1 + p1)ij(w) = (])Jruo(j) u amounts to

Aij(x) =55y @5 if w = (0,2) and u := (0,2), or to puy(y) =4, ¥, if w:= (1,y) and
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u:= (1,y"). With the use of these equalities and the definition of the canonical equality on the
coproduct it is straightforward to show that (0, (i,z)) = (0, (j,2")), or (1, (¢,9)) = (1,(5,¥)),
hence f(i,w) = f(j,u). Let g: Yie; Mo(i) + Yier (i) ~ Yies (Aold) + po(d)) be defined by

o (i, (O,x)) ,U:= (07 (Z,l‘)) )
g(U) = { (i,(l,y)) LU = (1,(i,y)) ) UEZGZIAO +ZGZINO

Proceeding similarly, we show that the operation g is a function. It is straightforward to show
that (f?g): Zie[ ()‘O(Z) + IU’O(Z)) Vo Z’LGI A0( ) + Z’LEI MO( ) O

Proposition 3.2.7. Let A := (Ao, A1), M := (po, p1) € Fam(Z), and ¥ : A = M.

(i) For every i € I the operation e : \o(i) ~ >_;c; Ao(4), defined by el(z) := (i,z), for every
x € A\o(7), is an embedding.

(ii) The operation W : )", ;1 Ao(i) ~ Y .cp po(4), defined by

SU(i,x) = (i, Ui(z));  (i,2) € Y Ao(d),

icl

is a function, such that for every i € I the following diagram commutes

v,
Ao (i) ———— po(i)

A M
€; J Jei

Zie[ Ao(1) W Zze[ f10 (7).

(iii) If ¥; is an embedding, for every i € I, then XV is an embedding.
(iv) If W; is a surjection, for every i € I, then XV is an surjection.

(V) If & : M = A, where ®; is a modulus of surjectivity for W;, for every i € I, then a modulus
of surjectivity for X is the operation oW: Y, po(i) ~ > ,cr Mo(i), defined by

oU(i,y) == (i, ®i(y);  (6,y) € Y _ pold)
el

Proof. (i) If 2,y € Xo(4), then () =S ier Mol eM(y) if and only if (4, ) =sics 200 (35 Y), which
is equivalent to \i; () =5, ¥ & @ =xo(i) -
(11) If (z,ac) =S ier M) (4,y) i-e., i = j and X\j;(x) =200)) y, we show that (i, U;(z)) =5es 060
(4,%;(y)) ie.,i=r j and MZ](\Ill(x)) =10() U,(y). Since ¥: A = M, we get p;;(¥;(x)) =10(j)
W (Nij (7)) =p0(j) Y5(y). The required commutativity of the diagram is immediate to show.
(iii) Since ¥ is a family-map from A to M, we have that

EV(i,2) =5, uom 2V Y) e (4, V(@) =5, uow (4, Y5(y))
e i=r7 & pij(Y(x)) =10(j) U,(y)
Si=1] & Ui(\ij(x)) =400) ¥i(y)
=i =17 & Nij(7) =x,(5) ¥
1 (4,2) =5, 000 (Ur )
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(iv) Let (4,y) € > icr uo(z) Since V; is a surjection, there is z € Ag(7) such that ¥,;(z) = y.
)

Hence X¥(i,x) := (i, ¥;(z)) = Zzezuo(z) (i,y), since ,uu(\IlZ( )) = U,(x) =po(i) Y-
(v) If y € po(i), then W;(®;(y)) =,0z) y- To show that the operation oV is a function, we

suppose (i, y) =Sierno() (J,2) & z =7 j & pij(y) =,0(j) # and we show that (1,04(y)) =51 rol)
(J,0i(2) =i =15 & N;j Z( )) —Ao() ®;(z). Since ®;: po(j) — Ao(j), we have that

(
1ij (Y) =po() 2 = @ (135 (y)) =n (z). By the commutatlwty of the diagram

o) —2 o ()

| |

Ao(7) W Ao ()
ij

®;(2) =) i (15 (1) =r0() Aij(Pi(y)). Since pii (Vi(Ri(y))) = ¥i(Pi(y))) =p0() Y5

SO (0P (i,y)) =B ((6 Pi(y) = (4, Vi(Pi(y) =xicr o (02y)- N

Definition 3.2.8. Let A := (Ao, A1) be an I-family of sets. The first projection on Y, Ao(i)
is the operation pr: >, Xo(i) ~ I, defined by pri*(i,z) = pry(i,z) = i, for every
(i,2) € > icr Ao(i). We may only write pry, if A is clearly understood from the context.

By the definition of the canonical equality on ), ; Ao(i) we get that pr{ is a function.

Definition 3.2.9. Let A := (Ao, A1) be an I-family of sets. The Y -indexing of A is the
pair S0 = (ol o), where o+ 30, Xo(i) ~ Vo is defined by of)(i,z) := Xo(i), for every

(i,l’) € Zie[ /\O(i); and U{\((ivl‘)v (]a y)) = >\ij; fO’/“ every ((i7$)7 (],y)) € D(Zie[ AO(Z))

Clearly, X% is a family of sets over > icr Ao(i), and X: yA EL 1 A (see Definition [3.1.5),
where, if w := (i,z) € Y ;7 Ao(i), we define Xy, : Ag(i) — Ao(prf(w)) to be the identity idy, ;).

Definition 3.2.10. Let A := (Mg, A1) be an I-family of sets. The second projection on
>icr Mo(i) is the dependent operation pri: A(W)Eziez xo(i) M0(1), defined by pri(i,z) =
pry(i, ) := x, for every (i,x) € > ,c; Mo(i). We may only write pry, when the family of sets
A is clearly understood from the context.

In Remark we show that pré\ is a dependent function over the family 2.

3.3 Dependent functions over a family of sets

Definition 3.3.1. Let A := (o, A1) be an I-family of sets. The totality [ [;c; Mo(@) of dependent
functions over A, or the [[-set of A, is defined by

GRS H)\Q(i) = 0c A(I, )x()) & V(i,j)eD(I) (@j =Xo0(j) )\ij(@i)),
il

and it is equipped with the canonical equality and the canonical inequality of the set A(1, \y).
If X is a set and A~ is the constant I-family X (see Definition , we use the notation

=1Ix

el
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Clearly, the property P(®) 1< V(; jyep(n) (Gj =Xo(j) )\Z-j(@i)) is extensional on A(Z, \g), the
equality on [[;c; Ao(é) is an equivalence relation. [],.; Ao(4) is considered to be a set.

Remark 3.3.2. If A := (Ao, \1) is an I-family of sets and 0 := (of,ot) is the 3. -indexing
of A, then pr’2X is a dependent function over Y.

Proof. By Definition [3.2.10| the second projection prg of A is the dependent assignment
prh: A(W)Eziez xo(i) Ao(4), such that prd (i, z) := m, for every (i,z) € >,; Ao(4). It suffices
to show that if (i,2) =x,_, o0 (J,¥) & i =1 § & \ij(T) =5y(j) ¥, then

pré\(j,y) =Y =0) )‘Z](m) = U{\((i7‘r)’ (.77 y)) (pré\(i, :E)) O

Remark 3.3.3. (i) If A? is the 2-family of the sets X and Y, then [[;cp A3(i) =v, X X Y.
(ii) If I, A are sets, and A := (\)', \1) is the constant I-family A, then AT =y, F(I, A).

Proof. (i) Let f: [[;cp A3(i) ~ X XY be defined by f(®) := (®g, P1), for every ® € [, A5 ().
Let g: X XY ~ [[ico A\3(i) be defined by g(z,y) := D(yy), for every (z,y) € X x Y. It is
easy to show that f, g are well-defined functions and (f,g): [[;co A5(i) =v, X x Y.

(ii) Let h: AT ~ F(I, A) be defined by h(®) := he: I — A, where hg(i) := ®;, for every
®c Al andi € 1. Let k: F(I, A) ~ Al be defined by k(e) := ®., where [®.]; := (i), for every
e € F(I,A) and i € I. Then h, k are well-defined functions and (h, k): Al =y, F(I, A). O

Corollary 3.3.4. If A, M € Fam(I) and ¥: A;c; F(Xo(i), 1o(2)), the following are equivalent:
(i) U: A= M.
(ii) ¥ € [Ties [F(Xo, 0)] (i).

Proof. If © =1 j, the commutativity of the following left diagram

/\ij /\ji
Ao () —— Ao(J) Ao (1) «——— Ao(4)
[
fo (%) TN to(d) to (%) TN to(5)s

is equivalent to the commutativity of the above right one, hence the defining condition for
U € Map(A, M) is equivalent to the defining condition W; = F(A1, p1):5(V;) := pij 0 W0 Ay
for U € TT;c; (Mo(i) X po()) (see Definition [3.1.6(ii)). O

Proposition 3.3.5. Let A := (Ao, A1), M := (po,p1) € Fam(l), and ¥ : A = M.
(i) If i € I, the operation 7 : [[;c; Ao(d) ~ Xo(i), defined by © — ©;, is a function.

)

(ii) The operation IIW : [[;c; Ao(3) ~ [l;cr po(i), defined by
[H\I/(@)]l = \I/z(@z), 1el,

s a function, such that for every i € I the following diagram commutes
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Xo(i) T (i)

A M
(L I }Ti

Hie[ Ao(%) W Hiel p10(7)-

(iii) If U; is an embedding, for every i € I, then IIV is an embedding.

(iv) If @ : M = A such that ®; is a modulus of surjectivity for V;, for everyi € I, the operation
W [Licro(@) ~ [licr Ao(i) is a modulus of surjectivity for [[ ¥, where

[TU(Q)], = 0i(Q); Q€ H,uo(i), icl.

Proof. (i) This follows immediately from the definition of equality on [[;c; Ao(é).
(ii) First we show that IIV is well-defined i.e., [I¥(©) € [[,c; no(é). If i =7 j, then by the
commutativity of the following left diagram from the definition of a family-map

Aij , N

>
o
—
-~
N—
>
o
<XQ
=
o
-~
N—
=
o
—
<
N—

po(i) —— po(J) Ao (i) —— Ao(d),
Hig )\ij
[[T9(O)]; := ¥;(8;) = ¥;(Aij(05)) = pij (¥i(65)) = pi; (TT(O)]:).
It is immediate to show that IIVU is a function and that the required diagram commutes.
(iii) If ©,0" € [[;c; Ao(4), then
H\I/(@) ) H\I/(@/) = Vie] (\I/Z(GZ> =10 (4) \I/Z(G’Z))
= Vier (05 =x,0) ©'i)
=0 “Tlier 2o () CB

“Ilier roG

(iv) First we show that 7V is well-defined i.e., 7¥(Q) € [[;c; Mo(i). If i =7 j, and since
®: M = A, by the commutativity of the above right diagram
[TU(Q)]; = 25(Q) =re(5) B (135 () =no5) Nig (2i()) = i ([T L(Q)],)-

It is immediate to show that 7V is a function. Finally we show that IT¥ (7¥(Q)) = €, for
every Q € [[;c;po(i). If i € I, and since ®; is a modulus of surjectivity for ¥;, we get

[H\I/(W\IJ(Q))L = \I/Z([TF\I/(Q)] ) =, (@Z(Qz)) = ;. O

Proposition 3.3.6. If A := (Ao, A1), M := (uo, 1) € Fam([I), then
Ao(2) X po(i)) =vq Ao(z) | x (@) ),
g( 0 Ho ) \Y <g 0 > (gﬂo >

Map; (A, M) =v, [ [F(Ro(i), mo(?)).
icl
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Proof. Let the operation f: [[;c; (Mo(2) x po(i)) ~ TTics Mo(d) x [Tics 1o(i) be defined by
f(®) := (pry(®),pry(®)), for every @ € [[;c; (Ao(é) x po(i)), where pry(®); := pr,(®;) and
pry(®); := pry(P;), for every i € I. Using Definition [3.1.6{1),

pry(®); = pry(®;) = pry (A1 X 111)ij (P:)) = pry (Aij (Pry(®):), i (Pro(®):) := Aij(pry (®):),

hence pr,(®) € [[;c; Ao(é). Similarly, pry(®) € [[;c; po(é). It is immediate to show that the

operation f is a function. Let g: [T;c; Ao(2) X [Ties p0(é) ~ [Tier (Ro(é) x po(i)) be defined
by g(V, =) := @, for every ¥ € [[,c; Ao(4) and = € [[;.; po(i), where ®; := (¥;, 5;), for every
iel. We show that g is well-defined i.e., ® € [T,c; (Ao(é) x po(3)). If i =1 j, then

(A )i (i) == (A1 % )i (W3, Bi) = (i (00), i (B0)) = (85, 55) o= @5

Clearly, f,g are inverse to each other. For the equality Map; (A, M) =v, [T;c; F(Mo(4), po(7)),
we use Coroallry and the corresponding identity maps are its witnesses. O

3.4 Subfamilies of families of sets

Definition 3.4.1. Let A := (Ao, A1) € Fam(I) and h: J — I. The pair Aoh := (Agoh, A1 oh),
defined in Definition [3.1.6], is called the h-subfamily of A, and we write (Ao h)y; < Ar. If
J := N, we call A oh the h-subsequence of A.

Remark 3.4.2. If A € Set(I), then Ao h € Set(J) if and only h is an embedding.

Proof. Let A o h € Set(J) and h(j) =1 h(j'), hence (Np(jyn(ir)> MuiinnG)): Mo(h(d)) =v,
Xo(h(j")), and j =5 j'. If h is an embedding and (A\g o h)(j) = ( oh)(j") = X(i(4)) =v,
Xo(h(4")), then h(j) =1 h(j'), since A € Set(I), and hence j =; ] O

(
/

Remark 3.4.3. Let A, M € Fan(I), h € F(J,I) and g € F(I, K).
(i) Aoidy := A.

(ii) (Aog)oh:=Ao(goh).

(ii) If ®: A = M, then ®oh: Aoh = M o h, where

(@oh);: Mo(h(4)) = po(h(),  (®oh)j:=Ppy; JeJ
(iv) If : A = M, then ®": th:h>M, where
)+ Ao(h(4)) = po(h(5),  ®f == Pugy €.

(iv) (Aoh) x (M oh):= (A x M)oh.
(v) F((Aoh), (M oh)) :=F(A, M) oh.
Proof. All cases are straightforward to show. O

Proposition 3.4.4. Let A € Fam(I), and h: J — I.
(i) The operation 3, > ey Ao(h(4)) ~ 3 ics Ao(i), defined by

> Gou) = (h(i).w); (o) €D Mo(h())),

h jed
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s a function, and it is an embedding if h is an embedding.
(ii) The operation [];,: ey Xo(é) ~ [1;e5 Ao(h(J)), defined by
o [](@) (H@) =0 @ e [[roli), je,
h h J i€l
is a function, and if h is an embedding, then [], is an embedding.

Proof. (i) By definition we have that
(J,u) = jes(r0oh) () () e d=, j & )‘h(j)h(j’)(u) o (i) ',

(h(J)au) =Yier 2o (h(j/)vul) = h(]) =I h( ) & >‘h( )h(]/)( ) =xo(h(G)) u'.
Since h is a function, the operation ), is a function. If & is an embedding, it is immediate to

show that ), is an embedding.
(ii) First we show that [, is well-defined. If j =; j/, then

(H‘P) 1= D) =agenisn M) (Phe) = (Ao )y <<H@> >

It is immediate to show that [, is a function. Let h be a surjection and let ®,0 € [];c; Ao(i)
such that [ ], (®) =p1,.; xemey [11(0). Ifi € I, let j € Jwith h(j) =1 i. As @y =) An()i P
and @ 1 =Xo (i) )‘h( )i @h( i) and since (I)h(j) =Xo(h(4)) @h(]), we get (I) 1 =Xo(d) @Z 0

3.5 Families of sets over products

Proposition 3.5.1. Let A := (Ao, A1), K = (ko, k1) € Fam(I) and M := (uo,p1), N :=
(I/(), Vl) S Fam(J)
(i) A®@ M := (Ao ® o, \1 ® 1) € Fam(I x J), where \g ® pg: I x J ~» Vg is defined by

(Ao ® po)(,5) = Ao(é) X po(j);  (i,7) €I x J,
(A1 ® p1) i) Ao(@) X po(g) = Ao(i') x po(j'),
(M ® Ml)(z‘,j)(i’j’)(u7w) = ()‘ii’(u)nujj/ (w)); (u, w) € Ao() X po(3)-
(i) IfP: A= K and¥: M = N, then ®V: A M = K® N, where, for every (i,j) € I x J,
(@@ W) ) Aoli) X po(d) — ko(i) x vo(4),

(@ V)i (u,w) = (Pi(w), Tj(w));  (u,w) € Xo(4) X po(7)-
(iii) The following equalities hold

> (M) x mo(h)) =v, (ZM%’)) X <Zua(j)),

(i,§)eIxJ il jeJ

[T o) xmoli) =v <H/\0 >><<HMO(J'))‘

(4,5)eIxJ iel jeJ
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Proof. (i) The proof is straightforward.
(ii) We show the required following commutativity by the following supposed ones by

(M ® Nl)(i,j)(i’,j’)

Ao(#) X pio(5) Ao (i) x po(5")
(®® ‘I’)(i,j)l J(‘I’ ® V)i jry
ko(i) x vo(j) ko (i) x vo(j")

(k1 @ v1) .50 37)

)\ZZ . H g’ .
Ao (i) = o(i) 10(j) — po(j")
q% By \pjl J‘I’
ko(i) —— ko(i') po(d) == ro(d"),
Kz Jj

((I) 2 \I/)(l'/yj/) (()\1 ® /-Ll)(z,])(’bldl)) = ((I) ® \I/)(’L ()\u/ (U)v /'L]]’( ))
= (@ir (Mg (), W (e (w)))
= (Kar (©i(u)), vy (¥ (w)))
= (k1 ®@v1) )@ 1) (i
= (k1 @ v1)(i4)(ir j7)

(iii) For the equality on }-; »ery (Ao(@) x po(j)) we have that
((1,9), (W, w)) =52, crnsto@motn (@55) (W) ei=i' &j=5j"&

(A1 @ 1) i) ,7) (1 W) =ng@yxpy (W5 w') 20 Nigr (u) =50 0 & prjje(w) =60y 0.
For the equality on (Y_,c; Ao(4)) x (ZjeJ 10(j)) we have that

(G ), (j,w)) = ) (@), (5 w')) v

(Sicr20®) % (Sjes no0)

(i7u) —SierXo() (i,7u,) & (jvw) :ZjeJ po(d) (j/vw,)a

ie., if i =7 7 and \j(u) =\, o, and j =5 j and p;j(w) =, w'. As the equality
conditions for the two sets are equivalent, the operation ¢: (ZZGI Ao(i )) X (ZjeJMOU)) ~
D oGg)elxd (Mo(é) x po(4)), defined by the rule ((i,w), (j,w)) — ((i,5), (u, w)), together with
the operation 0: > e/ ;s (Mo(2) % po(4)) ~ (X Xo(d)) x (ZjeJ 10(j)), defined by the
inverse rule ((4, j), (u, w)) — ((i,u), (j,w)), are well-defined functions that witness the required

equality of the two sets in Vj.
(iv) We proceed similarly to the proof of Proposition m O

Next we define new families of sets generated by a given family of sets indexed by the
product X x Y of X and Y. These families will also be used in section
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Definition 3.5.2. Let X, Y be sets, and let R := (po, p1) be an (X x Y)-family of sets.

(i) If v € X, the x-component of R is the pair R* := (p§, p7), where the assignment routines
p5: Y ~ Vo and pt: A(y,y’)ED(Y) F(pg(y),pg(y’)) are defined by p§(y) = po(z,y), for every
y €Y, and p{(y,y') = py, = Pay)(ey)s for every (y,y') € D(Y).

(ii) If y € Y, the y-component of R is the pair RY := (p§), p{), where the assignment routines
po: Y ~ Vg and pi: A(@zen(x) F(p§(x), p§(a")) are defined by p§(z) := po(x,y), for every
e X, and pi(z,2) := p? = play)(ay), for every (z,2') € D(X).

(iii) Let ST R = (3 po, S5 1), where S po 2 X~ Vo and

1 1 1
Z p1: A F (( Z po) (z), ( Z po) (w’)) are defined by
(X)

(z,2")eD

1
(Zpo) @)=Y ) =S molwy)  weX,

yey yey

<21:P1>(x,x’) = (iﬂl) /: > polwy) = > polal ) (w,2) € D(X),

T yeYy yey

1
<Zp1> ,(y,u) = (U, Py @y @):  (Wu) € pol,y).

yey

(iv) Let S22 R = (3% po, S22 p1), where S22 pg - Y ~= Vo and

22:,011 A F((ipo)(y)a (ipo)(y')) are defined by

(y,y)eD(X)

2
<Zpo> (v) = > @) =D po(z,y); yeY,

zeX reX

Y onolmy) =D pol,y);  (v,y) € DY),

Y reX zeX

(im)(y, y') = <§:p1>y

2
<Zp1> (x,w) := (a:,p(xvy)(%y/)(w)); (x,w) € Z po(z,y).

Y’ rzeX

(v) Let TI' R := (IT" po, [T" p1), where IT" po : X ~ Vg and

f[ p1: A F <( ﬁ po) (), ( f[ ) (x')) are defined by

(z,2")eD(X)

1
(Hpo)m =TI i =]y zeX,

yey yey
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<f[m>(x,l") = <]l[p1>w: I role.v) = T] oo, v);  (2,2") € D(X),

yey yey

[(ﬁm)m,(@)]y = e (©y); O € [[rolry) yey.

yey

(vi) Let [T> R := ([T* po, [T? p1), where [T po : Y ~~ Vo and

ﬁm: A F<(ﬁpo)(y), (ﬁpo)(y')) are defined by

(y,y")€D(X)

2
(Hpo) (v) =[] pb@) =[] rolz,v); weY,

zeX reX

<ﬁp1>(y, y') = (ﬁpl) I pole,w) = ] poz. o) (w,9)) € DY),

v zeX zeX

[(ﬁpl)yy,(‘l’)]m = Pagew)(@2); €[] polz,y), zeX.

zeX
It is easy to show that RY, ' R, [[' R € Fam(X) and R*,3.> R, [[* R € Fan(Y).
Proposition 3.5.3. Let X, Y € Vo, R := (po, p1),S := (00,01) € Fam(X xY), and ®: R = S.
(i) Let @1 A,ey F(05(y), 05 (y)), where @y := B,y : p§(y) — o (y)-
(ii) Let ®Y: \,cx F(RY(2),5Y(x)), where ®Y := O, : p§(x) = o (x).
(iii) Let S @ Awex F(( ! po)(z), (Zl 00)(x)), where, for every x € X, we define

(Z@) Y ) = S ok (w)

T yey yey

1
(Z (I>> (yv u) = (yv (I)(:E,y) (U)), (yvu) € Z p0($, y)

z yey
(iv) If 22 P: Aer F(( 22 po) (y), (ZQ 00)(y)), where, for everyy € Y, we define

ifb Y Py = Y af(@)
()

Y zeX zeX

2
<Z<I>> (z,w) = (2, Py (w));  (w,w) € Z p(x,y).

Y zeX

(v) Let []' ®: Awex F(( T po)(z), (Hl 00)(x)), where, for every x € X, we define

(H@) I1 o) — [ ot w)

yey yey
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[(ﬁq))x(@)h =Py (0y); O €[] polx,y).

yeyY

(vi) Let H2 D: Aer F(( H2 po)(y), (H2 cro) (y)), where, for every y € Y, we define

(f[cb) I1 st — [ ot

zeX reX

[(ﬁ@)y(@)]m —0(00) O[] mley)

zeX
Then ®*: R* = S%, ®Y: RY = S¥, 31 @: (X'R) = (X19), X7 @: (3%R) = (X°9),
[1'®: ([T'R) = (II'S), and [I*®: ([I*R) = (II*S).
Proof. The proofs of (ii), (iv) and (vi) are like the proofs of (i), (iii), and (v), respectively.

(i) It is immediate to show that the operation ®j: p§(y) ~ o (y) is a function. If y =y o/,
the commutativity of the following left diagram from the hypothesis ®: R = S

Play)(ey) o Py
po(x,y) ————— po(x,y’) o (y) —— pg(y')
%y)l F(w’) ‘I’ﬂ J‘I’i/
oo(a.y) ——— oo(ey)  oE(y) —— o)
(z.)(z.y") ot

implies the required commutativity of the right above diagram, as these are the same diagrams.
(iii) First we explain why the operation (Zl ®) is a function. If

(yau) T Syey p§ (@) (ylvu/) Y=y y, & P(x,y)(z,y) (u) po(z,y) ’U,/,

(4 Py (®) =5,y o) (1 Paa) () 2 ¥ = ¥ & 0@y @y (Pa) (W) Zaien) Plaa) (W)
From our hypothesis the second equality is equivalent to
Tewea) (P () Zeges) Paw) (P (W),

which is the commutativity of the above left diagram. If z =x 2, and since @, )0 p(4 y) (@) =
O(ey)(a'y) © P(zy) We get the commutativity of the following left diagram by

(El pl)xw/ (Hl pl)wz/
Pyey po(zy) —————————— 37 oy pola’y) [Tyey po(zy) ———————— Tlyey po(z’y)
(sre), (o), (me), (Me),,
Pyey oo(@y) ———————— 3y oo(z’y) [Tyey oo(zy) ————— [T ey 00(z’ )

(o), (IM'e),,

T xx
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(£0),($0),00) = (559) it

x/

= (1 P ) (Pl ) (W) )
= (¥: @) (') (Play) (1))

- (iol) (U, P(ay) (u))

zx!

(£0).(59).0)

(v) First we explain why the operation ([]" ®) is well-defined. If y =y 3’ and © € [Lev P5(y),
then by the commutativity of the above left diagram we have that

(112) ©] =venion)

= D(27) (Play) (@) (Oy))
= O(z,y)(z,y") ((I)(x,y)(e)y))

~([(f19) ]

Clearly, the operation (Hl <I>)x is a function. If z =x 2/, and by the commutativity of the
first diagram in the proof of (iii) we get the commutativity of the above right diagram

(112),((110r) @] = oo (11) o]

= Oy (p(x,y)(afﬂy) (@y))
= O(ay) (@) (Pla) (Oy))

e [1T#) ©] )
-[(112) (T1%) @)] . =

Proposition 3.5.4. If R := (po, p1) € Fam(X x Y), the following equalities hold.

Z Z,Oo(x,y) Vo Z Z po(z,y),

rzeX yeY yeY zeX
II II o= ) =vo IT I po(a.u)-
zeX yeYy yeY zeX

Proof. The proof is straightforward. O
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3.6 The distributivity of [] over >

We prove the translation of the type-theoretic axiom of choice in BST (Theorem [3.6.4)).

Lemma 3.6.1. Let R := (po, p1), R* := (p%,p%) and 3" R := (3" po, 32" p1) be the families
of sets of Definition . If ® € [[ex (21 po)(x), the operation fe: X ~ Y, defined by
z = pri¥ (@), for every x € X, is a function from X to'Y.

Proof. If x =x 2/, then &,/ = (21 p1),..(®). Since ®, € > _yey Po(z,y), there are y € Y
and u € po(x,y) such that ®, := (y,u). Hence f3(x) :=y and

fa(a') = pr{" (®x) =y pr’ < Zf’l —_e ) =pr1 (U, Py (W) =y O

Lemma 3.6.2. Let R := (po, p1), R* == (g, p%) and P R = (32" po, 32" p1) be as above. If
f: X =Y, the pair NI := (1/({,1/{) is an X -family of sets, where the assignment routines
Vg : X ~ Vg and 1/{: A (a)eD(x) F(V(J;(x),l/({(l‘/)) are given by 1/({(:1:) = polx, f(x)), for

every x € X, and vy, = pla.f(a) (et (), for every (x,a') € D(X),
Proof. The proof is straightforward (see also [95], p. 12). O

Lemma 3.6.3. If R := (pg, p1) and NT := (1/(];, l/{) are families of sets as above, then the pair
2= (£o,&1) is an F(X,Y)-family of sets, where the assignment routines & : F(X,Y) ~» Vy
and £1: N (1. f)eDFE(X,Y)) F(&(f),&(f")) are defined by

= H vi(z) == H po(z, f(x); [feFRX,Y),

rzeX zeX
&t [ polas £(2) = T pola, £/(2)); (f, f)) € D(F(X,Y)),
rzeX rxeX
(&9 (H)], = plop@) @@y He):  HE ] polz. f(z), ze€X.

zeX
Proof. First we show that the operation s is well-defined i.e., if

H e H PO T f ) <Z>v:vw’)€D(X)<H:L" = ng:x/(Hx) = p(m,f(m))(m’,f(z’))(Hx))7 then
zeX

&) € ] rola, 1'(@)) 2 Yiawneno) ([Erp ()] = v, ([65(H)],)

zeX
If x =x o/, then f(z) =y f(2') =y f'(2') =y f/'(z), and

vl ([&p(H)], ) = Pl @) e m ([&rp(H)],)
= Pa, /(@)@ 1 @) (Pla,f (@) (o, () (Hz))
= Pa.f(@) (' (a")) ()
= P f@) @ @) (Pla f@) @, 1 (wr)) (He)
= Pl f ')’ f () (Har)
= [&p(H )hf
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It is immediate to see to show that ;s is a function. If f € F(X,Y’), then

[Erp(H)] . = Pl f ) () (Ha) = 1dpg 2 f(2)) (He) := Ho.

Moreover, if f =g(x,y) ' =r(x,v) /", the following diagram is commutative:

o(f)

£ff/J Nf”

So(f') —— &o(f")
gy

[(&prpm o &pp)(H)], o= [Eprpr (&4 (H))],
= Pl f @) f ) ([Er 9 ()] )
= D, 1)) (o7 () (Pl f (@) () (L))
= P, f(2) (e f”(w))( H,)
= [ D), 0

Theorem 3.6.4 (Distributivity of [[ over ). Let X,Y be sets, R := (po, p1), R* := (p§, p{),
and P R = (3! po, 2t p1) as above. If

1
S H (Zpo)(w) = H Zpo(x,y), there is

z€X zeX yeY
0¢ € [ v (2) = ] rolz, folx))
zeX zeX

where fo: X — Y is defined in Lemma|3.6.1. The following operation is a function:

aCZHZPo(%y) Z HpoiEf

rzeX yeyY fEF(X)Y)zeX
s (f,00); @[] D polx,y).
zeX yey

Proof. Since by Remark
pry € [ Ailert(w)) = 11 po(z,pri (w)),

weY ey PG5 (Y) weY, cy po(w,y)

pry (®x) € po(@, pri’ (P2)) == po(, fo(z)).
Hence, the dependent operation O € A ,cx l/g“’ () := Azex po(z, fo(x)), defined by

Oo(z) ==prs (By) ==u; Py = (y,u), y:= fo(z), =€ X,

is well-defined. To show that ©¢ € [[,cx l/gq’ (x), let x =x 2’. Since,

@cb(l',) - pré%’f (q)ﬂ?/) = ul; (I)x’ = (y/au/)v ZJ/ = f@(x/)a
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we need to show that u' =, ./ ) IJQJ:;IZ/ (u). Since ® € [, cx (Zl po)(z), we have that

1
(ylvu/) = (f@(l’/),u/) =Dy ey rol@’ ) (Zpl)zx’(q)l’) “Cyey roe’ ) (y’p(%y)(m'vy) (u))

By the last equality we get y =y v’ and

P (Pl (W) = a7 1 U (et (@) (Pl 1) () = oty W
© Play)(ay) (%) =pr o) W-
Hence,
VL () 1= Pl g (o) fo ) (1) 1= Plag)(ar ) (1) =gty U
To show that the operation ac is a function, we suppose that ® = _ .0 @', and we show

that ac(®) =x .\, e ac(®) ie.,

(f2,00) =5, vy ot (f61,08) 1 fo =r(xy) for & 14,1, (O8) =¢o(sy) Oa-

o,/ for every v € X. By

By definition, ® Lox (Elpo)(w) @’ if and only if @, :<le0)(z>
Lemma [3.6.1]
fo(z) =pr{ (®x) i=y; @ i= (y,u),
for(w) == prt (@) ==y @y i= (¥, ).
Since @, = (5 0) ) ®,', we get y =y ', and p(z.4) (2,5 () =py(a,y) ¥+ From the first equality

we get and hence fg(z) =y for(z), and from the second we conclude that

[€f0.50 (OD)], = Plafo(0) @S () ([Of)2) = Pla)(@y) (W) Zpp(ag) ¥ = [Oar] . O

3.7 Sets of sets

Definition 3.7.1. If I is a set, a set of sets indexed by I, or an I-set of sets, is a pair
A := (Ao, A1) € Fam(I) such that the following condition is satisfied:

Q(A) = Vijer(Mo(i) =vo Xo(d) = i =1 J)-
Let Set(I) be their totality, equipped with the canonical equality on Fam(T).
Remark 3.7.2. If A € Set(I) and M € Fam(I) such that A =g,y M, then M € Set(I).

Proof. Leti,j €I, f: po(i) — po(j) and g: po(j) — po(i), such that fog =1id, ;) and gof =
id,, (). It suffices to show that A\o(i) =v, Ao(j). Let ® € Map,;(A, M) and ¥ € Map,;(M, A)
such that ® o U = idp; and W o ® = idy. We define f': A\o(i) — Ao(j) and ¢': Ao(5) — Ao(7) by

fl=Vjofod, & ¢ :=V,0g0®,

wol) —L ) ) L ()

ol fwow v
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It is straightforward to show that (f’,¢"): Ao(i) =v, Mo (J). O

By the previous remark Q(A) is an extensional property on Fam([). Since Set([/) is defined
by separation on Fam([), which is impredicative, Set (/) is also an impredicative set. We can
also see that by an argument similar to the one used for the impredicativity of Fam(I).

If X,Y are not equal sets in Vo, then with Ex falsum we get that the 2-family A? of X
and Y is a 2-set of sets. Similarly, if X,, and X,,, are not equal in Vg, for every n # m, then
with Ex falsum we get that the N-family AN of (X,),en is an N-set of sets. If I is a set with
(1,7) € I x I such that —(i =5 j), then the constant [-family A, for some set A, is an I-family
that is not an I-set of sets. We can easily turn an [-family of sets A into an I-set of sets.

Definition 3.7.3. Let A := (\o,\1) € Fam(I). The equality =4 on I induced by A is given
by i =4 j 1 Mo(i) =v, Mo(j), for everyi,j € I. The set Aol of sets generated by A is the
totality I equipped with the equality =2. For simplicity, we write Xo(i) € Xol, instead of i € I,
when I is equipped with the equality =%. The operation N} : I ~ I from (I,=y) to (I,="%),
defined by i — i, for every i € I, is denoted by \; : I ~ Xol, and its definition is rewritten as
A5 (%) == Ao(4), for every i € 1.

Clearly, Aj is a function. In the next proof the hypothesis of a set of sets is crucial.

Proposition 3.7.4. Let A := (Mg, A1) be an I-set of sets, and let Y be a set. If f: I =Y,
there is a unique function Aof: Aol — Y such that the following diagram commutes

f
I ——Y.
AoJ o Aof
Aol

Conversely, if f: I ~Y and f*: Aol — Y such that the corresponding diagram commutes,
then f is a function and f* is equal to the function from Aol to'Y generated by f.

Proof. The operation \gf from Aol to Y defined by Ao f(Ao(7)) := f(i), for every \o(i) € o1,
is a function, since, for every 4,5 € I, we have that A\o(i) =v, Ao(j) = ¢ =1 j, hence
f@) =y f(J) = Mof(Xo(i) =y Aof(No(4)). The commutativity of the diagram follows from
the reflexivity of =y. If g: AgI — Y makes the above diagram commutative, then for every
Ao(7) we have that g(Ao(7)) =y f(i) =: Aof(Ao(4)), hence g =g(x,ry) Aof. For the converse,
if 4,7 € I, then by the transitivity of =y we have that i =7 j = \o(i) =v, Ao(j), hence
= f*(Mo(@) =y f*(Mo(4)), and f(i) =y f(j). The proof of the fact that f* is the function
from Aol to Y generated by f is immediate. O

Proposition 3.7.5. Let A := (Ao, \1) € Fam([), and let Y be a set. If f*: N\gI — Y, there is
a unique function f: I —Y such that the following diagram commutes

f
I[--%-+Y.

o

Aol
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If A € Set(I), then f* is equal to the function from Aol to'Y generated by f.

Proof. Let f*: I ~Y, defined by f(i) := f*(M\o()), for every i € I. Since i =7 i = Ao(i) =y,
Mo (@) = f*(Mo(@) =y f*(No(?)) < f(i) =y f(7), [ is the required function. If A € Set(I),
by Proposition f* is generated by f. The uniqueness of f follows immediately. O

Remark 3.7.6. Let f €e F(1,Y) and g € F(Y, Z). If A € Set(I), then Ao(go f) :=go Ao f

I / vy 2.z
)\OJ( wo f)
Mol
Proof. If i € I, then by Proposition we have that A\g(g o f)(Mo(i)) := (g0 f)(i) :=
g(f (@) =2 g[Xof (Ao(@))] =: [g © Ao fl(Aa(4))- H
J,

Proposition 3.7.7. Let A := (Ao, \1) € Set(I) and M := (po,p1) € Set(J). If f: I —
there is a unique function f*: Aol — poJ such that the following diagram commutes

I —J

w| |

Aol -+ ol.
f

Conversely, if f: I~ J, and f*: Aol — poJ such that the corresponding to the above diagram
commutes, then f € F(I,J) and f* is equal to the function from Aol to uoJ generated by f.

Proof. Let f*: Aol ~» poJ be defined by f*(Ao(7)) := po(f (7)), for every Ao(i) € Aol. We show
that f* € F(Aol, uoJ). If 4,j € I, such that Ao(i) =v, Ao(j), then i =; j, hence f(i) =7 f(j),

and consequently io(f(7)) =vy £0(f()) i.c., F*(Po(i)) =vo £*(Ao()). The uniqueness of f*
is trivial. For the converse, by the transitivity of =y,, and since M € Set(.J), we have that

i =17 = Xo() =vy M(j) = f*(Ao(i)) =v, [*(Xo(4)), hence po(f(i)) =v, po(f(j)), which
implies f(i7) = f(j). Clearly, f* is equal to the function from Aol to pgJ generated by f. [
Proposition 3.7.8. Let A := (Ao, A1) € Fam(/) and M = (uo, 1) € Set(J). If f*: Mol —
wod, there is a unique function f from I to J, such that the following diagram commutes, and
f* is equal to the function from Aol to poJ generated by f

f
[---2-- »
Aol JNO
)\OI T /LOJ

Proof. If i € I, then f*(\o(i)) := po(j), for some j € J. We define the routine f(i) :=j i.e.,
the output of f* determines the output of f. Since i =1 i’ = Ag(i) =v, Ao(?') = f*(Mo(2)) =v,
F*(No(?)) we get po(j) =v, po(j") = j =53 & f(i) =5 f(i'), hence f is a function. The
required commutativity of the diagram follows immediately. If g : I — J such that the above
diagram commutes, then 1o(g(7)) =v, f*(Ao(?)) := po(j3) =: po(f(2)), hence g(i) =5 f(i). O
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3.8 Direct families of sets

Definition 3.8.1. Let (I,<;) be a directed set, and DS(I) := {(i,j) € I x I | i < j}
the diagonal of <;. A direct family of sets (I,<1), or an (I,=<1)-family of sets, is a pair
A= = (N, /\f), where Ao : I ~ Vg, and )\f, a modulus of transport maps for Ao, is defined by

(M)GD%(I)

such that the transport maps /\fj of A= satisfy the following conditions:
(a) For every i € I, we have that )\fi = 1dyg (4 -
(b) If i <1 7 and j X1 k, the following diagram commutes

Ao(7)

< B
)\”i \/\jk

If X € Vo, the constant (I, <1)-family X is the pair C5X := (A, \Y X), where \§ (i) := X,
and XX (i, 5) := idx, for every i € I and (i,§) € D(I).

Since in general < is not symmetric, the transport map )\fj does not necessarily have an

inverse. Hence )\f is only a modulus of transport for A\g, in the sense that determines the
transport maps of A=, and not necessarily a modulus of function-likeness for \g.

Definition 3.8.2. If AS := (Mo, AY) and M= := (uo, u7) are (I, <1)-families of sets, a direct

family-map ® from AS to M=, denoted by ®: AS = M=, their set Map,; 41)(/\4, M=), and

the totality Fam(I,<1) of (I,<r)-families are defined as in Definition . The direct sum
1 Ao(i) over AS is the totality > ;c; Xo(i) equipped with the equality

(1:0) =52 o 008) 7 Tner (0 <k & G <k & A (@) =50 AkW))-

The totality HIGI 0(i) of dependent functions over A< is defined by
S H)\()(’L) = d e A(I, Ao) & V(z‘,j)eDﬂI) (Q)J =0 (j) )\3(@1)),
el
and it is equipped with the equality of A(I, Ag).

Clearly, the property P(®) 1< V; jyep<(1) (®5 =x() )\f](cbl)) is extensional on A(Z, \o),

the equality on [, Ao(4) is an equivalence relation. [, Ao(i) is considered to be a set.

Proposition 3.8.3. The relation (i,z) =«< ~ (4,9) is an equivalence relation.
Zz‘el Ao (i)
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Proof. If © € I, and since i <y i, there is k € I such that ¢ <; k, and by the reflexivity of the
equality on Ao(k) we get A3, () =yx) Aj(#). The symmetry of = =55 () follows from the

i€l
symmetry of the equalities =) ). To prove transitivity, we suppose that

(i,7) =y« 5 ) b)) & Frer (i <1k & J <k & A5(2) =xm) A5 (®),

el
(jv y) :Zfel Xo(4) (jlv Z) = 3’6’61 (] <7 k, & j/ <7 k/ & )\fk’(y) =Xo(k") )\f’k’(’z))7

and we show that
(5:2) =t sy 7)1 Forer (i 1 K& 7 <1 K & W) sy Ao (2)).

By the definition of a directed set there is k” € I such that k <7 k¥” and k¥’ <7 k"

k _—— k// — k/
i J 7'

hence by transitivity i <; k" and j' <7 k”. Moreover,

A () TTE AL (A3 (@)
= N (@)

J=srk<rk”

=1% 3\s

]k”( )
VLS VL AN
= A (e @)

()
j <Ik:<1k )\j,k,,(z) D
Notice that the projection operation from >3 Ao(i) to I is not a function.

Proposition 3.8.4. If (I,<) is a directed set, AS := (Ao, AT), M= := (po, u7) are (I, <1)-
families of sets, and U= : AS = M=, the following hold.
(i) For every i € I the operation eA< () ~ 3% No(4), defined by x — (i,x), for every
x € Ao(i), is a function from Ao(i) to 3 i, Ao(i).
(i) The operation S3W : 3% Xo(i) ~ S, po(i), defined by (S5V)(i,z) := (i, ¥;(x)), for

every (i,2) € > ey Ao(d), is a function from > 5 Ao(i) to Y.ii; po(i) such that, for every
1 € I, the following left diagram commutes

Ao (%)

pio(7) Ao(1) ———— po(i)

M AS

>ier Ao(d) ﬁ >ier to(i) [T 2@ *> [T s 10(9).-
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(iii) If ; is an embedding, for every i € I, then X5V is an embedding.

(iv) For every i € I the operation 7TA$ [T Ao(i) ~ Xo(i), defined by © — ©;, for every
O € [T, Mo(i), is a function from [J5; Ao(i) to Ao(i).

(v) The operation TISW : [T, Ao(4) ~ [Tix; po(i), defined by [IISW(O)]; := ¥;(6;), for every

i €1 and © €[], Xo(i), is a function from [T, Ao(i) to [T5e; po(i), such that, for every
1 € I, the above right diagram commutes.

(vi) If U; is an embedding, for every i € I, then IISV is an embedding.
Proof. (i) If x,y € \o(¢) such that x :/\o(i) y, then, since < is reflexive, if we take k := i, we
get Aj () :=idy () (2) == @ =)5,() ¥ := idx(5) () := Aj (), hence (i, z) =55 a0() (4,9).
(ii) If (i, ) =% a0) (J,y ), there is k € I such that i <7 k, j <7 k and A}, (z) =xo(k) )\fk(y)
We show the following equality:
(S0 i) = o (BF)(G9) 1 (W) =g G5 0)
1= Fper (i, 5 <1k & pia(Wi@)) =400 15 (Y5(1)))-

If we take k' := k, by the commutativity of the following diagrams, and since ¥y, is a function,

b
o
—~

-~
N~—

>~
o
=

>
o
—
<

b
o
—

=y
S~—

=
S
)\J
=
S
=
=
S
(S
=
)
=

Fik ik

Mk (Vi(@)) oty k(AL (@) =potr) YK W) =poty 151 (¥5(9))-
(iii) If we suppose (E5W) (i, z) =% (o (X50) (4, y) ieey pg, (i) =p00k) 15 (¥5(y))), for
some k € I with 4,j <1 k, by the proof of case (ii) we get Wi (A5 (%)) =4000) Yk ()\fk(y)), and
since Wy, is an embedding, we get A (x) =y, (k) )\fk(y) ie., (i,) =25, h0) (J,y)-
(iv)-(vi) Their proof is omitted, since a proof of their contravariant version (see Note [3.11.10)
is given in the proof of Theorem [6.6.3 O]

Since the transport functions )\fk are not in general embeddings, we cannot show in general

that efﬁ is an embedding, as it is the case for the map e* in Proposition (1) The study
of direct families of sets can be extended following the study of set-indexed families of sets.

3.9 Set-relevant families of sets
In general, we may want to have more than one transport maps from Ag(i) to Ag(j), if i = j.
In this case, to each (i,j) € D(I) we associate a set of transport maps.

Definition 3.9.1. If I is a set, a set-relevant family of sets indexed by I, is a triplet A* :=
()\0,56‘,)\2), where Ao : I ~ Vo, gy : D(I) ~ Vg, and

Ag A A F()\O(i)a)@(j))a )\2((7;,3‘),]7) = )‘fj’a (Zv]) €D<I)a pES(/)\(i,j),

(i,5)€D(I) peey (i,7)
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such that the following conditions hold:
(i) For every i € I there is p € £)(i,i) such that AL, =F (o), ho (i) 1o (i)-

(ii) For every (i,7) € D(I) and every p € €}(i,j) there is some q € €)(j,) such that such that
the following left diagram commutes

Ao(7) Ao(1)
/\Zl \idj\o(i) Afgl \Azk
Mo(f) —= Aoli) Ao(4) —5— Ao(k).
Jt /\jk

iii) If i =7 j =1 k, then for every p € €)(3,7) and every q € €)(j, k) there is r € e)(i, k) such
0 0 0
that the above right diagram commutes.

We call A* function-like, ifv(i,j)GD(I)vp,p’Ez-:a(i,j)(p =2 (i) p = )\fj =F (i) Mo (7)) )\fj).

It is immediate to show that if A := (Ao, A1) € Fam(I), then A generates a set-relevant
family over I, where £} (i, ) := 1, and Ag((i,j),p)) = \j, for every (i,7) € D(I).

Definition 3.9.2. Let A* := (Ao, &), \2) and M = (uo, e, 2) be set-relevamt families of sets
over I. A covariant set-relevant family-map from A* to M*, in symbols ¥: A* = M*, is a
dependent operation W: \;.;F(Xo(i), no(i)) such that for every (i,j) € D(I) and for every
p € )(i,7) there is q € €5 (i, j) such that the following diagram commutes

4
Ao (i) ——— Ao(J)

poli) —5— moli).
Hij

A contravariant set-relevant family-map is defined by the property: for every q € ef(i,j),
there is p € €)(i,7) such that the above diagram commutes. Let Map;(A*, M*) be the totality
of covariant set-relevant family-maps from A* to M*, which is equipped with the pointwise
equality. If 2 : M* = N*, the composition set-relevant family-map Zo V: A* = N* is defined,
for everyi €I, by (EoW); :==;0;
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The composition of contravariant set-relevant family-maps is defined similarly The identity
set-relevant family-map is defined by Idx«(i) := idy, ), for every i € I. Let Fam*(I) be the
totality of set-relevant I-families, equipped with the obvious canonical equality.

Idp~ is both a covariant and a contravariant set-relevant family-map from A* to itself.

Definition 3.9.3. Let A* := (Ao, ), A2) € Fam*(I). The exterior union > ;c; Xo(i) of A* is

the totality Y, Mo(), equipped with the following equality

(1, 2) =5 xo() ) & i =17 & Fpeniy (N (@) =x00) ¥)-
The totality []:c; Mo(i) of dependent functions over A* is defined by

O € [ M) = © € AT, M) & Yiijyen(n)peer i) (©5 =xo() Ni(04)),

pGEO
i€l

and it is equipped with the pointwise equality.
A motivation for the definitions of Y7 ; Ao(¢) and [];-; Xo(4) is provided in Note |5.7.10

Remark 3.9.4. The equalities on Y ;-; Xo(i) and [[;c; Mo(i) satisfy the conditions of an
equivalence relation.

Proof. Let (i,z), (j,y) and (k,2z) € > ;c; Ao(i). By definition there is p € £{(i,4) such that
AL = idyg(s), hence (i, ) =35, 2o(i) (i,2). If (i,z) =y, 200 (s y), then j =7 i and there is

q € ) (ji) such that Ni(y) = M, (A\j(2)) = idy(3)(2) := @, hence (j,y) =9 who(i) (i,z). If
(i, 2) =3 holi) (J,v) and (4,9) =30 M) (k, z), then from the hypotheses i :1j and j=rk,

we get 4 =7 k. From the hypotheses Eipegé(m)()\%(a:) =x() Y ) and qus ik ( —)\0 (k) z),
let 7 € €)(i, k) such that X}, = Ay 0 Xjj. Hence Ajy () = (6) AN (N5 (2) =aom) Afp(y) = 2.
The proof for the equality on []7; Ao(¢) is trivial. O
Proposition 3.9.5. Let A := ()\0,53, A2), M = (uo, ey, pu2) € Fam*(I), and ¥ : A* = M*.

(i) For every i € I the operation e : Xo(i) ~ Y_tc; Ao(i), defined by el (z) := (i,z), for every
x € X\o(i), is a function.
(ii) If ¥ is covariant, the operation S*W : 377 Ao(i) ~» D_ic; pio(2), defined by S*W (i, x) =
(4, V;(x)), for every (i,z) € >ic; Mo(i), is a function, such that for every i € I the following
left diagram commutes

pio(i) Ao(1) ———— po()

M* A*

Siermo). e Moli) w0 ey moli).

Ao (%)

A*

() ——
Sier M)

(ili) If i € I, the operation w1 : [[ic; Ao(i) ~ Ao(i), defined by © +— ©;, is a function.
(iv) If W is contravariant, the operation II*W : [Tic; Ao(é) ~ [Tics po(4), defined by [II*¥(O)]; :=

U,(0;), for every i € I, is a function, such that for every i € I the above right diagram
commutes.

(v) If ¥; is an embedding, for every i € I, then II*W is an embedding.
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Proof. We proceed as in the proofs of Propositions and O

The definitions of operations on I-families of sets and their family-maps extend to operations
on set-relevant [-families and their family-maps. An important example of a set-relevant family
of sets is that of a family of sets over a set with a proof-relevant equality (see Definition .
For reasons that are going to be clear in the study of these families of sets, the first definitional
clause of a set-relevant family of sets over I involves the equality =gy (i),z(:)) instead of the
definitional one. Next follows the definition of the direct version of a set-relevant family of
sets, the importance of which is explained in Note

Definition 3.9.6. If (I,<) is a directed set, a set-relevant direct family of sets indexed
by I, is a quadruple A*= := ()\0,584,@,)\5), where \o : I ~ Vo, 5(’}< : DS(I) ~ Vo,
(CNS A(i,j)eDﬂI) 5(}4 (,7) is a modulus of inhabitedness for 6())‘<, and

N A F0@G)s A5 (Gd)p) == AT, (i) € D), e sy (g,
(LN ED3(I) peed™ (i)

such that the following conditions hold:
(i) For every i € I there isp € 56\< (i,4) such that \I~ =F (o), ho(i) 1ag(i)-

(ii) If t <1 j <1 k, then for every p € Eés(i,j) and every q € €S< (j, k) there isr € Sf (i, k)
such that )\?;f o )\ff = /\;.”,f.

(iii) For every (i,j) € DS(I) and every p,p’ € sf (1,7) and every x € (i) there is k € I such
that j <1 k and there is g € 6(>]‘<(j, k) such that

MG (N () =pgm AT (A0S ().

The modulus of inhabitedness © for 5? and the last condition in the previous definition
guarantee that the equality on the corresponding » -set of a set-relevant direct family of sets
satisfies the conditions of an equivalence relation.

Definition 3.9.7. Let A*~ := ()\0,884,@, /\j) a set-relevant family of sets over a directed

set (I,<). Its exterior union S .25 Mo(i) is the totality > icr Ao(i) equipped with the equality

el
- ~ - S — <
(va) :Z:‘é§ Ao (4) (]’y) = ElkEI <Zvj <I k & E|p€€(3\< (i,k:)zlan())‘#(j,k) (Afk (‘T) —Xo(k) )‘?k (y))>

The set H:S Ao(2) of dependent functions over A= is defined by

*,<
© e [ roli) & ® € AT, Xo) & V; ) (1) ped= (i) (B3 =20) AP (@),
el

and it is equipped with the pointwise equality.

Proposition 3.9.8. The equality on Zf:l Ao(2) satisfies the conditions of an equivalence
relation.
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Proof. To show that (i,z) =y, . (i,2) we use the first definitional clause of a set-relevant
i€l

directed family of sets. The proof of the equality (j,y) =5 (i,z) from the equality

*, % .
ie1 2o

(i,2) =5 200 (J,y) is trivial. For transitivity we suppose that (i, z) =525 aai) (J,y) and

(4,y) =52 200 (4, 2) ie.,

- I, / Py — 4=
el <‘7 SR &I SR &3, e oy Fpeay gran K W) =00 Aid (z))>'

There is k" € I such that k <; k” and k' <7 k”.

k;/> ]f” (\k/
i J J'

Moreover, there are r € &) (i, k") and s € Eéﬁ (7, k") such that

IESLES "0 3 © Yy, EY LA ”
)\:ﬁ,(m) SRSk )\kkglkl,k//) <()\f]f(x)) _ )‘kk(/k/k ) <(>\;]}j(y)) ISIRS IR )\j}j,(y)
Ao (4) Ao(J) Ao(J")
Wf X;-;f/ S ,\jf;j/
I N PV AW (%

e 2 <
N (k,k”)’\ %(k/k’/) <
kk/ k'K

)\0 (k”)

,,_/I/,ﬁ
il t,<
Ajon

Ao(1)

If we apply condition (iii) of Definition to j <1 k", y € M\o(j) and the transport maps
O p11y,=<
(K" E)

)\;}j, and A\ o )\%’5 from Ao(j) to A\o(k”), then there is | € I, such that k” <; [, and
some t € )" (K”,1) such that

e(k’,k”)vﬁ

o (o () = A | Aok (Aﬁﬁﬂy)))

t,< (C] ! k! =< ! <
- /\kfz ()‘k’(kk”k ) (/\;J"l;(z))
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for some ' € )" (5, k") and some ' € £}~ (j,1). From Ao (@) =, 0 )\;}j, (y) we get
L, N t,< 5= "<
>‘k’—/<l ()‘jl:/ () = >‘k’—’<l ()‘gk—; (2)) =\, ~(x),

1" "
for some " € &) (i,1). Hence, A}, "~ (x) =5, )\;-/l’ﬁ(z) ie., (i,z) =513 200 (4, 2). O

3.10 Families of families of sets, an impredicative interlude

We define the notion of a family of families of sets (A?);c;, where each family of sets A’ is
indexed by some set pg(i), and i € I. As expected, the index-sets are given by some family
M € Fam(I), and (A%);c; must must be a function-like object i.e., if i =; j, the family A’
of sets over the index-set (i) is “equal” to the family A7 of sets over the index-set pq (7).
This equality can be expressed through the notion of a family map from A’ to A7 over p;;
(see Definition . As in the case of the definition of a family of sets we provide the a
priori given transport maps of (A%);c; with certain properties that guarantee the existence of
these family-maps. As Fam([) is an impredicative set, to define a family of families of sets, we
need to introduce, in complete analogy to the introduction of Vg, the class VI of sets and
impredicative sets. All notions of assignment routines defined in Chapter [2] are defined in a
similar way when the class V%)m is used instead of Vy. We add the superscript ™ to a symbol
in order to denote the version of the corresponding notion that requires the use of Viom.

Definition 3.10.1. Let M := (uo, u1) € Fam(I) and, if (i,5) € D(I) let the set

T (M) == {(m,n) € po(i) x po(j) | pij(m) =0 nt-

A family of families of sets over I and M, or an (I, M)-family of families of sets, is a pair
(ADier := (ASM ALM) where

AOM ) Fam(po(i)),  APM = (M AD); i€l

ABM A A F(X(m), X(n)),

(i) €D(I) (m.n) T35 (M)
(AGS) ) = Mt Ao(m) = Ny(n); (i) € D(I), (m,n) € T;y(M),

such that the transport maps pY of (AY);e1, satisfy the following conditions:
(i) For everyi € I and (m,m’) € T;;(M), we have that \? =\ .
(i) If i =1 j =1 k, for every (m,n) € T;;(M) and (n,l) € T;p(M), the following diagram
commutes

Let Fam(I, M) be the totality of (I, M )-families of families of sets.
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For condition (i) above, we have that u;(m) =m’ = m =) m’ and for condition (ii),
from the hypotheses (m,n) € T;;(M) & pi;(m) = n and (n,l) € Tj(M) & pjp(n) =1 we
get (m,1) € Tip(M) & pix(m) =1, as p(m) = pjg(pi(m)) = 1. The main intuition behind
this defintion is that if i = j, then uo(i) =v, po(j), hence, if m € po(i) and n € po(j), there
is a transport map A, from Aj(m) to X (n). It is easy to see that if A € Fam(.J), then by
taking [ := 1 and M the constant family J over 1, then A can be viewed as an (1, M)-family
of families of sets.

Lemma 3.10.2. If (AY);c; € Fam(I, M), for its transport maps N9 the following hold:
(1) /\’#Lm = id)\é(m)'

NN Ji a1
(i) Ajn © Ay, = ld/\{)(n)'

(iii) If pij(m) = n, then )\mmj(m)

o )\’;)jmn

-\

niij(m)

%
mm

Ap(m) Ao(m)

ij y
)\muz‘j (m) J J)\nj’m

A (i (m)) —————— X (n).
npij(m)

; _ / J ] _\Y i
<W) Ifm o M then )\Hij(m)#ij(m') ° )\mﬂij(m) B /\m'#ij(m') ° )\mm'

)
mm/

Ap(m) Ao (m')

Am#ij (m) J{ J{Amlﬂij (m/)

X (g (m) = Xy (i ().

pig (m)pig(m’)

s k ik __\Jk ij
(v) Ifi=rj =1k, then )\Mik(m)wk(uij (m)) © )\mﬂik(m) - )\Mij(m)ujk(uij(m)) © )\muij (m)

ik
mug(m)

Ao(m)

MG (pik(m))
] ik
)\mﬂij (m) J JANik(m)Nﬂc(Nz‘j (m))

X (g (m)) —— N§ g (pig (m)).
pig (m)pgp (pij(m)

Proof. (i) By Definition [3.10.1| X = X! .= iy (m)- )
(i) By the composition-rule and case (i) we get A\inn © A = My, = id/\g (n)°

- ij N\Jjj i \j ij
(iii) By the composition-rule we get )\mﬂij (m) = Anuij (m) © M 1= /\nmj(m) o Nihn-
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(iv) By Definition [3.10.1{ we have that
J ij .\ ij
pij (m)pi (m?) © )\m#ij(m) T )\Nij(m)ﬂij(m/) ° )\mﬂij(m)
ij

mpi;(m')
_\ij i
- Am,,u‘ij (m/) ] )\mm/
e\ i
= At (me) © A
(v) I 1= pjio(pij(m)), then by case (iii) )\jﬁﬂik(m) - )\/Ijjk(uij(m))mk(m) © Aisfﬂjk(#ij(m))’ hence
k K 2 ik
Nt )t ) © M (m) = Mg m)pig sy () © Mg s () (m) © Mgy (m))
= [N mpag s () © Mg ()] © Ao
i gk (pij (M) = g (pig (m)) pak (m) mpgk (pig(m))
zAk N (e O AR
H‘]k(ﬂm(m))lqu(ﬂz](m)) mﬂjk(ﬂm(m))
_ )\Zk
mpjg (pij(m))
_\Jk ij O

g (m) i ) © Py (m):
Definition 3.10.3. If (A%);c; € Fam(I, M), and based on Definition its transport
family-maps <I>2Aj are the family-maps @g‘j: A?’M LN A?’M, defined by the rule

[@4] =AY . m e (i), (i,§) € D(I).

mpj(m)

The fact that \” . AOM B AOM

g ,(m) : is shown by the commutativity of the diagram in

case (iv) of Lemma In analogy to the transport maps \;; of an I-family of sets A, the

transport family-maps <I>A- witness the equality between the pg(7)-family of sets A M and the
. . 0.’

po(j)-family of sets AT

Definition 3.10.4. If (A");c; € Fam(I, M), its exterior union Y ,c; >

by

mepo(i) N (m) is defined

w e Z Z )\Z = E]iGIElmGuo(i)Elxe)\é(m) (w = (i, m, (E)),
i€l mepo (i)

(iamvx) :Ziel Cmeug (i) Ah(m) (jana y) = :Ij & IU’Z](m) o) M & )‘%n(x) :)\6(”) Y.

Remark 3.10.5. The equality on )y ;1>
lence relation.

me o) )\f)(m) satisfies the conditions of an equiva-

Proof. To show (i,m,z) = (i,m,z) & i =7 i & pyi(m) = m & \&_(x) = x, we use
Lemma (1) If (i,m,z) = (j,n,y) = i=j & wj(m)=n& Ao (z) =y, then j =i
and pj;(n) = m, and, using Lemma (ii), /\me(y) =\ ()\?m(:c)) =\i (1) =2z ie.,
(4,n,y) = (4,m,x). If (i,m,x2) = (j,n,y) and (j,n,zy = (k,l,2) & j =k & pjp(n) =
I & )\jk(y) = z, then i = k and pi(m) = pir(pi;(m)) = pp(n) = 1, and XK (z) =
)\flk( n(z)) = )\if(y) =z ie., (i,m,z) = (k,1,2). O
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Proposition 3.10.6. If (A%);c; € Fam(I, M), then ¥ := (09, 01) € Fam(I), where

= Y Am iel,

meEpo (i)
71(i.9) 1= oy ( S diim >ﬁ S M@y (.)€ D),
mepo(i) n€puo(j)
oij(m, ) = (pig(m) A2, (@) m € poli), @ € Aj(m).

Proof. First we show that the operation o;; is a function. We suppose that (m, x) S e () M)
mepg (e

(m/,2') & m =, m &\ (z) =i (m) T, and we show that

(s (), Xy ()

—rol

(Mz‘j(m)a)\%u”(m)( )) =5

neng()
15 (1) =000 155 (m) & X, Vs ) () =gy A%w(mw(xl)'
The first conjunct follows from m =, ) m/, and the second is Lemma [3.10.2(iv). Since
O-ii(ma .T) = (M“( )aA;ZzM”(m)( )) ( ’A%m( )) (m ld)\l(m)(x)) = (m,x),

we get o 1= i (m)- For the commutativity of the diagram

id
2imeng(i) X

Zmello (2) )‘6 (m>

Uiyl ik

2 nemo () Mo(m) o S iepo(e) A6 (1)

we have that by definition oy (m, z) := (pir(m), )\i’fbmk(m) (z)), and

i

ok (03 (m, @) = ok (i (M), A,y ()
- ) - Jk ij
- (“Jk(“ 300 X omm s m) o o (”")))

Hence, oi(m, z) =g, k) ik (gij(m, x)) & pin(m) =,ou Hjr(pij(m)) and

N ) s m)) P (m) () = A e s m)) P oy (7)) -

The first conjunct is immediate to show, and the second is exactly Lemma [3.10.2(v). O
Clearly, for the exterior union of (A%);c; we have that
DD IRUEES CES (D et
1€l mepo(i) el i€l “mepuo (i)

If (A%);e; and (M%), are (I, M)-families of families, a map from (A%);c; to (M?);c; is an
appropriate dependent function (U*);cr such that U’ is a family map from A* to M*, for every
1 € I. Before giving this definition we show a fact of independent interest.
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Proposition 3.10.7. Let (K%);c; := (K%M KM (AV);c; == (AYM ALM) € Fam(I, M),
and let i =g j.

(i) The operation ~;; : Map(KiO’M,A?’M) ~> Map(K?’M,Ag’M), defined by the rule W' —
J
n

[’yij(\Ifi)]j, is a function, where, for every n € po(j), the map [i; ()]’ : né(n) — Aé(n) is

defined by [Yi;(Y)]3, = A0 n © Vsum) © Kooy
; [y (U9, ;
Ko(n) Ao(n)
ji ij
Kn,uji(n) l I)\Mji(n)n
kb (pji(n)) —————— Xj(pji(n)).
e
pji(n)

(ii) The pair I' := (y9,71) € Fam(I), where yo(i) := Map(KZQ’M,A?’M), for every i € I, and
Y1(4,J) := "vij, for every (i,j) € D(I).

Proof. (i) First we show that ~;; is well-defined i.e., [fyij(\I/i)]j € Map(K7, A). If n,n’ € po(j),
we show that the following diagram commutes

Kf(n) ————— r)(n)

[y (¥9)]7,
Ny(n) — Ny().

By definition we have that [%J(\Iﬂ)]iu o /@Zm, = P‘Zi(n’)n’ o \I/Lji(n’) o /ﬁZZ‘,uji(n,)] o /<afm,. Since

Ul is in Map(K? M A?’M), by the commutativity of the following diagram

K]i
) pgi(n)pgi(n') )
K (pgi(n)) ——————— wh(pji(n’))

\I’sz‘(n) J J\I’Lﬁ(n’)

N 115(0) ————— Np(asa()),
wyi(n) pgs(n)

i

pji(n)pgs(n') — )\Lji(n)ﬂji(n/) oV

we get Pl ok and hence
NJ'L(” )

i
pji(n)’

i ji g i ji
\Il//«ji("/) © Rt pji(nr) = \Iluji(n’) ° (Hﬂjz‘(n)uji(”’) ° Hn/#jz‘(n))

_ 7 i 7t

T (\Pﬂji("/) © ﬁuﬂ(n)uﬁ(n/)) © Rt pji(n)
3 i i

= (Nmgsm’) © Ysam) © Bty
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[rylj(\lﬂ)]n’ © Kﬁm’ = [)\Ljﬂ(n’)n’ © (\I’L]l(n,) © Kfj’uﬁ(n/))] ° K‘im’

- [)\Ljﬂ'i(”')”/ ° ((Azji(")ﬂji(n’) © \I]Lji(n)) © Kizl’uji(n))] © ’{zm’

— (\Y i i ji j
T ()\Mz‘(n/)n’ ° )\Mji(n)ujz‘(n’)) oW im) © (Hn/wi(n) © K )
—\U i ji

o /\Mji(n)n’ ° \Ij#g‘i(n) © Foupji(n)

Y ij i ji
= A © ()‘uji(n)n ° \Il#ji(n) © ﬁnuji(”))

=N o [y (9]
If U = &, we show that [’Yij(\I/i)]j = [%‘j(q)i)}j' As

(g (W) 1= XY

pgi(nyn © \Iljﬁz( o, (n) & [%j(q)i)]j = 3 (n) © o,

5i(n) = npg n pyi(n)n = 7 i npji(n)’

and since U = &', we get \I'L (n) = (I)L“(n)’ and hence the following diagram commutes
71 J

A\ o Ul o K
wii(n)n pii(n) = Mnpgi(n) .
K (n) Ap(n)
7 J
Ky(n) —— ; p Ap(n)
17 ) J
)\uji(n)n © (I)uji(n) © Fnpsi(n)
(i) If m € po(d), then [yi(W)]5 = Ny © Chsim) © Fampsstm) = Aam © Uiy © Kl 1=

idyi (m) © Ui o i (i = Ui hence [y (V9]¢ == Wi and consequently ['y”(\Iﬂ)}l := U’ For
the commutativity of the diagram

Map (K, A7)

Map (K, AP) ————— map (1M, A3 )

we need to show the equality between the maps
k ._ yJjk B iN]J kj k ._ yik J ki
XU =N © [%J(‘I’Z)]ukjm B & U= A © Y © Bl (-

By the definition of [%J(\Iﬂ)]i we get

ki (1)

k. ik ij ; ji kj
X1 = N 01 s 1y O © L ) © By Wiy ) © Bl (1)
_ (\JE i i Ji kj
= (Mo 01 ° M s @1 ) © Vs ) © B s Gy (1) © gy 1))
- )\Hji(#kj(l))l °© \I’#ji(ﬂkj(l)) © ,{llf‘ji(#kj(l))'

By the supposed commutativity of the following diagram
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,{i
) i (D g (pae; (1) .

) — b (g (s (1))
‘I’Lml J‘I’me(m
Mo (ki (1)) - Ao (i (e (1))

s (D) g (pres (1))
k . \ik j ki
v = Aﬂki(l)l © \Illjum( D) © Flpri 1)
ik j ki
= A 00 © Naa s s 0) © Yia)) © Flpana

ik i i ki
)‘uﬂ(uk](l)) (‘Ilﬂji(ﬂkj(l)) © H.U'ki(l).“ji(llfkj(l))) © R (1)

At s s ) © B @ g ) © Kl )

_ ik 7 ki
)\un(uk](l)) ‘ljﬂ,ji(ﬂkj(l)) © Ry (g (1))
= Xz . O
Definition 3.10.8. If (K);cr, (A%)icr € Fam(I, M), a family of families-map from (K%);cs to
(A%)ier, in symbols W: (K%);er = (A%)cq, is a dependent operation W : Nier Map( ? ? )

such that for every (i,j) € D(I) the following diagram commutes

K
ij 0.M
KM K;

0,M 0,M

&7

where @g and <I>§\~ are the transport family-maps of (K%);er and (A%);cr, respectively, according

to Definition |3.10.5 If Z: (AY);er = (N%)ier, the composition Zo W: (KV);er = (NV)er is
defined, for everyi € I, by (Eo W) := Z¢ o U’

K
KOM i) % KOM
i J
g )
- i 0,M — i
(: o \11)2 A?’M (I)A ; Aj7 (: o \I/)J
ij
=1 =J
NPM :>N N
<I>ij

The identity family of families-map Id(ps,_, is defined by the rule [Id(Ai)iej]i :=1Id,om, for

every i € 1. The totality of family of families-maps from (K);cr to (A%);cr, and the canonical
equality on Fam(I, M) is defined in analogy to Definition .
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If U: (K%);e; = (AY);es, the commutativity of the diagram in Definition [3.10.8| is unfolded
as follows. If i =7 7 and m € (i), then

(W 00f] =[@fol] W . o[dK] =[eh] o,

piz(m)
. J ij N\ i
= \Ijﬂij(m) © Fompij(m) = )\mmj(m) oV,
i.e., the following diagram commutes
ij
K
i m/h]( )
Ko (m) "50(“@]( m))
i J
\IImJ J\IJM]' (m)

Aop(m) ——————— X (pi5(m)).

In analogy to Corollary we have the following.

Corollary 3.10.9. If (K')icr, (A")ier € Fam(I, M) and ¥: \;c; Map(KlQM,A?’M), the follow-
ing are equivalent:

(i) O: (KYier = (A)ier-

(ii) ¥ € [;c; Map (KM, AO M)

Proof. If 1 =1 j, the commutativity of the diagram in the definition of a family of families-map
W (K")er = (A%)ier is equivalent to the membership condition ¥ € [], ., Map (KZOM,A?’M)
using the above unfolding of the equality [\Ilj o @5 ]m = [@% o \I/Z]m O

Definition 3.10.10. The totality [[;c; Hmeuo )\0( m) of dependent functions over a family
of families of set (A");c; € Fam(I, M) is defined by

oc]] H Ap(m) = 01 A )\ Ao(m) & ¥ yenn) ¥ manyers; () (O =i () Man (O1n).
1€l mepo(i 1€l mepug(i
Tier Mimepg ) 2o (m) 0 vié[vaNO(i)(Gin =i (m) <I>:n)
The theory of families of families of sets over (I, M) within VI can be developed further
along the lines of the theory of families of sets over I within V.

3.11 Notes

Note 3.11.1. The concept of a family of sets indexed by a (discrete) set was asked to be
defined in [9], Exercise 2, p. 72, and the required definition, given by Richman, is included
n [19], Exercise 2, p. 78, where the discreteness hypothesis is omitted. The definition has a
strong type-theoretic flavour, although, Richman’s motivation had categorical origin, rather
than type-theoretic. In a personal communication regarding this definition, Richman referred
to the definition of a set-indexed family of objects of a category, given in [76], p. 18, as the
source of the definition attributed to him in [I9], p. 78. Given the categorical flavour of
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Bishop’s notion of a subset, it might be that Bishop was also thinking in categorical terms,

although Bishop, to our knowledge, neither used a purely categorical language to describe his

concepts, nor he used general category theory as a foundational framework for BISH.
Specifically, in [76] Richman presented a set I as a category with objects its elements and

Homil(ivj) = {x < {O} ’ i =7 ]}a
for every i,j € I. If we view Vg as a category with objects its elements and
Hom:VO(X,Y) = {(f,f’) FX,Y) X FY,X) | (f, f): X =y, Y},

for every X,Y € Vg, then an I-family of sets is a functor from the category I to the
category Vo. Notice that in the definitions of Hom—, (7, j) and of Hom.,, (X,Y) the properties
P(z):=i=rjand Q(f, f") == (f,f") : X =y, Y are extensional. In [95] we reformulated
Richman’s definition using the universe V of sets and the universe Vi of triplets (A, B, f),
where A, B € Vg and f: A — B. Definition [3.1.1] rests on the notion of dependent operation,
in order to be absolutely faithful to Bishop’s account of sets and functions in [9] and [19]. For
the definition of the concept of a family of sets in ZF, or CZF, see [82], p. 35, and Note m
The term “transport map” in Definition [3.1.1] is drawn from MLTT. Actually, Defini-
tion [3.1.1] is a “definitional form” of the type-theoretic transport i.e., the existence of the
transport map p.: P(x) — P(y), where p: x =4 y and P: A — U is a type-family over A: U
in the universe of types U. In MLTT the existence of p, follows from Martin-Lof’s J-rule, the
induction principle that accommodates the indentity type-family =4: A — A — U, for every
type A: U. In Definition [3.1.1] we describe in a proof-irrelevant way i.e., using only the fact
that ¢ =7 j and not referring to witnesses of this equality, a structure of transport maps. This
structure in BST is defined, and not generated from the equality type family of MLTT.

Note 3.11.2. In the categorical setting of Richman (see Note , a family map ¥ €
Map;(A, M) is a natural transformation from the functor A to the functor M. The fact
that the most fundamental concepts of category theory, that of a functor and of a natural
transformation, are formulated in a natural way in BST through the notion of a dependent
operation explains why category theory is so closely connected to BST. For more on the
connections between BST, dependent type theory and category theory see section (8.1

Note 3.11.3. The exterior union, is necessary to the definition of the infinite product of a
sequence of sets. In [19], p. 125, the following is noted:

Within the main body of this text, we have only defined the product of a family of
subsets of a given set. However, with the aid of Problem 2 of Chapter 3 we can
define the product of an arbitrary sequence of sets. Definition (1.7) then applies
to such a product?}

Note 3.11.4. If AN is the sequence of sets defined in Definition the definitional clauses
of the corresponding exterior union can be written as follows:

ZXn::{(n,m) lneN &z e X,},

neN

(n,x) T nen Xn (ma y) en=nmé&ux =X, Y-

3This is the definition of the countable product of metric spaces.
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Traditionally, the countable product of this sequence of sets is defined by

T X0 o= {0 N = XX [ oen (6l € X0) |,

neN neN

which is a rough writing of the following

I x. = {qs: N =) Xp | Vnen (pri(¢(n) =n n)}-

neN neN

In the second writing pr;(¢(n)) =N n implies that pr;(¢(n) := n, hence, if ¢(n) := (m,y),
then m = n and y € X,,. When the equality of I though, is not like that of N, we cannot
solve this problem in a satisfying way. Although Bishop did not consider products other than
countable ones, in more abstract areas of mathematics, like e.g., the general topology of Bishop
spaces, arbitrary products are considered (see [88]). One could have defined

e H)\o(i) = ®c F<I,Z)\o(i)> & Vier (pri(®(i)) :=1).

icl il
This approach has the problem that the property
Q(®) :& Vicr (pri(®(7)) := i)

is not necessarily extensional; let ® =r; 5., ra) © i€, Vier(®(i) =5, 2@ ©()), and
suppose that Q(®). If we fix some ¢ € I, and ®(i) := (i, ) and O(i) := (j,y), we only get that
j =1 i. The use of dependent operations allows us to define the right analogue to the []-type
of MLTT and being at the same time compatible with the use of dependent operations by
Bishop in [9], p. 65.

Note 3.11.5. A precise formulation of the definition in [19], p. 85, of the countable product
of a sequence (Xn, pn)n N of metric spaces, where p, is bounded by 1, for every n € N, is
the following. Let AN := (A}, AN) be the N-family of the sets (X,,)nen (see Definition .
Notice that the dependent operation )\'1\' is compatible to the corresponding metric structures
in the sense that each transport map AN :=idyx, is a morphism in any category of metric
spaces considered. This is an example of a spectrum of metric spaces over AN (see also
the introduction to section . The countable product metric ps on [],cn Xn, for every
®,0 € [],,en Xn, is defined by

ad Pn Qna@n
poo(®,0) 1= (2”)
n=0

Note 3.11.6. The equality ®; =y ;) Aij(®;) in Definition is the proof-irrelevant version
of dependent application of a dependent function in MLTT (see also Note |5.7.10)).

Note 3.11.7. As it is mentioned in [84], the axiom of choice is “freely used in Bishop
constructivism”. In Theorem |3.6.4] we show only the formal version of the type-theoretic
axiom choice within BST i.e., the the distributivity of [ over ). This term was suggested to
us by M. Maietti. In [95] a proof of this result is also given, where dependecy is formulated
with the help of the universe V of triplets (A, B, f) (see Note . As it was first noted to
us by E. Palmgren, this distributivity holds in every locally cartesian closed category. In [12§]
it is mentioned that this fact is attributed to Martin-Lof and his work [73]. For a proof see [2].
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Note 3.11.8. The notion of an I-set of sets is in accordance with Bishop’s predicative spirit,
and his need to avoid the treatment of the universe V as a set. This notion was not defined by
Bishop, only its “internal” version, the notion of an I-set of subsets, was defined similarly by
him in [9], p. 65. The use of the term “set of subsets” was a source of misreading of [9] from
the side of Myhill in [80] (see also Notes and [7.6.7). The definition of the set A¢/ is in the
spirit of the definition of the quotient group G/H of the group G by its normal subgroup H,
given in [76], p. 38. If I is equipped with the equality =%, then A does not become necessarily
an I-set of sets. The reason for this is that the transport maps of A are given beforehand,
and if we equip I with :? we need to add a transport map \;; for every pair (¢, j) for which
Xo(i) =v, Mo(j) and (i,75) ¢ D(I), where D(I) is understood here as the diagonal D(I,=y)
with respect to the equality =;. So, A1 has to be extended, and define a new family of sets
over (I,=%), which is going to be an (I,=%)-set of sets.

Note 3.11.9. A direct family of sets is a useful variation of the notion of a set-indexed family
of sets (see Chapter @ A directed set (I, <) can also be seen as a category with objects the
elements of I, and Hom, (¢, j) := {x € {0} | i <7 j}. If the universe Vj is seen as a category
with objects its elements and Homy,, (X,Y) := F(X,Y), an (I, <r)-family of sets is a functor
from the category (I, <r) to this new category Vp.

Note 3.11.10. A generalisation of the notion of a direct family of sets is that of a preorder
family of sets. If (I, <) is a preorder (see Definition , a covariant preorder family of
sets over (I,=<r) is defined as a direct family of sets. One needs though the property of a
directed set to define an interesting equality on the exterior union of the corresponding family.
A contravariant preorder family of sets over (I,<y), or an (I, =r)-family of sets, is a pair
M7 := (uo, u7), where if (j,i) € D7(I), the transport maps 7 (j,4): po(4) — po(i) behave in
a dual way i.e., for every i, j,k € I with k >=7 j =7 i, the following diagram commutes

po(i)

= >
“”I \<

po(J) — po(k).
Nﬁg

If (I,<) is an inverse-directed set (see Definition [9.2.1) and M~ is an (I, }=s)-contravariant
direct family of sets, defined in the obvious way, the inverse-direct sum > 7, po(i) of M7 is
the totality >, ; to(), equipped with the equality

(4, ) :Z?eIHO(i) (J,y) == Elke[(i Frk&jErk& IU’Z{;(‘/E) ~po(k) ,U«?k(y))

The set er 7 to(%) is defined in the expected way. Thinking classically, a topology 1" of open
sets on a set X, equipped with the subset order C, is an inverse-directed set, and the notion
of a presheaf of sets on (X, T) is an example of a (T, D)-contravariant direct family of sets.
In the language of presheaves (see [65], p. 72) the transport maps MZ’ are called restriction
maps, and a family-map ®: A7 = M7 is called a morphism of presheaves. It is natural to use
also the term extension map for the transport map )\fj of a covariant (direct) preorder family
of sets. The notion of a family of sets over a partial order is also used in the definition of a
Kripke model for intuitionistic predicate logic. For that see [125], p. 85, where the transport
maps )\fj are called there transition functions.
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Note 3.11.11. If a set-relevant family-map ¥: A* = M* was defined by the stronger condition:
for every (i,5) € D(I), every p € }(i, ) and every q € €5(i, j) the diagram in Definition m
commutes, then the expected fact idp«: A* = A* implies that \j; = A, for every p, ¢ € (i, 7).
This property is called proof-irrelevance in Definition [5.3.4

Note 3.11.12. The theory of families of families of sets over (I, M) within V™ is the third
rung of the ladder of set-like objects in V%)m. The first three rungs can be described as follows:

X,Y €V, X oY,

A M eFam(I), U:A= M Te][F(h)pm),
el
(KYier, (A)ier € Fam(I, M), W: (K')ie; = (A)ies & ¥ € [ [ Map (K, APY).
el

This hierarchy of universes and families can be extended further, if necessary.

Note 3.11.13 (Small categories within BST). As it is mentioned in the introduction to
Chapter 9 of [124], where category theory is developed within HoTT, categories do not fit
well with set-based mathematics. Quit earlier, see e.g, in [61], it is mentioned that “type
theory is adequate to represent faithfully categorical reasoning”. In [61] the objects are
modelled as types and the Hom-sets as Hom-setoids of arrows, within the Calculus of Inductive
Constructions. In [87] there are elements of such a development of category theory within
type theory, where both the algebraic and the hom-definition are given. In [86] are included
interesting remarks on the formulation of category theory in [124]. For relations between
category theory and Explicit Mathematics see [64]. In this note we briefly explain why small
categories fit well with BST.

As we have already explained in Note Richman used the notion of a functor to
define the fundamental notion of a set-indexed family of sets, as a special case of a set-indexed
family of objects in some category C. Here we do the opposite. The notion of a set-indexed
family of sets is fundamental and comes first. We use the basic theory of set-indexed families of
sets to describe the basic notions of category theory within BST. In what follows we consider
the objects of a category to be a set, although that could also be a class. The totality of
arrows is always a set i.e., we could study locally small categories, but here we only present
small categories. A set is not necessarily in the homotopy sense of the book-HoTT (see the
corresponding notion of a strict category in [124], section 9.6). At this point we do not equip
Ob¢ with equality with evidence (EwE) that makes possible the formulation of precategory
and category in the sense of the book-HoTT (see section . For a general discussion on the
relations between categories and sets in BST see section (8.1

Definition 3.11.14. A (small) category is a structure C := (Obc,morg,morf,Compc,IdC),
where Ob¢ is a set, (morS, mor(f) € Fam(Ob¢ x Obg),

Comp® : A F(morg(y, z) X morg(x,y),morg(a;,z)),
z,y,2€0Db¢

Compgyz := Comp®(z,y, 2) : morg(y,z) Xmorg(az,y) — morg(a:, z), Compgyz(gf),w) = ¢or),

1d° : A mor§ (z,z), 1d$:=1d%(x); € Obg,
x€O0b¢
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such that the following conditions are satisfied:

(Caty) For every x,y,z,w € Obe, x € mor§(z,w), ¢ € mor§(y,2), ¥ € mor§(z,y),
x 0 (¢ 0) := Compg, (x, CompG,. (¢, 1))
= or€ () COMPG, (Compy,, (X, 9), 1))
= (xo¢)o.
(Catg) For every x,y € Obe, and for every 1 € mor§(z,y),
Id§ o ¢ := Comp§,, (1d7,¢)) =y, ¥ & $oldS = Compl,, (,1d5,¢) =, (.., ¥-

(Cats) For every x,y, z,2',y, 2" € Obe, with x =, ©', y =ov, ¥ and z =on, 2, for every ¥ €
mor§(z,y), ¢ € morf(y, z), morfx’z)(x,’z,)(qb o) ot (2,2 mor(cy,z)(y/,z/)(gb) © morfx,y)(ﬂﬁ/,y')(@b)

C
(=)= (B) @ OTC 1y iy (V)

morfx&) (m/’zl) ((}SO’IZ))

(Idg) :mor(oj (I/ 7I/) Idg/

(Caty) For every x,z' € Obe, with x =oy, @', Inor?m’x)(z,’x/)

Id,

, MOr (g 2 (! ') (Idx) ,
X xX .

~_

Id,s

The last two conditions, which reflect a functorial behaviour of the transport maps of
morf and are not found in the standard definition of a category, are necessary compatibility
conditions between these transport maps and the (Compc, Idc)—structure of the category C.
While in intensional MLTT these conditions follow from the transport, hence the J-rule, here
we need to include them in our definition.

As a characteristic example of a category in the above sense, we consider the constructive
analogue to the category of posets. Classically, the category of posets has objects the collection
of all posets and arrows the monotone functions. In order to formulate this constructively, we
need to generalise Definition to categories with objects an abstract totality Obe. In
Definition [3.11.15| we define the category generated by a spectrum of posets. We can define
similarly the category generated by a spectrum of groups, rings, modules etc. (for the notion
of an S-spectrum, where S is a structure on a set X, see the introduction to section .



82 CHAPTER 3. FAMILIES OF SETS

Definition 3.11.15. A spectrum of posets over a set I is an I-family of sets A := ()\0, )\1) such
that (Ao(2), <;) is a poset for every i € I, and for every (i,j) € D(I) the transport map \;j :
Ao(i) = Ao(j) is a monotone function. If F™ (Xo(i), Ao(j)) is the set of monotone functions
from Xo(i) to No(j), the category Cp generated by the I-spectrum A is the structure Cp =
(ObCA,morgA,morfA,CompCA,Ich), where ObA = X\oI, and InorO = an()\o( ), Mo (J ))
If i =74 and j =51 7', and since the composition of monotone functions is monotone, let
mor(A o s F™ (M), Ao(4)) = F™ (Mo(#), No(s")) , defined by

frmor(hy o (f)y mor( o () = Ao fo i f € F™(Xo(i), X (1)),

Moli) —— (i)
)\MI J)‘jj’
Do) ———— Xo(7).

Ca
mor i ijn
The dependent operations 1d%s ()\o(i)) = Idy, () and Comp® are defined as expected.

Next we only show (Cats) and (Caty) for Cp. If i =7 ¢/, f =; j' and k =1 K/, we have that

mor?ﬁi)(k%,)(qﬁ) o morf 6 k;’)(d)) = ()\ii’ ogo Ak’k) o ()\kk’ oo )\j’j)
= )‘ii’ O ¢ O ()‘k"k O )‘k‘k’) O 1/} (@] )\]/‘7
= Ajir © (¢> Y) o Ajrj
= mOl“(” (@ o ¥,

morC.A.)(Z.,’Z.,) (IdcA (Ao(d))) == morfZ @) (Idxg(5)) := i oIdy 5y 0 Airg = Ldy () == IdCA (Mo(4))-

(4,2
Definition 3.11.16. A functor F : C — D from C = (Obc,morg,morl,COmp Idc) to
D .= (Obp,moré),mor?, CompD,IdD) is a pair F := (Fy, F1), where Fy : Obe — Obp and

Fi: \ F(morf(z,y), morg (Fo(x), Fo(y))),
z,y€0b¢

F:vy = Fl(fl?’y) : mOfg(%y) — morOD(F0($)7F0(y))>

such that the following conditions are satisfied:

(Funct) For every x,y,z € Obe, and for every ¢ € mor§(x,y), ¢ € mor§(y,z) we have that
Fzz(Qb © ¢) T mor® (Fy(a),Fo(2)) Fyz(¢) © me(¢)

(Functy) For every x € Obe we have that Fyy (Idc) :moro (Fo(2),Fo (=) Id?o( )

(Functy) For every z,y,x',y" € Obe, such that © =y, @' and y =on, ', hence (x,y) = (z',y’)
and (Fo(z), Fo(y)) = (Fo(2'), Fo(y')), the following diagram commutes
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C
MOT, 0
morg(x,y) () morg(:c’,y’)
Fl’yl JFx/y/
mord (Fy(z), Fo(y)) mory (Fo(z'), Fo(y')).

D
(B, Fo ) (Fol@), Fow))

The last condition, which is not found in the standard definition of a functor, is a compati-
bility condition between the Fi-part of a functor F' : C — D, the transport maps morf of C and
the transport maps mor? of D. As an example of a standard categorical construction in this
framework, we formulate the notion of slice category. If C := (Obc, morg, morf, Comp©, Idc)
is a category and x € Obg, then A® := ()\3, )\’f) € Fam(Ob¢), where

A§ 1 Obe ~ Vo,  Aj(y) := morg(y,x); y € Obg,
i A Flmorg(y.a)morf(.o)
(y,4")€D(Obc)
Ny = Ay, 1) = morfy@)(y,’x) - mor§ (y, z) — mor§(y, z);  (y,) € (Obge).
Then we can prove the following fact.

Proposition 3.11.17. Let C := (Obc,moro,morl,Comp Id ) be a category and x,z € Obg.
Let the structure C/x = (Obc/x,morg/ morl/ Comp®/*, Idc/x), where

ObC/x = Z )\g(y) = Z morg(y,x),

y€O0Dbe¢ y€Obe

morg/*((y, f). (2,9)) == {h € mor§(y,2) | go h = f}.
If (y, f) =0be (', f) and (z,9) =0be (2, 4"), the function

Or(é(;f),(z,g)),((ycff),(z',g')):morg (4. ). (.9)) = mory” (/. /), (/. 9)),

h— morfyyz)(y/@,/) (h>7 h e mor(oj/z((ya f)’ (Za g))a

s well-defined. If Compc/m is defined in the expected compositional way, and ifIdC/x((y, f)) =

1d€(y), for every (y, f) € Obg/, then C/x is a category. Moreover, if h € mor§ (, 2), then
H := (Hy,H1): C/x — C/z, where

Hos (3 worf) -+ (3 morfo.s)).

y€ODb¢ y€Ob¢

(W, f) = (who ) (y,f)e > morf(y,x),

y€Obe
Hy: A F<m0rg/x((y,f)(y',f')) morg/ ((y.ho f), (Y ho f’)))7
(v, )y, f")eC/x
Hy gy, py: morg’* (0 £ (W5 ) = morg ((y, ho ), (' o f1)),
g9 gemorg (v, Y, f))-
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Chapter 4

Families of subsets

We develop the basic theory of set-indexed families of subsets and of the corresponding
family-maps between them. In contrast to set-indexed families of sets, the properties of which
are determined “externally” through their transport maps, the properties of a set-indexed
family A(X) of subsets of a given set X are determined “internally” through the embeddings
of the subsets of A(X) to X. The interior union of A(X) is the internal analogue to the > -set
of a set-indexed family of sets A, and the intersection of A(X) is the internal analogue to the
[ [-set of A. Families of sets over products, sets of subsets, and direct families of subsets are
the internal analogue to the corresponding notions for families of sets. Set-indexed families
of partial functions and set-indexed families of complemented subsets, together with their
corresponding family-maps, are studied.

4.1 Set-indexed families of subsets

Roughly speaking, a family of subsets of a set X indexed by some set I is an assignment
routine \g : I ~» P(X) that behaves like a function i.e., if i = j, then \o(i) =p(x) Ao(j). The
following definition is a formulation of this rough description that reveals the witnesses of the
equality Ao(i) =p(x) Ao(j). This is done “internally”, through the embeddings of the subsets
into X. The equality \o(i) =v, Ao(j), which in the previous chapter is defined “externally”
through the transport maps, follows, and a family of subsets is also a family of sets.

Definition 4.1.1. Let X and I be sets. A family of subsets of X indexed by I, or an I-family
of subsets of X, is a triplet A(X) := (Mo, EX, A1), where Ao : I ~ Vo,

X \F(o(i), X), &%) =&Y el
el

Ao A Fo@)200), MG g) = Ags (6,5) € D),
(i.j)eD(I)
such that the following conditions hold:
(a) For everyi € I, the function £¥ : \o(i) — X is an embedding.
(b) For every i € I, we have that \i; := idyy(;)-
(c) For every (i,7) € D(I) we have that &X = SJ-X o \ij and EJ-X =E&X o\

)
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/\ij
/\
Ao(7) Ao ()
~_ -
X i ex

i J

X.

EX is a modulus of embeddings for \g, and A1 a modulus of transport maps for \g. Let
A := (Ao, A1) be the I-family of sets that corresponds to A(X). If (A,ia) € P(X), the constant
I-family of subsets A is the pair CA(X) := (A, EXA AL, where \o(i) := A, &; A= ia, and
(i, 7) :=1da, for every i € I and (i,5) € D(I) (see the left diagram in Definition |4.1.5).

Proposition 4.1.2. Let X and I be sets, g : I ~ Vo, X a modulus of embeddings for Ao,
and A1 a modulus of transport maps for Ag. The following are equivalent.

(1) A(X) := (Mo, EX, \1) is an I-family of subsets of X.

(ii) A := (Ao, \1) € Fam(I) and EX: A = CX, where CX is the constant I-family X.

Proof. (i)=(ii) First we show that A € Fam(I). If i =; j = k, then &F o (A\jx 0 \ij) =
(EF o Njk) o Xij = &F o Xy = & and EF o Ay, = &

ik

Ao(1) W Ao(j) e Ao(k)
i ik

hence 5,5( o (Ajk o Aij) = 5,5( o \jk, and since Slg( is an embedding, we get A\ji o Aij = A\ If
EX: A = C¥X, the following squares are commutative

Aij o Aji
Ao(i) — Ao(4) Ao(j) — Ao(4)
-
X—X X—X
ldX ldX
o(i) 1 Xo() M) " Xo(i)
BN g\, B
X X

if and only if the above triangles are commutative. The implication (ii)=(i) follows immediately
from the equivalence between the commutativity of the above pairs of diagrams. O
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Definition 4.1.3. Let X be a set and (A, ), (B,ix) C X. The triplet A2(X) := (\3,E%,)?),
where A? 1= AZ,)\f is the 2-family of A, B, SGX = iif, and SlX = ig

A‘—>A B‘—>B

AN e

is the 2-family of subsets A and B of X. The n-family A"(X) of the subsets (A1,11), ..., (An,in)
of X, and the N-family of subsets (A, in)nen of X are defined similarly.

Definition 4.1.4. If A(X) := (Mo, EX, M\1), M(X) := (po, 2%, 1) and N(X) = (19, HX,v1)
are I-families of subsets of X, a family of subsets-map V: A(X) = ( ) from A(X) to
M(X) is a dependent operation W : \;c; F(Ao(i), no(i)), where (i) := U;, for every i € I,
such that, for every i € I, the following diagram commute

The totality Map;(A(X), M (X)) of family of subsets-maps from A(X) to M(X) is equipped
with the pointwise equality. If ¥: A(X) = M(X) and Z: M(X) = N( ), the composition
family of subsets-map Zo V: A(X) = N(X) is defined by (Eo ¥)(i) :==Z; 0o U,

for every i € I. The identity family of subsets-map Idp(x): A(X) = A(X) and the equality on
the totality Fam(I, X) of I-families of subsets of X are defined as in Definition .

We see no obvious reason, like the one for Fam(I), not to consider Fam(/, X) to be a set. In
the case of Fam([) the constant I-family Fam(/) would be in Fam([/), while the constant /-family
Fam(/, X) is not clear how could be seen as a family of subsets of X. If 1(i) := Fam(/, X),
for every i € I, we need to define a modulus of embeddings /\/'Z-X: Fam(/,X) — X, for
every ¢ € I. From the given data one could define the assignment routine MX by the rule
NX(A(X)) := &X(w), if it is known that u; € Ag(i). Even in that case, the assignment
routine ./\/'Z-X cannot be shown to satisfy the expected properties. Clearly, if MX was defined
by the rule N7¥ (A(X)) := 2o € X, then it cannot be an embedding.

!Trivially, for every i € I the map W;: A\o(i) — po(i) is an embedding.
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Definition 4.1.5. If A(X)M(X) € Fan(I, X), let
A(X) < M(X) : Tpemap, (a(x),m(x)) (@1 AX) = M(X)),

If @ € Map,(A(CX), M(X)), ¥ € Map,(M(X),A(X)),® € Map,(M(X), N(X)) and ¥'
Map;(N(X), M (X)), let the following set and operations

PrfEqly(A(X), M (X)) := Map (A(X), M(X)) x Map; (M (X), A(X)),
refl(A) := (Ida,,Iday) & (@,0)7 1= (T, ®) & (@,T)x* (P, V) := (9 0d, Vo).

Proposition 4.1.6. Let A(X) := (A, EX, A1), M(X) := (uo, 2%, 1) € Fam(I, X).
(i) If O: A(X) = M(X), then U: A = M.
(ii) If\Ifi A(X) = M(X) and P A(X) = M(X), then ® Map, (A(X),M (X)) v,

Proof. (i) By the commutativity of the following inner diagrams

PG p— o)
) y{ A
Aij X Hij
M) g (i),

J
we get the required commutativity of the above outer diagram. If x € Ag(7), then
(2 0 T;)(Nij(2)) = & (Nij(2)) = &X () = (2% 0 Wi)(z) = Z5 (1 (Vi(2))).

Since ZJX (\Ifj()\”(:c))) == ZJX (,u”(‘lfz(x))), we get \I/J()\U(a:) = ,u”(\I/Z(IE))
(ii) Ifi e I, then U, )\0(2) - ,u,()(i), D;: /\o(l) - Mo(i)

hence by Proposition we get Wi =F(xo(3),u0(i)) Pi- O

Because of Proposition [4.1.6[ii) all the elements of PrfEqly(A(X), M (X)) are equal to
each other, hence the groupoid- properties (i)-(iv) for PrfEql,(A(X), M (X)) hold trivially.
Of course, A(X) =pan(r,x) M(X) = A(X) < M(X) & M(X) < A(X). The characterisation
of a family of subsets given in Proposition together with the operations on family-maps
help us define new families of subsets from given ones.
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Proposition 4.1.7. If A(X) := (M, EX, A1) € Fam(I,X) and M(Y) := (uo, Y, 1) €
Fam(I,Y), then

(Ax M)(X xY):=AX)x M(Y):= (Ao X po, EX x EY, A\, 1) € Fam(I, X x Y),
where the I-family A x M := (Ao X p10, A1 X 1) is defined in Definition[3.1.6] and the family-map
EX X EY A x M = CX x CY is defined in Proposition|3.1.4(ii).

Proof. By Proposition(ii) EXXEY : AXM = CXxCY, where (EX xEY); : Xo(i) X po (i) —
X x Y is defined by the rule (u,w) — (EX(u),EY (w)), for every (u,w) € Xo(i) X po(i). By
Propositionthis is a well-defined subset of X x Y. By Proposition (1) EXXEY: Ax
M = CX*Y and we use Proposition m ]

The operations on subsets induce operations on families of subsets.

Proposition 4.1.8. Let A(X) := (Ao, X, \1) and M(X) := (uo, 2%, 1) € Fam(I, X).

i) (AN MX) :== (N N po, X N ZX A N py) € Fam(I,X), where Mg N po: I ~ Vg is
defined by (Ao N po)(2) := Xo(i) N po(2), for every i € I, and the dependent operations
EX N 2% Nier F(Ro(d) N o), X), M0pns N jyepay F(Ro(@) N po(@), do(5) N po(5)) are
defined by

X X X . .
(g nz )@ = U (i)Npo (i)’ 1€ 1,

[()\1 N ul)l(i,j)] (u,w) := ()\1 N ul)ij(u, w) = ()\ij(u),uij(w)); (u,w) € No(2) N po(7).

(i) (AU M)(X) := (Mo U o, EX U ZX N\ U ) € Fam(I, X), where Ao U pg: I ~ Vg is
defined by (Ao U po)(i) := Xo(i) U po(2), for every i € I, and the dependent operations
EXUZY: Nier F(AMo(@) U po(i), X), Ay U pr: A jepn F(Xo(@) U po(i), Ao(j) U po(4)) are
defined by

X(z z 7
(SX UZX)i(Z) = { &X((Z)) : i i 23%2;7 ;1 e, z€ M(1) Upg(d)

Mi(2) 2 € Aoli) . . .
M Up)ii(2) = J L 1,7) € D(I), z € \o(2) U (7).
(rUms(e) = { 35 ZEME (i) € D). € (i) Ul
Proof. (i) By Definition we have that

No(6) N 110(d) = {(u,w) € Mo(8) x po(6) | EX () =x ZX (W)}, i oy (s ) 1= EX (),

Mo (7) Npo(5) = (s w') € Xo() x mo(4) | & (W) =x ZF (W)}, i (o) (& w') = EF ().
Since ng (Mij(w) =x X (v) =x ZX(w) =x ZJX (pij(w)), we get (Ar N ,ul)ij(uu w) € Ao(j) N

to(j). Clearly, ()\1 N ,ul)ij is a function. The commutativity of the following left inner diagrams

(AN )i (A1 U 1)

~ T~ T~

Ao (@) M po(7) Ao(7) M po(J) Ao(#) U po(7) Ao (i) U po(7)
\/ \_/

AN i X X AU i X X
(eXnzX) \ W nmii /(eXnzX), (eXuzn)\ MYmli AexuzY)
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follows by the equalities (€% N XX)j(()\l N )ij(u,w)) = ii(o(i)ﬂuo(i) (Nij (), pij(w)) =
EJX(A”(U)) =x & (u) = (€5 N XX)i(u, w).

(ii) First we show that (A1 Up1);5 is a function. The more interesting case is z € Ao(4), w € (i)
and SZ-X(Z) =x ZiX(w). Hence SjX (/\”(u)) =x=x ZJX (uij(w)), and Aij(2) =x, o) Mij(w).
The commutativity of the above right inner diagrams is straightforward to show. O
Proposition 4.1.9. Let A(X) := (M, EX,\1) € Fan(I, X) and M(Y) := (po,EY, 1) €
Fam(J,Y). If f: X = Y, let [f(M)](Y) := (f(Mo), F(EX)Y, f(M)), where the non-dependent
assignment routine f(Xo): I ~ Vo, and the dependent operations f(EX)Y : \.c; F(f(Ao)(i),Y)
and f(M): Ng.inep) F(f(X0) (@), f(Xo)(@)) are defined by

EX f
Ao(i) X Y
\/
1

[FQ0I@) == F(Mo(D) :== (No(D), fi),  fI i=Ffo&'; i€l
FE @) =11, fO)wr == Xws i€, (i,i') € D(I).

We call [f(A)](Y) the image of A under f. The pre-image of M under f is the triplet
FHODNX) == (f (o), F7HEY)X, F~ (1)), where the non-dependent assignment rou-
tine f~1(uo): J ~ Vo, and the dependent operations f~(Y)X: Njes F(f~*(u0)(j), X) and

7 m): (j,j")eD ()F(f Hpo)(3), £~ (ko) (7 )) are defined by
[ (o)l () = f (o () == {(z,y) € X x po(G) | f(x) =y € ()}; e
e [T o(j) = X ejlwy) =2 xz€X, ycpli), je
FHENYG) =eis e,
SN ) g5 PN o)) = 7 o) (5 N )i (=) = (i) (4,47) € D(J).
Then [f(A)](Y) € Fan(I,Y) and [f~1(M)](X) € Fam(J, X).

Proof. It suffices to show the commutativity of the following diagrams

it F7H )
Ao(2) Ao (i) - ‘ FH (ko) (3")
~_ 2
e\ " e
y ol x

For the left, we use the supposed commutativity of the two diagrams without the arrow f: X —
Y. For the above right outer diagram we have that [f~1(EV)X](5)(f 1 (m)jj (z,y)) =

[FHEDNT ]G @, g () = ejel(, pjje(y)) = 2 2= ej(x,y) == [f7H(EY)¥](§)(2,y). For the

commutativity of the above right inner diagram we proceed similarly. O

The operations on families of subsets generate operations on family of subsets-maps.
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Proposition 4.1.10. Let A(X), K(X), M(X),N(X) € Fan(/, X), P(Y),Q(Y) € Fan(J,Y),
and f: X =Y. Let also ®: A(X) = K(X), V: M(X) = N(X), and Z: P(Y) = Q(Y).
(i) enNnT: (ANM)(X)= (KNN)(X), where, for every i € I and (u,w) € \o(3) N po(i),

((I) N \I’)l )\0(2) N ,uo(i) — k‘o(l) N I/o(i), ((I) N \Il)l(u, w) = (<I>Z-(u), \I/l(w))
(i) PUT: (AUM)(X) = (KUN)(X), where, for every i € I,
((I) @) ‘11)1 )\0(1) U ,uo(i) — ko(z) U l/o(i),

_ ] Pi(z) ,z€ ()
(QUT)(2) = { Ui(z) ,ze M?)(i)

(i) ®xZ: (Ax P)(X xY) = (K xQ)(X xY), where, for cveryi € I and (u,w) € Ao(i) x po(i),
(® x )iz Ao(i) X po(i) = ko(i) X qo(i), (@ X E)i(u, w) := (Pi(u), Zs(w)).
(iv) f(®): [f(M)](Y) = [f(K)|(Y), where, for every i € I and u € f(Ao(7)),
[F(@)]i f(Ro(i) = fRo(D)),  [F(®)]s(w) = Ps(uw).
(v) fHE): [FHPIX) = [fHQI(X), where, for every j € J and (z,y) € [~ (po(5)),
FHEN: T o) = fHao(), T E)(ay) = (2,E5(y)).-
Proof. 1t is straightforward to show that all family of subsets-maps above are well-defined. [

Definition 4.1.11. Let A(X) := (X\g,EX, A1) € Fam(I, X) and h: J — I. The triplet A(X) o
h:= (Xoh,EXoh, A\ oh), where Aoh := (\goh, A1 oh) is the h-subfamily of A, and the
dependent operation EX o h: AjeJ F()\o(h(j)),X) is defined by (EX oh); := Sﬁj), for every
j € J, is called the h-subfamily of A(X). If J := N, we call A(X) o h the h-subsequence of
A(X).

It is immediate to show that A(X)oh € Fam(J, X), and if A(X)oh € Set(J, X), then h is
an embedding. All notions and results of section on subfamilies of families of sets extend
naturally to subfamilies of families of subsets.

4.2 The interior union of a family of subsets

Definition 4.2.1. Let A(X) := (Mo, EX, A1) be an I-family of subsets of X. The interior
union, or simply the union of A(X) is the totality Y, ; Mo(i), which we denote in this case

by Uier Ao(i). Let the non-dependent assignment routine eG(X): Uier Ao(i) ~» X defined by
(i,2) — & (), for every (i,z) € ;s Ao(i), and let

(Z,iL') “Usier 2o <jay) = eS(X)(va) =X eG(X)(.j? y) = SZX<$) =X SJX(y>

If #x is an inequality on X, let (i,7) #y,c; 00 (J,Y) & EX(z) #£x SjX(y). The family A(X)
is called a covering of X, or A(X) covers X, if

L 2o(@) =px) X
el
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If #1 is an inequality on I, and #x an inequality on X, we say that A(X) is a family of
disjoint subsets of X (with respect to #r1), if

Vijer (i #1 5 = Xo(D)][Mo(4)),

where by Deﬁmtzon Mo (D)]TAo(F) =& Vuero() Ywero() (& (w) #x EX( ). A(X) is called
a partition of X, if it covers X and it is a family of dw]omt subsets ofX

Clearly, =(;,_, . is an equality on (J;c; Ao(7), which is considered to be a set, and the
operation eG(X) is an embedding of | J;; Ao(¢) into X, hence (J;c; Ao(), A(X)) C X. The in-
equality #;,_, ,(:) 1 the canonical inequality of the subset (J;c; Ao(i) of X (see Corollary [2.6.3).
Hence, if (X, =x,#x) is discrete, then (UlGI A0(%)s =User 20 FUser 2ol ) is discrete, and if
#x is tight, then =, _, \ () is tight. As the following left diagram commutes, A(X) covers X,
if and only of the following right diagram commutes i.e., if and only if X C (J;c; Ao(4)

MX)
U g

zEI ze]
N / AN /

If (4,2) =y,c; 50 (J,¥), it is not necessary that ¢ =; j, hence it is not necessary that
(1,%) =x,c; 50 (J,y) (as we show in the next proposition, the converse implication holds).
Consequently, the first projection operation prf(X) := pr’, where A is the I-family of sets
induced by A(X), is not necessarily a function! The second projection map on A(X) is
defined by pr;\(X) := pry. Notice that #j,_, »,) is an inequality on (J;c; Ao(i), without
supposing nelther an inequality on I, nor an inequality on the sets A\g(i)’s, as we did in
Proposition ( i). Moreover, #,_, is tight, if #x is tight. Cases (ii) and (iii) of the next
proposition are due to M. Zeuner.

Proposition 4.2.2. Let A(X) := (Ao, EX, A1) € Fam(7, X).
(1) If (Z7x) TXier M) (-]7y)7 then (2? .’E) “User 2o (.77 y)
(i) 1 )™t Sieq Moli) ~ X is an embedding, (Yie; 20(0),€)™) =p(x) (User do(i),ep™).

(iii) If #5 is a tight inequality on X, and A(X) is a family of disjoint subsets of X with respect
to #j, then eG(X): Y icr Ao(i) — X.

Proof. (i) If i = j, and since ng is a function, we get & (z) = EJX()\Z](CC)) = SJX(y)

(ii) Let &X () =x EJX(y) & (i,7) =5, 20 (J,y). We define the operations idy: D,y Ao(i) ~
Uier Ao(4) and ida: ey Ao(@) ~ > 2;cr Ao(i), both defined by the identity map-rule. That idy

is a function, follows from (i). That ids is a function, follows from the hypothesis on eS(X).

(iii) We suppose that eA(X)(z r) = &Y (2) =x EJX(y) = eG(X)(j,y) and we show that
(4,7) =s,c; 20 (J,y)- The converse implication follows from (i). If =(i #; j), then Ao(#)[[Mo(J),
hence &X (z) #£x Ef((y), which contradicts our hypothesis. By the tightness of #; we get i =7 7,
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and it remains to show that A\;;(x) =,,¢;) y- By the equalities EJ‘X (Nij(2) =x & (y) =x EjX(y),
and as SJ-X is an embedding, we get \i;(x) =\, ¥- O

Remark 4.2.3. Let ig € I, (A,i%) C X, and CA(X) = (N, EAX,\) € Fam(I, X) the
constant family A of subsets of X. Then

iel iel
e SN eAX N pAX N X\ X —
Proof. By definition (i,a) =y,., 4 (7,0) & &7 (a) =x €77 (b) = iy (a) =x @4 (b) & a=4b.
Let the operation ¢: (J;c; A ~ A, defined by ¢(i,a) := a, for every (i,a) € [J;c; A, and let

the operation 6: A ~ J,c; A, defined by 0(a) := (io, a), for every a € A. Clearly, ¢ and ¢
are functions. The required equality of these subsets follows from the following equalities:

. cA . . cA . .

zf(a) =x € (X)(z,a) = SZ-A’X(a) = zf(a), and e (X)(zo,a) = Ei’g’X(a) = 11)4((0,). ]
The interior union of a family of subsets generalises the union of two subsets.

Proposition 4.2.4. If A%(X) is the 2-family of subsets A, B of X, Uico A3 (3) =px) AUB.

Proof. The operation g: |J;cp A3(i) ~ AU B, defined by g(i,z) := pry(i,z) := z, for every

(i,2) € Ujer A3(i), is well-defined, and it is an embedding, since g(i,z) =aup 9(j,vy) =

T =AUB Y & zif(ac) =x iX(y) = (i, 7) =Uiez Mo() (4,y). The operation f : AUB ~ ;e )\g(i),

defined by f(z) :=(0,2), if z € A, and f(2) := (1, 2), if z € B, is easily seen to be a function.
For the commutativity of the following inner diagrams

AUB Uie2 X3(2)

iX
AUB €y

2
we use the equalities i 5(g(i,2)) := iX g(z) =% (z) == eﬁ (X)(z',:v) and

D0,z zeA X(2) ,zeA

I
i

N

C

[w]

>
O

A2(X
ey Yy =9 =9 .
eﬁ (X)(l,z) ,2€B ig(z) ,z€B

Proposition 4.2.5. Let A(X) := (Ao, EX, A1) € Fam([, X) and M(Y) = (o, EY , 1) €
Fam(I,Y). If f: X = Y, the following hold:

() f(Ul-e] Aou)) vy User £ (o).
(i) f! (Uia uom) 0y User £ (0().
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Proof. (i) By Definition we have that f(U,c; 20(i) = (Uie; )\o(i),fS(X)), where

fS(X) = fo eﬁ(x), and by Proposition we have that
oy Con o A e A
(Z,l‘) _f(UieI/\O(i)) (]ay) <~ fU (Z,l’) =Y fU (]’y)

o (Fo ™) (i, 2) =y (foel™)(,y)
TN f(EZX(l‘)) =y f(gjx(y))
e fY(z) =y f]Y(y)

By Proposition and Definition m for the subset (U;c; f(Mo(2)), eH(A)](Y)) of Y we
have that f(Ao(i)) := (Xo(i), ), where f) := fo&X, for every i € I, and x =, ) 2’ &
f¥(z) =y fY(a'). Moreover, eH(A)](Y) (i,2) := [f(SX)Y]z(w) := f¥(z). Let the operations

g: f(UiIEI()_‘O(i))) M(» U)ielf()\o(i)) and h: U;er f(Mo(9) ~ f(Uer Mo(@)), defined by the
same rule (i,z) — (i, ).

/

g g
TN T~
F(Uier M) Uier £ (M) £ (Uier mo(@) Uier £ (1o(2))
~_ o~
FA0 h %] o) [ ONIX) W 1)),
X X

It is immediate by the previous equalities that the above left diagrams commute.

ii) By Definitions [4.2.1| and [2.6.9| for the subset 7 ol ,eM(Y) of Y we have that the
i€l u

embedding eUM(Y): Uies o(i) <= Y is given by the rule (i,y) — &) (y), and

7 (Unol)) o= { o tio) € X x Uiy | £0) = @i .

i€l icl

with embedding into X the mapping eX, defined by the rule eX (x, (1, y)) := x. Moreover,
(2, (1,9) =1 Uiy mocn (& (031)) oz =x 2" & & (y) =v & ()

The subset f~1(uo(i)) == {(z,y) € X x po(i) | f(x) =y & (y)} of X is equipped with the

embedding ef,l(uo(i)): FY(po(i)) — X, which is defined by e?ﬂl(#o(i))(:c,y) := z, for every

(z,y) € f~ (uo(7)). Moreover, we have that
(2, (i,y)) ) (@ @) e [FTHEN (e y) =x [FTHE) @ y)

= 6?81(“0(1.))(.%, y) =X fﬁl(:u'o(i/))(x/a y/)

Sr=x.

_UiEI st (Mo(i)

If the operation ¢': f~! (U, 10(9)) ~ User f (10(2)) is defined by the rule (z, (i,y)) —
(i,(z,y)) and the operation h': U;c; f1 (10(?)) ~ f~1(U,es 10()) is defined by the rule
inverse rule, then it is immediate to show that ¢’ is a function. To show that A’ is a function, we
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suppose that z =x a/, hence f(z) =y f(z'), and by the definition of f~!({U,c; po(i)) we get
M M(Y),.
) M iy) =y ) e E () =y Eoly), hence (5, (o) =, (L) @5 050)):

It is immediate to show the commutativity of the above right diagrams. O

Theorem 4.2.6 (Extension theorem for coverings). Let X,Y be sets, and let A(X) =

(X, EX, A1) € Fam(I, X) be a covering of X. If fi: \o(i) = Y, for every i € I, such that
Jilro@mro() =Fo@mo@) Fire @)

Jor every i,j € I, there is a unique f: X —Y such that fix,i) =rog).v) fi, for everyi € I.

Proof. Let e: X < [J;c; Ao(i) such that the following diagram commutes

6

lEI )‘O(Z

¥

Let the operation f: X ~~ Y defined by
AX
f({E) = fprf<X)(e($)) (pr2( )(6($))7

for every € X. Hence, if x € X, and e(x) := (¢,u), for some ¢ € I and u € Ao(7),
then f(z) := fi(u). We show that f is a function. Recall that Ao(¢) N Ao(j) = {(u,w) €
Ao(i) x )\0( N | EX(u) =x 5JX w)}. If z,2' € X, let e(z) := (i,u) and e(z') = (j,w). If
x =x ', then
e() ZUyer 00 €(@') 1 (1,0) =y, o0 (hw) & & (1) =x & (w) & (u,w) € Ao(i) N Ao()-
By the definition of f we have that f(z) := fi(u) and f(2') := fj(w). We show that
fi(u) =y fj(w). Since Ag(i) N Ao(4) € Ao(i) and Ao(i) N Ao(4) € Ao(j), and as we have
explained right before Proposition [2.6.8] by Definition [2.6.9 we have that
f’LI)‘O )NAo ]) o fl opr)\O & f.7|/\0 (1)NAo(7) = f] © pr)\o(')'

Since (u,w) € Xo(7) N Ag(j), by the equality of the restrictions of f; and f; to Ag(7) N Ao (j)

filu) == (fi o pry ) (w,w) =y (fj o pryy ;) (u,w) := fj(w).
Next we show that, if i € I, then fj\;) = fi- Since & : (Ao(4), &%) C (X, idx)

X

)

N

Ao (%) X

X idx

7
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by Definition we have that fiy ) := fo EX. I u € (i), let (& (v)) == (j,w), for
some j € [ and w € \o(j). Hence, by the definition of f we get

f\)\o(i)(u) = f(SiX(U)) = fj(w).
By the commutativity of the first diagram in this proof we get for &% (u) € X

EX(w) = o) (e(EX (w))) =x 1dx (&5 (u) := &X ()

ie., (u,w) € Ao(7) N Ao(j). Hence, fix,i)(u) := fj(w) =y fi(u). Finally, let f*: X — Y such
that f} ) = f" 0 &Y =gy fis for every i € I. If x € X let e(x) := (i,u), for some i € I
and u € \g(7). By the commutativity of the first diagram, and since f* is a function, we get

= f(z). O

Corollary 4.2.7. Let A(X) := (Mo, EX, A1) € Fam(I, X) be a partition of X. If fi: Ao(i) = Y,
Jor every i € I, there is a unique f: X =Y with fix i) =roga).v) fi, for every i € 1.

Proof. The condition fi|/\0(i)ﬁ)\0(j) =E(o()NA(),Y) fjl)\o(i)ﬂ)\o(j) of Theorem is trivially
satisfied using the logical principle Ex falso quodlibet. If we suppose that (u,w) € Ao(i) N Ao(7),
which is impossible as Ao(i)[[Ao(j), the equality (f; o pry ¢;))(u,w) =y (fj o pry,(;))(u, w),
where 7, j € I, follows immediately. O
Proposition 4.2.8. Let A(X) := (Mo, EX,\1), M(X) = (po, 2%, 11) € Fam(I,X), VU :
A(X) = M(X), and (B,i¥) C X.

(i) For every i € I the operation e?(x)
embedding, and eﬁ\(X): Ao(i) € Ujer Aold).

(ii) If Xo(@) C B, for every i € I, then |J;c; Mo(i) C B.

(iii) The operation \JW : (U;c; Ao(i) ~ Uier ro(i), defined by ¥ (i, x) := (i, ¥;(x)), is an
embedding, such that for every i € I the following diagram commutes

2 Xo(1) ~ Uier Ao(i), defined by x — (i,x), is an

M) 2 (i)

ef(”[ lezwo

Uier Ao(9) W Uier #o(9)-

Proof. (i) If ,2" € A\o(i), and since £ is an embedding, we have that

A(X A(X . .
A( )(x) =User 2o € ( )(:U') & (i, 1) =Uses 2o (i,2") & 8,LX(:1:) = EZ-X(:L“’) ST =)\3) x.

€



4.3. THE INTERSECTION OF A FAMILY OF SUBSETS 97

Moreover, eé( (e; (X)(a:)) = eff( r) := &~ (x), hence e?(X): Ao(i) € User Ao(d).
(ii) If i € I and eP: X\g(i) C B, then i%(eP(x)) =x &¥(z), for every @ € A\o(i). Let the
operation e?: (J;c; Ao(i) ~ B, defined by eB(i,z) := eP(z), for every (i,z) € [J;c; Ao(i). The
operation e® is a function:
(6:2) =Uper 2000 (ry) 1 & () =x &' (y)
:>ZB(€zB( )) =x i (e] (y))
e/ (z) =x ¢f (1)
& 63(2,1‘) =x " (j,y)-

Moroever, i (eB(i,z)) := iy (P (z)) =x & (z) := GS(X)(i,l'), hence eB: (J;c; Ao(i) C B.

(iii) The required commutativity of the diagram is immediate, and [ J ¥ is an embedding, since

Noli) s o) [ A
AN N
X

(4, 2) =User 20 UhY) & EX(z) =x 5JX(?/)
& ZX(Wi(x) =x Z5(Y;(y))
& (1, P45(2) =Uicrmom (s ¥i(y))
o | U0 2) =G, 0 P0G, ). O

4.3 The intersection of a family of subsets

Definition 4.3.1. Let A(X) := (M\,EX,\1) € Fan(I,X), and ig € I. The intersection
Nicr Ao(@) of A(X) is the totality defined by

(ONS ﬂ )\0(1) = P e A(I, )\0) & vqj,jej(gi)((@i) =x SJX((I)J))
el

Let eé\(X) :Nier Ao(i) ~ X be defined by eé(X)(CD) = Si)o( (®4), for every ® € N,y Ao(i), and
A A
d ZMicr Aol 0:s eﬂ(X)(fb) =x em<X)(@) = EZX ((I)z'o) =x EZX (@io)a

If #x is a given inequality on X, let ® #n._ i) O & & ( Z0) #x & ( )
Clearly, =(e; o(i) 18 an equality on (Micr Ao(i), which is considered to be a set, and e%(X)

is an embedding, hence (ﬂiel Ao(7), eg(X)) C X. Moreover, the inequality #n,_; 5, is the

canonical inequality of the subset [);c; Ao() of X (see Corollary [2.6.3)).
Proposition 4.3.2. Let A(X) := (A, EX, A1) € Fam(7, X).

(@) ©=n,;2000) © & 2 =a@) O-

(ii) If ® € MN;er Mo(i), then ® € [, Ao(4).

(ili) If (X, =x,#x) is discrete, the set ((Vicr MNo(8), =nuc; 200> Fnies 2o ) 15 discrete.
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Proof. (i) To show the implication (=), if i € I, then &* (®;) =x &Y (®4,) =x & (O4,) =x
£7(0;), and since £F is an embedding, ®; =xo(i) ©i- For the converse implication, the
pointwise equality of ® and © implies that ®;, =) (;,) ©i,, hence 51-)0( (i) =x Efo( (Bip)-

(ii) If i =7 7, then SJX ()\ij((I)i)) =x EX(®;) =x &j(®;), and as 8JX is an embedding, we get
the required equality A;j(®;) =»,(;) ;. The proof of (iii) is immediate. O

Since the equality of [],c; Ao(7) is the pointwise equality of A(I, \o), then, as we explained
above, the equality of [[,.; Ao() is the equality of (,c; Xo(i).

Remark 4.3.3. Let ip € I, (A,i%) C X, and CA(X) == (N}, EAX,\) € Fam(I, X) the
constant family A of subsets of X. Then

(A=) =px) A

iel iel
Proof. We proceed similarly to the proof of Remark O
Proposition 4.3.4. If A%(X) is the 2-family of subsets A, B of X, Nic2 A3 (1) =px) ANB.

Proof. By definition ® € (,c; A3(i) 1< ®: A;c; A3(4) and for every i,j € 2 we have that
EX(®;) =x EJX(Q[)j), where £ := i} and & := i%. Moreover, eﬁz(x) Ny A(1) ~ X s
given by e%Z(X)(@) = &5 (@), for every ® € (;; A3(i), and @ =M 2@ © 1 EF (@) =x
£ (©0). Let f: AN B ~ [;co A§(@) be defined by f(a,b) := ®(,), for every (a,b) € ANB,
where @450 Ajer A3(4), such that D(4,5)(0) := a and @, 4)(1) := b. Since & (@(ajb)(())) =x
EX (Pap(1) & Ef(a) =x &1(b) & i (a) =x ix (D), where the last equality holds by the
definition of ANB (see Deﬁnition, the operation f is well-defined. It is straightforward to
show that f is a function. Let the operation g: [;c, A3(i) ~ ANB, defined by g(®) := (®¢, ®1),
for every @ € (;cp A3(4). Since i3 (o) := EF (®o) =x EF (1) := i (P1), we have that g is
well-defined. It is easy to show that ¢ is a function,

f
ANB Nic2 A5(0)
~_ _~
g
i,)él(mB eﬁz(x)
X.
and the above inner diagrams commute. O

Proposition 4.3.5. Let A(X) := (Ao, EX,\1) € Fan(I,X) and M(Y) = (uo, &Y, 1) €
Fam([,Y). If f: X — Y, the following hold:

© £( Mher X)) € Ny 7).
(i) £ (niguom) ) Nier £ (10(0).

Proof. We proceed similarly to the proof of Proposition O
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Proposition 4.3.6. Let A(X) := (Ao

U A(X) = M(X), and (B,ix) C X.

(i) The operation WA(X) : Nier Mo(@) ~ Ao(i), defined by © — ©;, is a function, and
7riA(X): Nicr Ao(i) € Xo(9), for every i e 1.

(ii) If B € Xo(i), for every i € I, then B C (;c; Mo(%).

(iii) The operation (YW : (\;c; Ao(i) ~ (N;er to(2), defined by [ V(O)]; := ¥;(0;), for every
i € 1, is an embedding, such that for every i € I the following diagram commutes

Ao(7) L po ()

7TiA(Xﬁ %Mm

Mier Ao() (ﬂ—\l’> Mier Ho(i)-

EX, M), My = (po, 2%, ) € Fam(I, X), let ig € I,

Nl

Proof. (i) Since ® =M o) © = © =au) O, we get ; = O, for every i € I. Since
AKX X
£X (n () = €X(01) =x £} (61) := e (6), we get 1 )+ My Mold) S (i),
(i) If i € I, let ely: B C Ag(i), hence &~ (e%(b)) =x iy (b), for every b € B. Let the operation
ep: B~ (N;er Ao(i), defined by the rule b — eg(b), where [ep(b)]; := e’3(b), for every b € B
and i € I. First we show that ep is well defined. If 4,j € I, then
EX(le):) =x EF ([e(b)))) & & (5 () =x & () & i3 (b) =x i (b).

Clearly, ep is a function. Moreover, eg: B C (,c; Ao(i), since, for every b € B,
en(en(0) := & ([en(D)]iy) = € (ei3(b)) =x i3 (b).
(iii) It suffices to show that (| ¥ is an embedding. If ®,© € (;c; Ao(4), then

® =, 200 O 1 & (Piy) =x 550( (91‘0)
A Zi)o((q/io ((I)io)) - ( 10))

«22([we] ) =x([we], )
<:>(ﬂx11>( =er o) <ﬂ\11) O
The above notions and results can be generalised as follows.
Definition 4.3.7. Let X and Y be sets, and h: X — Y. If A(X) := (A, EX, \1) € Fam(I, X),
and M(Y) := (o, ZY¥, 1) € Fam(I,Y), a family of subsets-map from A(X) to M(Y) is a
dependent operation W : \,; F(/\o(i),uo(i)), where if U(i) := U, for everyi € I, then, for
every ¢ € I, the following diagram commutes

v,
Ao (i) — po(i)

sf[ ]z
X Y

"
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The totality Map; ,,(A(X), M(Y)) of family of subsets-maps from A(X) to M(Y') is equipped

with the pointwise equality, and we write ¥: A(X) N M(Y), if ¥ € Map(A(X), M (X)). If

2: M(Y) L N(Z), where g: Y — Z, the composition family of subsets-map Zo ¥ : A(X) oo

N(Z) is defined by (20 W) (i) :=E; 0o U;, for every i € I

v, =
Ao(i) — po(i) —— 1o(i)

s.Xj

X

<
N
>-<
2
TN

h g
If Y := X, and h :=idx, and if ¥: A(X) Mx M(X), then U: A(X) = M(X). In the
general case, if U: A(X) LN M(Y'), then ¥; is an embedding, if h is an embedding.
Proposition 4.3.8. Let X and Y be sets, and h: X — Y. Let also A(X) := (X, EX, A1) €
Fam(I, X), M(Y) := (po, 2, 1) € Fam(I,Y), and ¥: A(X) & M (V).

(i) The operation J, ¥ : User Mo(i) ~ User o(i), defined by (U, ) (i, u) := (i, Ui(u)), for
every (i,u) € ;e Ao(4), is a function, and for everyi € I the following left diagram commutes

v;

Aoli) ——— o) Noli) ———— 1o i)
eW{ leM(Y) w.A(Xﬁ %Mm
Uier Ao(9) m Uier 1o(4) Nier Ao(7) m Nier Ho(7).

(ii) If io € I, the operation (N, W : (;c; Ao(i) ~ i to(4), defined by [, ¥(O)]; := ¥;(0;),
for every i € 1, is a function, such that for every i € I the above right diagram commutes.

Proof. (i) The commutativity of the diagram is trivial, and we show that | J; ¥ is a function:
(6, w) =Uer 200 (G w) 9 Eilu) =x &(w)
= h(&i(u)) =y h(j(w))
& Ei(Vi(u) =y E;(V;(w))
= (Z, \I/l(u)) “Uier #o(® (]7 \Il] (’UJ))

= (UP) 60 =m0 (UT) o)

h h

(ii) The commutativity of the diagram is trivial, and we show that [, ¥ is a function:
¢ TNier 2o 0 < &, ((I)io) =x & (61'0)
= h(gio ((bio)) =Y h(gio(eio))
& Eig (Wig(ig)) =v Eig (¥io(©iy)

(TR Eio([%)w@)] )

10

o (ﬂ \11> (D) =ue; moto ( N \If) (©). O

h h
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4.4 Families of subsets over products

Proposition 4.4.1. Let A(X) := (Ao, EX, M), K(X) = (ko, HX, k1) € Fam(I, X), M(Y) :=
(o, EY , 1), and N(Y) := (v, HY ,11) € Fam(J,Y).
1) (A@M)(X xY) =N ® o, EX @EY, N1 @ p1) € Fam(I x J, X x Y), where

(Ao ® po)(2,7) == Ao(2) x po(5);  (4,5) € I x J,

(EXREY),. i Xo(i) x po(j) = X x Y,

(4.9)
(EX @), w) = (&5 (), (w);  (u,w) € Xo(i) X po(j), (i,5) € I x J,
(M1 @ p1) G gy(argry s Ao(i) X po(d) = Aal@) x po(j'),
(Mt ® 1) (s gy argry (s w) 2= (Nigr (), e (w)); - (w,w) € Ao(i) X pao(4)-
(i) If ®: A(X) = K(X) and @: M(X) = N(X), then ®® U: (A® M)(X x ¥) = (K @
N)(X xY), where, for every (i,j) € I x J,
(@@ W) Aoli) X po(d) — ko(i) x vo(4),

(@@ W) (u,w) = (Pi(u), Tj(w));  (u,w) € Xo(i) X po(j)-
(iii) The following equality holds
U (o) x m0(h)) =pxxv) <U Ao(i ) X ( U Mo(j)>-
(ij)elxJ i€l jed
(iv) If ig € I and jo € J, the following equality holds
ﬂ (Mo(@) x po(4)) =p(xxv) (ﬂ Ao (i ) X ( ﬂ Mo(j)>-
(i,7)eIxJ el jedJ

(v) If A(X) covers X and M(Y') covers Y, then (A®@ M)(X xY') covers X x Y.

(vi) Let the inequalities #1,#5,#x and #y on I,J, X and Y, respectively. If A(X) is a
partition of X and M(Y') is a partition of Y, then (A ® M)(X xY) is a partition of X x Y.

Proof. The proofs of (i)-(iv) are the internal analogue to the proofs of Proposition i)-(iii).
(v) Since X =pix) UjesXo(i) and Y =pry Ujespo(j), by case (iii) and by Proposi-
tion [2.6.11|(iv) we have that

X XY =pxxy) (U/\o > < U o ) recxyy | (Ro() x ().
i€l jeJ (i,5)eIxJ
(vi) By Definition we have that
i#ri = EX(u) #x EX (W) i,i €1, ue (i), u' € \o(i),

j#s 5 = E (w) £y £ (w');  j.4 €T, we po(h), w € po(s).

Let (i,§) #1xg (i',j') w0 i #£14' vV j #5 5" I i #14 is the case, then &X (u) #x EX(u), hence
(& (u),gjy( w)) #xxy (5f(u’),5}/(w’)). If j #; j', we proceed similarly. O
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Proposition 4.4.2. Let A(X) := (A, EX,\1), K(X) = (ko, H™ k1) € Fam(I, X), M(X) :=
(o, 2%, 1), and N(X) := (v, F¥X,v1) € Fam(J, X).
(1) (AAM)(X) = (Mo Apo, EXANZX N A ) € Fam(I x J, X), where

(Ao A po)(E) = o) Npo(g);  (i,5) € I < J,

(EXNZ%) 5yt Ao(@) N o) — X,

(EX A2, o ww) = EX )y (u,w) € Xo(i) N po(h), (4,4) €1 %,
(A A 1) gy Mo(@) N po(d) = Ao(@) N o ('),
(A1 @ 1) i) iy (s w) i= (N (), e (w)); (w,w) € Ao(i) N po(5)-
(i) (AV M)(X) := (X V po, EXV ZX A\ V 1) € Fam(I x J, X), where

(Ao V o) (3, 7) = Ao(i) Upo(g);  (4,5) € I x J,

(5szX)( iy Ao(d) Upo() = X,

(EX \/ZX)(Z',]‘)(Z) T { Z]Y(z) ;2 € po(g)

()\1 \/Nl)(i,j)(i’j’)(z) = { /)\L;ljl’(é)) : 22222‘% ; ((%])7 (Z/]/)) € D(I X J)'
(ii) If ®: A(X) = K(X) and ¥: M(X) = N(X), then ®A¥: (AANM)(X)= (K AN)(X),
where, for every (i,7) € I X J,
(@A) ;5 Aoli) N o) — ko(i) No(d),

(@A W) 5 (u,w) = (i), Ui (w));  (u,w) € Ao(i) N po ().
(iv) If ®: A(X) = K(X) and ¥: M(X) = N(X), then ®V ¥: (AVM)(X)= (KVN)X),
where, for every (i,j) € I x J,

(@A) )0 Aold) U po(d) — koli) Uro(id),

iel, z€ (i) U po(d)

@ {5 1

(v) The following equality holds
U (Mo(@) N po()) =px) <U>\0 ) N (U#O(ﬁ)-
(4,9)eIxJ i€l jeJ
(vi) If (i0, jo) € I x J, the following equality holds
) (o) Upo(d)) =p(x) <ﬂ>\0 > U (ﬂuo(ﬁ)-
(4,9)eIxJ i€l jeJ

(vii) If A(X) covers X and M(Y) covers Y, then (AN M)(X) covers X.

(viii) Let the inequalities #1,#j,#x and #y on I,J, X and Y, respectively. If A(X) is a
partition of X and M(Y) is a partition of Y, then (A AN M)(X) is a partition of X.
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Proof. We proceed as in the proof of Proposition O

Let M(Y) := (po, 2Y, 1) € Fam(J,Y), (A,i%) C X, (B,i%) C Y, and let A4(X) :=
(Mg, EAX AY) € Fam(1, X) the constant family A of subsets of X, and AB (A\B,EBY AB)
the constant family B of subsets of Y. By Propositions and we have that

UAdxwG) = J Axmuolj)

jeJ (i,j)€lxJ

= J (80 x o)

(4,5)elxJ

=P xY) (UAG‘(Z’)) X <U uo(j)>

i€l jed

X><Y)A><<U,UO >

jedJ

NAx @)= () Axuol)

jeJ (i,)€1xJ

=[] (A0 x o))

(4,5)elxJ

=P(XxY) (ﬂ Aé@)) X ( ﬂ “O(j))

i€l

XxY)AX<ﬂM0 )

jedJ

UBnwG) = |J Bnu)

jeJ (i,)€lxJ

= U OO Nm)

(i,7)€lxJ

= (UN0) 0 (Ut

jeJ

=pr) BN ( U Mo(j)>7

JjeJ
NBUwG) = () BUG)
JjeJ (i,j)€1xJ

= ) (FG)U))

(ij)elxJ

o (@) v i)

jeJ

=p) BU ( ﬂ Mo(j)>-

jeJ
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Definition 4.4.3. Let X,Y,Z € Vo, 20 € X,y0 € Y, and R(Z) := (po,E%p1) € Fam(X xY, Z).
(i) If z € X, the z-component of R is the triplet R*(Z) = (p&,E%%, p¥), where the assignment
routines pg, p7 are as in Deﬁmtwn and the dependent operation E*% : Aer (pg(y), Z)
is defined by Ey x y),
(ii) If y € Y, the y-component of R is the triplet RY(Z) = (pg, E¥4, p!), where the assignment
routines pg, py are as in Deﬁm'tion and the dependent operation EY-% : Azex F(pg(x), Z)

is defined by Y Z = Séy

(iii) Let ' R := (" po, (U1 E)Z,Ul p1), where |J' po : X ~~ Vo,

Oplz A F<(Op0)(x),(Opg)(x')>,(08)zz A Upo are defined by

(z,2")eD(X) zeX

for everyy €Y.

for every x € Y.

1
(Umym:ﬂjﬁ@wzummﬂx reX,

yey yey
<Up1> z,a') <Up1> U mot@y) = U m(a'y);  (2,2) € DX),

wx! yey yey

1

<Up1> (Y, u) = (yvp(:p,y)(x’,y)(u)); (y,u) € U po(z,y),
xx’ yeY
1
(U& w,u) = €2 ) (w);  zeX, e | J ro(z,y).
yeyY

(iv) Let U? R := (UJ? po, (U2 €)Z, U? p1), where (J2po : ¥V ~ Vo,

Oplz A F((Opo)(:n),(Op@(m')),(og)z: A Upo are defined by

(v9)eD(Y) Jey
2
(Um) W) = U ob@ = ro(z,v); wey,
zeX zeX
QﬁQ%.(U@ U polay) > U oo () € DY),
vy zeX z€X

2
<U,01> /(l',w) = (JUap(:v,y)(ac’,y)(w)); (wi) € U pD(I7y)’

zeX

UE T, W) = S(x W) Y€ Z (z,w)€ U po(z,y).
zeX

(v) Let ' R := (N po, (ﬂl E)Z, N' p1), where N po : X ~= Vo,
1

hpl: A F((hpo)(x), (hp@(x’)), (hé’)z: A F((ﬂpo)(m),Z) are defined by

(z,2")eD(X) reX
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1
(M) @ = N a0 i= Nl 2 x.

yeyY yeyY
1 1
(No)ear= (M) = Nt =+ N mlns (@a) € DY)
' yey yey

[(ﬁpl)m,(‘b)L = P (@) @€ () polz,y),

yey

1
(NE)Z(@) = EL ) (@y,): @€ [ pola.y)-

yeYy

(vi) Let (VR := (" po, (€)1 p1), where (V2 po : X ~ Vo,

ﬁpli A F<(ﬁpo)(y), (ﬁPO)(y/)> ﬂ A F ﬂpo are defined by

(y,y)eD(Y) yez

2
(ﬂm) (v) == () ph(x) := [) polz,y); weEY,

zeX zeX

(mm) 5.1) (ﬂm) N wolwy) = () wley): y) € DY),

vy zeX zeX

Kﬁm)yy/@)L = Plog)@y) (@) P E [ po(x,y),

reX

2
(NE) (@)=L, ) (®ay); ® € () pole,y).

zeX
Clearly, RY(Z),U' R(Z),N' R(Z) € Fan(X, Z) and R*(Z),|J*> R(Z),? R(Z) € Fan(Y, Z).
Proposition 4.4.4. Let X,Y,Z € Vo, R(Z) := (po,E%p1),S(Z) := (09, A%, 01) € Fam(X x
Y,Z), and ®: R(Z) = S(Z).
(i) Let D72 ey F(pf(y), 06 (y)), where @ := @2 p§(y) = 0§ (y)-
(ii) Let ®Y: A,ex F(Ry( ), Sy(x)), where ®Y = Dy po(z) = of ().
(iii) Let |J' ®: Azex F ((U1 po)(z), ( 00)(x)), where, for every x € X, we define

L1J<I> DN G
(Ue).

yey yey

(U@)I@,u) = (12 @): ww) e | poley)

yey
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(iv) Let | J* ®: Ayey F(( 2 po) (), (U2 00)(y)), where, for every y € Y, we define

(U@) U i) = U o)

rzeX reX

2
(U?) @)= (e @)i e | ploo

zeX
(v) Let ' ®: Asex F(( N po) (), (ﬂl 00)(x)), where, for every x € X, we define

(ﬂ@) N A@ = ) o)

yey yey

[(ﬁ@);@)}y =0 ©)): O ) moley)

yey

(vi) Let ﬂ2 D: Aer F(( ﬂ2 po)(y), (ﬂ2 ao) (y)), where, for every y € Y, we define

(ﬁ@) N s = N o)

zeX zeX

zeX

(Ne) @] =eeye oc N mi
) = S*

Then we have that ®*: R*(Z (Z) and ®Y: RY(Z) = SY(Z) and |J' ®: ( ! R)(Z)
(U'S)(2) and J*@: (U*R)(2) = (U*S)(2) and N'@: (N'R)(2) = (N'S)(2) cmd
N*e: (N*R)(Z)= (N*9)(2)

Proof. We proceed similarly to the proof of Proposition [3.5.3] O

Proposition 4.4.5. If R := (po, p1) € Fan(X x Y, Z), the following equalities hold.

U U o, v) =pzy U U rolz,v),

zeX yeYy yeY zeX
() () polzv) =pz) () [ pola,y).
zeX yeY yeY zeX
Proof. The proof is straightforward. O

4.5 The semi-distributivity of [ over [

Section is the “internal” analogue to section as the presentation of the families of
subsets over products follows the presentation of the families of sets over products. The
distributivity of [ over U though, cannot be approached as the distributivity of ¥ over ], as
the crucial Lemma 1) depends on the fact that the operation prf¥ is a function, something
which is not the case, as we have already explained in section when the totality of the
exterior union is equipped with the equality of the interior union.
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Definition 4.5.1. If A(X) := (Ao, EX, A1) € Fam(I, X) and h: J — I, the composition family
of A(X) with h is the triplet A(X)oh := (Agoh,EX oh,A\; oh), where \go h: J ~ Vg and
Aroh: \¢inenw) F(Xo(h(4)), Mo(h(j")) are given in Definition (m) and the dependent
operation EX o h: AjeJ F()\o(h(j)), ) is defined by (EX o h); := 5 for every j € J.
Clearly, A(X)oh € Fam(J, X ). To formulate the distributivity of ﬂ over J in the language

of BST we need to introduce a family of subsets P(I) of the index-set I of a given family of
subsets of a set X. Throughout this section let the following data:

(a) A(X) := (Mo, EX,\1) € Fam(I, X).

(b) (K,=k,#K) is a set, and ko € K.

(c) P(I) := (po, 2", p1) € Fam(K, I).

(d) A(X)o 2L =02, EX 02l A\ oZ])eFan(py(k), X), for every k € K.

(€) T = Nrex Po(k).

Proposition 4.5.2. N(K) := (VO,NX,Vl) € Fam(K, X), where vy: K ~> Vg is defined by

Vo(k‘) = U ()\0 OZk U )\0 Zk ; ke K,
j€po(k) j€po(k)

and N*: \ex Fvo(k), X), vq: Ak ke (k) F(vo(k),vo(k')) are defined by

( U (2L ><—>X, Nt (Gyu) o= E5p () G € polk), u € Mo(Zi(4)),

J€po(k)

nk k) =vw: J 2(Z6) = U 2(ZL0).

Jj€po(k) Jjepo(k’)
vk (5, 1) == (Prre (9 Az ()22, (o ) (W); - J € po(k), w e Mo (Zi(5))-
Proof. The operation N; kX is an embedding, since by Definition m
(J, u) T Ujepg (k) 20(ZEG)) (') 5%@)(“) =X 5%@/)(2/) = NkX(]? u) =x NkX(j/vU/)-

Let k =x K, j € po(k) and u € \g (Z,g(j)) By the commutativity of the left inner diagrams

Vil

Pkk

T /—\

po(k) po(kl) UjEpO(k) )\0(2;{(])) Uj’epg(k’))‘o(zlﬁ/(j/))

~_ - \—/
Pr'k

2] 2, N RN

1 X

we have that Z{, (prw (7)) =1 Z¢(5)- Hence Agiiyz1,,,.07)F 20(Z5(5)) = Mo (25 (prre (4)))
and vgi (7, u) is well defined. Next we show that the above right inner diagrams commute. If

i = () & i:=2ZLG) & i':=2ZL(j"), then
N e (o)) o= N (57 X (w)) 1= & (Vi (w)) =x &F (u) := N~ (G, w),

using the commutativity of the following diagram
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For the other above right inner diagram we proceed similarly. Clearly, vii(j,u) := (j,u). O

Proposition 4.5.3. If 7 € T, then 7(X) := (10, T~,71) € Fam(K, X), where 19: K ~
Vo is defined by mo(k) = Ao(zlg(Tk)), for every k € K, and the dependent operations
TX! Airex F(1o(k), X), 71: A(lmk/)eD(K) F(Tg(k),Tg(k’)) are defined by
T 2o (Zh(m) = X, T = 5532(%),
Tl(k, k‘l) = TR )\0 (Zé(Tk)) — )\0 (Z;g/(Tk’))7 Tkk! = )\Zé(Tk)Zé,(Tk/)'
Proof. What we want follows in a straightforward way from the fact that A(X) € Fam(/, X). O
Proposition 4.5.4. Z(X) := (&, HX,&1) € Fan(T, X), where &: T ~ Vg is defined by

&o(T) == ﬂ 10(k) = ﬂ M(Zl(m); TE€T,

keK keK
and the dependent operations HX: A .cp F(&o(7), X), & : A(rryen(r) F(&(7),&(7")) are de-
fined, respectively, by HX : <ﬂkeK To(k:)> < X, where HX = e%(X), for every T € T,

G(r ) =& () M(Zhm) = [) 2 (Z(T%),

keK keK

® o & (D) [Gr (@] = Asprzrr (Br); @ [ Mo(Zi(m), k€ K.
keK

Proof. If T € T, then by the definition of the embedding ea(X) we get

H2 (@) = Ty (P, ) 1= éo(Tko)(‘I’ko); ®: () Ao(Zh(m)).
keK

HZ is an embedding. Next we show that &+ (®) € Nyex Ao (ZL (7)) As @1 Nyex Mo (ZL (),

EX([gTT’(@)]k) = ZI Tk)<[€7'7'( )] )

zI(T %) <>\zl () 2 (7 k)((I)k)>
=X €277, (®)
X gZI(Tz)<(I)l)

=x €210y (Az,ﬁ (2L z)(‘l’l)>
=T ([&r (®)],),
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for every k,l € K. Similarly we show that &+ is a function. If 7 =7 7/, then

57'7"

/_\

ﬂkeK AO(Zlg(Tk))) mkeK /\O(Zig(T/k))

X
= gzéo (leO) <)\ZI£0 (TkO)ZéO (T/ko)((bko))
X
=X gZ]gO(TkO)((pkO)
= ¥ (@). .
The set

W= () wk) = () [ U Ao(Zé(j))}

keK keK - jepo(k)
is embedded into X through the map eg(x)’ where eg(x)(A) = Nk)g(Ako), for every A €
(ke vo(k). By definition, if A: A, vo(k), then

A () wolk) & Yrierx (V7 (Ar) =x Ni¥ (A1),
keK

Ak € U AO(Zlg(]))7 i'e-a Ak = (]7 u)’ j € pO(k)v U € )‘O(Zlg(j))v
j€po(k)

A “Nkex vo(k) B :< Nk)g(AkO) =X ngg(Bko)'

The set
V.= U &o(1) := U [ ﬂ )\O(Zlg(m))]
TeT T7€T “keK
is embedded into X through the map ei(x), where
s X (7, 8) = HX(®) = 5;%0 (o) (@ho)i (T, @) € L &),

TeT
(T, @) =y, cr o0 (T P) 10 HY (B) =x H(P).

Proposition 4.5.5 (Semi-distributivity of () over |J). (V, ei(x)) c (w, eg(X)).
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Proof. Let the operation 6: V ~» W, defined by
0(r,®) := A9 (1,®) eV,

AI(CT’(I)) = (1, Pr); k€K

By definition 75, € po(k) and ®; € A\o(Z(7%)). We show that § is well-defined i.e., A ¢
Niex Yo(k). If k,1 € K, by the above unfolding of A € W we need to show that

5%(%)(@1@) =x 5%(71)(‘1’1)7
which follows immediately from the unfolding of the membership ® € (5 Ao (2] (7x)). If
(1, @) =y, cregn (7, @) i HE (@) =x HI () & 5%0(%)(‘1%) =X 5%0(Tk0)(q"ko)a
AR = o AT N;;’S(AIEZ"I’)) =x N;;)E(A;(CTOI’@))
e N (AT™) =x NE (A ") e €21 (i) (@) =x €31 ) (¥'ho).

hence 0 is a function. The commutativity of the following diagram is shown by the equalities

0
Urer [ﬂkeK Ao (Zlg(Tk))} Mkek [UjEpo(k) Ao (Zlg(j))
N )
X
e (007, ®)) = N& (Tho, i) = 31 () (Bho) = oM (r, ®). O

For the converse inclusion see Note [4.11.6]

4.6 Sets of subsets

Definition 4.6.1. If I, X € Vy, a set of subsets of X indexed by I, or an I-set of subsets of
X, is triplet A(X) := (X, EX, 1) € Fam(I, X) such that the following condition is satisfied:

Q(A(X)) & Vijer(Xo(i) =p(x) Aol(j) = i =1 j).
Let Set(I, X)) be their totality, equipped with the canonical equality on Fam(I, X).

Remark 4.6.2. IfA(X) € Set([, X) and M(X) € Fam(I, X) such that A(X) =pan(r,x) M(X),
then M (X) € Set(I, X).

Proof. Let ®: A(X) = M(X)and ¥: M(X) = A(X) such that (®,¥): A(X) =pan(7,x) M(X).
Let also (f,9): po(i) =p(x) po(j). It suffices to show that Ao(7) =p(x) Ao(J)-
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If we define f' := U0 fo®; and ¢ := ¥; 0 go P, it is straightforward to show that
(f',9"): Mo(i) =p(x) Ao(j), hence i =7 j. O
By the previous remark Q(A(X)) is an extensional property on Fam(/, X). Since Set(I, X)

is defined by separation on Fam(/, X), and since we see no objection to consider Fam(/, X) to
be a set, we also see no objection to consider Set(I, X) to be a set.

Definition 4.6.3. Let A(X) := (Mo, EX\1) € Fam(I, X). Let the equality :?(X) on I given by
7 zﬁ(X) J & Xo(i) =p(x) Aolj), for every i, j € I. The set \oI(X) of subsets of X generated
by A(X) is the totality I equipped with the equality :?(X). We write \o(i) € Aol (X), instead
of i € I, when I is equipped with the equality :?(X). The operation A§ : I ~» I from (I,=y) to
(I, :?(X)) is defined as in Definition .

Clearly, Aj is a function. All results in section are shown similarly for sets of subsets,
and for convenience we include them here without proof.

Proposition 4.6.4. Let A(X) := (Mo, EX\1) € Set(I,X), and let Y be a set. If f: 1 =Y,
there is a unique function Nof: Aol (X) — Y such that the following diagram commutes

f

I—Y.

Mol (X)

Conversely, if f: I ~Y and f*: \oI(X) — Y such that the corresponding diagram commutes,
then f is a function and f* is equal to the function from \I(X) toY generated by f.

Proposition 4.6.5. Let A(X) := (M\,EX,\1) € Fam(I, X), and let Y be a set. If f* :
Ml (X) = Y, there is a unique function f: I — Y such that the following diagram commutes

If A € Set(I, X), then f* is equal to the function from \oI(X) to Y generated by f.
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Definition 4.6.6. Let A(X) := (Ao, EX A1) € Set(I,X), and let Y be a set. If f*: \ol(X) —
Y, we denote the unique function f: I — Y generated by f* by f* o Ag.

Corollary 4.6.7. Let A(X) := (Ao, EX\1) € Fam(I, X), and let Y be a set.

(1) The operation ®: F(A\I,Y) ~ F(1,Y), defined by ®(f*) := f*oXo, for every f* € F(\oI,Y),
is an embedding.

(i) If A(X) € Set(I, X), then ® is a surjection, the operation ©: F(I,Y) ~» F(AoI,Y), defined
by O(f) = Nof, for every f € F(I,Y), is an embedding, and (©,®): (F(I,Y) =y, F(Aol,Y).

Proof. (i) By definition of the corresponding equalities we have that

I =r0o100,y) 97 & Yier (£ (Mo(i) =y " (Mo(2)))
& Vier ((f* 0 2)(i)) =v (g% 0 X)(1)))
& ffoXo=rry) 9" ° Ao
(ii) If f € F(1,Y), then by Proposition there is unique Aof € F(Aol,Y’) such that
(Aof) == Xof © Ao =r(1,y) f- By definition of the corresponding equalities we have that
[ =ruy) 9 Vier (f(i) =y g(i))
& Vier(Mof(Mo(D) =y Aog(ho(i))
< Aof =F(o1Y) Aog-
Moreover, we have that (© o ®)(f*) := O(f* o Xg) := Xo(f* © X)) =Frr(x)y) [*> and
(@0 0O)(f) :==2(Nof) == (Nof) o X =Fuy) [- O
Proposition 4.6.8. Let A(X) := (A\o,EX, M) € Set(I,X) and M(X) = (uo, Z2¥pu1) €
Set(J,Y). If f: I — J, there is a unique function f*: \oI(X) — poJ(Y) such that the
following diagram commutes
I J
)\QJ JMO

Aol (X) e 10 J (V).

If f: I~ J, and f* : MI(X) = puoJ(Y) such that the corresponding to the above diagram
commutes, then f € F(I,J) and f* is equal to the map in F(/\OI(X),MOJ(Y)) generated by f.

J

_

Remark 4.6.9. Let the set (X, =x, ;X’z) ), and AY(X) := ((55,51’)(,6%), where the non-
dependent assignment routine 5t : F(X,2) ~ Vg is defined by the rule f + 58(f), for every
f € F(X,2) (see Definition , and the dependent operations E1-X : Afenr(x.2) F(65(f), X)

and 01 : A (f.9)eD(F(X,2)) F(65(f),08(g)) are defined, respectively, by

RN DX wma weq ),

51(f,g) =05, 66(f) = 0(9) x> a5 x€d(f)

If AY(X) := (58,507)(,5?), where 63: F(X,2) ~ Vy is defined by the rule f — 50(f), for every
f € F(X,2), and the dependent operations E%% 69 are defined similarly, then AY(X),A%(X) €
Set(F(X,2),X), and they are called the F(X,2)-sets of detachable subsets of X .
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Proof. We give the proof only for A'(X). It is easy to show that Al(X) € Fam(F(X,2), X).
Let f,g € F(X,2) such that 65(f) =p(x) 05(g) i.e., there are e € F(55(f),d5(9)) and k €
F(05(9),05(f)) such that (e, k): 35(f) =p(x) 4 (9)

e

T
35 (f) 35(9)
~_  ~

1LX F 1,X
&y Ey

X.

Let x € X. By the commutativity of the above diagram z := 591’X(:U) =x 5;’)( (k(z)) := k(z).

Hence, if f(z) =2 1, then f(k(x)) =2 1. Since k(z) € d3(g), we get g(k(z)) =2 1, and since
r =x k(x), we get g(z) =2 1. If f(x) =2 0, we use proceed similarly. O

Clearly, d5(1) = X, 65(f) N d5(g) = 05(f - 9), and d5(f) U d5(g9) = d5(f +9— f - 9)-

Proposition 4.6.10. Let the family A'(X) := (56,51’)(,5%) of detachable subsets of X .

If compl: F(X,2) — F(X,2) is defined by f — 1— f, for every f € F(X,2), then the operation
Compl: [OF(X, 2)](X) ~ [0F(X, 2)|(X), defined by

Comp1(8y(f)) := 8(compl(f)) =: G5(1 — f) = 63(f);  du(f) € [IF(X,2)](X),

s a function such that the following conditions hold:

(a) Compl(Compl(dg(f)) = d5(f)-

(b) Comp(63(f) N8 (g)) = Compl(8(f)) U Compl(d(g))-
() Compl(dg(f) U dg(9)) = Compl(J5(f)) N Compl(J5(g)).

Proof. (i) By Proposition the operation Compl is the unique function from [§}F(X,2)](X)
to [6§F(X,2)](X) that makes the following diagram commutative

compl
F(X,2) ———— F(X,2)

fﬂ }s&

BIF(X 20100 oo BFCX. 2100
The proofs of conditions (a)-(c) are easy to show. O

Proposition 4.6.11. Let X,Y be sets, and let the sets of detachable subsets A'(X) :=
(6(1)’X,51’X, (55), AYY) = (5(1)’Y,51’Y, 5%’}/) of X and Y, respectively. If h: Y — X, then the
operation h : F(X,2) ~ F(Y,2), defined by f — foh, for every f € F(X,2), is a function,
and there is a unique function 65h : [0§F(X,2)](X) — [6ADF(Y,2)|(Y) such that the following

diagram commutes
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h
Proof. It follows immediately from Proposition 4.6.8 O

Proposition 4.6.12. Let A(X) := (A\,EX,\1) € Fam(I, X) and M(Y) := (uo, Z2¥ 1) €
Set(J,Y). If f*: NI(X) — uoJ(Y), there is a unique f: I — J, such that the following
diagram commutes

f
[---2-- »
)\0J{ JMO
AOI T ILLOJ

Moreover, f* is equal to the function from X\l (X) to poJ(Y') generated by f.

Corollary 4.6.13. Let A(X) = (Mo, EX,\1) € Set(I,X) and M(Y) = (uo, Z¥p1) €
Fam(J,Y'). The operation ©: F(I,J) ~» F(XoI, poJ), defined by f — f*, for every f € F(I,J),
is a function. If M(Y') € Set(J,Y), then © is an embedding, and a surjection.

Proof. By definition of the corresponding equalities we have that

f =k 9 Vier (i) =7 g( '))
= Vier (no(f(i)) =p(v) 1o(9()))
S Vier(f*(o(i )) Py 9" (Mo(3)))
& =E00r(X) oI (v)) 9

If M(Y) € Set(J,Y), the above implication is also an equivalence, hence © is an embedding.
By Proposition 4.6.5| we have that © is a surjection. O

The notions of fiber and cofiber of a function were introduced in Definition 2.3.41

Proposition 4.6.14. Let the sets (X,=x,#x) and (Y,=y,#y), and let f: X =Y.

(i) Let £ib/ (X) == (£ib)), ETX £ib]), where £ib]: Y ~ Vq is defined by the rule £ib](y) :=
fibf( ), for every y € Y, and the dependent operations EFPX . A (fibg(y),X) and
fibl. A.)en) F(Eiby (y),flbg(y )) are defined, respectively, by

yey

£ibl(y,y) = £ib),,: £ibl (y) = £/ (y) w2y @ € £ib{(y).

Then £ib/ (X) € Fan(Y, X) and if f is a surjection, then £ib/(X) € Set(Y, X).
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(ii) f is strongly extensional if and only if cofib(’;(y)]][[fibg(y), for everyy €Y.

(iii) Let cofibf(X) := (cofibg,gwﬁb’X,cofib{), where cofibg: Y ~~ Vg is defined by
the rule cofib)(y) := cofib/(y), for every y € Y, and £, Ayey F(cofib! (y), X),
cofib{: Awy)ep) F(cofibg(y), cofibg(y’)) are defined, respectively, by

g;ofib,X: cofibg(y) —X z—x x€ cofibg(y),

cofibi(y,y) == cofib;y,: cofibf (y) — cofib/(y)) z—uz; z€ cofibg(y).
Then cofib/ (X) € Fam(Y, X), and if f is a surjection, then cofib/ (X) € Set(Y, X) if and
only if the inequality #y is tight.

Proof. (i) If y =y 9/ and 2 € £ibf(y), then = € £ibf(y’). Since the functions ngib’X, Sg,ib’X,

and f iblljy, are defined through the identity map-rule, we get fib/(X) € Fam(Y, X). Let
y,y € Y and functions g € F(£ib/(y),£ib/(y')) and h € F(£ib/(y), £ib/(y)), such that
(9.h): £ibf(y) =p(x) £ib/ (/). Let x € X such that f(z) =y y i.e., x € £ib/(y). By the
commutativity of one of the following left inner diagrams we have that g(z) =x =, and, of
course, g(x) € £ibf (') ie., f(g(x)) =y v/. Hence, v =y f(g(x)) =y f(z) =y y.

/

g g
T~ T
fibf (y) fibf(y) cofibf(y) cofib/ (i)
~_ ~_
fib, X h fib, X cofib, X h/ cofib, X
i 5 gt gcore
X X

(ii) Suppose that f is strongly extensional and let 2 € cofib/(y) and z € £ibf (y) i.e., f(z) #y y
and f(x) =y y. By the extensionality of #y (Remark we get f(x) #y f(2), and as f is
strongly extensional, we conclude that x #x 2. Suppose next that cof ibg (][£ ib{; (y), for
every y € Y, and let =,z € X with f(z) #y f(2). In this case, we get x € £ib/(f(z)) and
z € cofib/(f(x)). Since cofibg(f(x))]] [[fibg(f(x)) and the corresponding embeddings into
X are given by the identity map-rule, we get x #x z.

(iii) If y =y 3’ and = € cofib/ (y), then f(z) #y y, and by the extensionality of #y, we get
f(z) #y ¢ ie., x € £fib/(y/). Since the functions 5§°ﬁb’X, EyC,Oﬁb’X, and cofib;y, are defined
through the identity map-rule, we get cofib/(X) € Fam(Y, X). Let f be a surjection. We
suppose first that cofib/ (X) € Set(Y, X). If =(y #y ¢'), we show that y =y 1/, by showing
that cofib/(y) =p(x) cofib/(y/). If # € cofib/(y), then f(z) #y y. By condition (Apy)
either ¥’ #y f(x) or ¥/ #y y. Since the latter contradicts our hypothesis =(y #y ¢'), we
conclude that ' #y f(z) i.e., z € cofib/(y’). Similarly we show that if z € cofibf(y/), then
x € cofib/(y). Hence, the functions between cofib/(y) and cofibf(y’) that are given by
the identity map-rule witness the equality cofib/(y) =p(x) cof ib/(y'). Suppose next that
the inequality #y is tight. Let y,y’ € Y and let functions ¢’ € F(cofib/(y), cofib/(y'))
and 1’ € F(cofib/(y'), cofib/(y)), such that (¢, h’): cofib/ (y) =p(x) cofib/ (y’). We show
that y =y y' by showing —(y #y y'). For that suppose y #y v/, and let z,2’ € X such that
f(z) =y yand f(2') =y y/'. By the extensionality of £y we get f(z) #y ¢/ i.e., x € cofibf (y/).



116 CHAPTER 4. FAMILIES OF SUBSETS

Since h/(z) € cofib/(y), and since by the commutativity of one of the above right inner
diagrams h'(z) =x z, we get € cofibf(y). Since f(z) #y v and y =y f(z), by the
extensionality of #y we get f(x) #y f(z), which leads to the required contradiction. O

If f is not a surjection, it is possible that fib/(y), fib/(y’) are not inhabited, and y #y ¥/'.
If f is not a surjection, like the function f: X — {0, 1,2}, defined by f(z) := 0, for every
x € X, then cofibf(1) = X = cofib/(2) and 1 # 2. Notice that it is not necessary that a
family of subsets is a family of fibers or a family of cofibers, as the moduli of embeddings of
the latter are given through the identity map-rule.

Definition 4.6.15. An I-family of sets A := (Ao, A1) is a family of contractible sets, if \o(7)
is contractible, for every i € I. A modulus of centres of contraction for A is a dependent
operation centre™: A, Ao(i), with centrel a centre of contraction for Ao(i), for every i € I.

In Proposition we saw that if (f,g): X =y, Y, the set £ib/(y) is contractible with
centre{; := g(y), for every y € Y i.e., the dependent operation centre/ is a modulus of centres

of contractions for the family fib/(X). Next follows a kind of inverse to Proposition

Proposition 4.6.16. Let the sets (X,=x,#x), (Y,=y,#y), and f: X =Y. If fib/(X) :=
(fibg, £fbX fib{) is a family of contractible subsets of X with centrefit (X); Aer fib/ (y)
a modulus of centres of contraction for £ib! (X), there is g € F(Y, X) with (f,9): X =y, Y.

Proof. Let the operation g: Y ~ X, defined by g(y) := centref® (X)(y) for every y € Y.
Since g(y) € fib/(y), we have that f(g(y)) =y y. Since g(y) is a centre of contraction for
fib/(y), we have that V,cx (f(x) =y y=1r=x g(y)) First we show that the operation g
is a function. For that, let y =y ¢/, and we show that g(y) =x ¢(y’). Since the map fib;y,
in Proposition is given by the identity map-rule, and since g(y') € fib/(y/), we get
g(y") € £ib/(y). Since g(y) is a centre of contraction for £ib/(y), we get g(y') =x g(y). It
remains to show that if x € X, then ¢g(f(z)) =x x. By the definition of g we have that
g(f(x)) = centrefibf(X)(f(x)). As x € £ibf (f(x)), we get x =x g(f(x)). O

4.7 Families of equivalence classes

In this section we extend results on sets of subsets to families of equivalence classes. Although
a family of equivalence classes is not, in general, a set of subsets, we can define functions on
them, if we use appropriate functions on their index-set.

Definition 4.7.1. If X is a set and Rx(x,2') is an extensional property on X x X that
satisfies the conditions of an equivalence relation, we call the pair (X, Rx) an equivalence
structure. If (Y,Sy) is an equivalence structure, a function f: X — Y is an equivalence
preserving function, or an (R, Sy)-function, if

vx,x’eX (R(IL‘, 1',) = S(f(l'), f(l‘/)))

If, for every x,a’ € X, the converse implication holds, we say that f is an (Rx, Sy )-embedding.
Let F(Rx, Sy) be the set of (Rx, Sy)-functiond’]

2By the extensionality of Sy the property of being an (Rx, Sy )-function is extensional on F(X,Y).
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Proposition 4.7.2. If (X, Rx) is an equivalence structure, let R(X) := (po, R™, p1), where
po: X ~ Vg is defined by po(z) :={y € X | Rx(y,x)}, for every x € X, and the dependent
operations R : A ex F(po(z), X), p1: A (@2)eD(xX) F(po(x), po(a')) are defined by

Ry:po(x) =X  y—y;  yEpola)
pr(z,2) = poar: po(z) = po(z’) Y=y Y€ pola).
Then R(X) € Fam(X, X), such that Vepex (po(x) =p(x) po(z') = R(x,2')).

Proof. By the extensionality of Rx the set pg(z) is a well-defined extensional subset of X.
If © =x 2’ and Rx(y,z), then by the extensionality of Rx we get Rx(y,z’), hence py, is
well-defined. Let (f,g): po(%) =p(x) po(z’)

If y € po(x) & Rx(y,x), then f(y) € po(2') = Rx(f(y),z'), and by the commutativity of
the corresponding above diagram we get f(y) =x y. Hence by the extensionality of Rx we
get Rx(y, ). Since Rx(y,z) implies Rx (z,y), by transitivity we get Rx(x, /). O

Corollary 4.7.3. Let Eq1(X) := (eql{,EY,eqli") be the X-family of subsets of X induced
by the equivalence relation =x i.e., eql (z) := {y € X |y =x z}. Then Eq1(X) € Set(X, X).

Proof. 1t follows immediately from Proposition [4.7.2 O
Proposition 4.7.4. If (X, Rx) is an equivalence structure, and f: X —Y is an (Rx,=y)-

function there is a unique pof : poX(X) — Y such that the following diagram commutes

X *: Y.
PSJ /,”P/of
poX ()/( )
Conversely, if f: X =Y and f*: poX(X) =Y such that the above diagram commutes, then
f is an (Rx,=y)-function and f* is equal to the function from poX(X) to Y generated by f.

Proposition 4.7.5. If (X, Rx) is an equivalence structure, and f* : poX(X) — Y, there is a
unique f: X —'Y, which is an (Rx,=y)-function, such that the following diagram commutes
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Moreover, f* is equal to the function from poX(X) to Y generated by f.

Proposition 4.7.6. Let (X, Rx) and (Y,Sy) be equivalence structures and f: X —'Y an
(Rx,Sy)-function. If R(X) and S(Y) are the corresponding families of equivalence classes,
there is a unique function f*: poX(X) — ooY (Y) such that the following diagram commutes

X Y
pSJ JUS
poX(X) - *f*** > O'oY(Y)

If f: X =Y and f*: poX(X) — oY (Y) such that the above diagram commutes, then f is
an (Rx, Sy)-function and f* is equal to the function from poX(X) to oY (Y) generated by f.

f
—

Proof. The assignment routinef* from poX (X) to oY (Y') defined by f*(po(x)) := oo(f(x)),
for every po(z) € poX (X) is extensional, since for every x,2’ € X we have that po(z) =p(x)
po(a) = R (2,2') = Sy (f(z), (), hence oo(f(x)) =p(y) oo(f()) & F*(po(x)) =pv)
f*(po(2')). The uniqueness of f* is immediate. For the converse, if z,2’ € X, then by
the transitivity of =p(y) we have that Rx(z,z') = po(z) =p(x) po(z) = f*(po(x)) =pr)
f*(po(2")) = oo(f(x)) =pyy oo(f(2')), hence Sy (f(z), f(2')). The proof that f* is equal to
the function from pyX (X) to ooY (Y') generated by f is immediate. O

The previous is the constructive analogue to a standard classical fact (see [45], p. 17). A
function f*: poX(X) — opY (Y) does not generate a function from X to Y.

Proposition 4.7.7. Let (X, Rx) and (Y, Sy) be equivalence structures and R(X),S(Y) the
families of their equivalence classes. If f* : poX(X) — oY (Y'), there is f: X ~Y, which is
(Rx, Sy )-preserving and (=x, Sy )-preserving, such that the following diagram commutes

Proof. If x € X, then f*(po(z)) := oo(y), for some y € Y. We define the routine f(z) :=y
i.e., the output of f* determines the output of f. Since R(z,2") = po(x) =p(x) po(z') =
f*(po(x)) =pvy [*(po(2")), hence oo(y) =p(y) oo(y') and Sy (y,y’), we get Sy (f(z), f(z')),
and the operation f is (Rx, Sy )-preserving. Although we cannot show that f is a function, we
can show that it is (=, S)-preserving, since z =x 2’ = Rx(z,2’), and we work as above. [

4.8 Families of partial functions

Definition 4.8.1. Let X,Y and I be sets. A family of partial functions from X toY indexed
by I, or an I-family of partial functions from X to Y, is a triplet A(X,Y) := (Ao, EX, A, PY),
where A(X) := (Ao, EX, A1) € Fam(I, X) and PY : \;c; F(Mo(0),Y) with PY (i) :== PY, for

every i € I, such that, for every (i,7) € D(I), the following inner diagrams commute
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We call PY a modulus of partial functions for \g, and A(X) the I-family of domains of
AX,Y). If M(X,Y) := (o, 2%, 11, Q) and N(X,Y) := (vo, HX,v1,RY) are I-families of
partial functions from X to Y, a family of partial functions-map ¥: A(X,Y) = M(X,Y)
from A(X,Y) to M(X,Y) is a dependent operation V: \,c;F(Xo(), po(i)), where ¥(i) := ¥;,

for every i € I, such that, for every i € I, the following inner diagrams commute

<—>uo

\/

The totality Map;(A(X,Y), M(X,Y)) of the family of partial functions-maps from A(X,Y)
to M(X,Y) is equipped with the pointwise equality. If ¥: A(X,Y) = M(X,Y) and if
E: M(X,Y)= N(X,Y), the composition family of partial functions-map Zo ¥: A(X,Y) =
N(X,Y) is defined by (E o0 ¥)(i) :=Z; 0 ¥,

for every i € I. The identity family of partial functions-map Idyx,y): AX,Y) = A(X,Y)
and the equality on the totality Fam(I, X,Y") of I-families of partial functions from X to'Y are
defined as in Definition [3.1.3

Clearly, if A(X,Y) € Fam(I, X, Y) and (i, 5) € D(I), then (Aij, \ji): P} =500y P} -
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Proposition 4.8.2. Let A(X,Y) := (M, EX, M\, PY) € Fan(I, X,Y) and let M(Y,Z) :=
(o, 2Y, u1, Q%) € Fam(1,Y, Z). Their composition (M o A)(X, Z) is defined by

(M o A)(X,Z) == (10 © M0, 2¥ 0 EX, 1 © M, (Q 0 P)?)

(o @ Xo)(i) = (PV) " (uoi); i€,

(2" 0 &%), =5 o)1, ) (0 © X)) = X,

P¥Y " Huo )
(1 o Mg (PY) o) = (PY) " (mol5)),
(11 © AD)ij(u,w) = (A (u), piy(w));  (w,w) € (PY) ™ (no(d)),
(QoP¥? =07 P, iel
Then M(Y,Z) € Fan(I, X, Z).
Proof. By Definition we have that
(PY) " (p0(0)) = {(u,w) € Mo(d) x po(i) | PY (u) =y 2} (w)},
(P~ = {(W,w) € Mo(j) x po(j) | P} (W) =y Z) (w*)}.

If (i, 5) € D(I), then PY ( () =y PY(u) =y ZY(w) =y Z}”(uzj(w)),

VORIt oy

\Mﬂ
Y

07

j

hence the operation (f11 o A1); is well-defined, and it is immediate to show that it is a function.
For the commutativity of the following inner diagrams we have that

k
=
b-<

(11 © AM)ij
(o © o) (i) (1o @ Xo)(J)

(11 © M)ji

(2Y 0 £X) (2 o £X);

X

(Q o P)? (QoP)?
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(2 0 &%) ((m o M)y(u,w) = (27 0 %), (Nij(u), pij(w))

N
= [‘%X © 6<£]~(YJ>)1<MO<J'))] ()‘ij (“),Mij(w))

P Huo()

= [EZX o el ] (u,w)

= (ZY o) 5X)i(u,w),

(Qo P)J-Z()\ij(U)vuij(W)) = (97 o P}) (Nij(w), pij(w))
= QF (uij(w))
=7 O (w)

(QiZ o} Pfiy)(u, w)

=(Qa P)iz(u,w).

For the other two inner diagrams we proceed similarly. O

The basic properties of the composition of partial functions extend to equalities for the
corresponding families of partial functions. E.g., we get

N(ZW) o [M(Y,Z) o MX,Y)| =pani xw) [N(Z,W) o M(Y,Z)] o A(X,Y).

Suppose that A(X,Y) := (Ao, EX, A1, PY) € Fan(I, X,Y) and M(X,Y) := (o, 2%, 1, Q) €
Fam(/, X,Y). We can define in the expected way the following families of partial functions:

(A ml M)(X7Y> = ()\0 ml :u’Oagx ml ZX-; )\1 ml M1, (7) ml Q)Y)7

(A mT M)(Xa Y) = ()\0 mr ,u(]agx mr ZX7)\1 mr Ui, (73 mr Q)Y),
(AUM)(X,Y) = (Ao Upo, EXUZE M U, (PUQY).

The basic properties of the intersections and union of partial functions extend to equalities for
the corresponding families of partial functions. E.g., we get

(AUM)(X,Y) =ran(r,x,y) (M UA)(X,Y).

Various notions and results on families of subsets extend to families of partial functions.

4.9 Families of complemented subsets

Definition 4.9.1. Let the sets (X,=x,#x) and (I,=r1). A family of complemented subsets
of X indexed by I, or an I-family of complemented subsets of X, is a structure A(X) :=
(/\(1),51’X,/\1,)\8,80’X,)\?), such that A*(X) := (/\(l),SI’X,/\%) € Fan(l, X) and A%(X) :=
()\S,EO’X, )x(l)) € Fam([, X) i.e., for every (i,5) € D(I), the following inner diagrams commute
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such that

Vier(Ro(i) == (A6(2), A}(0)) € PI(x))
If M(X) := (u(l),Zl’X,/,L%,/LO,ZO’X,ul), N((X) = (VO,/HI’X,I/ll,Vg,/HO’X,I/?) are I-families
of complemented subsets of X, a family of complemented subsets-map ¥: A(X) = M (X)
from A(X) to M(X) is a pair ¥ := (U1, ¥0), where ¥1: AL(X) = MY(X) and ¥°: A%(X) =
MOY(X) i.e., for every i € I, the following inner diagrams commute

The totality Map;(A(X), M (X)) of the family of complemented subsets-maps from A(X) to
M (X) is equipped with the pointwise equality. If ¥: A(X) = M(X) and if E: M(X) =
N(X), the composition family of complemented subsets-map 2o W¥: A(X) = N(X) is defined
by E:= ((Eo V), (E0 V)Y, where (Eo W) :=E'o U and (E0 ¥)? :=E%0 VO, Moreover,
Ida(x) := (Idar(xy, Idpo(xy), and the totality Fam(I, X) of families of complemented subsets
of X over I is equipped with the equality A(X) = x) M (X) if and only if

Fwetap, (A(X), M (X)) Izemap, (M(x),Ax) (T 0 E = Ildpr(x) & Eo ¥ =1dp(x)).

As in the case of Fam(I, X'), we see no reason not to consider Fam(7, X) a set. Clearly, the ob-
viously defined set PrfEql,(A(X), M (X)) is a subsingleton. A family A(X) € Fam(I, X) is in
Set(l, X), if Ao(i) =p11(x) Ao(j) = i =1 j, for every i,j € I. Trivially, if A(X) € set(I, X),
or if A°%X) € Set(I,X), then A(X) € Set(l,X). Clearly, if A(X) € Set(I,X) and
M(X) € Fam(I,X) such that M(X) =pnux) A(X), then M(X) € Set(I,X). The
operations between complemented subsets induce new families of complemented subsets
and family- maps between them. If A(X) := (A}, €% A1, N0, E9%,A)) and M(X) =
(uo, Z8X ol 8, 20X u(l)) € Fam(I, X), let the following new elements of Fam(I, X):

(—A)(X) == (A, %% A0, NG, €% AD),
(AN M)(X) = (A N g, EF NV Z8E 0 0 g, AU e, E9%F U Z0% 0 U ),
(AUM)(X) == (Mg Upg, EMN U ZV N U pg, A§ Nopd, 9% n 295 00 nd),
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(A = M)(X) := [AN (=M)|(X).

If NY) = (), HYY v}, 00, HOY 1)) € Fam(1,Y) and f: X — Y, then using Proposi-
tion [4.1.9 we define

FONX) = (00 T ) D) £ ) T (M) ) € Fan(T, X),
FAYY) = (£ 0. F(EM) T FOD, SN, £(€9%) 7. F(N)) € Fam(1,Y).
Properties between complemented subsets induce equalities between their families e.g.,
[N UK (X) =saarx) [FHN) (V) U £ LE) (V)] (X).
Using definitions from section [.1] if ®: A(X) = M(X), let —®: (—A)(X) = (—-M)(X)
—® = (d%, 0'); @ := (0! 0.
f¥: P(X)=Q(X), then N¥: (ANP)(X)= (MnNR)(X), where
SN = (P nwh oY),
and U¥: (AUP)(X)= (MUR)(X), where
dUP = (Ul e'nY),
and ® —¥: (A—P)(X)= (M - R)(X), where ® — ¥ :=® N (-P). If S(Y) € Fam(J,Y),
(AXS) (X xY) == (A§xsg, EVXxSMY Al xst, M) x 80, E0X xSOY A xs0) € Fam(Ix.J, X xY),
(Ao % 80)(4, J) = Ao(i) x So(i).
FE:SY)=T(Y),then ®xE: (AXx S)( X xY)= (M xT)(X xY), where
P x E:= (¢! x =80 x 20).
Due to the above families of complemented subsets the following proposition is well-formulated.

Proposition 4.9.2. Let A(X) := ()\(1],51’)(, )\%,)\B,SO’X,)\?) € Fam(I, X), ip € I, and let

Ut = (UNON80) & N = (60U 80)
iel icl iel iel iel icl

D) User 20(2); Nier Ao(i) € PI(X).

ii) - Uie[ )‘O(i) =pllx) ﬁiez ( - )‘O(i))-

iii) —Mier Ao(?) =pitx, Uier (= A0(9))-

iv) If i € I, then Ao(i) € U, s Ao(i).

v) If A C Xo(i), for some i € I, then A CJ;cp Ao(i).

vi) If Xo(i) € A, for every i € I, then |J;c; Ao(i) C A.

vil) If Xo(i) 2 A, for everyi € I, then (), Ao(i) 2 A.

viii) If M(X) == (b, 2%, pf, pd, 2%, 19) € Fam(1,Y) and f: X — Y, then

P (Umo®) =i Ur o) & 17 (o)) =ity (17 (o).

el el i€l i€l

e s T T T T s
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Proof. (i) We show the first membership only. If (i,z) € (J;c; )\6(1') and ® € (;; )\8(1'), then
e (i, 2) == EX(x) and eV (@) = EX(@4,). Since EX(®;) =x EX(D4y) and AY(H)][N(4),
we have that &% (z) #x &X(®;), and by the extensionality of #x we get &X () #x S%(CI)Z-O).
(i) and (iii) are straightforward to show. For (iv) we need to show that A}(¢) C [J;c; Ab(é) and
Nier A0(i) € A§(i), which follow from Propositions [4.2.8(ii) and [4.3.6{ii), respectively. Case
(v) follows from (iv) and the transitivity of A C B.

(vi) If AJ(i) C A!, for every i € I, then [J,c; A§(i) € A', and if A° C X§(i), for every i € I,
then A% C (N;c; AO(i). Case (vii) is shown similarly.

(viii) We show the first equality only. By Propositions and we have that

1 ( U uo(i>) = <f‘1 < U ué(i)> 7 ( N u8(i)>>

iel il il

—itee (U774 60,177 680

iel iel
=U ()5 )
el
= (mo)). -

el

Let A(X), M(X)and ¥: A(X) = M(X). Since ¥': A1(X) = M(X)and ¥°: A°(X) =
MPO(X), the following maps between complemented subsets (see Definition [2.8.2)) are defined

U= (U N): Jre6) = [Jroli),

i€l el
@ :=(2%J"): () Xoli) = () #oli), where
el el
Yot Ur@ = UJm) & (20 (A6 = [ o)
el el el el

are defined according to Proposition |4.2.8|(ii) and [4.3.6(ii).

Proposition 4.9.3. Let A € Pl(X),B ¢ PI(Y), A(X) € Fam(I,X) and M(Y) €
Fam(J,Y'). The following properties hold:

A X U po(J) =pii(x xv) U(A X to(4)),

jeJ jeJ
A x () Bold) =11y [ (A X ko),
jeJ JjeJ
(UmeszmawmﬂmeBx
el el

(ﬂ)\o(i)> x B =pii(xxy) [ |(Ro(i) x B).

i€l i€l
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Proof. We show the first equality, and for the rest we proceed similarly. By the equalities
shown after Propositions we have that

ax Ut = (a0 x Y010 [x ¢ ( 180)])

jedJ jed jed

gy (Ut % b (47 x )0 (00 < 8 ) )

jeJ jedJ
ey ( <), [ (40 1)U u8<j>>})
je je

= J A x po(5)). =

jeJ
4.10 Direct families of subsets

Definition 4.10.1. Let (I,<) be a directed set, and X € Vo. A (covariant) direct family
of subsets of X indexed by I, or an (I,<)-family of subsets of X, is a triplet AS(X
(Ao, EX, )\f), where Ao : I ~ Vg, EX is a modulus of embeddings for \g (see Definition )

A A FQo@), (), ATGLG) = A5, (6,4) € DI(D),
(i,5)€D(I)
a modulus of covariant transport maps for Ao, such that \i; :=idy), for every i € I, and, for

every (i,7) € D=(I), the following left diagram commutes

)ﬁ /\?
<—) Ao(J

<—> Ao
A contravariant (I,3=)-family of subsets of X is defined dually i.e.,
)‘;; : A F(AO( ) )‘0( )) )‘T(Za]) = )‘;7 (Zvj) € D$(1)7

(1,5)e=<(I)

is a modulus of contravariant transport maps for \o, such that for every (i,7) € DS(I), the
above right diagram commutes.

Proposition 4.10.2. Let X € Vo, (I,<71) a directed set, \g : I ~ Vg, EX a modulus of
embeddings for Ao, and A1 a modulus of transport maps for Ag. The following are equivalent.
(i) A>( ) = (Ao, EX,AT) ds an (I, <1)-family of subsets of X.

(i) AS := (Mg, \1) € Fam(I, <) and EX: AS = CX, where CS% is the constant (I, <7)-

famzly X (see Definition|3.8.1)).
Proof. We proceed exactly as in the proof of Proposition O
-

If A< := (Ao, EX,)T) is an (I, <7)-family of subsets of X, and if i <; j, then /\< Ao(i)

Xo(j) i-e., AT is a modulus of subset-witnesses for ).
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Definition 4.10.3. If AS(X) := (Ao, EX,A])and M~ (X) == (o, 2%, u7) are (I, X1)-families
of subsets of X, a direct family of subsets-map V: AS(X) = M~(X) from AS(X) to M~(X)
is a family of subsets-map ®: A(X) = M(X). Their set Map; _(AS(X), M¥(X)) is the
set Map;(A(X), M(X)). The composition of direct family of subsets-maps, and the totality
Fam(/, =<7, X) of (I,=<1)-families of subsets of X are defined as the composition of family
of subsets-maps, and as the totality Fam(I, X), respectively. The totality Fam(I, =, X) of
contravariant direct families of subsets of X over (I,ltr) and the corresponding family-maps
are defined similarly.

Proposition 4.10.4. Let AS(X) := (Ao, EX,AT), M(X) = (o, 2%, 17) € Fam(I, <1, X).

(i) If : AS(X) = M~(X), then ¥: AS = M*.

(11) [f\IJ A—“<(X) = M-“<(X) and ®: A_“<(X) = M_‘<(X), then ® :Map(1< )(A<(X) M<(X)) v,
ST ’

Proof. We proceed exactly as in the proof of Proposition O

The interior union and intersection of AS(X)(A7(M)), are defined as for an I-family of
subsets A(X). As in the case of ), .; Ao(7) and [J;c; Ao(7), the equality of |J;c; Ao(4) does not
imply the externally defined equality of Zle 7 Mo(7), only the converse is true i.e.,

(i,l’) :zﬁ Ao (D) (jvy) = (Zax) “Uier 2o () (.77 y)v

=\ ())\ (y), then by the
) =& (VW) = &(v)-

as, if there is some k € I such that i <; k,j <1 k, and A} ()
equalities & = & o )‘;k and & =& 0 )‘;k we get &(x) = & (A;(x

4.11 Notes

Note 4.11.1. The definition of a family of subsets given by Bishop in [9], p. 65, was the
rough description we gave at the beginning of this chapter. Our definition highlights the
witnessing data of the rough description, and it is in complete analogy to Richman’s definition
of a set-indexed family of sets, included later by Bishop and Bridges in [19], p. 78. In [19],
p. 80, and in [9], p. 65, an alternative definition of a family of subsets of X indexed by I is
given, as a subset A of X x I. The fact that (x,7) € A can be interpreted as z € A\g(i) This
definition though, which was never used by Bishop, does not reveal the witnessing data for
the equality A\o(7) =p(x) Ao(j), if i =1 j, and it is not possible to connect with the notion of
a family of sets. The definition of a set of subsets is given by Bishop in [9], p. 65, and it is
repeated in [19], p. 69. The example of the set of detachable subsets of a set is given in [9],
p. 65, where the term free subsets is used instead, and it is repeated in [19], p. 70.

Note 4.11.2. There are many examples of families of subsets in the literature of Bishop-style
constructive mathematics. In topology a neighborhood space (in [19], p. 75, the reference to
the indices is omitted for simplicity) is a pair (X, N), where X is a set and N is a family v of
subsets of X indexed by some set I such that

VijerVeex (a: ev(i@)nv(j) = E!kel(a: ev(k) Cv(i)N V(j)))

The covering property is not mentioned there. If (X, F') is a Bishop space (see [19], chapter 3,
and [88]), the neighborhood structure Ny on X generated by the Bishop topology F' on X is
the family U of subsets of X indexed by F' that assigns to every element f € F' the set

U(f) ={z e X | f(z) > 0}.
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If f =g, then U(f) = U(g), while the converse is not true (take e.g., f = idg and g = 2idg,
where X = R and F' = Bic(R)). In real analysis sequences of bounded intervals of R are
considered in [I9] Problem 1, p. 292. In the theory of normed linear spaces a sequence of
bounded, located, open, convex sets is constructed in the proof of the separation theorem
(see [19], pp. 336-340). A family N/, for every ¢ > 0, of subsets of the unit sphere of the
dual space X* of a separable normed space X occurs in the proof of Theorem (6.8) in [19],
p- 354. In constructive algebra families of ideals and families of submodules of an R-module
are studied (see [76], p. 44, and p. 53, respectively).

Note 4.11.3. In [19], p. 69, the interior union (J;c; Ao(7) is defined as the totality

J2o(@) == {z € X | Fies(z € o(4)) }-

el
Using our notation though, in [I9], pp. 69-70 it is written that

... to construct an element u of (J;c; Ao(i) we first construct an element 7 of I,
and then construct an element x of Ag(7).

Clearly, what is meant by the totality (J;c; Ao(7) is what is written in Definition The
intersection of an I-family A of subsets of X is roughly defined in [9], p. 70, as

ﬂ Mo(i) == {z € X | Vier(z € M)},

i€l

while the more precise definition that follows this simplified notation is different, and it is
based on the undefined in [9] and [I9] notion of a dependent operation over A, hence it is not
that precise. Moreover, the definition of [T7¢; Ao(4), given in [19], p. 70, as the set

{f 1= (JMol@) | Vier (f(i) € Ao@))}

i€l
is not compatible with the precise definition of | J;c; Ao(7), and it is not included in [9].

Note 4.11.4. One could have defined an I-family of disjoint subsets of X with respect to
given inequalities #; and #x (Definition 4.2.1)) by

Vijer(i #1 j = —(Mo(i) 0 Mo(4))), or
Vijer(Mo(i) § Mo(j) = i =1 j).

The first definition is negativistic, while the second, which avoids #, is too strong.

Note 4.11.5. The classical proof of the extension theorem of coverings (Theorem is
based on the definition of the interior union as the set (J;c; Ao(i) := {@ € X | Jics(z € Mo(4)) }.
As a result, the required function f: X — Y is defined as follows: If & € (J;c; Ao(i), there
is ¢ € I such that z € A\g(7). Then, one defines f(x) = fi(x), and shows that the value f(z)
does not depend on the choice of i (see [45], p. 13). The use of choice is avoided in our proof,
because of the embedding e: X — (J;c; Ao(7). Theorem is related to the notion of a sheaf
of sets. The sheaf-property added to the notion of a presheaf is exactly the main condition of
Theorem {4.2.6], where the covering of X is an open covering i.e., a covering of open subsets
(see [53]).
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Note 4.11.6. If P(I) is a partition of I, such that pg(k) # 0, for every k € K, and if

T:= [] ro(),

keK

then the converse inclusion to the semi-distributivity of [ over |J (Proposition holds
classically, and the distributivity of (] over | J holds classically. The converse inclusion to the
semi-distributivity of [ over J is equivalent to the axiom of choice (see [45], p. 25). It is
expected that this converse inclusion is constructively provable only if non-trivial data are
added to the hypotheses.

Note 4.11.7. In the hypothesis of Proposition we need to suppose the existence of
a modulus of centres of contraction to avoid choice in the definition of function g. Proposi-
tion [4.6.16] is our translation of Theorem 4.4.3 of book-HoTT into BST. In the formulation of
Theorem 4.4.3 of [124] no modulus of centres of contraction is mentioned, as the type-theoretic
axiom of choice is provable in MLTT.

Note 4.11.8. As an equivalence structure (X, Rx) is the analogue to the set (X,=x), one
can equip (X, Ry) with an extensional relation Ix on X x Y satisfying the properties of an
inequality. In this way the structure (X, Rx, Ix) becomes the equivalence relation-analogue
to the set (X,=x,#x).

Note 4.11.9. Examples of families of partial functions are found in the predicative recon-
struction of the Bishop-Cheng measure theory in [129] and [102].

Note 4.11.10. There are many examples of families of complemented subsets in the literature
of Bishop-style constructive mathematics. In the theory of normed linear spaces, sequences
of complemented subsets occur in the formulation of the constructive version of Lebesgue’s
decomposition of measures (see [19], pp. 329-331), and in the formulation of the constructive
Radon-Nikodym theorem (see [19], pp. 333-334). In the integration theory of [19], the
sequences of integrable sets in an integrable space X (see [19], pp. 234-235) are families of
subsets of X indexed by N. Sequences of measurable sets are considered in [19], pp. 269-271.
Moreover, a measure space (see [19], p. 282) is defined as a triplet (X, M, ), where M is a
set of complemented sets in an inhabited set X. In the definition of complete measure space
in [19], pp. 288-289, the notion of a sequence of elements of M is also used.

Note 4.11.11. In the measure theory developed in [9] certain families § (and subfamilies 9
of §) of complemented subsets of some set X are considered in the definition of a measure
space (see [9], p. 183). For the definition of a measure space found in [9], p. 183, Myhill writes
in [80], p. 351, the following:

The only one of the classical set-existence axioms (not counting choice) which is
missingﬁ is power set. Certainly there is no hint of this axiom in Bishop’s book
(except for § on p. 183, surely a sli;ﬁ), or for that matter anywhere in Brouwer’s
writings prior to 1974.

In our view, Myhill is wrong to believe first, that the use of family of § requires the powerset
axiom, and, second, that its use from Bishop is surely a slip. The notion of family of subsets

3He means from his system CST.
4Our emphasis.
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does not imply the use of the powerset as a set, since a family of subsets is a certain assignment
routine from [ to Vy that behaves like a function, without being one. Moreover, it is not a
slip, as it is repeatedly used by Bishop in the new measure theory, also found in [19], and by
practicioners of Bishop-style constructive mathematics, like Bridges and Richman. It is not a
coincidence that the notion of family of subsets is not a fundamental function-like object in
Myhill’s system CST.

Note 4.11.12. In [9], p. 68, the following properties of complemented subsets are mentioned

(AU—-A)N (A u) )\o(i)> =l (AU—A)N [ﬁ (AU )\o(i))] ,

el el

(AN—-A)U (A aly A0(¢)> =i (AN-A)U {U (AN )\o(i))] .

i€l iel

These equalities are the constructive analogue of the classical properties

AU ﬂ )\O(Z) —pll(x) ﬂ (A U )‘O(Z))’

iel el
AN U Ao(7) =pll(x) U (A N )\0(2))
iel el

Note 4.11.13. In [I8], pp. 16-17, and in [19], p. 73, the join and meet of a countable family
of complemented subsets are defined by

\/ Aofn) = (| N () 0a80m)] [f_jl W) f_'ﬁ B,

n=1 n=1
51 Ao(n) := (ﬁ Ao(n), {ﬁ (Ao (n) UAg(n))} N Lf_jl Ag(n)D,

These definitions can be generalised to arbitrary families of complemented subsets and
properties similar to the ones shown for (J;c; Ao(4) and ();c; Ao(é) hold.

Note 4.11.14. Set-relevant families of subsets over some set I, and set-relevant direct families
of subsets over some directed set (I,=<7) can be studied in a way similar to set-relevant
families of sets over I and set-relevant direct families of sets over (I, <) in section As a
consequence, a theory of generalised direct spectra of subspaces can be developed. Families
of families of subsets of X can also be studied, in analogy to families of families of sets (see
Section . As Fam(/, X) is in Vp, the families of families of subsets of X are defined in V.
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Chapter 5

Proof-relevance in BISH

A form of proof-relevance is added to BISH through BST, which is both separate from its
standard mathematical part, and also expressible in it. The distinctive feature of MLTT is its
proof-relevance, the fact that proof-objects are considered as “first-class citizens”. The various
kinds of moduli, like the moduli of uniform continuity, of convergence etc., which witness that
a function is uniformly continuous, a sequence converges etc., form a trace of proof-relevance
in BISH. We make explicit the algorithmic content of several constructive proofs by defining
a BHK-interpretation of certain formulas of BISH within BST. We define the notion of a set
with a proof-relevant equality and the notion of a Martin-Lof set, which translates the first
level of the identity type of intensional MLTT. As a result, notions and facts from homotopy
type theory are translated in BISH.

5.1 On the BHK-interpretation of BISH within BST

In the next naive definition of the BHK-interpretation of BISH the notion of proof is not
understood in the proof-theoretic sense. Although we agree with Streicher in [122] that the
term witness is better, we use the symbol Prf(¢) for traditional reasons. We could have used
the symbol Evd(¢), or Wtn(¢) instead. We choose not to reduce the rule for ¢\ 1) to the rest
ones, as for example is done in [5], p. 156. The rule for —¢ is usually reduced to the rule for
implication.

Definition 5.1.1 (Naive BHK-interpretation of BISH). Let ¢, be formulas in BISH, such
that it is understood what it means “q is a proof (or witness, or evidence) of ¢” and “r is a

proof of Y.

(N) A proof of ¢ N is a pair (po,p1) such that py is a proof of ¢ and py is a proof of 1.
(=) A proof of ¢ = 1 is a rule r that associates to any proof p of ¢ a proof r(p) of ¥.

(V) A proof of ¢V 1 is a pair (i,p;), where if i := 0, then py is a proof of ¢, and if i := 1, then
p1 18 a proof of .

(L) There is no proof of L.

For the next two rules let ¢(x) be a formula on a set X, such that it is understood what it
means “q is a proof of ¢(x)”, for every x € X.

(V) A proof of Vyexd(x) is a rule R that associates to any given x € X a proof R, of ¢(x).
(3) A proof of IpexP(x) is a pair (x,q), where x € X and q is a proof of ¢(x).
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The notions of rule in the rules (=) and (V) are unclear. The nature of a proof or a witness
is also unclear. The interpretation of atomic formulas is also not included (see Note [5.7.1]). A
formal version of the above naive BHK-interpretation of BISH is a corresponding realisability
interpretation (see Note [5.7.2]).

Following Feferman [49], Beeson declared in [5], p. 158, that “the fundamental relation
in constructive set theory is not membership but membership-with-evidence” (MwE). All
examples given by Feferman are certain extensional subsets of some set X. In MLTT this kind
of (MwE) is captured by the type > ., P(x), where P: A — U is a family of types over A: U.
Here we explain how we can talk about (MwE) for extensional subsets of some set X within
BST, showing that BISH, as MLTT, is capable of expressing (MwE). As all known to us such
examples are extensional subsets, we do not consider the notion of a completely presented
set X*, for every set X, as it is done in the formal systems Tj; of Feferman in [49], and in
Beeson’s system found in [5]. In the system of [5] proof-relevance is even more stressed, as
to any formula ¢ a formula Prf,(p) is associated by a certain rule, expressing that “p proves
formula ¢”. The resulting formal set theory though, is, in our opinion, not attractive. The
problem of the totality of proofs being a definite preset, hence the problem of quantifying over
it (see [5], p. 177) is solved by our “internal” treatment of MwE within BST. Consequently,
questionable principles, like Beeson’s “(MwE) is self-evident” (see [5], p. 159), are avoided.

Proposition 5.1.2 (Membership-with-Evidence I (MwE-I)). Let X,Y be sets, and let P(x)
be a property on X of the form

P(x) = ElpEY(Q(xvp))y

where Q(x,p) is an extensional property on X XY i.e., [a: =x 2 &p=yp & Q(az,p)] =
Q. p), for every x,2’ € X and every p,p’ € Y. Let PrfMembéD : X ~ Vq, defined by

PrfMemb) (z) := {p € Y | Q(z,p)},

for every x € X, and let PrfMemb! : A2)en(x) F(PrfMemb (z), PrfMemb} (2')), where
PrfMemb! , := PrfMemb! (z,2’) : PrfMembl (z) — PrfMembl (z') is defined by the identity
map-rule PriMemb’ ,(p) := p, for every p € PrfMemb) (z) and every (z,2') € D(X).

(i) The property P(x) is extensional.

(ii) The pair PrfMemb” := (PrfMemb)’, PrfMemb! ) € Fam(X).

Proof. (i) Let x =x 2’ and p € Y such that Q(z,p). Since p =y p, by the extensionality of Q
we get Q(z’,p), and hence P(z').

(ii) First we show that the dependent operation PrfMemb! is well-defined. If z =x 2’ and
p € PriMembl (z) i.e., Q(x, p), by the extensionality of Q we get Q(z',p). Clearly, the operation
PrfMembfx, is a function. As PrfMembfx, is given by the identity map- rule, the properties of
a family of sets for Prfl"[emb{D are trivially satisfied. O

Actually, PrfMemb” can be seen as a family of subsets of Y over X, but now we want to
work externally, and not internally. For the previous result it suffices to suppose that @ is X-
extensional i.e., [z =x 2’ & Q(z,p)] = Q(2,p), for every z,2’ € X and every p € Y. Notice
that the extensionality of P alone does not imply neither the X-extensionality of @), nor the
extensionality of (), and it is not enough to define a function from PrfMemby () to PrfMembl’ (z').
If Xp is the extensional subset of X generated by P, we write p : z € Xp :& Q(z,p). The
following obvious generalisation of (MwE-I) is shown similarly.
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Proposition 5.1.3 (Membership-with-Evidence II (MwE-II)). Let X,Y, Z be sets, and let
R(x) be a property on X of the form

R(z) ¢ Fpey ez (Q(w‘,p, Q))7

where Q(x,p,q) is an extensional property on X XY x Z i.e., [:C =x 2 &p=yp & q=yz
¢ & Q(z,p,q)] = Q@,p',q), for every x,2’ € X, p,p’ € Y, and every q,¢' € Y. Let
PrfMemb(I';z : X ~ Vg, defined by the rule

PriMembl(z) := {(p,q) € Y x Z | Q(z,p,q)},

for every x € X, and let PrfMembl : A (@2)eD(x) F(PrfMemb{(z), PrfMemb(z’)), where
PrfMemb’, := PriMembl(x, z’) : PrMembl’(z) — PrfMembl(z’,

PriMemb?, (p,q) := (p,q);  (p,q) € PriMembli(z), (z,2') € D(X).
(i) The property R(x) is extensional.
(ii) The pair PrfMemb” := (PrfMemb{!, PrfMemb!’) € Fam(X).

Again, PrfMemb’ can be seen as a family of subsets of Y over X. If Xp is the extensional
subset of X generated by R, we write

(p7Q) rx € Xg & Q(xapa Q)

Clearly, the schema MwE-II can be generalised to a property S(z) on X of the form

S(ﬁ) = E|p1€X1 s ElpnGXn (T($,p1, s 7pn))7

for some extensional property T'(pi,...,pn) on X X...x X,. The following scheme of defining
functions on extensional subsets of sets given by existential formulas is immediate to prove.

Proposition 5.1.4. Let X,Y, X" Y' be sets, and let P(x) and P(x') properties on X and X',
respectively, of the form

P(‘T) = E|]7€Y (Q(l‘,p)) & P/(xl) = EIp’GY’ (Ql(xlvp/))a

where Q(z,p) and Q' (2',p') are extensional properties on X XY, and on X' X Y', respectively.
(i) Let f: X ~ X' and ®f: A\,cx ApEPrfMemb(l)D(x) PriMemb) (f(x)). Then the operation
fep: Xp ~ X'pi, defined by the rule Xp > = — f(x) € X'pr, is well-defined. If f is
a function, then fpp: is a function.

(i) Let g: X ~ X' and ®4: A\, cx PriMemb)” (g(x)). Then the operation gpr: X ~» X'pr,
defined by the rule X > x — g(x) € X'pr, is well-defined. If g is a function, then gp: is a
function.

The above results MwE-I and MwE-II are useful, when a mathematical concept is defined
as a property on a given set, and not as an element of the set together with some extra data.
E.g., in [19], p. 38, and in [9], p. 34, a function f : [a,b] — R is called continuous, if there is a
function wy: RT — RT, where R™ is the set of positive real numbers, such that

Ve 0¥ yela) (17 — Yl S wp(e) = [f(2) = f(y)| <€) v wy: Cont(f).



134 CHAPTER 5. PROOF-RELEVANCE IN BISH

It is also mentioned that the function w, the so-called modulus of (uniform) continuity of f is
“an indispensable part of the definition of a continuous function”. The same concept can be
defined though, through a property on the set F([a, b]), given by an existential formula i.e.,

Cont(f) & waeF(R+’R+) (wy: Cont(f)).

It is this kind of definition of a mathematical notion that facilitates the definition of a set of
witnesses of some membership of an extensional subset of a set.

Example 5.1.5 (Convergent sequences at z € R). Let X := F(N,R), Y := F(N* /NT). If
x € R, let, for every (x,)nen € F(N,R)

COIle(((L‘n)neN) = HCEF(N+,N+)(C: Tn L> :L‘)v

n 1
C:xp— 1 Vk€N+Vn2(;(k) <|-'L'n - :L“ < ]ﬁ) .

If C: z, —, we say that C' is a modulus of convergence of (Zn)nen at z € R.

By the compatibility of the operation —, the function |.|, and the relation < with the
equality of real numbers we get the extensionality of Qm((mn)neN, C):=C:z, = zon
F(N,R) x F(NT ,NT), as

[(xn)neN =t ) Wn)nen & C: zy ELLE x] = C: vy, — .

By Proposition PrfMemb®o™e ;= (PrfMembgonvg”,PrfMembgonV’”) € Fam(F(N,R)), where
PrfMemboconV“”(($n)neN) ={CeFIN",N") | C: 2, 5 2)}.

Example 5.1.6 (Cauchy sequences). Let X := F(N,R), Y := F(NT,N™), and let

Cauchy((azn)neN) & ElCGF(N+7N+)(C': Cauchy((xn)neN),

1
C: Cauchy((a:n)neN) 1S Vien+ Vi m>c k) <\:cn — Ty < k)’

for every (zn)nen € F(N,R). If C: Cauchy ((zn)nen), we say that C is a modulus of Cauchyness
for (xzp)nen € F(N,R).

The extensionality of R((zn)nen,C) < Cauchy((zy)nen) on F(N,R) x F(NT,NT) fol-
lows as above. By Proposition PriMembCaucty .— (PrfMembgj auChy,PrfMembfaUChy) €
Fam(F(N,R)), where

PrfMembgauChy((xn)neN) = {C € F(NT,NT) | C: Cauchy ((@n)nen) }-
Example 5.1.7 (Convergent sequences). Let X := F(N,R), Y :=R, Z := F(NT,N*), and
Conv((xn)neN) = EIxeREICGF(NJr’Nﬂ((:c,C): Conv((arn)neN),

(z,C): Conv((zn)nen & (C: 2 — ),

for every (zy)nen € F(N,R). If (z,C): Conv((zn)nen), we say that (z,C) is a modulus of
convergence of (Zp)neN-
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The extensionality of S((2y)nen, 2, C) 1> C: 2, — x on F(N,R) x R x F(N*,NT) follows
from the compatibility of convergence with equality i.e.,
[(@n)neN =rit by Un)nen & 2 =Ry & C: @y = 2] = C: yp —> .
By Proposition PrfMemb®°" := (PrfMemb§°", PrfMemb{"") € Fam(F(N,R)), where
PriMemby ™™ ((zn)nen) = {(z,C) € R x F(NT,NT) | (z,C): Conv((zn)nen) }-

Similar PrfMemb-sets can be defined for the set C([a,b]) of (uniformly) continuous real-
valued functions on a compact interval [a, b], and for the set D([a, b]) of (uniformly) differen-
tiable functions on a compact interval [a, b]. In this framework the Riemann-integral is not a
mapping f:: C([a,b]) — R, given by the rule f — ff f. As the definition of f; f depends on
the modulus of continuity wy for f (see [19], pp. 51-52), the Riemman-integral is a dependent

operation
b
LA

feF([ab

/abf 1= /ab(fo)

expresses the independence of the integral from the choice of a modulus of continuity i.e.,

/a (rop) == / ),

for every wy,w'y € PrfMembgont(f ), but it is not the accurate writing of a function from C(]a, b))
to R, only a notational convention, compatible with the classical one. The following obvious
generalisation (MwE-III) of (MwE-II) to relations an a set given by an existential formula is
shown similarly. A variation of (MwE-III) concerns relations on finitely many different sets.

F <PrfMemb8°“(f ), R) .
1)

The standard writing

Proposition 5.1.8 (Membership-with-Evidence 11T (MwE-III)). Let X,Y, Z be sets, and let
S(z,y) be a relation on X of the form

S($, y) = EIpGY (Q(IL‘, yap))a

where Q(x,y,p) is an extensional property on X x X x Y. Let PrfR.el(]]% : X X X ~ Vg, where

PrfEqly(z,y) == {p €Y | Q(z,y,p)},

for every x € X, and let PrfRelf: A((l‘,x’),(y,y’)ED(XxX) F(PrfRelf(x,x’),PrfRelf(m’,y/)),
where PrfRely ((x,2')(y,y')): PrfRelf (x,2') — PrfRel; (z',y’) is defined by the identity map-
rule [PrfRel?(z,2')](p) := p, for every p € PrfRel}(z,a’).

(i) The property S(z,y) is extensional.

(ii) The pair (PrfRely,PrfRel;) € Fam(X x X).

The “extension” of the BHK-interpretation to what usually corresponds to atomic formulas
like the equality formulas (see also the comment of Aczel and Rathjen in Note [5.7.1)), is the
first part of the following definition.
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Definition 5.1.9 (BHK-interpretation of BISH in BST - Part I). Let a membership condition,
like e.g., in Propositions|5.1.9 and|5.1.5. We define

Prf(z € Xp) := PrfMemb) (x),

Prf(z € Xg) := PrfMembl(z).
Let a relation S(x,y) on a set X, as e.g., in Proposition . We define

Prf(S(z,y)) := PrfRel] (z,y).
Let ¢, be formulas in BISH such that Prf($) and Prf(y) are already defined. We define
Prf(¢ & 1) :=Prf(¢) x Pr(v),

Prf(¢ V ¢) := Prf(¢) + Prf(¢),
Prf(¢ = ) := F(Prf(¢),Prf(v)).

Let ¢(x) be a formula on a set X, and let Prf? := (Prfg, Prf(lb) € Fam(X), where Prfg: X ~Vy

s given by the rule x — Prfg)(x) := Prf (qb(a:)), for every x € X. The Prf-sets of the formulas
Veexd(x) and Ipexd(x) with respect to the given family Prt?, where Ipexd(x) is a formula
that does not express a membership condition or a relation, are defined by

Prf <VmeX¢($)> = H Prfg(:z;) = H Prf (qﬁ(x)),

zeX zeX

Prf <3xeX¢(a:)> =Y Prif(z) = Y _ Pri(¢(z)).

zeX rzeX

Due to the definition of the coproduct of two sets in Definition and because of Re-
mark [3.3.3((i), the definitions of the Prf-set for J,cx¢(x) and for V,c x¢(x) are generalisations
of the definitions for ¢ V ¢ and for ¢ & v, respectively.

Example 5.1.10. Let the following proposition: if (z,),en+ € F(NT,R) and zo € R, then
Tp —= 20 = (Zn)nen+ is Cauchy.

If x(xn,zo) is the above implication, then x(x,,zo) of the form ¢(zy, o) = ¥(zy). Its proof
(see [19], p. 29) can be seen as a rule that sends a modulus of convergence C': x,, — xg of

(Zn)nen+ at xo to a modulus of Cauchyness D: Cauchy ((zn)nen+) for (zn)nen+, where
Convxo

D(k) := C(2k), for every k € N*. This operation from PrfMemb, ((zn)nen+) to

PrMembg ™™ ((#n)nen+) is a function, and
Prs(x(z. 0)) = F (P8 (0(z,20)) Pt (5(an) ).

Prf (qﬁ(mm xo)) = PrfMembgonVIO ((f'?n)neN+)v

Prf (y(zy)) == PrfMembgau‘:hy (#n)nen+)-
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Example 5.1.11. Let the following proposition: if zg € R, then

v(xn)ngN+€F(N+7R) (xn i> xo = (xn)n€N+ is Cauchy )

The formula corresponding to this proposition is
X" (wo) = vxneF(N+,R)X(l'n7 o),

where the Prf-set of x(zn, z0) :< (¢(2n,20) = ¥(zy)) is determined in the previous example.
To determine the Prf-set of x*(zp) we need to determine first a family of Prf-sets over

F(NT,R). Using Definition [3.1.6(ii), let
PreX’(20) = F(prgd(ene0) predlen)),

and by Definition [5.1.9] we get

Prf(x*(20)) := H Prf (X (zn, 20))-

zn€F(N* R)
Example 5.1.12. Let the following proposition: if (z),en+ € F(NT,R), then
(Zn)nen+ is Cauchy = Jycr (25, SLLE y).
The formula corresponding to this proposition is

e(l'n) <~ [w(l'n) = EIyEY (d’(l‘nay))] .

Its proof generates a rule that associates to every C : Cauchy((mn)neNJr) a pair (y, D), where
y € Rand D: z, — y, and y is defined by the rule yj := [IL‘D(k)]Qk, and D(k) := 3k V C(2k),
for every k € N*. The use of the modulus of Cauchyness in the definition of a Cauchy sequence
is responsible for the avoidance of choice in the proof. Clearly, the rule C' +— (y, D) of the proof
of f(xy) determines a function from Prf(y(xy)) to the Prf-set of the formula 3,crp(zy,y).
Since Prf(¢(zy,y) is already determined above, and as a corresponding family over F(NT,R)
is determined in Example then, using Definition m(iii), from Definition we get

Prf(f(x,)) := Z PrfMemb ™ (z,,).
y€ER

From the last two examples, we see how the schemes of defining new families of sets from
given ones that were established in Chapter [3] can be used in order to define canonical families
of Prf-sets from given such families. These canonical families of Prf-sets are determined in
the second part of our definition of the BHK-interpretation of BISH within BST. As we have
already seen in the previous two examples, the following extension of Definition refers to

Definitions [.1.6l and [3.5.2

Definition 5.1.13 (BHK-interpretation of BISH in BST - Part II). Let X,Y be sets. Let
¢1(x), pa(x) be formulas in BISH such that Prfft := (Prfgl,Prf‘fl) € Fam(X) and Prf?? :=
(Prfgz,Prf‘fQ) € Fam(X) are given. To the formulas

(1 & ¢2)(7) & ¢1(x) & h2(z),
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(¢1 = ¢2)(z) & d1(z) = P2(z),
(1 V ¢2)(z) & d1() V p2(z),

on X we associate in a canonical way the following families of sets over X, respectively:
Pri?1%92 .= pre?t x Prif?,
Pr{®1=? .= F(Pr£? Pre??),

Pr{?1Vo2 .— prf®l 4 pre?2,

Let 0(x,y) be aformula on X xY and Prf’ := (Pr£), Prt{) € Fam(X xY) i.e., Pr£): X xY ~
Vo, with (z,y) — Pr£f(z,y) == Prf(0(z,y)), for every (z,y) € X x Y. To the formulas

(VyO) () & VyeyO(z,y),
(340) (2) :& Fyevb(z, ),

on X we associate in a canonical way the following families of sets over X, respectively:

1
Pri"f .= H Prfe7

1
privl .= Z pre?,

By Definitions [3.1.6] and [3.5.2] we get

1 1
pre"? .= (HPrfﬁ,HPrf?),
(HPrf > = [[ prtb(a,y) = ] Pre(® ),

yeYy yeyY

privf . <ZPrf0,ZPrf )
<ZPrf> =Y Prf(z,y) ==Y  Pre((

yey yey

5.2 Examples of totalities with a proof-relevant equality

So far we have seen many examples of totalities equipped with an equality defined through
an existential formula. The universe Vo, the powerset P(X) of a set X, the impredicative set
Fam(I) of families of sets indexed by I, the set Fam(/, X) of families of subsets of X indexed
by I, and all other sets of set-indexed families of subsets examined in Chapter 4 Next we
describe some more motivating examples.
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Example 5.2.1 (The Richman ordinals). The equality on the totality of Richman ordinals, as
this is defined in [76], pp. 24-28, behaves similarly to the equality on the powerset. Notice that
the following definition of a well-founded relation is impredicative, as it requires quantification
over the powerset of a set. If < is a binary relation on a set W, a subset H of W is called
hereditary, if

vwew<vuew(u <w=ueH)=>we H>
The relation < is well-founded if
VHEp(X)(H is hereditary = H = W)

A Richman ordinal is a pair (o, <), where « is a discrete set, < is a linear order (i.e.,
x<yVy<uz, for every x,y € a), and < is well founded, where z < y &z <y & = #, y. If
a, B are ordinals, an injection p: a < f from « to g is a function p : @ — S such that

(i) Vayea(r <y = p(z) < ply))-
(i) V2ep¥yea (2 < p(y) = Fuealp(z) =5 2)).
In this case we write o < 3. In [76], p. 28, it is shown that there is at most one injection from

a to B. If Ordp is the totality (class) of Richman ordinals, then in analogy to Propositionm
we have the following.

Proposition 5.2.2. Ifa,8 € Ordg, p: a < S, and o : a < 3, then p is an embedding, and
P =F(a,B) O-

Proof. Let x,y € o such that p(z) =3 p(y). If x #4 y, by the linearity of < either x <y or
y < z. In the first case we get < y, hence p(z) < p(y), and in the second we get y < =z,
hence p(y) < p(z) i.e., in both cases we get a contradiction. Hence, © =, y. For the rest, one
shows that the set H := {z € a | p(x) =g o(x)} is hereditary (see [76], p. 28). O

As in the case of P(X), we define o =opq, 8 a < & B < a, and
PreEql,(a, 8) = {(p,0) € F(a, ) x F(8,0) | p:a < B & o1 B < a).
Since the composition of injections is an injection, let
refl(a):= (ida,ida) & (p, o)L= (0,p) & (p,0)*(1,v):=(Top,000),
and the groupoid properties for PrfEql,(«, ) hold trivially by the equality of all its elements.

Example 5.2.3 (The direct sum of a direct family of sets). If AS := (Ao, A7) € Fam(Z, 51),
and if i, 2), (j,y) € Yit; Ao(i), and since by Definition
(Z,QJ) :Zfel Ao (%) (.77 y) = erl(i <rk &j <rk & )\jg(x) —Xo(k) )‘jk(y))a
let
PrqulO((iax)v (jyy)) = {m € Iij ’ )\fm(.%') =Xo(m) )‘fm(y)}a
[ij::{kEI’iﬁjk&jﬁjk}.

To show the extensionality of PrfEqly((i,),(5,y)), let m’ =, m = m' = m and
MY (@) = Ao(m) )\fm(y) As < is extensional and reflexive, m <; m’, and by Definition m(b)



140 CHAPTER 5. PROOF-RELEVANCE IN BISH

To define an operation of composition, we work with directed sets equipped with a modulus of
directedness §. In the case of a partial order like the standard relation < on R, the functions
0(z,y) ==z Vy:=max{x,y} is such a modulus (see section [9.2)).

Proposition 5.2.4. Let § be a modulus of directedness on a poset (I,<r), and let AS =
(Ao, AT) be a family of sets over (I,<).

(i) 6(i,4) =1 i, for every i € I.

(ii) 0(i,7) =1 6(j,14), for everyi,j € I.

(i) If (4, 2) =< 3oy UhY) =52 a0y (s 2), then

m € PrfEqly((i,z), (j,y)) & | € PrfEqly((4,y), (k,2)) = &(m,l) € PrfEqly((i, ), (k, 2)).

Proof. (i) Since i <1 i, we use the definitional clause (d1) of a modulus of directedness.

(ii) By (03) we have that 6(0(¢,5),4) =7 6(¢,6(j,7)). By (61) and (62) we get §(8(4, 5),7) =1
6(i,4) and 6(i,0(4,7)) =1 6(4,%).

(iii) If m € PrfEqly((i,2), (j,y)) & m € L; & A\, (2) =o(m) /\fm(y), and

l e Prqul(J((j7 y)a (k,Z)) &le I]k & )‘jl(y) =Xo(1) )‘Zl(z)v

we show that d(m, 1) € I;; and )\;(mJ)(:z) =20 (5(m,l) )\,j(s(m’l)(z). By our hypotheses, i <; m <7
0(m,1) and k <7 <1 d(m, ). Moreover,
< i%ﬂn#ﬂi(m,l) < <
)‘;s(m,z) (z) = )‘;M(m,n (A (@)

= )\j’us(m,l) ()‘fm(y))

If m € PrfEqly((i,2), (j,y)) and | € PrfEqly((j,¥), (k, z)) it is natural to define
refl(i,z):=i & m™':=m & mxl:=8(m,l).

Then, refl(i,x) xm :=i*xm := §(i,m) =7 m, and similarly m * refl(i,z) =; m, for every
m € PrfEqly((i,2), (j,y)). The associativity (m*1)*n =; m« (I xn) is just the condition
(d3), and if m,m’ € PrfEql((¢,2), (j,y)) and | € PrfEqly((j,y), (k,2)) such that m =; m’
and [ =; I', then m x 1 =y m/ 1’ is reduced to §(m, 1) = §(m’, "), which follows from the fact
that & is a function. If m € PrfEqly((i,z), (j,y)), to show mxm~" = refl(i,x) := i, we need
to use as equality on PrqulO((i, x), (1, w)) not the equality inherited from I, but the equality
o ! . - .
m " PrfEql, ((i,:ﬂ),(i,&:)) mos =,
according to which all elements of PrqulO((i, x), (1, x)) are equal to each other. Similarly

we get m~txm = S(m~tm ) j = refl(j,y). Hence, the equality on

) :Prqulo ((i,x),(i,:p)
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PrqulO((i,m), (7, y)) is defined as above, if i := j and x := y, and it is inherited from I
otherwise. In order to make such a distinction though, we need to know that the previous
equalities are possible, something which is not always the case without some further assumptions
on the general equality :=. Of course, all aforementioned groupoid properties of * and ~! hold,
if we define all elements of any set PrfEql,((i,z), (j,y)) to be equal.

Example 5.2.5 (The set of reals). In [I9], p. 18, the set of reals R is defined as an extensional
subset of F(NT, Q). Specifically,

n

1 1
R:= {l‘ € F(N+3Q) |vm,n€N+ <|xm _$n| < E + > }7

where N7 is the set of non-zero natural numbers. The equality on R is defined as follows:

2
r=RY :@vneN"‘ |xn*yn‘ < ﬁ .

To prove though that x =g y is transitive, one needs the following characterisation:

1
T =RY <= VjeN+E|NjeN+vn2Nj (]a:n — yn| < ]) .

Using countable choice, we get the equivalence
1
T =R Y © JoeFN+ N+ VieN+ Vn>w(j) |Zn — yn| < ; .

If w: Nt — NT witnesses the equality * =g y, then w V idy+, where (w V idy+) () =
w(j) Vidn+ () := max{w(j),idn+(j)}, for every j € N, also witnesses the equality z =g y.
Hence, without loss of generality we can assume that w > idy+. We define

PrfEqly(z,y) := {w € FINT,N") |w: 2 =R ¢},

wiz =Ry w>idyt & Yient+Vnsu() <]:rn —yn| < j)
If w € PrfEql(z,y) and § € PrfEql,(y, z), we define
refl(z) :=idy+ & wli=w & (w*0)(j) := w(2j) V(29),
for every j € NT. In this case w x § € PrfEqly(z, 2), since if n > w(25) V §(2j), then

1 1 1

|xn*zn’§|$n*yn|+‘yn*2n|§27j+27j:j~

It is easy to see that x is associative, and it also compatible with the canonical equality of the
sets PrfEql,(z,y), the one inherited from F(N*,NT). The rest of the groupoid properties of x
and ~! do not hold if we keep the canonical equality of the sets PrfEqly(x,y). In other words,
the set PrfEq1R(w,y), equipped with its canonical equality, is not a (—1)-set. It becomes, if
we truncate it i.e., if we equip Prqul(Ff(x, y) with the equality

w H:F(N"F,N"")” 1) = w :F(N+,N+) w & 0 :F(N+,N+) 0.
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If (X,d) is a metric space, hence x =x y < d(z,y) = 0, for every z,y € X, we define
PrfEqly(w,y) := PrfEqly(d(z,y),0).

If F' is a set of real-valued functions on a set X, like a Bishop topology on X, that separates
the points of X ie., z =x y & Vyer (f(x) =R f(y)), we define

PrfEqly(z,y) := A PrqulO(f(:L”),f(y)).
fer

If ¢ : R — R, let a dependent operation

¢ A A PreEqly(4(z), ¢(y).

z,yER wePrfEql(z,y)

For example, let [¢1(z,y,w)](j) := 2j, for every j € N*. This element of PrfEqly(f(z), f(y)
though, does not depend on w and it is not compatible with * and ~'.

Example 5.2.6 (Sets of integrable and measurable functions in BCMT). In (BCMT) Bishop
and Cheng define the set of integrable functions of an integration space £ := (X, L, [) (see [19],
p. 222) as the totality

Ly :={f € §(X) | f has a representation in L},

where F(X) is the totality of real-valued partial functions on the set X, which are strongly
extensional i.e., if f(z) #r f(2'), then x #x 2/, for every x,2’ € X. An element f of F(X)
has a representation in L, if there is a sequence (f,)52; of partial functions in L such that

Z /]fn] < 400, and

neN+

vmex( S 1fule)] < 400 = f@) = 3 fn<a:>).
neN+

neN+

A subset F of X is full, if there is g € L; such that the domain of (the partial function) g is
included in F. The equality on L; is defined in [19], p. 224, by

f =1, 9:9 Jpepx)(Fis full & fip = gip).

Unfortunately, this presentation of L; within BCMT is highly problematic from a predicative
point of view. The totality L; is defined through separation on §(X), which, because of the
definition of a partial function from X to R, is a class, like P(X), and not a set. Moreover,
the above equality f =, g requires quantification over the class P(X). The impredicative
character of BCMT hinders its computational content (see sections and . Within this
impredicative theory BCMT though, one can define

PrfEqly(f,g) :={F € P(X) | Flis full & fip = g5}
If f,g,h € L1, F € PrfEql,(f,g), and G € PrfEql,(g, h), it is natural to define

refl(f):=dom(f) & F':=F & FxG:=FnQaG,
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since the intersection of full sets is a full set, and fir = gjr & 9i¢ = hig = firne = MFrna-
It is not hard to see that if we equip the sets PrfEql(f, g) with the equality inherited from
P(X), we get the same groupoid properties of * and ~! as in the case of R in the previous
example. If [ is a completely extended (see [19], p. 223), and o-finite integral on X (see [19],
p. 269), and if p > 1, the set L, is defined as follows (see [19], p. 315):

Ly :={f € §F(X) | f is measurable & |f|P € L1},

where a partial function f : X — R is measurable, if its domain dom(f) is a full set, and it
is appropriately approximated by elements of L; (for the exact definition see [19], p. 259).
Similarly to L1, f =L, g :& Ipep(x) (F is full & fip = g|F). If [ is a o-finite integral on X,
the set Lo is defined as follows (see [19], p. 346):

Lo = { f € F(X) | f is measurable and essentially bounded relative to [ },

where a real-valued function defined on a full subset of X is essentially bounded relative to a
o-finite integral [ on X, if there are ¢ > 0 and a full set F', such that | f|; < ¢ (see [19], p. 346).
The equality on Lo is defined as in L, for p > 1, and the corresponding sets PrfEql,(f, g)
behave analogously. A complemented subset A := (A!, A%) of X is called integrable, if its
characteristic function x4 is in L1, and then the measure on A is defined by u(A) := [ xa.
If A is the totality of integrable sets with positive measure, =4 is defined in [19], p. 346, by
A =4 B:& xa =L, XB, and one can define PrfEql,(A, B) := PrfEql,(xa, xB). All these
totalities though, are defined impredicatively.

5.3 Martin-Lof sets

We give an abstract description of the previous examples of sets with a proof-relevant equality.

Definition 5.3.1. Let Y be a set, and (X,=x) a set with an equality condition of the form
r=x1 & Elpey(p T =x a:’),

where 6% (p) :& p:x =y 2’ is an extensional property on Y. Let also the non-dependent
assignment routine Prqulg(: X x X ~ Vy, defined by

PrfEqly) (z,2') = {p€Y |p:x=x2'}; (z,2))€ X x X,
together with dependent operations

ref1¥: A PrfEqly (z, ),
reX

e pF (Prqulé((x, '), PrEqly (2, :z:)> ,
z,x'eX

*x: A F <Prqu_15( (x7 (ll’) % Prqulé( ($l7 .’L‘”), Prqulé((,fc, (1:”)) .
z,2z' 7" €X

We call the structure X := (X, :X,Prqulé(,rele,*lx ,*x) a set with a proof-relevant
equality. If X is clear from the context, we may omit the subscript X from the above dependent



144 CHAPTER 5. PROOF-RELEVANCE IN BISH

operations. We call X a Martin-Lof set, if the following conditions hold:

(ML;) refl, xp =prepqly (va') P and p * refl, =prEql (x,2’) P for every p € PrfEqly (z,2').

x,x’
(MLg) pxp~* =preEqL¥ (z,2) TeT1la and plxp =preEqL) (y.y) TeEly, for everyp € Pr{Eql{ (z, 7).
(ML) (P * @) % 7 =ppegqr X (.0 P * (0 % 1), for every p € PrfEQLy (z,2'), ¢ € PreEqLy (a/,2”)
and r € PrfEqQL{ (2", 2").

(MLy) If p,q € PrfEqly (z,2') and r,s € PrfEql{ (2’ 2") such that p =preEqL

T =prtEqL¥ («fa) S then p xr preEqL (z,2) 4 ¥ 5-

q and

z,x’)

If X is a set with a proof-relevant equality, by Definition we get
Prf(r =y ') := PrfEqQL] (z,2’).

Conditions (ML )-(ML3) express that the proof-relevant equality of X has a groupoid-structure,
see [82], while condition (MLy4) expresses the extensionality of the composition *X. Next
proposition is straightforward to show.

Proposition 5.3.2. Let X be a Martin-Lof set, x,2’ € X, and p,q € PrfEql(z,z’).

(l) refl;l :Prqulo(x,x) I‘eflz.

(11) (p_l)_l =PrfEqly(z,2’) D-

(111) pr =PrfEqly(z,z’) 45 then pil —PrfEqly(z/,x) qil'

Definition 5.3.3. Let )?,}Af be sets with proof-relevant equalities. A map from XtoY isa
pair [ :=(f, f1), where f: X =Y and

fi: A F<Prqulé((x,x'),Prqulé/(f(:p),f(ac'))).

z,x'eX

We write f: X —>A}A/ to denote a map from X toY. We call the dependent operation f the
first associate of f. If, for every z,x' € X and every p,p’ € PrfEqly (z,2'), we have that

p ~PrfEqly (z,a') p, = fl(l‘,l‘,,p) TPrfEqlY (f(2),f(2)) f1($,$,,p/),

we say that fi is a function-like first associate of f If)? and Y are Martin-Lof sets, a map
f: X =Y is a Martin-Lof map, if the following conditions hold:
(i) fi(x,z,refl,) =preEql) (f(2),/(x)) T€E 1) for every x € X.

(11) Ifl' =X xl =X xll; then fl(x7$//7p * Q) :Prqulg/(f(m),f(w”)) fl(x,x/,p) * fl(x/7$//7q)7 fO?”
every p € PrEqly (z,2') and q € PrfEql{ (2, 2").

Definition 5.3.4. Let I be a set with a proof-relevant equality. A family of sets over Tisa
triplet A := (Ao, PrfEqLY, \a), where \g : I ~» Vo, and

SYIEN A F(o(@), (), Ae((4,4),p) := A, (4,4) € D(I), p € PreEqL{(i, j),
(4,)€D(I) pePr£Eql} (4,5)

such that the following conditions hold:



5.3. MARTIN-LOF SETS 145

(i) For every i € I we have that N;7™ = idx, () -
(ii) If i =1 j =1 k, for every p € PrfEqll(i, ) and q € PrfEql{(j, k) the following diagram
commutes

Ao (%)

Ao(7) W Ao (k).

(iii) If i =1 j, then for for every p € PrfEqli(i, j) the following diagrams commute

Ao(i) Ao(j)

AZJ \idj\o(i) X ﬂ \idj\o(j)
Ao(J) —— Ao(d) Ao(7) —— Ao(i).
2P )‘fj

3

A family-map O A :/>\]\/4\ is defined as in Definition . We denote by Fam/gf) the totality of
families of sets over I, which is equipped with the obvious equality. We call A proof-irrelevant,

/

if for every (i,j) € D(I) and p,p’ € PrfEql{(i,5) we have that )\f- =F(ho(i) Mo () )\f-.

If A € Fam(I), then A € Fam*(I) (see Definition [3.9.1). If A is function-like family over I,
condition (iii) of the previous definition is provable, whlle if A is proof—1rrelevant then A is

function-like. Following Definition u we denote the 3 -set of A by Z crAo(i), where

(Z,CIZ) :/Z\ Xo(d) (jvy) S i=r] & E|pePrqul(I)(i,j) ()\Z(:IZ) () y)’

iel

and we denote the [[-set of /AX, equipped with the pointwise equality, by ]:[Z-E 1Ao(@), where

0c Hiel)\o(i) 1 0 € AL M) & Veppsnqi (i) (©5 =xo(5) A (©4)).

Pr0p051t10n 5.3.5. IfA = (Ao, PrqulO, o) is a function-like famzly of sets over the Martin-
Lof set I then a structure of a Martin-Lof set is defined on ZZE]AO( 7).

. . . . Ty . D . . .
Proof. Since A is function-like, the property Q;; (p) & )\ij(:v) = y is extensional on the set
PrfEql{(i, j), and we can define by separation its subset

PrEqLy((4,2), (j,y)) = {p € PreEqli(i, j) | A (x) = y}.

Let refl(i,z) := refl;, for every (i,x) € /Z\iel)\g(z’). If p € PrqulOZ((i,x),(j, y)), then

by the condition (iii) of Definition |5.3.4] we get p~! € Prqulgz((j,y),(i,a:)). If r €

Prqulg:((j,y), (k,z)), then by condition (iii) of Definition [5.3.4] we have that p x r €

Prqulé/Z\((i,x), (k,z)). The clauses of Definition [5.3.1f for PrqulOZ((i,x), (j,y)) follow
from the corresponding clauses for PrfEql} (i, ). O
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If T and Zzel
pair pry := (pr1 ,wl) is a map from Z crro(I) to IA, where

0(7) are Martin-Lof sets as above, it is straightforward to show that the

pr1 Ze[ (i,z) —1i; €1, and

Wy A F(Prquloi((i, x), (4, y)),Prqulé(i,j)),

(1,2),G¥)ESie 10 ()
[w1((1,2), (7,9))] () :=p;  p € PriEQly (i, 2), (4,9)),
is a function-like first associate of pry.

Lemma 5.3.6. Let X be a Martin-Lof set, xo € X and let PrfEqly° : X ~» Vg be defined by
x +— PrfEQL{ (v, 20), for every x € X. Moreover, let

PriEqli®: A A F(PrfEqly (z, o), PreEQLy (y,20)),
(z,y)€D(X) pePreEqLY (z,y)

be defined, for every (z,y) € D(X), p € PrfEqL{ (x,y) and r € PrfEqL{ (x,x0), by
PrfEql{’((z,y),p) := PrfEqlyy: PrfEqly (,x0) — PrfEqly (y, o)
~1
TP kT

Then Prﬁzo := (PrfEqly;°,PrfEql{®) is a function-like family of sets over X.

Proof. If * € X, then PrfEqli®fle(r) := refl ! xr = refl, xr = r, for every r €
PrfEqly (z,m0). If © =x y =x 2, p € PrfEql{ (z,9),q € PrfEql{(y,z), then for every
r € PrfEqL{ (x,z¢) we have that

(PrqulZZ o Prqulgy) (=g x(ptxr)= (g xp ) xr=(pxq) "t *r:=PrfEq1L*(r).

Ifp =prtpq1X (o) P/, then by Proposition iii) and condition (MLy4) we get PrfEq1?, (r) :=
plxr=(p) txr:= Pr‘qulIm’;’(r)7 for every r € PrfEql{ (x, zo). O

Theorem 5.3.7 (Contractibility of singletons). Let X bea proof-relevant set, g € X and let
Pr?Ea"’c0 := (PrfEql{)®, PrfEqli®) be the function-like family of sets over X from Lemma.
Let ixe XPrqulé( (x,x0) be equipped with its canonical structure of a Martin-Ldf set, according
to Proposition . Then for every (z,p) € /Z\zexPrqulé( (x,z0) we have that

(:C’p) :iacEXPrqul())( (z,zq) (:U07 refl(ﬂo) .
Proof. By the definition of equality on the > -set of some Ae Fam(]A' ) we have that
(z,p) = =5 e xPreEat (a.m0) (xg, reflxo)) Sr=xz& quprquléf(ac,mo) (Prqulm,O( ) = reflmo).

If (z,p) € /iIeXPrqulé((x,mo), then p € PrfEql{ (x,z¢), hence x =x x¢. If we take q := p,
then PrfEql?, (p) :=p ' *p=refl,,. O
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A map between Martin-Lof sets can generate the family of its fibers over its codomain.

Theorem 5.3.8. Let X,Y be Martin-Lof sets, and ]?:: (f, fr): X—>Ya map from XtV
with a function-like first associate fi.

(i) Ify € Y, the pair PrfEqlf := (PrfEqlf{,PrfEqlf}), where PrfEqlfy : X ~ Vo is defined
by the rule z — PrfEqly (f(x),vy),, for every x € X, and

PreEqlff: A A F(PrfEql) (f(z),y),PrfEql} (f(2'),y)),
(z,2")€D(X) pePrfEqlL{ (z,z’)
PrfEqlf} ((z,2'),p) := PrfEqLf¥}: PrfEql) (f(z),y) — PrfEql] (f(2'),y),
r [fi(z,2',p) " ks v € PrEEqlY (f(2),y),

s a function-like family of sets over X.
(ii) The pair Prfib := (Prfibg, Prfib;), where Prfibg : Y ~~ Vq is defined by the rule

yﬁz (PrEaly (f(2),y); yeY, and

Preib;: A A F(erXPrqulE)“(f (2),9), ) _ PriEqly(" f(x). z/)>,
(y,y")€D(Y) qePriEqly (v,y')
Prfibzf((y,y'),q) = Prfibgy, : er PrfEql,(f ) — Z Prqulo (f(=),9),

—

. Y
(e.0) > (@pra):  (.p) €Y. PreEql)(f(z).y).
s a function-like family of sets over Y.
Proof. (i) If r € PrfEql} (f(z),y), then by Proposition [5.3.2(iii) we get
PrqulOfg;eﬂz( )= [fi(z, z,refl,)] L r = [refl(f(m))]_l*T:refl(f(m)) xr =T

If p € PrfEqly (z,2') and p’ € PreEqly (2, 2"), then for every r € PrfEqlY (f(z),y) we get

PreEql, f'7, (Prqulofi’ﬁ(r)> = A, x",p'>r1 « (Uil a,p) ™ #7)

= (A, 2" )7 s [ful, 2, p) )
= [fi(z,2',p) * fl(x o p)]
= [fi(z, 2", pxq)] L xr

= PrfEql, fY57 (r).

Z”

If p =prepq (2,00 $) and if 7 € PrfEqly (f(x),y), by the function—likenessﬂ of fi we get

PrfEql 20 (r) :== iz, 2, p)] xr = [fi(z, 2, 8)] L xr = PrfEql, 275 (r).

!The function-likeness of f; is also needed in the proof of condition (iii) of Definition
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(ii) First we show that for every p,p’ € PrfEql} (f(z),y) we have that

p :Prqulgf(f(z),y) p, = (x7p) ExeXPrqulo (f(z),y (':U p ) (51)

since
PrfEql, fYr°M (p) := [fi(x, z,refl,)] "t xp = [reflf(w)]_1 x*p=refls, xp=p=q.

If y €Y, then by l} for every (x,p) € /Z\xeXPrqulg(f(x),y), we get

refly(

Prfib ,p) = (x,p* refly) TS pexPreEql) (f(2)y) (z,p).

If ¢ € PrfEql} (y,y' and ¢’ € PrfEql} (v, "), then for every (z,p) € /Z\xeXPrqulé/(f(:v), Y)
Prfibg,y,, <Prfibgy,(x,p)> = Prfibg,y,, (z,p*xq):=(z,(p*q)*q)

ED (x,p*(g*q) = PrfinZ‘,’,/ (x,p).

If g = s, then Prfibgy, = Prfiby ,, since for every (z,p) € > e xPrEEQLY (f(2),y)

PrqulO (y,y")

. (5.1) .
Prflbgy, (z,p) = (z,p*q) €D (z,p* s) == Prfiby,,(z,p). O

5.4 On the Yoneda lemma for Fam(/)

Within MLTT Rijke viewed in [I07] a type family P: I — U over a type I: U as a presheave
of a locally small category C i.e., as an element of Set®”, and proved a type-theoretic version
of the Yoneda lemma using the J-rule and the axiom of function extensionality. In BST the
J-rule, in the form of the transport, is built in the definition of an I-family of sets, and the
axiom of function extensionality is built in the definition of pointwise equality on Map(A, M )
Here we present the Yoneda lemma when the function-like elements of Fam(I ) replace Set®”

Theorem 5.4.1 (Yoneda lemma for Fam(I)). Let I := (I,=r,PrfEql], refl! ~11 ;) be a

—

Martin- L()’f set, ig € I, and let Prquli0 = (Prqul' PrqulilO) be the function-like family of
sets over I defined in Lemma IfA = ()\O,Prqul )\2) € Fam([) is function-like, there
are functions

e;, i+ Map7(PriEqlio, A) — Xo(io) & ez, : Aol(io) — Mapp(PrfEql, A),

20

such that €iod © €Riy = idy, ). Moreover, if A s proof-irrelevant, then €R4o © Cig R =

idMap (presaio 3) and hence (eio,fve&io)5 Mapp (Prqu1107A) =V, Ao(io).

7 PrfEql’0,A

—

Proof. Let the operation €k Mapf(PrquliO,./AX) ~ Ao(ip), defined by

—

ez.oj\(q)) := ®;(refl;,); @ € Mapy(PrfEqli, K)
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Since ®: PrfEqlic = A, for its ip-component ®;,: PrfEql{(io,i0) — Mo(io) we have that
®(ip) (refl;,) € Ao(ip), hence €, i 1s well-defined. Clearly, e, 3 is a function. Let the

operation ez ; : Ao(io) ~ Map(PrfEql, /AX), defined by

x4, (@) =% @ € Ao(in),

®7: \ F(PrfEqlf(i,io), Ao(i)), ~ ®f: PreEqlLf(i,io) — Ao(i); i€ 1,
i€l

OF(p) = N,

101

(z); p € PrfEql}(i,ip),

1.4y =7 i, and A Xo(ig) = Ao(7). To show that &% is a

where, as p: ¢ =y ig, we get p~ ioi

function, we use the hypothesis that A is function-like. Next we show that €R io is well-defined

i.e., ®*: PrfEql? = A If i,j € I and p € PrfEql} (4, 7), the following diagram commutes

PrEqly’ (i, j, p)

PrfEql)(i, o) PrtEql)(j, io)
@fl F;@
Ao(i) v Ao(J)

v

o7 <[Prqu1§° (i, 4,p)] (r)) = @f(pfl *T)

L)1
=20 (@)
r1lx

= Aioj ’
1

)
= A (Myi (2))
= )\Z (@f(r)),

(z

where the function-likeness of A is repeatedly used in the previous equalities. It is straightfor-
ward to show that the operation ej i is a function. Moreover,

-1
I‘eflio reflio

€A (e&io (z)) == €in A (D7) = ®F (refly,) = Ay, © (1) = Ny (@) = idyg g (2) == .
For the converse composition we have that
R io (eioj\(@)) = €R (@io(reflio)) = @Pio(refli)

q)iO (reflio )
7

P (p) == pUa (i (refly,)); pE PrfEql} (i, o).

10

We would like to show that @?io(reﬂio)(p) = ®;(p), for every p € PrfEqll(i,ip) and i € I.

From the hypothesis ®: PrfEql = X, and since [Prqullf’ (1, io,p)] (p) :==p l*p=refly,
there is ¢ € PrfEql{(i,ip) such that the following diagram commutes
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PrfEQ1 (i, 40, p)

PrfEqll(i,ip) PrfEql{ (g, io)
! -
)\0 (Z) )\Q )\0 (10).

110

(®iy(ze£lyy)). To get B;(p) = @) 00l (p) .= N7

10t

Hence, ®,(p) = AT

0%

N Y
need the equality A\’ A

101 10t

(@4 (reflyy)), we
which we get from the supposed proof-irrelevance of A. O

In the previous proof we considered the totality Mapf(PrquliO,K) of the corresponding
covariant set-relevant family-maps. A Yoneda lemma of the same kind is shown similarly, if
we consider the totality of the corresponding contravariant set-relevant family-maps.

5.5 Contractible sets and subsingletons in BST

The following results are translations of results from chapter 3 and 4 of book-HoTT, their
proof of which in [124] often requires FunExt. As we have already seen in Definition [2.2.8(iv),
the truncation || X|| of a set X, which is treated as a higher inductive type in HoTT, is the
same totality X equipped with a new equality.

Proposition 5.5.1. If (f,g) : X =v, Y, then (f*,g*) : F(Z,X) =v, F(Z,Y), where the
operations [*: F(Z,X) ~ F(Z,Y) and g*: F(Z,Y) ~ F(Z, X) are defined, respectively, by the
commutativity of the following diagrams

7" x y k5
f*(h\ [f gJ ﬁ(kr)
Y X.

Proof. Clearly, the operations f* and ¢g* are functions. If k € F(Z,Y) and h € F(Z, X), then

F(g (k) = [(gok) == fo(gok) = (Fog)ok = idy ok == k, and g*(J*(h)) = g (J o ) :=
go(foh):=(gof)oh:=idxoh:=h. O

Proposition 5.5.2. If X is a set, the following are equivalent:
(i) X is contractible.

(ii) X is an inhabited subsingleton.

(iif) X =y, 1.

Proof. (i)=(ii) If z¢ is a centre of contraction for X, then xy inhabits X. If z,y € X, then
T =x xo and y =x xg, hence x =x .

(ii)=(iii) Let f: X ~» 1, defined by f(z) := 0, for every € X, and g: 1: X, defined by
9(0) := xo, where xo inhabits X. Clearly, these operations are functions, and (f,¢g): X =y, 1.
(iii)=(@) Let f € F(X,1) and g € F(1,X) such that (f,¢9): X =y, 1. If z € X, then
z=x g(f(z)) := g(0) € X. hence g(0) is a centre of contraction for X. O
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Proposition 5.5.3. Let A := (Ao, A1) € Fam(I).

(i) If ©: NjerMo(i) is a modulus of centres of contraction for Ao i.e., ©; is a centre of
contraction for \o(i), then © € [[,c;Ao(@) is a centre of contraction for [[;c; Ao(i) and
Dier o(i) =v, 1.

(ii) If io € I is a centre of contraction for I, then Y, ; Ao(i) =v, Ao(io).

Proof. (i) If i =1 j, then ©; =) ;) \ij(©;), as ©; is a centre of contraction for Ag(j). If
® € [[;er Moli), then ®; =y ;) ©;, for every i € I, hence ® =y, _ 1 ) ©. Let f: I~ 71 Ao(d),
defined by f(i) := (i, 0;), for every i € I. It is immediate to show that f is a function, and
(Pres ) ier Mo(i) =vo I.

(ii) Let g: Ao(io) ~ D ey Mo(i), defined by g(x) := (ig,x), for every xz € Ag(ig), and
h: Y e Ao(i) ~ Xo(io), defined by h(i,z) := A, (x), for every (i,z) € 3,7 Ao(4). It is
straightforward to show that g, h are functions and (g,h): > ;c; Ao(4) =v, Ao(io). O

Proposition 5.5.4. Let A := (X\o, A1) € Fam(I), ©: A;c;Mo(i) a modulus of centres of
contraction for \g, and X,Y sets.

(i) If h: I~ 3 ,cp Ao(4) is defined by h(i) := (i,0;), for every i € I, then h is a function and
(pri\’ h): Zie[ )‘U(Z) —Vo I

(ii) F(I’ Zie[ )‘O(i)) —Vo F(I,1).

(iii) If X is contractible and Y is a retract of X, then'Y is contractible.

Proof. The proof of (i) is straightforward, and (ii) follows from (i) and Proposition
For the proof of the next theorem though, we write explicitly the witnesses of the required

equality in Vg, which are the witnesses provided by the proof of Proposition [5.5.1} Let
F(I,>;c7 Mo(i)) ~ F(I,1), defined by the rule f + ¢(f), where ¢(f) :=pry o f

0(9)
I‘A

o(f)

Clearly, ¢ is a function. Let 6: F(I, 1) ~ F(I,;c; Mo(i)), defined by the rule g — 6(g), where
0(g) :== h o g, where h is defined in case (i). Clearly, 6 is a function. It is straightforward to

show that (¢,60): F(I,Y,c; Mo(i)) =v, F(I,1).
(iii) Let r: X — Y and s: Y — X such that r o s = idy. It is immediate to show that if
xo € X is a centre of contraction for X, then r(z¢) is a centre of contraction for Y. O

Theorem 5.5.5. Let A := (Mo, A1) € Fam(1), and let ©: A,c; Mo(i) be a modulus of centres
of contraction for Xo. If (¢,0): F(I,>,c; Xo(i)) =v, F(I,I), where ¢ and 6 are defined in the
proof of Proposition |5.5.4(ii), then [;c; Ao(@) is a retract of £ib®(idy).

Proof. By Definition we have that

£ib?(id) == {f € F(I,>_ Xo(i)) | (f) =rr,ry 1ds}
el

We need to find functions r?: £ib?(id;) — [T;c; Ao(i) and s?: [,c; Ao(i) — £ib®(ids) such
that the following diagram commutes
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) ¢
[Licr 2o(2) s £ib?(id;) s [Licr Ao(i).

\_/

idHieI Ao (4)
Let the operation r?: £ib?(id;) ~ [[;c; Ao(i), defined by the rule f — r?(f), where
r(f): A do(@),  [F)], = Aprd (£(i))i <Pr§\(f(i))>; i€l
el

As ¢(f) := prfl\ o f =idy, we get [¢(f)](7) := pr{\(f(z)) =7 14, hence [T‘b(f)]l € M\o(7), for every
i € I. Next we show that r?(f) € [[;c; Xo(i). If i = 4, then f(3) =ser 200 f(7), and hence

pry (f(0) =1 et (f() & Apea(ranped sy (P2 (F(D) =5y et s PE2(F(5)-

Therefore,

_ A .
= Ao (167 | Aerd (F@)prd (£G) (Pr2 (f (2))>>

= Nerpsons (P00
= [r¢(f)]j.

Next we show that 7 is a function. If f = g and i € I, then f(4) =sicrrom 9(0) 1e,

N TN

pry(F(0) =1 P (9(D) & Apea(ranped (o) (PF2 (F(D) =1 et oriny PT2 (9())-

Therefore,

= Aprd (g(0))i (*p M(F@)pe) (9() (Pr2 (f (Z))>>
= Aprh (g(i))i (Prg(g(i)))
= [r¢(g)L..

Let the operation s?: [[,c; Ao(i) ~» £ib?(id;), defined by the rule © — s?(©), where
s2(0): I~ Xoli), [s°(©)](i):=(5,0:); i€l
iel

First we show that s#(0) is a function. If i =; j, then (i, ©;) =sicrro0( (J,©j), as the equality
©; =xy(j) Aij(©) follows from the hypothesis © € [[;c; Ao(i). To show s?(©) € £ib?(id;),
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let i € I, and then (¢(s?(©))](i) := pr{(i,0;) := i. To show that s? is a function, let
© =[], ho(i) ©'- If i € I, then (s2(©)](i) := (1,0;) = (i,0";) := [s?(©)](i). Finally, we show
the commutativity of the initial diagram in the proof. If ¢ € I, then

Corollary 5.5.6. If A := (Mo, A1) € Fam([) and ©: A,.; Ao(i) is a modulus of centres of
contraction for Ao, then © is centre of contraction for [[;c; Ao(i).

Proof. Since (¢,0): F(I1,> ;27 Mo(i)) =v, F(I,I), by Proposition the set £ib?(id;) is
contractible and 6(id;) := h o id; := h is a centre of contraction for fib®(id;), where h
is defined in Proposition (1) As r?: £ib?(id;) — [];e; Ao(é) is a retraction, by the
proof of Proposition (iv) we have that [];.; Ao(4) is contractible and r?(h) is a centre of
contraction for [[,c; Ao(7). If i € I, then [r¢(h)]] = /\pr{x(h(i))i(pré\(h(i))) = X\i(©;) == 6y,
hence r?(h) := ©. O

Proposition 5.5.7. Let || X|| be the truncation of X, Y, Z subsingletons, and E a set.

(i) IffeFR(Y,Z) and g € F(Z,Y), then (f,g9): Y =y, Z.

(ii) If X is inhabited, then ||X|| is inhabited.

(iii) If f: X — E, there is ||f]|: ||X|| = ||E||, such that ||f||(x) := f(z), for every x € X.
(iv) Y =y, [[V]].

Proof. (i) and (ii) follow immediately from cases (iv) and (i) nof Definition [2.2.8] For the
proof of (iii), we define the operation ||f||: || X|| ~» ||E|| by the rule ||f||(x) := f(z), for every
x € X. As ||E|| is a subsingleton, if z =y 2, then ||f||(z) := f(z) 1=pn f(2') = ||f]|(z)),
and || f]| is a function. For the proof of (iv) it is straightforward to show that the operations

of type Y — ||Y|| and ||Y|| = Y, defined by the identity map-rule, respectively, are functions
that witness the equality Y =y, ||Y]|. O

Corollary 5.5.8. Let A := (Ao, A1) € Fam(I).
(@) [[All == (I[Nl IALl]) € Fam(I), where [[Xol|(i): I ~ Vo is defined by

Xoll(@) := [[Mo(@)][; i€l, and

HALI1G 5) = 1A = Ao @IF = 1oL 1A == 1Al (6,5) € D).
(ii) If Ao(4) is a subsingleton, for everyi € I, and ©: [[;c; [|Xo(?)|], then ©: TT;c; Xo(i).
(iii) If Ao(4) is a subsingleton, for every i € I, then [[;c; Ao(4) is a subsingleton.
Proof. (i) To show that ||A|];; is well-defined, we use Proposition [5.5.7iii). To show the
properties of a family of sets over I for ||A|| we use the corresponding properties for A.
(ii) By case (i), if i =1 j, then ©; € |[|[Ao(J)]|- As [|[Xo(4)]| is the set Ag(j), we get ©; € Ao(j).
Since Ao(j) is a subsingleton, we get ©;) =y ;) Ai;(©i)-
(iii) It follows immediately from the definition of the canonical equality on [];.; Ao(7). O
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5.6 On 0-sets in BST

Through the notion of set with a proof-relevant equality, Voevodsky’s notion of 0-set can be
formulated in BST. We need the notion of Martin-Lof set with an inhabited proof-relevant
structure to translate some basic facts from Voevodsky’s theory of 0-sets in BST.

Definition 5.6.1. A Martm—Ldfset)? = (X, =x, Prqulé(, ref1X —1x ,*X) has an inhabited
proof-relevant structure, if there is a dependent operation

O: A Prqulé((x, Y),
(z.y)ED(X)

which we call a modulus of inhabitedness for )/f, such that the following conditions hold:
(1) O(g,0) = refly, for every x € X.

(ii) @ay) = Oy,q), for every (z,y) € D(X).

(iii) ®(x,y) * G(y,z) = @(a:,z)7 for every (x,y)a (y, Z) € D(X)

Proposition 5.6.2. Let X = (X, =x,PrfEql{, ref1¥ —1x ,*X) be a Martin-Lof set and ©
a modulus of inhabitedness for X. If (x,2") =xxx (v,9), let

PreEqly ((z,2'), (y,y')) := PrfEQL{} 4y PrEEQL] (z,2') — PreEqly (v,y),

Prquléx,)(y,y,)(r) =0 ! wrx O@yy; TE PrfEqly (z,2').

(z,y)

(i) PrfEql¥ := (PrfEql{,PrfEql{y) € Fam(X x X).

(i) If zp € X, the dependent operation ©7°: A,y PrfEqly (z,z), defined by ©20 := O, 1),
for every z € X, is in [,y PrfEQL{ (z, 20).

(iii) If X is a subsingleton, the O: [Tz yexxx Pr{Eqly (z,v).

Proof. (i) By Definition we have thatf’

X - _
PrEEQL{, 1)(z 0 (1) = @(x{x) *7% Oy oy = refl Vsrsrefly =reflyxr =r,

X X L X —1
PTLEQL{y 1)z 2) (PFEEAL(z 1)) (7)) = PEEEQL(y 1) 2.2y (O * T * Oary)
-1 -1
= G(y,z) * (@(%y) * 7Tk @(x/y/)) * @(y/7zl)
o —1 -1
= (Oz) * Oluy) * 7% () * Oy.21)

—1
= (O@y) *Onz))  *7% (O y) * Oy 1))
~1
— @(:B,Z) X 7ok @(37/72/),
= Prqulé’x,)(LZ/)(r).

2Tn intensional MLTT the existence of an object of this type is the definition of X being a subsingleton.
3This proof is in complete analogy to the proof that F(A, M) € Fam([), if A, M € Fam(I).



5.7. NOTES 155

(ii) By Definition [3.5.2{(ii), if z =x y, we have that

PrEEQLYs o) (ym) (O50) = O ) * O 5 O (44.40)

(z,y)
— @(yg) * @(m,mo) xrefly,
= O(y,0) * O(z,20)
= O(y,20)
= 0°.

(iif) X is a subsingleton, then D(X) =p(xxx) X x X and hence ©: A(z,y)GXXX PrfEqly (z,v).
If (z,y),(2',y") € X x X, then

PrfEQL(; )y (O() = Oar) * O) * Ow)

= O(ar,2) * Ozy) * Oy,
= O y) * Oy y)

= Oy 0
Definition 5.6.3. A set with a proof-relevant equality X isa 0-set, if
v$7y6va7qurqu18( (x,y) (p :Prqulé( (z,y) q) :

Proposition 5.6.4. Let X = (X, :X,Prqulé(,reflx,_lx ,*X) be a Martin-Lof set and ©

a modulus of inhabitedness for X. If X is a subsingleton, the following are equivalent.

(i) ©% € [[,c xPrfEql®™(x), for some xo € X.

(ii) X is a 0-set.

Proof. (1)=(ii) If z,y € X, the hypothesis (i) means that for every p € PrfEqly (z,y) we get
O(ym0) = 0" = [Prqulf’O (z, y,p)] (©%0) := p L« O (2,20)5

hence p~ = Oy zy) * O(ay.a) = O

required equality follows trivially.
(ii)=-(i) It follows immediately from the equality p = O, ), for every p € PrfEQly (z,y). O

Since p is arbitrary, the

z,y)"

y,z)> and consequently p = 6(

5.7 Notes

Note 5.7.1. In [I], p. 12, the following criticism to the naive BHK-interpretation is given:

Many objections can be raised against the above definition. The explanations
offered for implication and universal quantification are notoriously imprecise be-
cause the notion of function (or rule) is left unexplained. Another problem is
that the notions of set and set membership are in need of clarification. But in
practice these rules suffice to codify the arguments which mathematicians want to
call constructive. Note also that the above interpretation (except for L) does not
address the case of atomic formulas.
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Note 5.7.2. According to Feferman (see [49], p. 207), the formal, or internal realisability
interpretation of the language £(T') of a formal theory T in the language £(7") of a formal
theory T” is an assignment ¢ — f r ¢ of any formula ¢ of £(T) to a formula ¢, :< f r ¢ in
£(T"), where ¢, has at most one additional free variable f. This interpretation is sound if

T-¢= El‘f'ETerm(E(T’)) (T/ T (b)y

for every formula ¢ of £(T"). The added axiom-scheme (A—r) “to assert is to realise”

o3 (fr o),

which expresses the equivalence of the assertion of ¢ with its realisability, reflects the basic
tenet of constructive reasoning that a statement is to be asserted only if it is proved. Note
that in Feferman’s refined theory with MwE the axiom-scheme (A—r) implies the principle of
dependent choice DC and the presentation axiom! (see [49], pp. 214-215). It is also expected
that one can show inductively that the scheme (A—r) is itself realisable in some theory S i.e.,

V¢3T<Sl—r r 6o 3 (fr ¢)]>.

In the informal, or external realisability interpretation of £(T) one defines a relation R(f, ¢)
between mathematical objects f of some sort and a formula ¢. E.g., Kleene defined such a
relation for f € N and ¢ a formula of arithmetic. External realisability interpretations can
often be regarded as the reading of a formal f r ¢ in a specific model. Here we described an
external realisability interpretation of some part of the language of the informal theory BISH
in itself, where the corresponding realisability relation is

Prf(p, ¢) :< p € Pri(¢).

Why one would choose to work within an informal framework? Maybe because to realise
some formula ¢ does not necessarily imply that ¢ is constructively acceptable. E.g., in [49],
pp. 207-8, Feferman defined a formal realisability interpretation of £(Tp) in itself such that
the corresponding axiom scheme (A—r) implies the full axiom of choice. Moreover, even if
one works with a realisability interpretation that avoids the realisability of the full AC, it is
not certain that whatever this theory realises is constructively acceptable, or faithful to some
motivating informal constructive theory like BISH. E.g., the realisability of the presentation
axiom in T{j, which, as we have explained in Note it holds also in the setoid-interpretation
of Bishop sets in intensional MLTT, does not make it necessarily constructively acceptable. In
the informal level of BISH there is no reason to accept it. If the main philosophical question
regarding Bishop-style constructive mathematics (BCM), in general, is “what is constructive?”,
an answer provided from a formal treatment of BCM that cannot be “captured” by BISH
itself, is not necessarily the “right” answer.

Note 5.7.3. In [49], p. 177, Feferman criticises Bishop for a “certain casualness about
mentioning the witnessing information. ... one is looser in practice in order to keep that from
getting too heavy. Practice then looks very much like everyday analysis and it is hard to
see what the difference is unless one takes the official definitions seriously”. In our opinion,
Feferman is right on spotting this casualness in Bishop’s account, which is though on purpose,
as his crucial comment in [12], p. 67, shows (see Note . One could also say that, if the
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difference between constructive analysis and everyday, classical analysis is difficult to see, then
this is an indication of the success of Bishop’s way of writing. What we find that is missing
when some official definitions are not taken seriously is the proof-relevant character of Bishop’s
analysis and its proximity to proof-relevant mathematical analysis, like analysis within MLTT.
An important consequence of revealing the witnessing information is the avoidance of choice
(see next note).

Note 5.7.4. The use of the axiom of choice in constructive mathematics is an indication
of missing data. As we have seen already in many cases, and also in Example [5.1.12] the
inclusion of witnessing data, like a modulus of some sort, facilitates the avoidance of choice
in the corresponding constructive proof. The standard view regarding the use of choice in
BISH is that some weak form of choice, countable choice, or dependent choice, is necessary.
This is certainly true when the witnessing data are ignored. Richman criticised the use of
countable choice in BISH (see [106], and also [IT5]). The revealing of witnessing data or not in
BISH “oscillates” between the two extremes, regarding proof-relevance, which are also the two
extremes, regarding choice. The first extreme is classical mathematics based on ZFC, where
the complete lack of proof-relevance is combined with the use of a powerful choice axiom,
and the second extreme is type-theoretic mathematics based on intensional MLTT, where
proof-relevance is “everywhere” and the axiom of choice, the distributivity of »_ over [], is
provable! When the witnessing data are ignored, then some form of weak choice is necessary
for BISH, while when the witnessing data are highlighted, then choice is avoided. A similar
phaenomemon occurs in univalent type theory. The univalent version of the axiom of choice,
in the formulation of which truncation is involved, is not provable. And what truncation does,
is to suppress the evidence.

Note 5.7.5. The proof-relevance of BISH is not a priori part of it, but it can be revealed
a posteriori. In MLTT and its univalent extensions proof-relevance is a priori part of it.
Moreover, many facts are generated or hold automatically by the presence of the J-rule, or the
univalence axiom of Voevodsky. As it was pointed out to me by T. Coquand, this feature of
MLTT and HoTT was criticised by Deligne in his talk at the memorial meeting of Voevodsky.

Note 5.7.6. The BISH-analogue to (A—r) is the following: if ¢ is a BISH-formula and a set
Prf(¢) is predetermined, then

¢ < Prf(¢) is inhabited.

If Prf(¢) is a set with a proof-relevant equality, this equivalence can be realised in BISH. The
BISH-analogue to the soundness of a formal realisability interpretation is

BISH I ¢ = BISH I Pr(¢) is inhabited,

for every formula of BISH with a well-defined set Prf(¢). This should follow from the inductive
definition of the BHK-interpretation, which is a definition in the extension BISH** of BISH
with inductive definitions with rules of | X |-many premisses. Clearly, such an inductive proof
requires, in general, a much stronger extension of BISH than BISH*.

Note 5.7.7. A BHK-interpretation of a negated formula —¢ is missing from Definitions [5.1.9
and [5.1.13] If Prf(¢) is given, and we apply the rule of implication for ¢ :< ¢ = L, then
Prf(—¢) := F(Prf(¢),Prf(L)). If we accept the clause of the naive BHK-interpretation that L
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has no witness, then we need to state Prf(L) := (), and then we get Prf(—-¢) := F(Prf(¢),0)).
As we have already remarked in Note the use of the empty set in BISH is problematic,
and so is the status of the object F(Prf(gf)), 0)). As negated formulas are rare in BISH, we
find safer at the moment to exclude them from our account of a BHK-interpretation of BISH.

Note 5.7.8. A proof-relevant membership-condition for R can be defined, if we treat a real
number as a (general) Cauchy sequence of rationals, namely

T € R =X e F(N+,Q) & acep(N+7N+) (C T € R),

1
C:zeR:& VkeNJer,nzC(k) <|xm —xp| < k)

If z € F(NT,Q), we define then
PrfMemby(z) := {C e F(N",NT) | C:z eR}.

Note 5.7.9. In intensional MLTT the groupoid properties of * and ~! hold always by the
J-rule. This is “good” and “bad”. It is “good”, because something very useful holds. On the
other hand, as we have seen in the previous examples, it is not always the case in the practice of
BISH that all these conditions hold simultaneously. Hence, it is “bad” that intensional MLTT
is not as “flexible” as BISH (this is related to Deligne’s critique mentioned in Note [5.7.5]).

Note 5.7.10. The definition of equality on /Z\ie 7A0(%) can be seen as a definitional translation
of Theorem 2.7.2 of book-HoTT [124], where if w,w’ € ;. ; P(i), then

w=w o~ > P+(pry(w)) = pry(w’).

p: pry(w)=pr; (v’)

The definition of ﬁie)\g (7) can be seen as a definitional translation of Lemma 2.3.4 of book-
HoTT, where if ®: [[,.; P(i), there is a term

apdq): H (p*<(I)Z) :‘I)j)

p:i=j
These definitions motivated Definition 3.9.3]

Note 5.7.11. Theorem [5.3.7] is a translation of the type-theoretic contractibility of the
singleton type (see [42]) into BST. If M is the judgement (or the term) expressing this
contractibility (see also [96]), Martin-Lof’s J-rule trivially implies M, and it is equivalent to
M and the transport (see [42]). In BISH we do not have the J-rule, but we have transport in
a definitional way only. As Theorem indicates, a definitional form of M is provable in
BST, although there exists no direct translation of the J-rule in BST.

Note 5.7.12. In analogy to the category of setoids and setoid-maps, several categorical
constructions for Martin-Lof sets and maps between them can be carried out. A family of
sets over a Martin-Lof set 1 corresponds to Palmgren’s notion of a proof-relevant family of
setoids. As it is noted by Palmgren in [82], p. 47, proof-relevant families of setoids are very
common in MLTT, and as he explains in [82], pp. 37-38, such families are “difficult to use for
certain purposes”, like the construction of categories with equality on objects. In our language
Palmgren’s argument is reformulated as follows.
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Definition 5.7.13. Let A be a family of sets over a Martin-Lof set I. Let the collection of
objects be the set I, and for every i,j € I let Hom(i,j) be the set of triplets (i, f, ), where
f e F()\o(i),)\o(j)). Moreover, let (i, f,7) ~ (k,g,1), if there are p € PrfEqli(i,k) and
q € PrfEq1)(j,1) such that the following diagram commutes

Moi) —— 20()

Af,{ p?k

Mo(k) —5= Xa(l).

Two arrows (i, f, ) and (k,g,1) are composable, if there is t € PrfEql}(l,4)

AL
e 2 a(t) — s o),

Ao (k)

and then their composition is defined by o s:= (k, f o Xl. 0 g,7)

AL
Molk) —2 2o(l) s M) — 20()
e R
Molk') —— 2oll') —— Aol#') —— Aol
g M f

If A is not proof-irrelevant, we cannot show, for arbitrary ¢t € PrfEql}(l,i) and ' €
Prqulé(l',i’), that the above outer diagram commutes. If some t € Prqulé(l,i) is given
though, there is t' € PrfEql)(l’,4’) such that the above outer diagram commutes.

Proposition 5.7.14. Let A be a family of sets over the Martin-Lof set ./T\, r:= (i, f,7),s:=
(k,g,1), and let ' := (&', f',j"),s" = (K',¢',l') be arrows according to Definition |5.7.15. If

r~71',s~s, and r and s are composable, then v’ and s' are composable, and sor ~ s or’.

Proof. Let p € PrfEql)(k, k') and q € PrfEql](l,1') such that the above left diagram commutes,
and let r € Prqulé(i, i) and s € Prqul(I)(j,j’) such that the above right diagram commutes.
Since r and s are composable, there is t € PrfEql{(l,). Since ¢’ := ¢~ *t*r € PrfEqly(l’,4'),
we conclude that r’ and s’ are composable, and r’ o5’ := (k" f o)\f; og, 7 ) By Definition
we have that

7 —1

)\fi o )\?l, = ()\Z-, o )\fl- ) )‘;1/1 ) o )\?l,
_ T t al _yq
= A O Aj; © (/\m ° )‘w)

r t :

= Njir © A 0 idyg 0
AT t
= A O Ny

i.e., the middle above diagram commutes. Since all the above inner diagrams commute, the
above outer diagram commutes, hence sor ~ s’ o7/, O
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As Palmgren commented on this issue in a personal communication, what we finally get is
an almost category, and not a category.

Note 5.7.15. As we have already remarked in Note Proposition [5.5.1]is an example
of a result in BST the analogue of which in HoTT is shown with the axiom of univalence UA
in book-HoTT (the axiom FunExt can also be used instead). Theorem is the translation
of Theorem 4.9.4 in book-HoTT, where the universe in its hypothesis is supposed to be
univalent. Corollary is the translation in BST of the fact that UA implies the weak
function extensionality.

Note 5.7.16. Further results from book-HoTT can be translated in BISH through BST. E.g.,
Lemmata 4.8.1 and 4.8.2 in book-HoTT take the following form in BST. If A := (Ao, A1) €

Fam(I), where I is a Martin-L&f set, then, for every i € I, we have that £ibPTL (1) =v, Ao(i),
while if f: X — Y, then X =y, Zyeyfibf(y). Following the book-HoTT, we can use the
translation of the “left universal property of identity types” in BST, namely the equality

(Z > Aoo‘)) —vo oli).

JE€I pePrfEql](j,i)

Families of Martin-Lof sets over some Martin-Lof set I can also be studied along this direction.



Chapter 6

Families of sets and spectra of
Bishop spaces

We connect various notions and results from the theory of families of sets and subsets to the
theory of Bishop spaces, a function-theoretic approach to constructive topology. Associating in
an appropriate way to each set \g(i) of an I-family of sets A a Bishop topology F; a spectrum
S(A) of Bishop spaces is generated. The ) -set and the []-set of a spectrum S(A) are equipped
with canonical Bishop topologies. A direct spectrum of Bishop spaces is a family of Bishop
spaces associated to a direct family of sets. The direct and inverse limits of direct spectra
of Bishop spaces are studied. Direct spectra of Bishop subspaces are also examined. For all
notions and facts on Bishop spaces mentioned in this chapter we refer to section of the
Appendix. Many Bishop topologies are defined inductively within the extension BISH* of
BISH with inductive definitions with rules of countably many premises. For all notions and
facts on directed sets mentioned in this chapter we refer to section of the Appendix.

6.1 Spectra of Bishop spaces

Roughly speaking, if S is a structure on some set, an S-spectrum is an I-family of sets A such
that each set A\g(7) is equipped with a structure .S;, which is compatible with the transport
maps A;; of A. Accordingly, a spectrum of Bishop spaces is an I-family of sets A such that each
set Ag(7) is equipped with a Bishop topology, which is compatible with the transport maps of
A. As expected, in the case of a spectrum of Bishop spaces this compatibility condition is that
the transport maps \;; are Bishop morphisms i.e. A\;; € Mor(F;, F;). It is natural to associate
to A an I-family of sets ® := (¢, ¢%) such that F; := ()\o(i),qﬁ{)\(i)) is the Bishop space
corresponding to ¢ € I. If ¢ =7 j, and if we put no restriction to the definition of gbé} : By — Fj,
we need to add extra data in the definition of a map between spectra of Bishop spaces. Since
the map /\;-‘Z» : F; — Fj, where )\;-‘i is the element of F(Fj, F;) induced by the Bishop morphism
Aj; € Mor(Fj, F;), is generated by the data of A, it is natural to define ¢;; := A% In this way
proofs of properties of maps between spectra of Bishop spaces become easier. If X is a set, we
use the notation F(X) := F(X,R), and every subset of F(X) considered in this chapter is an
extensional subset of it.

Definition 6.1.1. Let A := (Ao, A1), M := (po, p1) € Fam(I). A family of Bishop topologies as-
sociated to A is a pair @ := (¢}, ¢1), where ¢} : I~ Vg and ¢™: AG.jepn F(95(1), 93 (5)).
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such that the following conditions hold:

(1) A (i) := F; CF(X\o(3)), and F; := (\o(i), F}) is a Bishop space, for everyi € I.

(ii) Aij € Mor(F;, Fj), for every (i,5) € D(I).

(iii) ¢ (4,7) := A, for every (i,j) € D(I), where, if f € Fj, the induced map Aj;: F; — F
from Aj; is defined by A%;(f) := f o Aj;, for every f € Fj.

The structure S(A) := (/\0,)\1,%\,(1){‘) is called a spectrum of Bishop spaces over I, or an
I-spectrum with Bishop spaces (F;)ier and Bishop isomorphisms (Aij) (i jyep(r)- If S(M) :=
(o, 1, B3, M) is an I-spectrum with Bishop spaces (G;)ie; and Bishop isomorphisms
(ij) i, jyen(r)> @ spectrum-map ¥ from S(A) to S(M), in symbols ¥: S(A) = S(M), is
a family-map W: A = M. The totality of spectrum-maps from S(A) to S(M) is denoted
by Map;(S(A), S(M)) and it is equipped with the equality of Map;(A, M). A spectrum-map
®: S(A) = S(M) is called continuous, if ¥; € Mor(F;, G;), for every i € I, and we denote by
Cont(S(A),S(M)) their totality, which is equipped with the equality of Map;(A, M). The
totality Spec(I) of I-spectra of Bishop spaces is equipped with the equality S(A) =gpecry S(M)
if and only if there exist continuous spectrum-maps ®: S(A) = S(M) and ¥: S(M) = S(A)
such that ® o W =, 3,0y Idpr and Wo @ =y, (4 a) Ida.

As the identity map idx € Mor(F, F), where F := (X, F') is a Bishop space, the identity
family-map idy : A = A is a continuous spectrum-map from S(A) to S(A). As the composition
of Bishop morphism is a Bishop morphism, if ®: S(A) = S(M) and =: S(M) = S(N) are
continuous spectrum-maps, then Zo ®: S(A) = S(N) is a continuous spectrum-map.
Definition 6.1.2. The structure S(2) := (A5, A2, 6\2,¢/1\2), where A? := (\3,)\?) is the 2-
family of X and Y, and ® := (¢)°,¢)°) is the 2-family of the sets F and G, ¢)°(0) := F
is a topology on X, and qbé\z(l) = G 15 a topology on Y, is the 2-spectrum of F and G.

Since idx € Mor(F, F), idy € Mor(G, G), ¢/1\2 (0,0) :=id% with id% := idp, and similarly,

(;5[1\2(1, 1) :=idjy with idy :=idg, we conclude that S(2) is a 2-spectrum with Bishop spaces
F,G and Bishop isomorphisms idx,idy .
Remark 6.1.3. Let S(A) := (Ao, M1, ¢, ¢7) be an I-spectrum with Bishop spaces F; and
Bishop isomorphisms \ij, S(M) := (o, 1, o5, ¢M) an I-spectrum with Bishop spaces G; and
Bishop isomorphisms p;j, and V: S(A) = S(M). Then ®* = (gzbf)\, qﬁfl\) € Fam([), and if ¥ is
continuous, then, for every (i,j) € D(I), the following diagram commutes

W
i
G, —— G

o

Ji
Proof. 1f i € I, then ¢%(f) := fo Xy == Joidyu = f lfi=rj=rkand f €F, then
F;

Fj —— i
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Nej (X)) = A (FoNgi) i= (FoXj) oAy = fo(NjioAk) = fol = A,(f). By the
definition of a continuous spectrum-map we have that if (j,7) € D(I), then

W2 (u5i(9)) == V(g o i) := (gopji) oW =go(ujioVW;) =go (¥ o)
=(goW;)oNj; == )\ji(g oW,;) = )\;l(‘ll;k(g)) L]

6.2 The topology on the ) - and the ]]-set of a spectrum

Remark 6.2.1. Let S(A) := (X, A1, ¢y, #7) € Spec(I) with Bishop spaces (F;)icr and Bishop
isomorphisms (Nij) i jep)- If © € [Licr Fi, the following operation is a function

foi (L) =R foliva) =0i(a)s  (ir) € Xl
iel iel
Proof. If (i,x) =5c; Aold) (Jyy) == i =17 & \ij(x) =x,(j) ¥, by the definition of [[;c; Fi we
have that @z =F; gbé‘l(@J) = )\:}(@]) = @j 9] )\ij7 hence f@(i,l‘) = @1(33) =R [@] o )\”](.%) =R
©;(y) = fo (4, y)- O
Definition 6.2.2. Let S(A) := (Ao, A1, #), ¢1) € Spec(I) with Bishop spaces (Fi)ier and
Bishop isomorphisms (X\ij) (i jyep(r)- The sum Bishop space of S(A) is the pair

ZE::<ZAO(¢),/IF,->, where /ieIFi:: \/ fe.

i€l i€l ic O€ ;e Fi
and the dependent product Bishop space of S(A) is the pair

fer;

i€l i€l el
and TI'lA is the projection function defined in Proposition z').

Proposition 6.2.3. Let S(A) := (Ao, A1, ¢4, 1) € Spec(I) with Bishop spaces (F;)ics and
Bishop isomorphisms (Nij) i jep(r), S(M) = (10, p1, BT, M) € Spec(I) with Bishop spaces
(Gi)ier and Bishop isomorphisms (pij) (i j)ep(r), and ¥: S(A) = S(M).

(i) Ifi € I, then e € Mor(F;, > ;e Fi)-

(ii) If ¥ is continuous, then ¥W € Mor( > .c; Fi, > ics Gi)-

(ili) If ¥ is continuous, then IIW € Mor([T;c; Fi [Tics Gi)-

Proof. (i) By the \/-lifting of morphisms it suffices to show that VGGHZ-EI I (f@ oel e E) If
x € Ao(i), then (fo oel)(z) := fo(i,z) := O;(z), and fooel :=O; € F;.

(ii) By the \/-lifting of morphisms it suffices to show that Verell,., Gi (feroXW € Jic1 F).Ifiel
and x € A\(i), we have that (f@/ o E\If)(i, x) = for (z’, \Ifz(:n)) = @/(\Ill(x)) := fo(i,z), where
O : \jcr Fi is defined by ©; := ©; o W;, for every ¢ € I. By the continuity of ¥ we get ©; € F;.
We show that © € [[,c; Fi. If i = j, by the commutativity of the diagram of Remark
we get (ﬁi}(@z) = )\;kz(@z) = @z o /\ji = (91/ o \I/z) o )\ji = (61/ o] ,u,ji) ] \I/j = @j/ o \I/j = @j-
(iii) By the \/-lifting of morphisms it suffices to show that Vie;Vgeq, ((gom) oIV € §; F3).
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If © € [[;c; Ao(i), then [(g o mM) o I¥](O) = g(¥;(6;)) := [(g o ¥;) o m](O), hence
(gomM) oIV = (go ;) o . By the continuity of ¥ we have that ¥; € Mor(F;, G;), hence
go V¥, € F;, and (go‘l’i)oﬂ'lAE ier i O

If S(A?) is the spectrum of the Bishop spaces F and G, its sum Bishop space

Fro= (%0, [ o) = x4vreo

i€2 €2
is called the coproduct of F and G. By definition of the sum Bishop topology

F+G:= \/ f@g,
fEF,geG

L f(:L‘) > EIZGX (w = (O,LL’)) .
(& 9)w) '_{ 9() ey (w:=(L,y) ’ fekget

The coproduct Bishop space is the coproduct in the category of Bishop spaces.

Proposition 6.2.4. Let F := (X, F) and G := (Y, G) be Bishop spaces.
(i) The function ix : X — X +Y, defined by x — (0, z), for every x € X, is in Mor(F, F+G).
(ii) The function iy : Y — X +Y, defined by y — (1,y), for every y € Y, is in Mor(G, F +G).

(iii) If H == (Z, H) is a Bishop space, ¢x € Mor(F,H) and ¢y € Mor(G,H), there is a unique
¢ € Mor(F + G, H) such that the following inner diagrams commute

X—X+4+Y+——Y.

(3¢ 1y

Proof. (i) By definition ix € Mor(F,F + G) if and only if VfEFVgE(;((f @g)oix € F) It is
immediate to see that (f & g)oix := f € F. Case (ii) is shown similarly.
(iii) We define ¢ : X +Y — R by

w) = ¢x(x) , Feex (w:=(0,2))
Plw) = { ov(y) E|y€y(w = (l,y)),

and since ¢ oix = ¢x and ¢ o iy := ¢y, the diagrams commute. If h € H, then

o &) w) = hMox(x)) , Faex (w:=(0,z))
roaw) = { pore) ST

and since ho¢x € F and ho ¢y € G, we get ho¢ := (ho¢x) ® (hopy) € F+ G. The
uniqueness of ¢ is immediate to show. O

Proposition 6.2.5. If F' is a topology on X, G is a topology on Y, Fy C F(X,R), and
Go C F(Y,R) are inhabited, then

(\/Fo> +a= \/ foog=F+G,

fo€Fo,9€G
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F+<\/Go> = \V fow=F+Go

f€F790€G0

Proof. We prove only the first equality, and the proof of the second is similar. Clearly,
Fy+G C (VF) + G. Since (VFy) + G := \/fevager @ g, and since Fy + G is a
topology, for the converse inclusion it suffices to show inductively that V e\ g, P(f), where
P(f) & (Vgeg(f @geFy+ G)) If fo € Fy, then P(fy) follows immediately. If a € R and
g € G, we show that a* @ g € Fy + G. Since g — @' € G, by the inductive hypothesis on
fo € Fy, we get fo @ (% - EY) € Fy + G. Since

(*) (ieg)+(f2@92)=(fi + f2) © (91 + 92),

and since a* @a¥ = aX Y € Fy+G, by (%) we get (fo+aX)ea§ = (fo@(%—ay))+(aX@EY) €
Fy+G. Since by the inductive hypothesis (fo@—%g) € Fy+G, and since —(f®g) = (—f)D(—g),
we also get ( —fo® %g) € Fy + G, hence by (x)

adg= [(fo+ﬁx)@%]+[(—f0@2§g)] €f+G.

Let f1, fo € \/ Fp such that P(f1) and P(f2). If g € G, by these hypotheses we get f1 @ § €
Fy+ G and fo ® § € Fy + G. Hence by (x)

(fi+f)og= (fl@g)Jr (fz@g) € [+ G.
If ¢ € Bic(R) and f € \/ Fy such that P(f), we show P(¢ o f). If g € G, then
(k)  do(fDg):=(dof)d(Pog).
By P(f) we get f®0' € Fy+ G, and since ¢00' = ¢(0) € Fo+ G, by (++)
(60 ) @d(0) =(s0f) @ ($00") =go(f@0") € Fo+G.
By the case of constant functions 0 & (g — ¢(0) ) € Fp+ G, hence by ()
(bof)@g=[@oNH@d(0) |+ [0 @ (g—5(0) )] € Fo+G.
If f € \/ Fy such that for every n > 1 there is some f, € \/Fp such that P(f,) and

U(X; f, fn, %), then, for every g € G, we get U(X +Y,f®g, fn®g, %), and since Fy + G is
a Bishop topology, by BS, we get f @ g € Fy + G, hence P(f). O

6.3 Direct spectra of Bishop spaces

As in the case of a family of Bishop spaces associated to an [-family of sets, the family of
Bishop spaces associated to an (I, <)-family of sets is defined in a minimal way from the
data of AS. According to these data, the corresponding functions d)fj behave necessarily in

. . < = .
a contravariant manner i.e., qﬁf\j : F; — F;. Moreover, the transport maps )\i“j are Bishop
morphisms, and not necessarily Bishop isomorphisms.
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Definition 6.3.1. Let (I,<) be a directed set, and let AS = (Ao, \T), M~ = (uo,p7) €
Fam(I,<1). A family of Bishop topologz'es associated to A= is a pair AT = ( 6\5, (25{‘#), where
gbf)ﬁ : I~ Vg and qb’lﬁ : A i)e<( (qb (9), A< (z)), such that the following conditions hold:

(i) gbé\s(i) = F; CF(\o(7)), and E- := (Xo(2), F}) is a Bishop space, for everyi € I.

(ii) )\fj € Mor(F;, Fj), for every (i,5) € DS(I).

(iii) (;Siﬁ(i,j) = (/\fj)*, for every (i,7) € DS(I), where, if f € Fj, (/\S)*(f) = fo)\fj.

The structure S(AS) := (Ao, AT, ¢% YoM s called a direct spectrum over (I,<), or an (I,<)-
spectrum with Bishop spaces (F;)ier and Bishop morphisms (A*)(Z])eDﬂI If S(M<) :=
(10, 1, qﬁ(])\ﬁ,qﬁi\ﬁ) is an (I, <)-spectrum with Bishop spaces (G;)icr and Bishop morphisms
(ME)(i,j)eD<(1)7 a direct spectrum-map ¥ from S(AY) to S(M*), in symbols V: S(AT) =
S(M<), is a direct family-map W : AS = M=. The totality of direct spectrum-maps from
S(AS) to S(M=) is denoted by Map; -y (S(A™), S(M=)) and it is equipped with the equality
of Map;(AS, M=). A direct spectrum-map ¥ : S(AS) = S(M<) is called continuous, if
Vier (Vi € Mor(F;,Gi)), and let Cont; <, (S(AS), S(M=)) be their totality, equipped with the
equality of Map;(AS, M=). The totality Spec(I,<1) of direct spectra over (I,<r) is equipped
with an equality deﬁned similarly to the equality on Spec(I). A contravariant direct spectrum
S(A7) := (X, AT; &) ,qﬁA ) over (I,=), a contravariant direct spectrum-map ¥ : S(A7) =
S(M7), and their totalities Map ; - \(S(A7), S(M7)), Spec(I, =) are defined similarly.

Remark 6.3.2. Let (I,=) be a directed set, S(AY) := (Ao, \1; ¢A< (bA%) € Spec(1, <) with
Bishop spaces (F;)ic1 and Bishop morphisms (A5 Dij)ep<y, S(M7) = (uo,m,gbé\ﬁ,gb{\ﬁ) €
Spec(I, <) with Bishop spaces (Gi)icr and Bishop morphisms (Nij)(z’,j)eD<(I); and U: S(AS) =
S(M=). Then PAT = (qﬁéﬁ, gb/lﬁ) is an (1,%=)-family of sets, and if U is continuous, then,
for every (i,7) € DX(I), the following diagram commutes

(k3y)”
— G,
|
— F;.

(A5

&

)

(¥;)"

—

N

<

Proof. Since (A\Z)*(f) :=fo A :=f oidy, () := f, for every f € F;, we get ()ﬁ) =idp,. If
1< j < kand f € Fy, the required commutatlwty of the following diagram is shown:

F;

(O

o0’
(Afj)*((Ajk)*(f)) = (/\fj)*(fo)\fk) = (fo)\fk)o)\fj = fo(AjkoAfj) = fo A3, == (\i) (f).

To show the required commutativity, if g € G, then

()\fj)*((‘l/f)*(g)) = (\I’j)*(g) o )‘fj = (go \Ilj) o )\fj =F, go (\I/j o )\fj) =F, go (ij o \I/l)

J
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=p, (gop) o Wi:=(¥;)" (gopng) = ()" ((13)"(9))- O

6.4 The topology on the > -set of a direct spectrum

Remark 6.4.1. Let (I, <) be a directed set and S(AS) := (X, A1, #2~, 927 € Spec(I D*(I))
with Bishop spaces (F;)icr and Bishop morphisms (/\fj)(i,j)e p=(n- If© € [ B
following operation is a function

< <
o i (S M0) <R falia) =0ia), () € i)
iel el
Proof. Let (Z,IE) :Zfel/\()(i) (jvy) = Elkki,j ()‘jg(x) “xo(k) )‘fk<y)) Since ©; = qb]z;l(@k) =
(A)*(©F) := O 0 A3, and similarly ©; = O o )\f , we have that

Oi(x) = [0 0 A3] (2) := O (A (7)) = Ok (N1(1) = [Ok 0 A5 ] (v) = ©;(v). O

Definition 6.4.2. Let (I,<) be a directed set and S(AS) := (Ao, A1, 00", ¢ € Spec(I, <7)
with Bishop spaces (F;)ier and Bishop morphisms ()\<)(”) p=(1)- The Bishop space

Z]:_<Z)\O /FZ> where '<Fi:= AV O

i€l
i€l el ec Hzrel Fl

is the sum Bishop space of S(AY). If S7 is a contravariant direct spectrum over (I,<), the
sum Bishop space of S(A7) is defined dually.

Lemma 6.4.3. Let S(AS) := (Ao, AT, 627, 27), S(M=) := (o, u5, oM™, oM™) € Spec(I, <1
), and let ¥ : S(AS) — S(M=) be continuous. If H € [[7; Gi, the dependent operation
H* : \ici Fi, defined by H} := V5 (H;) := H; o W;, for everyi € I, is in Hlel

Proof. If i < j, we need to show that H; = ()\f])*(H]*) = Hj o )\f] Since H € er] G;, we
have that H; = Hj o ij, and by the continuity of ¥ and the commutativity of the diagram

H; o A5 = Wi(Hj) o NS := (Hjo W;) o A := H;(0) o (U0 A7)

=H;o (H;;. oW;) = (Hjo (@.) oW; = H; oV, := Vi(H;) := H}. O
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Proposition 6.4.4. Let S(AS) := (Ao, AT, 827, ¢27) and S(M=) := (uo, u5, o0, ¢M7) be
spectra over (I,<1), and let ¥ : S(AS) = S(M~).

(i) If i € I, then e}~ Mor (F;, >, Fi)-
(i) If U is continuous, then L5W € Mor( 1]:27 Zlg )

Proof. (i) By the \/-lifting of morphisms it suffices to show that V@ [, F. ( feo ef\ € F,) If
el

x € Ao(i), then (fg o efﬁ)(:v) := fo(i,r) := ©;(x), hence fg oel” := O, € Fi.
(ii) By the \/-lifting of morphisms it suffices to show that

—\<
IR F;.
VHEHZEI (gHO e/iel )

Ifieland xz € (i), and if H* € H?e] F;, defined in Lemma then (gg o X5W)(i,2) :=
gu (i, Wi(2)) == Hy(Vi(z)) := (H; 0 ) (2) := fp(i,x), and gy 0 D5V := fp= € [T, F;. O

6.5 Direct limit of a covariant spectrum of Bishop spaces

If X is a set, by Corollary the family Eql(X) := (eqly,&¥,eql{) € Set(X,X),
where eqly(z) := {y € X | y =x x}. Consequently, if f: X — Y , there is unique
eqlyf: eqlyX(X) — Y such that the following diagram commutes

J

X —>Y,
3
eqlél “eqlyf
eql X (X)

where eqlo X (X) is the totality X with the equality » =.q x(x) ¥’ & eql{ (v) =p(X)
eqlf (). As Eql(X) € Set(X,X), we get eqly (z) =p(x) eqly (¢/) & & =x #’. The map
eqly: X — eqly X (X) is defined by the identity map-rule, written in the form z — eql{ (z),
for every x € X. We use the set eql; X (X) to define the direct limit of a direct spectrum of
Bishop spaces. In what follows we avoid including the superscript X in our notation.
Definition 6.5.1. Let S(AS) := (Ao, AT, ¢}™,#1") € Spec(I,<r1) and eqly: S5, Ao(i) ~
Vo, defined by

oaty(i-a) = { (:9) € 30000 | (G:9) =g, (0) i () € 3 i

el el

The direct limit Li_)on(i) of S(AS) is the set

Lima(i) 1= ea1y 3" Ao (Z (i),

i€l el

eqly (i, 2) =rLimao(i) €dlo(J: y) 1% eqlo(i, ) =P(£3,200) eqly(j,y) & (i,2) =5< ) (hY)-

iel

We write eql(’)ﬁ when we need to express the dependence of eqly from AS.
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Remark 6.5.2. If S(AS) := (Ao, AT, 00", ¢)") € Spec(I,<;) and i € I, the operation
eql;: Ao(i) ~» LLon(i), defined by eql;(x) := eqly(i, x), for every x € \o(i), is a function.

Proof. If x, 2’ € Xo(i) such that x =, ;) 2/, then
eql,(z) =Limo(s) eql,(z’) :& eqly(i, ) =Limo (i) eqly (i, z')
. _ . /
< (i,x) =% 2000) (1,2")
= erj(i <k & )\;\2($) = o (k) )\fk(x/)),

which holds, since A}, is a function, and hence if z =xo(i) *'; then A (2) =2o(k) A5 (2), for
every k € I such that ¢ < k. Such a k € I always exists e.g., one can take k := i. O

Definition 6.5.3. Let S(A*) = (o, )xf, 0 ,d)/ﬁ) € Spec(I, xX1) with Bishop spaces (F;)icr
and Bishop morphisms (A5 )(”)e[ﬁm The direct limit of S(AY) is the Bishop space

le]-'Z = (le)\g( ), leF) where

Li_{nFZ- = \/ eqly fe,

@EHZEI

eqlyfo(eqly(i,z)) = fo(i,z) := ©;(z);  eqly(i,z) € Li_)m)\o(i)

fe
ZEIAO( ) 2 R.

eqlE‘)J ////eqlof@

LLon(z)
Remark 6.5.4. If (I,<) is a directed set, G := (Y,G) is a Bishop space, and S(ASY) is
the constant direct spectrum over (I,<p) with Bishop space G and Bishop morphism idy, the

direct limit LimG of S(ASY) is Bishop-isomorphic to G. Moreover, every Bishop space is
%

Bishop-isomorphic to the direct limit of a direct spectrum over any given directed set.

Proof. The proof is straightforward. O

Proposition 6.5.5 (Universal property of the direct limit). If S(AS) := (Ao, AT, 92 ,qb’ﬁ)
Spec(I,<1) with Bishop spaces (F;)icr and Bishop morphisms ()\fj)(i,j)eﬂl)a its direct limit
LimF; satisfies the universal property of direct limits i.e.,

—

(i) For every i € I, we have that eql; € Mor(F;, Lgrl]-})

(i) If i <1 7, the following left diagram commutes

LimAo(7)
W N 8N
| —— ] V] Ao(i) —————— No(j)-

< <
A A
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(iii) If G := (Y, G) is a Bishop space and €; : \o(i) — Y € Mor(F;,G), for every i € I, such

that if i < j, the above right diagram commutes, there is a unique function h: LimAg(i) —
*)

Y € Mor(LLmE, G) such that the following diagrams commute

/ h\

%—>)\0

eql\ / al;

le)\
Proof. For the proof of (i), we use the \/-lifting of morphisms. We have that

Q/

eql; € Mor(F;, Lmei) & v@el‘[“ (eqlof@ oeql; € F;).

If © € \o(i), then (eqlyfe o eql;)(z) := eqlyfo(eqly(i,z)) := fo(i,z) := O;(zx) hence
eql,fe o eql, := O; € F;. For the proof of (ii), if € A¢(4), then

eql; (A5 (x)) =Limo(s) ©31;(® (x) 1 eqly (4, Ajj(x)) =Timo (i) eqly(i, )
< (:A5@) =52 a0 (60)
o Fher (I k& G <k & AL(2) =xm A(A()),
which holds, since if k € I with j < k, the equality A} (z) = o (k) )\fk()\fj(x)) holds by the
definition of a direct family of sets, and by the deﬁnltlon of a directed set such a k always

exists. To prove (iii) let the operation h: LLon(i) ~~Y, defined by h(eqly(i,z)) := &;(), for

every w(i,x) € LimAg(¢). First we show that h is a function. Let
—

eqly(i, ) =LimAo (i) eqlo(f,y) © Frer(i.j <k & A3, () =xh) )\fk(y))'

By the supposed commutativity of the following diagrams

S Ne 8 N

Ao(i) ———— o(k) Ao (4) — = Ao (k)
Ak Ak

we get h(w(i, z)) := gi(z) = e (A (2)) = e (Afk(y)) =¢;(y) := h(w(j,y)). Next we show that
h is a Bishop morphism. By the \/-lifting of morphisms we have that h € Mor(Li_{n}'i, g) &

Vyea (g ohe€ Li_)mFi). If g € G, we show that the dependent operation ©, : A, Fi, defined

by O,4(i) := g oe;, for every i € I, is well-defined, since &; € Mor(F;,G), and ©, € [[7, F;

To prove the latter, if i < k, we show that O4(i) = ©,4(k) o A},. By the commutativity of the
above left diagram we have that ©4(k) o A3, := (g o 5k) oA, :=go (e oA;) =goe = 0y(i),
Hence fo, € LimF,. Since (g0 h)(eqlo(i.2)) == 9(ei(@)) = (90 £)(x) = [Oy(0))(@) =

i€l
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fe, ((eqlo(z’, x)), we get goh = fo, € Ll)sz The uniqueness of h, and the commutativity
of the diagram in property (iii) follow immediately. O

The uniqueness of LimA (), up to Bishop isomorphism, is shown easily from its universal
%

property. Note that if 4,5 € I, x € \o(¢) and y € A\g(j), we have that

eql,(z) =Limo(i) eql;(y) = eqly(i, ) =Limo(i) eqly(J,v)
< (Z') .T}) :Zfel )\0(7;) (.77 y)
= Elkej(i Kk&jixk& )\jﬂ(l’) =Xo(k) )\fk(y))

Definition 6.5.6. Let S~ := (Ao,)\f;qb[/)ﬁ, ¢/1\<) be a direct spectrum over (I,<). Ifi € I, an
element x of Xo(i) is a representative of w(z) € LimAg(7), if wi(T) =rimrg@) W(2).
— —

Although an element eqlj(z) € Li_)m)\o(i) may not have a representative in every Ag(7), it

surely has one at some \y(7). Actually, the following holds.

Proposition 6.5.7. For every n > 1 and every eqly(z1),...,eqly(z,) € LimAg(i) there are
—
i€l and x,...,x, € No(2) such that x; represents eqly(z;), for every l € {1,...,n}.

Proof. The proof is by induction on N*. We present only the case n := 2. Let z :=
(G,9). 2" = (4",9') € Src;Ao(i), and k € I with j < k and j' < k. By definition we have
that )\fk(y) € Xo(k) and )\f,k(y’) € Mo(k). We show that /\fk(y) represents eql(z) and )\f,k(y’)
represents eql(z’). By our remark right before Definition for the first representation we
need to show that

wi (M) =LimAo(i) wi(y) & Iwer(k <K & 5 <K & A5O3 ®) =x0) e ®))-

By the composition of the transport maps it suffices to take any k' € I with k <k & j < K/,
and for the second representation it suffices to take any &’ € I with k < k" & j' < k. O

Theorem 6.5.8. Let S(AT) := (N, Af,(i)éﬁ, /ﬁ) € Spec(l, =) with Bishop spaces (F;)icr

and Bishop morphisms (Afj)(i,j)eDﬂI)) S(M=S) == (po, 5, o)™, M) € Spec(I, <) with

Bishop spaces (G;)icr and Bishop morphisms (ufj)(m)eDﬂI), and V: S(AS) = S(M~).

(i) There is a unique function ¥_,: LimAg(i) — Limpug(i) such that, for every i € I, the
— —

following diagram commutes

Ao(i) ———— po(i)
eqﬂ jeqw*
Liphoi) - Lizy )

(ii) If ¥ is continuous, then V_, € Mor(LimF;, LimG;).
— -

(iii) If ¥, is an embedding, for every i € I, then W_, is an embedding.
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Proof. (i) The following well-defined operation ¥_,: LLmAO(i) ~ Li_{nuo(i), given by

U, (eql) ™ (i,2)) == eqld!" (i, Wi(x));  eql) (i,z) € LimAo(i)

is a function, since, if eqlf)ﬁ(i T) =Limrg() eql(/)ﬁ (J,y) < (i,2) =52 A0 (J,y), which is
equivalent to Jrer (i < k & j <k & Aj,(2) =\ )\fk(y)), we show that

< ,. <. < /.
U, (eql)™ (1, 2)) =vigg U (eq1) ™ (5,9)) & eql)’™ (4, U5 (7)) =vipuoo ealp’ (4. ¥5(y))
< (27 \I’Z(‘T)) :E?el 1o (4) (.77 \I]](y))
= Hiel(iaj <k & ka(‘l’z(ﬂ@)) =po(k) ;U'jk;(\llj(y))

By the commutativity of the following diagrams, and since ¥y is a function,

S S
No(i) — No(k) No(j) —2 Ao(k)
SR
po(i) —— po(k) po(3) —— po(k),
ik, I,

we get u5, (Vi) =uo00 Tr(A3 (@) Zuowr T (A5e(1) Zuo0o 154 (¥5(y)).-
(ii) By the \/-lifting of morphisms it suffices to show that vHeH, ( eql) gu) oW, €
LLmFl) By Definition [6.5.3| we have that

((eq1}™ gir) 0 ¥_) (eqlh ™ (4, 2)) := (eql) " gu) (eqld!” (i, Wi(2))) := gn (i, ¥i())

‘= Hy(Wi(x)) = (Hi o V) (2) := H (z) := fu(i,x) := (eqld” far-) (eqld” (i, x)),

where H* € [/, F; is defined in Lemma [6.4.3, and (eql/~gp+) o U_, := eql)” fy- € LimF;.
_)

(iii) If W_, (eqlm(z ) =vipug) ¥ (eqlf)\s (G, y) ie., i (Ti(z) = #fk(\ll](y))), for some
k € I with 4, j < k, by the proof of case (ii) we get Wy (A5.(2)) =, Vi ()\fk(y)), and since
Uy, is an embedding, we conclude that A3 (z) =5, )‘jk:( ) ie., (i,z) =522, 200 (J,y)- O

Proposition 6.5.9. Let S(AS) := (Ao, AT, ¢)) ~, M) € spec(!, %1) with Bishop spaces (F})ier
and Bishop morphisms ()\U)(lJ)GD<() S(M=) = (po, p3, dd1° Y oMY € spec(I,<;) with
sgjen(ny, md S(NT) = (v, v, 60" 6") €
Spec(I, <) with Bishop spaces (H;)ier and Bishop morphisms (v; )(”)eD< (- If¥: S(AS) =
S(M=S) and E: S(M=) = S(N<), then (Eo V), :=E_,0W_,

Bishop spaces (G;)icr and Bishop morphisms (Mij)(
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Proof. If eqlé‘< (i,x) € LimAo(7), then
—

(20 W), [eqld™ (4, 2)] := eql)” (i, (20 U)(z))
= eql) " (i, (5, 0 ¥;)(w))
= eql) (i, (2 ( ( )
=E5 (eqlo )))
== (\IJ_>(eq10 x) ))
=(250 \II%)(eqléﬁ (1, x)) O

Definition 6.5.10. Let S(A~) := ()\O,Af,gbf}ﬁ,qﬁ’lﬁ) € Spec(I,<y) and (J,e,cof ;) C°* [, a
cofinal subset of I with modulus of cofinality e: J < I. The relative spectrum of S(AS) to J
is the e-subfamily S(AS)oe := (Agoe, A\ oe, <Z>6ﬁ o e,qﬁflﬁ oe) of S(AY), where PN o6 =
( 6\< oe, (;ﬁiﬁ o e) is the e-subfamily of AT,

Lemma 6.5.11. Let S(AY) := (Ao, AT, ¢} ,¢A<) € Spec(I,<71), (J,e,cofy) C I, and
S(AS)oe:=(Agoe,Aioe B oe, M o e) the relative spectrum of S(AY) to J.
(i) If© € Hzel F;, then ©7 ¢ HJGJ , where for every j € J we define @‘-] = O(j)-

(ii) If H ¢ ngJ y, then H € [[72; F;, where, for every i € I, let H; := HcofJ() )\fe(cofJ( )
)\#
e(cof 5 (i)) ,
No(i) = Xo(e(cof (1))
H; JHgofJ()

R.

Proof. (i) It suffices to show that if j < j' :< e(j) < e(j’), then @3-7 = @3-], o Afj/. Since

_ _ —QaJ <
(CN= Hiel F; we have that @j = @e(j) = ®e(j/) )\e(j)e(j,) = @j, o )‘jj"

(ii) By definition Hé]ofJ(z‘) € Feot (i) = Fe(cot, (i), and since i < e(cof (7)), we get H; €
Mor(F;, R) = F; ie., H : \;e; Fy. Next we show that if i < ¢/, then H; = Hy o A},. By (Cofs)
and (Cofy) we have that

i 51" < e(cot 5 (i), (6.1)
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and ¢ < i’ = cof (i) < cof j(i') 1< e(cof ;(i)) < e(cof s(i')), hence we also get

i < e(cof (i) < e(cof (i)). (6.2)
Since H” € H?eJ F}, we have that
ot

v
oAy

< [l 3
Hy o) = [HCOfJ(i/) °© Ai’e(cofJ(i’))
= H’

cof s (i) © [Aje(cofj(i’))
J <

= Heot (i) © Nie(eot (i)
HJ (2/) e} [)\#

cof s e(cof y(i))e(cof 5 (i'))

oA
<
© )\ie(cofJ(i))]

< <
© )\e(cofJ(i))e(cofJ(i’))] © Aie(cots (i)

< <
© AcofJ(i)cofJ(i’)} © Aie(cofJ(i))

= [HJ

cof 7 (i)

= [HJ

cof 7 (i)

:HJ )O>\_<

cof s (i ;e(cofJ(i))

Theorem 6.5.12. Let S(AS) := (Ao, AT, Sigf)i\%) € Spec(I,<1), (J,e,cofy) C°* I, and
S(AS)oe:= ()\0 oe,\1oe, (b(/)ﬁ oe, ¢11\< o e) the relative spectrum of S(A<) to J. Then
LimF; ~ LimF;.
— —

Proof. We define the operation ¢ : LLmAQ(j) ~ LLmAO(i) by qﬁ(eqléﬁoe(j, y)) = eqléﬁ(e(j), Y)

o l) .
eql} = qu?&)

Li)m)\()(j) ; Lgn)\o(z),
for every eqléﬁoe(j, y) € LLon(j), where, if j € J and y € A\o(j), we have that

#
<oe/ - . . . .
eql) **(j,y) = {(]/73/’) €> Xl |Gy =25 200 (J,y)}a

jedJ

—\<
<, . ) ) ) .
et} (e(7) 1) = { 1) € 0l 60) =g (e .
iel
First we show that ¢ is a function. By definition we have that

ASoe

< . . . .
eqly *(j,y) =ugow oLy (1) & (hy) =p< ) (059)

& Jyres (4,5 3" & A (y) =s,0m AZpn () (1)

eql)” (e(f). y) Zumow ealy (e(i),y) & (€(),y) ==y (€0 1/)
< Elkel(e(j)ae(j/) < k & )\j(])k(y) :Ao(k) )‘j(j’)k(y,))' (2)
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If k := e(j”), then (1) implies (2), and hence ¢ is a function. To show that gb is an embedding,
we show that (2) implies (1). Since e(j),e(j') < k < e(cof j(k)), we get j,5" < cof (k) := 5.
By the commutativity of the following diagrams

Ao(e(4)) Ao(e(s"))
A\ )\j(j)e(cofJ(k)) (5")e(cof 5 (k))
e(h)k Nk
)\o(k) <—> )\o(e(cofj(k))) )\Q(k) —> )\0( (COfJ(k)))
ke(cof y(k)) ke(cofj(k))

< =
A5 (Y) = Adeeot s (k) (W)

- [)\k:e(cofJ(k)

= Nke(cot s (k) )
= [Me(cot s (k) © )\:(j/)k] ()

S /
= Adi)e(cot s (k) Y)
= /\j’j”(y,)'

By the \/-lifting of morphisms we have that

o, F; (eqlof@ o € leF )

¢ € Mor(LimF;, LimF;) :< V
— —
If © € [[z; Fi, we have that
(ealfo ©¢)(ealy ™™ (j.y)) = (eqlofo) (ealq” (e(4). 1))

= 0. (y) == 07 (y) := (eqlyfos)(eql) " >*(j.,y)),

where 07 ¢ HJGJF is defined in Lemma [6.5.11(
Next we show that ¢ is a surjection. If eqléﬁ (i,z) € Lim)\o('), we find eqléﬁoe(j, y) €
le)\o( /) such that d)(eqlA\ (4, y)) = eqlf)ﬁ(e(j),y) =Limrg(i ) eqld” “(i,z) ie., we find k € I

such that 4,e(j) < k and A3 (z) =0 )\j(j)k(y). If j := cof (i), by (Cofs) we have that
i < e(cof (7)), and by the reflexivity of < we have that e(cof ;(i)) < e(cof;(i)) := k. If
Y = Nie(cot (1)) ~ (%) € Ao(e(cof 5(i))) := (Ao 0 e)(cof (7)), then

i). Hence, eql,fo o ¢ = eql,fgs € LLmFJ

<

< _ <
)\e(cofJ(z))e(cofJ(z)) ()\ e(cof 5 (1)) ({IZ‘)) T Ao(k) Aie(COfJ(i))(x)'

We can use the \/-lifting of openness to show that ¢ is an open morphism, and hence a Bishop
isomorphism, but it is better to define directly its inverse Bishop morphism using the previous
proof of the surjectivity of ¢. Let the operation 6: LimAg (i) ~ LimA(j), defined by

— —

H(eql(’)ﬁ (i,2)) = eqlé\ °¢(cof 5 (1), Mie(eot, (1)) (%)) eqlf)\< (i,x) € Li_>m)\o(i).
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First we show that 0 is a function. We have that

<, <, . .
eqld” (i, ) =Limo (9 eqld™ (i, 2') © Fper (isk&i <k&ML(2) =0 Aop(@)),
o . <o ,
eqlf)\ e(COfJ(Z),)\ie(cofJ(i))(x)) =Limo() eql(/)\ e(cofj(z'),)\i/e(cofJ(i/))(x’)) &
e (cos ) < 7' & cot1) < &

=<

< < _ < < /
Ae(cof‘](i))e(j’) ()\ie(cofJ(i)) (.I)) TXp(es) Ae(cof‘](i’))e(j’) ()\i’e(cofJ(i’)) ($ )> :

If j := cof j(k), then by (Cofy) we get cof ;(i) < j’ and cof ;(i') < j'. Next we show that

< (A <

< /
)\e(cofj(i))e(cofj(k)) )\ie(cofj(i)) (.’L‘)) T Ao (e(eof 5 (k) A e(cof y(i'))e(cof 5 (k)) (Ai’e(cofJ(i’)) (‘T )
By the following order relations, the two terms of the required equality are written as

1 i

N

e(cof j(7)) k e(cof (i)

N

e(cof j(k))

< _ S < < <
Aie(cot (k) (x) = Ake(cofJ( ))()‘ik(x))’ and A, e(cofJ(k))( ') = )\ke(cofj(k))()\i’k(x/))' By the
equality )\fk(az) =k Mg (7)) we get the required equality. Next we show that

0 c Mor(Lmei,Lmej) & vH’eH” (equfHJ of e \/ eq10f9>.
@EI—LEI

If we fix H' € ngJ , and if H € [[Z; F}, defined in Lemma [6.5.11{(ii), then

(eqlofrs 0 0) (eq1)™ (i, 7)) 1= eqlyfy (eqloA °(cot (i), Az’e(cof‘,u))(l’))>
i= [ (cof 7 (), Nie(cot (1)) (2))
= Hot i) (Nieeot () (%))
[H;’ofJ( ) © Nie(eots (i) ()
= H;(x)
= fu(i,x)
= eqlyfu (eql) (i, x)),

hence eqlfgs 0 0 := eqlyfy € LimF;. Next we show that ¢ and 6 are inverse to each other.
%

¢(9(eq16\< (7’7 .CC))) = ¢(eq1(/)\ e (COfJ(i)J Aie(cofj(’i)) (IE))
= eql() (e<COfJ(i))7 )\ie(COfJ(i))(x))7
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which is equal to eqlf)ﬁ (7,z) if and only if there is k € I with ¢ < k and e(cof ;(7)) < k and

/\fk@) o (k) )\j(cofJ(i))k(Aie(COfJ(i))(x))’

which holds for every such k € I. As by (Cofs) we have that i < e(cof ;(i)), the existence of
such a k € I follows trivially. Similarly,

0(6(eqly " (5, v))) := 0(eq1)™ (e(4), 1))
= eqlgﬁoe (COfJ(e(j))7 )‘e(j)e(cofJ(e(j))) (y)),

which is equal to eql2™°¢(j, ) if and only if there is j' € J with j < j/, (cofs(e(j))) < j/ and
-0

A20)e) ) Zro06) Adeot  e(i))elir) Pelireteots (i) (¥))

which holds for every such j' € J. As by (Cof;) we have that j =; cof j(e(j)), the existence
of such a j' € J follows trivially. O

For simplicity we use next the same symbol for different orderings.

Proposition 6.5.13. If (1,<),(J, <) are directed sets, i € I and j € J, let
(7)< (i) =i<i &j=<j.

If (K,ix,cofg) C° I and (L,ip,cofy) Ct J, let igxr : K x L < I x J and cofg«y, :
I xJ— K x L, defined, for every k € K andl € L, by

ikxr(k, 1) = (ix(k),iL(l)) & cofgxr(i,j):= (cofx(i),cofr(j)).

Let AS = (Ao, \]) € Fam(I,<) and M~ := (uo,p7) € Fam(J,x) an (J,<). Let also
S(A) := (Mo, AT, f)ﬁ,gb[lﬁ) € Spec(1, <) with Bishop spaces (F;)icr and Bishop morphisms
()\Z-Z-/)(W)eDﬂIXJ), and S(M=) = (uo, p5°, #3 <,¢]1‘/ﬁ) € Spec(J, X) with Bishop spaces (G;)je.
and Bishop morphisms (“jj’)é,j')e<(J)'

(i) (I x J,<) is a directed set, and (K X L,igxr,cofgxr) C°F I x J.

(i) The pair AS x M=~ := (Ao X po, (A1 x 1)) € Fam(I X J, X), where

(Mo x o) ((2,7)) = Xo(i) x po(4),

N

(A x ) ¥ (6 9), () = O X )y oy
(A X )y qorgny ((@:9)) == (A5 (@), 155 (9) -

(i) The structure S(AS x M=) := (Ao X po, AT X p7; ¢6\<XM<, /IWXM#) € Spec(I x J, <) with

Bishop spaces (F; X Gj)(; jyerxs and Bishop morphisms (A1 x ,ul)( where

(i.4)(# ")) €D=(Ix.J)’
ATXME () = Fy x Gy,

< < .. . . *
AT ((2,7), (@, 4") = [(A\1 x Ml)é,j)(i’,j’)] cFy x Gy — Fy x Gj.
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Proof. (i) is immediate to show. For the proof of case (ii) we have that (A ><,u1)(Z D) (z,y)) ==
(/\fi(x),ujj(y)) = (z,y), and if (4,7) < (¢/,5") < (i”, "), then the commutativity of the

Ao(2) X p1o(J)

(AIXM1)<~ N
(4,5),(",3"")
()\1 X/jll)(l 3,6’ Jl){ \

Ao(@") X puo(j) ———— Xo(i") x po(j")
(AIXUI)(ZI SN

above diagram follows from the equalities )D,, = )\ i © )ﬁ, and u”,, ,uj,j,, o u;,.

(iii) We show that (A x ,ul)(”)(Z in € Mor(F; x Gj, Fy x Gjr). By the \/-lifting of morphisms
it suffices to show that Vyep, ((fom1)o (A x Ml)(”)( i € Fix G;) and Voea, ((goms)o (A1 X
,ul)éi-)(i/’j,) e F; x Gj) Iff (S FZ-/, thfn (fO’]Tl) ()\1 XMl)E,J)( Jl (sz )O7T1 € F:X Gj, as
FoXg € Frand [(fom) o x i3 o) w) = (Fom) (o (@), i () = (N (2)) =
[(foAG)om](z,y). If g € Gy, we get (goma)o (A X k1) jyu iy 7= (9OAJy)om2 € Fyx Gy O
Lemma 6.5.14. Let S(AS) := (Ao, AT, ¢2™, 927) € Spec(I, <) with Bishop spaces (F;)icr and
S(M~) = (uo,ul, “,¢M7) € spec(J, <) with Bishop

Then

Bishop morphisms ()\/)f eD<(I)’

spaces (Gj)jes and Bishop morphisms (p551)(; jnep=<(s): © € HzeIF and ® € ngJ s

. .
0, € H FZ'XG]' & Py € H FZ'XGJ‘,
(i.j)elxJ (ij)elxJ
@1(ij)::@iO7T1€FiXG' & q)g(i,j)::q)jOWQEFiXGj; (i,j)EIXJ.
Proof. We prove that ©, € H (i)elxT
we need to show that ©1(i,7) = ©1(¢/,5") o (A1 X Nl)éj) (i1 g Since © € [1; F;, we have
that ©; = Oy o A,. If & € Ag(i) and y € o(j), we have that

[@1(i,7j/) o (A1 x Ul)aj),(i/,j/)](x y) = [ i’ © 7r1] ( ))
Oy (A ()

[(9 o Ay) e m] (,9)

(@Z ©) 7T1)(

= [01(,5)] (=, y

Proposition 6.5.15. If S(AY) := (A, )\f, 0 ,qu\) € Spec(/, %) with Bishop spaces (F;)icr

and Bishop morphisms ()‘ii')é’i’)eDﬂI)’ and S(M=) := (po, u3, 9} \,qﬁM\) € Spec(J, ) with

Bishop spaces (Gj)jes and Bishop morphisms (pj;1)(; jnep=(J), there is a bijection

F;x @G, and for ®5 we proceed similarly. If (4, 5) < (¢/, j'),

O]

0 : LLm(Ao(i) X po(5)) — le)\o( ) X leHO( ) € Mor(le(]: X Gj), le]: X legj)

Proof. Let the operation 0 : Li_{n()\o(i) X pio(j)) ~ le)\o( ) X leuo( ), defined by

0(eql) M ((i, ), (z,y))) = (eqld” (i,2),eqld!" (j,1)).
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First we show that 6 is an embedding as follows:

eqly M ((i,5), (z,y)) = eqld M (7, ), (+,1/)) &

= (k l)eIxJ( ), (@ 7,7/) (k,1) & (A1 Nl)aj)(k,l)(wa y) = (A1 x Nl)é/,j/)(k’l) (1’/’ y/))
12 Innerx ((6:9): (@ 5) < (k1) & (A3 (@), 15(1) = (Ao (@), 1501.(6)

A Eilcel( i<k & /\;Z;(l’) )\ik( )) & E|leJ(] J=U& A5, (y) = )‘?/k(y/))
1 eql) (i,7) = eqlf (7,2') & eqly” (j.y) = ea1d (7',y)
& (eqly” (i, 2), eql)’” (7.y)) = (eqly” (7,a'),eqly" (7',4)

& 0(eqly "M ((1.4), (2,9))) = O(eqly M (75, (2'.4))-
The fact that 0 is a surjection is immediate to show. By definition of the direct limit and by
the V-lifting of the product Bishop topology we have that

Lim(F, x G,) = (le@o( yuG), eqlofa),
eIl yerx s FixGi
HelTe, G
Li_}m]:i X Li_)mgj = (Li_)m)\o(i) X Li_>m,ug(j) \/ eqlyfe omi,eqlyfu o 7r2> .
oell, Fi

To show that § € Mor (Lim(]—"i x Gj), LimF; x Limgj) it suffices to show that

— — —
VQGI—LeIFvHEH?E‘]Gj (eqlof@ om)of € LLm(Fi x Gj) & (eqlyfmom)of e Lgn(E X Gj)).
Ifoe HZE[ i, we show that (eqlyfgom)of e le(F x G;) From the equalities

[(eqlofor o m1) o 0] (eqly M ((i, ), (z,9))) = (eqlofor o m1)(eqld ™ (i,x),eqld!” (j,y))
= eqly fo- (eql) (i, )
= 0;(z)
= (@i ) 7'['1)(1’, Y)
= [01(:, )] (2. )
= eqlyfo, (eqly M ((i,4). (z.9)),

where ©; € [[72; F; x Gj is defined in Lemma [6.5.14] we conclude that (eqlyfg» o m) o6 :=
eqlyfe, € Lim(F; x G;). For the second case we work similarly. O
—

6.6 Inverse limit of a contravariant spectrum of Bishop spaces

Definition 6.6.1. If S(A7) := (Ao, AT, &) ,qﬁA/) is a contravariant (I,<)-spectrum with
Bishop spaces (F;)icr and Bishop morphisms (/\ﬂ)(”) D=(1); the inverse limit of SA(7) is the
Bishop space

LimF; := (LimAo(i), LimF;),

— - —
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fEF;
LimAo (i H Xo(i LimF; := \/ forl”
el el

For simplicity we write m; instead of 71'7{\? for the function 7TZ-A> : [17zs Ao(d) = Ao(i), which
is defined, as its dual 7rZA< in the Proposition (iv), by the rule ® — ®;, for every i € I..

Proposition 6.6.2 (Universal property of the inverse limit). If S(A7) := (Ao, AT, ¢} ,gb’v) '
a contravariant direct spectrum over (I, <) with Bishop spaces (F;)ier and Bishop morphisms
()f)( Je<(1), s inverse limit LimF; satisfies the universal property of inverse limits i.e.,

’ —

(i) For every i € I, we have that m; € Mor(L}_m]:i,]:i).
(

ii) If i < j, the following left diagram commutes

ZEI Y
/ \71'3 = \wj
. .
(0 0 Yo ————— Xali)

(iii) If G = (Y,G) is a Bishop space and w; : Y — Xo(i) € Mor(G,F;), for every i € I,
such that if i < j, the above right diagram commutes, there is a unique function h :' Y —
[Lic; Ao(i) € Mor(G, le]-") such that the following diagrams commute

[Licr Ao(d)

Proof. The condition m; € Mor(L}_m]-"i, Fi) 1= Veer, ( fom; € \/zf EGIF fom) is trivially satisfied,

and (i) follows. For (ii), the required equality )\;- (75(®)) =xo ™i(P) & A?i(@j) _Ao(> D,

holds by the definition of []7z; Ao(i). To show (iii), let the operation h : Y ~ []7Z; Ao(4),
defined by h(y) := ®,, where &, (i) := w;(y), for every y € Y and i € I. First we show that h
is well-defined i.e., h(y) € Hzel 0(i). If i < j, by the supposed commutativity of the above
right diagram we have that )\;( y(4)) = )\; (wj(y)) = wi(y) := Py(i). Next we show that h
is a function. If y =y 1/, the last formula in the following equivalences

(I)y :H?e[ Ao (%) (by' = viGI ((I)y(i) () (I)y/ (Z)) = vie[ (wz(y) TX0(i) wl(y,))

holds by the fact that w; is a function, for every ¢ € I. By the \/-lifting of morphisms we have
that h € Mor(G, LimF;) < Viefvfepi((f om)oh € G). Ifiel, feF;,and y €Y, then
H

[(fomi) o h](y) = (f omi)(®y) == f(Dy(2) := f(wi(y)) := (f o wi)(y),

hence (f om;) oh:= fow,; € G, since w; € Mor(G, F;). The required commutativity of the
last diagram above, and the uniqueness of h follow immediately. O



6.6. INVERSE LIMIT OF A CONTRAVARIANT SPECTRUM OF BISHOP SPACES 181

The uniqueness of Lim\y(4), up to Bishop isomorphism, follows easily from its universal
%

property. Next follows the inverse analogue to the Theorem [6.5.8

Theorem 6.6.3. Let S(A7) := (Ao, AT, ¢)) A7 ngA?) be a contravariant (I,<)-spectrum with

= =
ajen<n, S(M7) = (o, p1, ¢p" ,o1"") a
contravariant (I, <)-spectrum with Bishop spaces (G;)icr and Bishop morphisms (“?i)(i,j)ED‘(I)’

and ¥: S(A7) = S(M7).
(i) There is a unique function ¥ : L{i_mx\o(i) — L}_muo(i) such that, for every i € I, the

Bishop spaces (F;)ier and Bishop morphisms (A

following diagram commutes

No(i) ———— po(i)
S
Limdo(i) - - -» Limso(i).

(i) If U is continuous, then ¥ _ € Mor(LLm.E,LLin).
(iii) If U; is an embedding, for every i € I, then ¥ is an embedding.

Proof. (i) Let the assignment routine W, : L(i_m/\o(z') ~ L(i_m,uo(i), defined by
0=V, (0), [V (0)],:=V,(6); ©O¢€ Limko(i), iel.

First we show that ¥, is well-defined i.e., U, (©) € [[ic; po(i). If i < 7, since © € [[7z; Ao(d),
we have that ©; = /\> (0;), and since ¥: S(A7) = S(M7)

fo (%) — to(J),

,Uﬂ
[\IQ_(G))] = U;(0;) = \I/~(/\#(G)‘)) (\II o /\>)(G) ) = (,ujz oW, )(6 ) = ,uﬂ(\I/ (@j)) =
,u;([ ] ) Next we show that ¥ _ is a function: © = =LimAg(i) D& Vicr (@7; =0 (0) <I>Z-) =

Vier (\I/Z(@,-) =0 Vi(Ps )) = Vzel([‘lﬂ—(g)]i o (@) [‘I’e(‘l’)]i) = U (0) SLimpug (i) Ve (D).
The commutativity of the diagram and the uniqueness of ¥, are immediate to show.

(ii) By the \/-lifting of morphisms we have that V. € Mor(Lim]-",-, L<i_mgi) & VierVgea ((g 0
™M) oW, € LLmF,) If i € I and g € Gj, then [(go7rM>) 0¥, ](O) :=g([¥(O)],) =

9(¥:(0,)) = (g o U;)(6;) == [(go W) o wfﬂ (©), and g o ¥; € F;, by the continuity of ¥,
hence (gomM™)o W, = (go¥;) o ™ e LimF».
(ili) By definition we have that ¥ (©) =m0 ¥ (P) = Vier (¥i(0;) =00 Vi(®;)) =

Vier (@z‘ =0 (i) (I’z') =0 =Lim(s) . O
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Proposition 6.6. 4 If S(A7) == (No, AT, ) TN, S(M7) = (uo,uT,gbé\ﬁ,(b{\ﬁ) and
S(N7) := (vo,v], oY ,¢N>) are contravariant direct spectra over (I, <), and if ¥: S(A7) =
S(M7) and E: S(M7) = S(N7), then (Eo W), :=E_ oW _

Theorem 6.6.5. Let S(A7) := (Ao, AT, ¢) ,qu}) be a contravariant direct spectrum over
(I1,<), (J,e,cofy) a cofinal subset of I, and S(A7 oe) := (()\0 oe,\10e o 7oe (ﬁAroe) the
relative spectrum of S(A7) to J. Then

LimF; ~ LimF;.
— —

Proof. If © € ngJ 0(j), then, if j < j/, we have that ©; = )\> (@ ) = A:(]) G )(@j/). If

i € I, then cof (i) € J and O.o¢,(;) € Ao(e(cof(i))). Since i < e(cof j(i)), we define the
operation ¢ : L(i_m)\o( J) ~ L(l_m/\o( i), by the rule © — ¢(0©), for every © € L(i_m)\o(j), where

[6(0)]; = )\:(CofJ(i))i(@COfJ(i)) € Xo(i); i€l

First we show that ¢ is well-defined i.e., ¢(©) € []7Z; Ao(i) i.e., for every i,i' € I, i < i’ =
[0(©)]i = A7, ([¢(©)]i). Working as in the proof of Lemma [6.5.11{ii), we get

)‘?i([d)(@)] ) A?l(A:(cof](z )i’ (@cofJ(i’)))
=

\F
/

e(cofJ('L )i’ } (@COfJ(i/))
-1)

=
||!

)\:(cofJ(i’))i(@COfJ(i/))
A

V(cofJ(i))z ()‘Z(cofJ(i/))e(cofJ(i)) (@cofJ(i’)))

Y

>
IS
—

e(cof (i) © A?(cofJ(i’))e(cofJ(i))] (Ocot (1))

e
)\#

e(cof 7 ()i (@COfJ(i))
= [#(O)};-



6.6. INVERSE LIMIT OF A CONTRAVARIANT SPECTRUM OF BISHOP SPACES 183

To show that ¢ is a function we consider the following equivalences:

$(©) =Limxo(4) ¢(H) @Vzef(w(@)]i =) [¢(H)L~)
= viel()\j(cofj(i))i(@‘mf](i)) o) A?(cofJ(i))i(HCOfJ(i)))’ (1)

o ZLimAo () H & Ve (@j Aolel)) Hj) (2).

To show that (1) = (2) we use the fact that e(cof;(j)) = j, and since j < j, by the

extensionality of < we get j < e(cof ;(j)). Since O; = )\Z(cofJ(i))i(@cofJ(i)), and H; =

)\>;(cofj J(Heos, (1)), we get (2). By the \/-lifting of morphisms ¢ € Mor(L(i_m.E-,L(i_mfi) &

S

VielVier, ((fomf )og € leF) Ifee ngJ 0(j), we have that

(f )\:(cofJ )( cof (i) )
S(A7)oe
=[(fo A:(cofj( )i ) o 7rco(fJ(Z) 1(9),

hence (f o 71';9(]\?)) o¢:=(fo /\j(cofj(i))i) o ch)(fAj(zie € L}_ij, as by definition A7

e(cof y(i))i €
Mor(F(cot ,(i))s Fi), and hence

=

No(e(cot (1)) 1y )

?
fOAe(M Jf

R

fo )\f(cofJ(i))i € Fo(cot, (i) = Feor, (i) Let the operation 6: L(i_m)\o( i)~ L1m>\0( /), defined by

the rule H +— 0(H) := H”, for every H € [7Z; Ao(i), where HJJ = H,(;) € Mo(e(j)), for every

jeJ. WeshowthatHJEHJEJ (4)- It j < 4/, then

j (H]J/) = He(j) = )\Zj/)e(j) (He(j'))’

which holds by the hypothesis H € HZeI o(7). Moreover, we have that ¢(H”’) = H :&
vze]([(b(HJ)]i = H;). If i € I, and since i < e(cof ;(i)), we have that

[‘b(HJ)]i = )‘Z(cofJ(i))i(Hé]ofJ(i)) = /\ZcofJ(i))i (He(cofJ(i))) = H;.

It is immediate to show that 6 is a function. Moreover, 8(¢(0) = O, as if j € J, then

?b(@)jj = @b(@)e(j) = A?(CofJ(e(j))e(j) (@cofJ(e(j))) = @ja
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as by hypothesis ©; = )\e(J Ne(j )(G) 1), with 7 < j/, and by (Cof;) we have that j =; (cof sj(e(j)),
hence by the extensmnahty of < we get j < (cofs(e(j)). Finally, 6 € Mor(Lgn]—}, Lgn]-}) &

ViesVser, ((f o 7r A7) ) of ¢ leF) which follows from the equalities

[(Fomy ™) 0] (H) =

= (fowf(g{;#))(H). O

Proposition 6.6.6. If (I, <), (J,<) are directed sets, S(A7) := (Ao, \[, $A”, #}7) is a con-
travariant direct spectrum over (I,<) with Bishop spaces (F;)icr and Bishop morphisms
(/\?/z)(i,z")eDﬂI): and S(M7) := (po, u7, 3, ¢M7) is a contravariant direct spectrum over
(J, <) with Bishop spaces (Gj)jcs and Bishop morphisms (u;’,j)(j,j/)eDﬂJ), there is a function

X H)\O X H wo(j) — H Ao(i) x puo(j) € Mor(le]: X leg],le(}" X gj))
iel jeJ (4,9)eIxJ

Proof. We proceed as in the proof of Proposition [6.5.15 O

6.7 Duality between direct and inverse limits of spectra

Proposition 6.7.1. Let F := (X, F),G := (Y,G) and H := (Z, H) be Bishop spaces, and let
A € Mor(G,H), i € Mor(H,G). We define the mappings

AT Mor(H, F) = Mor(G,F), A (¢):=¢oX; ¢¢& Mor(H,F),

w: Mor(F,H) — Mor(F,G), p (0):=pob; 6cMor(F,H),

o) 0
Z X Z
AI Box ucN Ju
Y Y.

*t: Mor(G,H) = Mor(H — F,G = F), A—=A"7  Xe&Mor(G,H),
“:Mor(H,G) » Mor(F - H,F - G), pu—pu; p€Mor(H,QG).
Then + € Mor(g —H,(H—=>F)— (G— .7-")) and ~ € Mor(?—[ -G, (F—>H)— (F— g))

Proof. By definition and the \/-lifting of the exponential topology we have that

heH fer
G—H:= <MOI‘(g,H>, \/ ¢y,h>7 H—F = <MOI‘(7‘[,.F), \/ (bZ,f)?

yey z€Z
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fer

g — F = (Mor(g,}-)a \/ ¢y7f>’

yey

eeG—F
(H— F) = (G— F):= <Mor((7—[,]-') —-G—=F), qs@,e),

pEMor(H,F)
ecG—F yeY,feF
\/ ¢§076 = \/ ¢)‘p7¢y,f :
peMor(H,F) p€eMor(H,F)

By the \/-lifting of morphisms we have that
T eMor(G—H,(H—=F) = (G = F)) & Voerora,r) Vyey Vrer (dpg, 0 T € G — H).

If A € Mor(G, M), we have that ¢y, 0 TI(A) 1= dypg, (A7) := (By,roAT) (@) := (¢y s (o)) =
[fo(poN](y) = [(fop)oA(y) := Qby,fowo‘) Le., ¢§D7¢y7f o ti= Gy,fop € G — H, since
¢ € Mor(H,F) and hence f oy € H. For the mapping ~ we work similarly. O

Next we see how with the use of the exponential Bishop topology we can get a contravatiant
spectrum from a covariant one, and vice versa.

Proposition 6.7.2. (A) Let S(A~) := (Ao, A, gﬁ,d)f) € Spec(I,=x) and F := (X, F) a
Bishop space.
(i) If S(AS) = F := (uo, ul, o)™, ¢M7), where M7 := (po, u7) is a contravariant direct

family of sets over (I,<) with po(i) :== Mor(F;, F) and
w7 (6, 5) = (Mor(F;, F), Mor(F3, F), (A7) "),

and if $Y17 (i) = F; — F and ¢} (i,§) = (F; > F,F; — F,[A\3)T]"), then S5 — F is

a contravariant (I,<)-spectrum with Bishop spaces (Mor(F;, F))ier and Bishop morphisms
<

(()‘ij)+)(i,j)eD<(1)'

(i) If F — S := (Vo,yf,gﬁéﬁ,gﬁjlﬁ), where N= := (vp,v7) is a direct family of sets over

(I, <) with vy(i) := Mor(F, F;) and

vy (i5) == (Mor(F, F;), Mor(F, ), (A5) "),

and if qbéﬁ(z) = F — F; and qb{ﬁ(i,j) = (F - F;,F — Fi,[()\fj)_]*), then F — S

is a covariant (I,<)-spectrum with Bishop spaces (Mor(F,F;))ic; and Bishop morphisms
<\—

(O3 gyen=wy-

(B) Let S(A7) := (Ao, AT, gk,gb{\?) be a contravariant (I,<)-spectrum, and F := (X, F) a

Bishop space.

(i) If S(A7) — F := (Mo,uf,gbé\ﬁ,gb{\ﬁ), where M=~ := (uo, u7) is a direct family of sets over

(I, <) with po(i) := Mor(F;, F) and

15 (i 5) := (Mox(F;, F), Mor(F;, F), (\;)F),

and if 9 (i) == F; — F and M~ (i,7) := (F; — F,F; — F, [()\;’Z)Jr]*), then S7 — F is an
(I, X)-spectrum with Bishop spaces (Mor(F;, F))ier and Bishop morphisms ((A;)+)(ij)eD<(I)'
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(i) If F — S(N7) := (vp, 07, ¢6V>,¢{V>), where N7 := (vp,v]) is a contravariant direct family
of sets over (I,<) with vy(i) := Mor(F,F;) and

Vi (i,5) := (Mor(F, Fj), Mor(F, F3), (A7) 7),

and if ¢)" (i) == F — F; and ¢} (i,5) = (F = F,F — F;,[(\;)7]"), then F — S< is
a contravariant (I, <)-spectrum with Bishop spaces (Mor(F,F;)icr and Bishop morphisms

(()\f])_) (i,5)eD3(I)"

Proof. We prove only the case (A)(i) and for the other cases we work similarly. It suffices to
show that if ¢ < j < k, then the following diagram commutes

Mor(F;, F)

o] e

Mor(Fj, F) —— Mor(Fj, F).
(A5k)
If ¢ € Mor(Fi, F), then (AF) T [(A5,) 7 (9)] = (AF) T[0A5] 1= (80A5,)0N5 1= do(A5j,0A5) =
po A% = (A3) T (9). O

Similarly to the \/-lifting of the product topology, if S(A7) := (X, AT, qﬁé\?@{w) a con-
travariant direct spectrum over (I, <) with Bishop spaces (Fl =V Fol-) then

iel’
= fe€Fo;
AP
i€l i€l

Theorem 6.7.3 (Duality principle). Let S(AS) := (Ao, AT, 00", ¢0") € Spec(l, <) with
Bishop spaces (F;)icr and Bishop morphisms ()‘fj)(i,j)eDﬂI)' If F .= (X, F) is a Bishop space
and S(AS) = F := (po, u7, 007, ¢M7) is the contravariant direct spectrum over (I, <) defined
in Proposition[6.7.9 (A)(i), then

L}_m(]:i — F) =~ [(Lgn}"l) — F].

Proof. First we determine the topologies involved in the required Bishop isomorphism. By
definition and by the above remark on the \/-lifting of the [[”-topology we have that

= geEF;—F
. : A
Lgn@%ﬂ:—(lluo(z), \/ gor “f),

i€l i€l

feF

F‘i — F = \/ (b:(:,fa
xe/\o(i)

geF;—F €N (1), fEF

SS—F S(AN)—=F
Vo gors T =\ puonfOF,
iel i€l
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LimF; := (Lim“(i)’ V eqlof@)’
GEH?GI 5
fer
(Li}m]_—l) — F = (MOI‘(LLm]:’“ ]:)’ \/ ¢eq10A< (iaac)?f)7

<
eql{)\\ (i,:L')GLiI}n)xO (2)

(h) == (f o h)(eq1}™ (i,))

hEMor(Li_En]-—i,]-—)
LimAg(¢) — ™
— O( X

fN JfGF

If H € [[/z; Mor(F;, F), let the operation 0(H) : LLon(i) ~+ X defined by

¢

<
salf) " (i,2),f

G(H)(eqlé\< (i,2)) == Hi(z); eql(’)ﬁ (1,x) € LLon(i).
We show that §(H) is a function. If
<. <, . .
eql(/)\ (i) TLimg(3) eqlf)\ (4,vy) © Fner (Za] <k & )‘fk(x) =0 (k) )\jk(y))7

we show that Q(H)(eqléﬁ (i,2)) := Hi(z) =x H;(y) =: 6(H) (eql{)\s(j,y)). By the equalities
H; = (A\}) " (Hi) = Hy o A5, and Hj = (A5,) " (Hy) = Hy, 0 A3, we get

H(z) = (Hg o M) (z) = Hp(M\(2)) =x He(A\(y)) = (Hy 0 A5,) (y) == Hj(y).
Next we show that 6(H) € Mor(Li_)m}'Z-,}") (e Viep(fob(H) € Ll)mFl) If f € F, then the
dependent assignment routine © : \,.; F;, defined by ©; := f o H;, for every i € I

. Hl‘GMor(]:i,./—')
Ao(i)) ———

f‘N)

is in [, Fi Le., if i < j, then ©; = (A])"(0;) = ©j0)7, since ©; := foH; = fo(Hjo\)) =
(foHj)o )\fj =0;0 )\fj Hence f o §(H) := eql, fo € LimFj, since
—

fer

0 <

[f 0 6(H)](eqld ™ (i,2)) := f(Hi(x)) == (f o Hi)(z) := foli,z) := eqlyfe(eql) (i, x)).

Consequently, the operation 6: er ; Mor(F;, F) ~» Mor(LLmE,f)7 defined by the rule
H — 0(H), is well-defined. Next we show that 6 is an embedding.

< .
eqléﬁu,z)eLi_,on(i) (Q(H)(eqlé\ (i, 7)) = 0(K)(ws= (z,x)))

& Vier (Hi(r) =x Ki(x))
= H=K.
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Next we show that 6 Mor(L(i_m(fl- — F), (Li_}m]-'i) — F) ie.,

fer

S(AS)—=F
Vo< v < of ¢ om; .
eql([)\< (i,z)eLi}mAO (i) feF ¢eql(/)\< (i,x), f \/ ¢zvf 7
i€l,x€Ng (Z)

By the equalities

(O(H)) := [f 0 0(H))(eq1} ™ (i,2)) := f(Hi(x)),

< .
eql)  (i,2),f

[gbeqlg%(i,z)J of|(H):=¢

[¢x,f © 71—@5#%]:]([{) = ¢x,f (Hz)) = f(HZ(-f)),

we get ¢ A< )f09 S owf(Aﬁ)_)f. Let ¢: Mor(Lmei,f) ~ ?el Mor(F;, F) be defined
eqlyy ©,T),
by h — ¢(h) :== H", where H" : \,.; Mor(F;, F) is defined by H" := hoeql,, for every i € I

eql. . .
Ao (i) % LLon(z)
H! Jh

X.

By Proposition [6.5.5(i) H; € Mor(F;, F), as a composition of Bishop morphisms. To show
that H" € [[,.; Mor(F;, F), let i < j, and by Proposition m(n) we get H' := hoeql, =
ho(equo)\fj) = (hoequ)o)\fj ::< Hjo)\fj. Moreover, 0( Hy,) := h, since H(Hh)(eqlé\< (i,2)) =
H;(z) := (hoeql;(z) := h(eqlé\\ (i,2)). Clearly, ¢ is a function. Moreover HYH) .= H | as,
for every i € I we have that (Hf(H))(:n) = (0(H) oeql;)(z) :=6(H) (eql{)ﬁ (i,2)) :== H;(z).

Finally we show that ¢ € Mor((Ijim}"i) — F, Lim(]—"i — F)) if and only if
to

fer
vielvxe)\o(i)vaF (¢x,f o (Z) S \/ ¢eq16\4 (i,:(:),f) .

eq16\< (i,x)ELi_)m)\o (7)

If he Mor(Lmei,f), then

(60 O 0 6] (h = (¢ g 0 77DV (HDY 1= ¢ 4 (HD)

= bushoeql) = f[(hoeql)(@)] = (f o) (eqld™(i,2)) i= b ey ;B O

With respect to the possible dual to the previous theorem i.e., the isomorphism Lim(F; —
—

F) ~ [(ngm]:z) — F], what we can show is the following proposition.

Proposition 6.7.4. Let S(A7) := (Ao, )\T, é\b,qﬁy) be a contravariant direct spectrum over

(I,=x) with Bishop spaces (F;)ier and Bishop morphisms (A7) yep<ny- If F = (X, F) is a

Bishop space and S(A7) — F := (o, u7, ¢é\4<,¢]1\/[<) is the (I, <)-directed spectrum defined in

Proposition|6.7.9 (B)(i), there is a function ~ : Lim[Mor(F;, F)] — Mor(LimF;, F) such that
- —
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the following hold:
(i) ~ € Mor(Lim(]—"i = F), (Lim]—}) — ]-"),

(ii) If for every j € J and every y € X\o(j) there is ©, € Hlel 0(@) such that ©y(j) =x,i) Y-
then ~ is an embedding of LLm[Mor(E,f)] into Mor(Lgn.F,,]—")

Proof. We proceed similarly to the proof of Theorem [6.7.3 O

Theorem 6.7.5. Let S(A7) := (Ag,AT,(Z) ¢A>) be a contravariant direct spectrum over
(I, <) with Bishop spaces (F;)icr and Bishop morphisms ()‘gz)(m)eD< - IfF=(X,F)isa

Bishop space and F — S(A7) := (v, v] ,d)o , gb]lw) is the contravariant direct spectrum over

(I1,=), defined in Proposition 2 (B)(ii), then
Lim(F — F;) ~ [F — LimF;).
— —

Proof. First we determine the topologies involved in the required Bishop isomorphism:

geEF—F;

Lim(F — F;) (HMor (F.F), \ gonl W )>,
i€l i€l
gGF—>Fi fEFi
\/ go Tri]-'%S? _ \/ st,f o 7_‘_]:—)S(A )7
i€l i€l,z€No(3)
= feF; (A7)
Lgn]-"i = (H)\o(z), \/ fom, ),
i€l i€l
gEL(i_m]—'i
F — Li:n]—"i = <Mor(.7:, Limfi), \/ (bz,g>,
zeX
gEL{i_m]:i fer,
\/ ¢z,g = \/ ¢z fOﬂ_S(A>)
zeX zeX,iel
If H € [[jz; Mor(F, Fi), and if i < j, then H; = v7;(H;) = (A7) (H;) = A7 o H;
H .
X —— o(4)
. =
D

o).

Let the operation e(H) : X ~ [[7; Ao(i), defined by @ — [e(H)](z), where [[e(H))(x)], :=
Hi(z), for every i € I. First we show that [e(H)](z) € [[Z;Mo(i). If i < j, then
[[e(H)](z)], == Hi(x) = ()\Z o Hj)(z) = )\Z(H](x)) = )\;([[ (H)](a:)]]) Next we show that
e(H) is a function. If x =x 2/, then VieI(Hi(x) =200 Hz(x’)) = Vig([[e(H)}(a})L =20(0)
[[e(H))(«")],) & [e(H))(x) =7, 20 [e(H)](z'). By the \/-lifting of morphisms e(H) €
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Mor(f,L(i_mfi) S VierVrer ((f owf(Ak)) oe(H) € F). Since [(fo7r A7) o e(H))(z) := (fo
O ([e(H)] () = f(Hi(w)) = (f o H)(w), we get (fom; ")) oe(H) i= fo H; € F, since
f € F, and H; € Mor(F,F;). Hence, the operation e : [[7z; Mor(F, ;) ~ Mor(F, L{i_mfi),

defined by the rule H — e(H), is well-defined. Next we show that e is an embedding. If
H,K € [[;z; Mor(F, F;), then

e(H) = e(K) & Vaex ([e(H)](z) T, %) [e(K)](=))
& Voex Vier (Hi(z) =50 Ki(z))
& VierVeex (Hz(ﬂf) “Xo(i) Kl(x))
& Vier (Hi =sonr 5y Ki)
= H = K.

]_[f Mor (F,F;)
By the \/-lifting of morphisms we show that

e c MOI’(L}_HI(.F — .FZ),]: — L(l_mfl) = viEIvfeFi (¢ sa=) 0€ € L(l_m(F — FZ))

z,for;

(¢ sz © e) (H):=¢

z,fom;

We get & suny 0 € 1= by or! 7)€ Lim(F — F). Let ¢: Mor(F,LimF) ~

o Mor(]: J’:) defined by the rule ﬁa — HW, where for every p : X — [[7Z; Xo(i) €
Mor(F, Lim ;) i.e., Vier¥rer, ((f o AN o p e F), let

H*: \ Mor(F,F), [Huli: X = Xo(i), H!'(z):=[u(x)l; z€X,icl
el

FoHM ) = f(HY) = f(u@))s) = [(fori ™) op]() e, folE = (for;“)opeF,
as € Mor(F, Lim]—") Since p(z) € [Tz Mo(i), [w(@)]; = )f - ([u(2)]5), for every i,j € I such

that i < j. To show that H, € [[%; Mor(F,F;), let i < j. Then

First we show that H! € Mor(F,F;) i< Vyep,(fo H' € F). If f € F;, and z € X, then
) €

HY' = N, 0 HY & Voex (HY (@) =5 [N 0 H}](2))
= VxeX([M(x)]i =xo() P‘Z([N(@]J))’
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which holds by the previous remark on p(z). It is immediate to show that ¢ is a function. To
show that ¢ € Mor ([F — LimF;], Lim(F — F;)), we show that
— —

fEF;
VzejvjfeF va)\o (4) ([(;sx fo 71"7'——>S d) c \/ ¢ o S(A}_>>’

zeX,iel

[[6o, 0w 54T 0 6] (1) i= [y 0w 547 (1)
= ¢, 7 (HY)
= (f o H!')(x)
= f(u(x):)
— (for?™ o p)(a)
= [Qb S(AF >}(N)-

z,for;
Moreover, ¢(e(H)) := H, as H'\" (z) := [e(H)(x)); := H;(x), and e((p)) = p, as

e(H") = 8 Vaex ([e(H)](@) ==, ()
= V$€szel( H!

(
() =0 [1(2)]1)
1 VaexVier ([(2)]i =x0 [1(2)]s). O

With respect to the possible dual to the previous theorem i.e., the isomorphism Lim(F —
—
Fi) ~(F — Li_)m]-'i), what we can show is the following proposition.

Proposition 6.7.6. Let S(AY) := (Ao, )\f,gbéﬁ,qﬁﬁﬁ) € Spec(I) with Bishop spaces (F;)icr
and Bishop morphisms (\5); yep=(1)- If F := (X, F) is a Bishop space and F — S(AS) :=

(vo, v7, ) N oMY s the (I,<)-direct spectrum, defined in Propositz’on (A)(ii), there is a
map ~ : LLm[Mor(f, Fi)] = Mor(F, Lmei) with — € Mor((LLm(f — Fi), F — Lmei).

Proof. We proceed similarly to the proof of Theorem [6.7.5] O

6.8 Spectra of Bishop subspaces

Definition 6.8.1. If A(X) := (Ao, EX, A1) € Fan(I, X), a family of Bishop subspaces of
the Bishop space F := (X F) associated to A(X) is a pair ®MX) .= (qﬁé\(x),gbf(x)), where
(o AL T Vo and ¢1 : A(” eDn(I (<Z>0 ( )7¢8(X)(j)) such that the following conditions
hold:

(i) ¢6\(X)( )i=F, = Fx@) = Vyep fo€ X for every i€ 1.

(ii) qS/l\(X)( j) = A% Jor every (i,5) € D(I).

We call the structure Sp(A(X)) := (Ao, EX, A1, F, ¢6\(X), ¢11\(X)) a spectrum of subspaces of F
over I, or an I-spectrum of subspaces of F with Bishop subspaces (F;);cr and Bishop morphisms
(EXYier. If Sp(M(X)) := (po, 2%, 11, F, ¢é\/[(x),¢§w(x)) is an I-spectrum of subspaces of F
with Bishop subspaces (G;)ier and Bishop morphisms (ZX)icr, a subspaces spectrum-map
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U from Sp(A(X)) to Sp(M(X)), in symbols ¥: Sp(A(X)) = Sp(M(X)), is a family of
subsets-map ¥: A(X) = M(X). If F is clear from the context, we may omit the symbol F as
a subscript in the above notations.

The topology F; on Ag(7) is the relative Bishop topology of F' to \o(i), and it is the least
topology that makes the embedding SZ-X a Bishop morphism from F; to F. In contrast to the
external framework of a spectrum of Bishop spaces, we can prove that the transport maps \;;
of a spectrum of subspaces Sp(A(X)) are always Bishop morphisms. The extensionality of a
Bishop topology F on a set X as a subset of F(X) is crucial to the next proof.

Remark 6.8.2. Let Sp(A(X)) = (Mo, EX, M\, F, ¢6\(X) ?(X)) be an I-spectrum of sub-

spaces of F = (X, F) with Bishop subspaces (F;)ic; and Bishop morphisms (£{<)icr, and

Sp(M(X)) = (po, 2%, 1, F, gZ)M(X),gZ)M(X) an I-spectrum of subspaces of F with Bishop
K H 0 1

subspaces (Gi)ier and Bishop morphisms (25X )cr.

(i) S(A) := ()\O,Al,gbé\(x),gb/l\(x)) is an I-spectrum with Bishop spaces (F;)icr and Bishop
isomorphisms (Nij) (i j)eD(1)-
(ii) If U: S(A(X)) = S(M(X)), then ¥ is continuous i.e., ¥; € Mor(F;, G;), for every i € I.

Proof. (i) It suffices to show that \;; € Mor(F;, F;), for every (i,7) € D(I). By the \/-lifting of
morphisms we have that \;; € Mor(F;, F;) & erF((fOEJX)O)\Z‘j S E) & Vier (fo(é’]Xo)\ij) €
F;). If we fix some f € F, and as SJX 0 Aij =F(ro(i),X) EX, we get fo (EJXO)\Z-]-) =F(o (@) fo&X.
Since f o &Y € F; by the extensionality of F; we get f o (5])( o \ij) € Fi.

(ii) By the \/-lifting of morphisms we have that ¥; € Mor(F;,G;) < Vyep((f 0 ZX) o ¥; €
F) & Vierp(fo (2 o) € Fy). Since ¥: A(X) = M(X), we get Z;* o Ui =g(y,).x) &
and hence f o (ZZX o W;) =pn) f o SZ-X, for every i € I and f € F. By the definition
of F; we have that f o SZ»X € F;, and hence by the extensionality of F; we conclude that
fo (ZEXVO U,;) € F;. OJ

Definition 6.8.3. Let Specy (I, X) be the totality of spectra of subspaces of the Bishop space
F = (X, F) over I, equipped with the equality of Spec(I, X).

Definition 6.8.4. Let Sp(A(X)) := (Ao, EX, A1, F, 0™, 92X € spec (I, X) with Bishop
subspaces (F;)ier and Bishop morphisms (EZX)ZE]. The canonical Bishop topology on the
interior union | J;c; Ao(i) is the relative topology of F to it i.e.,

U= (Un@Ur)

el el el
UFi = \/ foeﬁ(x),
i€l fer
(foel ™) 2) = F(E @));  (i,x) € [ Mo(i).

el
The canonical Bishop topology on (\;c; Ao(i) is the relative topology of F to it i.e.,

N7= (NN

iel i€l el
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ﬂFZ- = \/ foe%(X),

i€l feF
(foep™) (@) = f(EX(®i); @ €[\ hld)
el

Next follows the continuous-analogue to Proposition using repeatedly the \/-lifting
of morphisms and the extensionality of a Bishop topology.

Proposition 6.8.5. Let S(A(X)) := (Ao, EX, A1, F, qbé\(x),qbf(x)) € Specp (I, X) with Bishop

subspaces (F;)icr and Bishop morphisms (£X)icr, S(M(X)) := (po, 2%, 1, F, gbéw(x), iVI(X)) €

Spec (I, X) with Bishop subspaces (G;)ic1 and Bishop morphisms (25X )icr, and ¥: S(A(X)) =
S(M(X)).

(i) e; M) ¢ Mor(F;, U1 Fi), for everyi € 1.

(ii) U e Mor(UzeI FisUier Gi)-

(iil) ) e Mor((;¢c Fi» Fi), for everyi € I.

(

IV) ﬂ\D € Mor(mzel ‘Flv ﬂzel gz)

i e Mor(F Uier Fi) & Vger((f o ep™) 0 e} € F). 16 [ € F, then

Proof. (i) e

(fo eS(X)) o e?(X) = fo &Y € F,, since, for every o € A\g(i), we have that [(f o eﬁ(x)) o
e?(X)] (x) := (f o ES(X))(i,SL') = (f o EZX)(:U)

(i) U € Mor(Uye; Fis Uiy G) < Vrer ((foe) X))ol W € Ui, ), and (foely ™) ol w =

fo eS(X) € Ujer Fi, as
[(Foel ™) ol Ju]l,2) = (f o) ™) (G, Wilw))) := F(ZX (Wil2)))

= ((fo &) o W) (x) = (f o &) () := (f o e} ™) (i, ).
A(X)

(iif) 7 6Mor(ﬂiej]:i,]:i)@erp((fOSX)Oﬂ' ) € Nies F), and (f 0 £X) o n™) =
Foen® € Nies Fryas [(f o €X) omtM)(@) := F(EX (1) = F(EX (@4) = (Foep ™) (@).
() (0 € Mor((iey 72 Mier 90) < Vrer((/ o e A)enw e n@el "), and (7o AL
N = foeh™ € Ui By as [(fo et ™) o NU](@) == (f o et ™) (ZX (Wi (@4))) =
(f o e N (EX (@4)) == F(EX(D4)) = ((f 0 ey X)) (@). O

The notions mentioned in the next proposition were defined in Proposition

(X

Proposition 6.8.6. Let F := (X, F), (G := (Y, G) be Bishop spaces, h : X —'Y € Mor(F,G),
S(A(X)) := ()\0,5X,)\1,F;¢6\(X),¢f(x)) € Specp (I, X) with Bishop subspaces (F;)ier and
Bishop morphisms (£X)icr, S(M(Y)) := (o, Z¥, 11, G, gbé\/l(y),qb]lw(y)) € Spec(1,Y) with
Bishop subspaces (G;)icr and Bishop morphisms (2 )icr, and ¥ : A(X) UN M(Y).

(i) W is continuous i.e., ¥; € Mor(F;, G;), for everyi e I.

(ii) U, ¥ € Mor(U, 1 Fi, Uier Gi)-

(iii) N, ¥ € Mor((N;er Fir Nies Gi)-
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Proof. (i) ¥; € Mor(F;,G;) Vgeg((g o F;)oW,; € F;, and if g € G, then (g o Zly) oW, =
go(ZiYo‘Ili) =go(ho&X) = (goh)OSiX € F;, as h € Mor(F,G), and hence goh € F.

(i) and (iii) Working as in the proof of the Proposition (ii) and (iv), we get (go eUM(X)) o
U, =(goh)o eS(X) and (fo eﬂM(X)) op¥=(goh)o eg(X), for every g € G. O

6.9 Direct spectra of Bishop subspaces

Definition 6.9.1. If AS(X) := (X, EX,AT) € Fam(I, =, X), a family of Bishop subspaces
of the Bishop space F := (X, F) associated to AS(X) is a pair PATX) = (qbéﬁ(x), ¢1\<(X))’

where gbéﬁ(X): I~V and d)llﬁ(x) : A(z’,j)eDﬂI) F(qbéﬁ(x) (4), qﬁéﬁ(x) (z)) such that the follow-
ing conditions hold:

<(x),. .
(i) ¢(1)\ (X)(Z) 1= F = Fixg@) = Vyer [0 EX, for everyi € 1.
(ii) qﬁ‘iﬁ(x)(i,j) = ()\fj)*, for every (i,7) € D¥(I).

< _ X < AS(X) AR (X) - -
We call the structure Sp(AS(X)) := (Mo, £, AT, F, ¢y NN ) a (covariant)direct spec-
trum of subspaces of F over I, or an (I, <r)-spectrum of subspaces of F with Bishop subspaces
: : X < ._ X < MS(X)  MS(X)
(Fi)ier and Bishop morphisms (£ )icr. If Sp(M=(X)) := (po, 2, u7, F, ¢y o )
is an (I,=<1)-spectrum of subspaces of F with Bishop subspaces (G;)ier and Bishop mor-
phisms (ZX)icr, a subspaces direct spectrum-map ¥ from Sp(AS(X)) to Sp(M=(X)), in
symbols ¥: Sp(AS(X)) = Sp(MS(X)), is a direct family of subsets-map ¥: AS(X) =
M=(X) (see Definition |4.10.5). If F is clear from the context, we may omit he symbol
F as a subscript in the above notations. A contravariant direct spectrum Sp(A7(X)) =
. .
()\O,SX,)\T,R qbg (X), /1\ (X)) of subspaces of F over (I,<1) and a subspaces contravariant
direct spectrum-map are defined similarly.
< — X 3= AS(X) AS(X)
Remark 6.9.2. Let Sp(AS(X)) := (Mo, E4, AT, F, ¢y NN ) be an (I,=<1)-spectrum of
subspaces of F := (X, F) with Bishop subspaces (F;)ic; and Bishop morphisms (€5 )icr, and
Sp(M~(X)) := (o, 2%, 15, F, (bé\ﬁ(x),qbi\ﬁ(x)) an (I, =1)-spectrum of subspaces of F with
Bishop subspaces (G;)icr and Bishop morphisms (Z;)icr.
(i) S(AS) := (Mo, AT, ¢é\<(x)7¢1\<(x)) is an (I,=<1)-spectrum with Bishop spaces (F;)ier and
Bishop morphisms ()‘fj)(i,j)eDﬂI)-
(i) If U: S(AS(X)) = S(MS(X)), then ¥ is continuous.
Proof. We proceed as in the proof of Remark O

Definition 6.9.3. Let Specyp(I,<,X) be the totality of covariant direct spectra of subspaces
of the Bishop space F = (X, F) and let Specp(I,=,X) be the totality of contravariant
direct spectra of subspaces of F over (I,<r, equipped with the equality of Fam(I,<,X) and
Fam(I, =, X), respectively.

Definition 6.9.4. If S(A7(X)) := (M, &, \], F, gbé\%(x),gbf%(X)) 18 contravariant direct spec-
trum of subspaces of the Bishop space F = (X, F) over (I,=<) with Bishop subspaces (F;)icr
and Bishop morphisms (&;)icr, its inverse limit is the following Bishop space

: = o Tim E ~ A7 (X)
LimS(A”(X)) = LimF; := (Q)\o(z),f\/Ffoen )
1€ €
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Next we show the universal property of the inverse limit for LimJF;
<X

Proposition 6.9.5. If S(A7(X)) := (AO,E,)\T,F,QS([;?(X), fk(X)) € Spec(I, =, X) with

Bishop subspaces (F;)icr and Bishop morphisms (SZX)ZE], its inverse limit LimJF; satisfies the
—

unwersal property of inverse limits i.e., if i <;, the following left diagram commutes

zGI >\0 Y
#
/ \ w; \wj
) No(J o) <—>’ Mo (9),
)\” )\j”i

and for every Bishop space G := (Y,G) and a family (w;)icr, where w; € Mor(G, F;), for
every i € I, such that the above right diagram commutes, there is a unique Bishop morphism
h:Y — (N;cr Mo(i) such that the following diagrams commute

Y
w; ih wj
Ao (i) ————— l4),
AT
AF(ON_ A7 (X)
i v Ty
MNier Ao()

Proof. For the commutativity of the first diagram, we have that if ® € (),c; Ao(é), then

7riA>(X)(<I>) = ®;, and )f( ;V(CI))) = )f( j), and since SJ-X EX o )\;, we have that
EJ-X(<I)j) = &X ()\Z( 7)), hence by the definition of (;c; Ao(i) we get &X(®;) = Sf((tl)j) =

EX (A;(Qj)), and since &Y is an embedding we get ®; = )\;(@j) =: )\Z (W;v(X)((P)). Let a
Bishop space G := (Y, G) and a family of Bishop morphisms (w;);ecr, where w; : Y — Ao(i),
for every ¢ € I, such that the above right diagram commutes. Let also the operation
h:Y ~ (Y;cr Mo(i), defined by the rule y — h(y), where

) : N X)), h(y)i=wmily); i€l

i€l
To show that h(y) € ();c; Ao(i) we need to show that
EX (h(y):) =x &' (My)w) & EX(@ily)) =x EF (@i (y)),
for every i,i" € I. Since (I,=) is directed, there is k € I such that i <7 k and ¢’ <; k, hence
EX(@ily)) =x & (A (@r(®) =x & (@e(y)) =x EX (AL(@r(v))) =x EF (ws(y)).
It is immediate to show that h is a function. Finally, we show that h € Mor(G, Lém]-",) &
X

Vier((foed ™) ohe@). Ity Y, then
[(foeh @) o h](y) = f(EX (@i (1)) = [(f 0 EF) 0 i) (1),
hence (f o ejr?( )) oh:=(fo SZ)O() o w;, € G, as by our hypothesis w;, € Mor(G, F;,). ]
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6.10 Notes

Note 6.10.1. The theory of Bishop spaces, that was only sketched by Bishop in [9], and
revived by Bridges in [26], and Ishihara in [63], was developed by the author in [88]-[96]
and [98]-[I00]. Since inductive definitions with rules of countably many premises are used,
for the study of Bishop spaces we work within BST*, which is BST extended with such
inductive definitions. A formal system for BISH extended with such definitions is Myhill’s
formal system CST* with dependent choice, where CST* is Myhill’s extension of his formal
system of constructive set theory CST with inductive definitions (see [80]). A variation of
CST™ is Aczel’s system CZF together with a very weak version of Aczel’s regular extension
axiom (REA), to accommodate these inductive definitions (see [I]).

Note 6.10.2. In contrast to topological spaces, in the theory of Bishop spaces continuity of
functions is an a priori notion, while the concept of an open set comes a posteriori, through
the neighbourhood space induced by a Bishop topology. The theory of Bishop spaces can be
seen as an abstract and constructive approach to the theory of the ring C'(X) of continuous
functions of a topological space (X, 7)) (see [52] for a classical treatment of this subject).

Note 6.10.3. The results on the direct and inverse limits of direct spectra of Bishop spaces
are the constructive analogue to the classical theory of direct and inverse limits of (spectra
of) topological spaces, as this is developed e.g., in the Appendix of [45]. As in the case of
the classic textbook of Dugundji, we avoid here possible, purely categorical arguments in our
proofs. One of the advantages of working with a proof-relevant definition of a cofinal subset is
that the proof of the cofinality theorem is choice-free.

Note 6.10.4. The notion of a spectrum of Bishop spaces can be generalised by considering a
family of Bishop spaces associated to a set-relevant family of sets over some set I. In this case,
all transport maps )\?} are taken to be Bishop morphisms. The direct versions of set-relevant
spectra of Bishop spaces can be defined, and their theory can be developed in complete analogy
to the theory of direct spectra of Bishop spaces, as in the case of generalised direct spectra of
topological spaces (see [45], p. 426).

Note 6.10.5. The formulation of the universal properties of the various limits of spectra
of Bishop spaces included here is impredicative, as it requires quantification over the class
of Bishop spaces. A predicative formulation of a universal property can be given, if one is
restricted to a given set-indexed family of Bishop spaces.

Note 6.10.6. The study of the direct limit of a spectrum of Bishop subspaces is postponed for
future work. The natural candidate | J;c; Ao(é), equipped with the relative topology, “almost”
satisfies the universal property of the direct limit.



Chapter 7

Families of subsets in measure
theory

We study the Borel and Baire sets within Bishop spaces as a constructive counterpart to the
study of Borel and Baire algebras within topological spaces. As we use the inductively defined
least Bishop topology, and as the Borel and Baire sets over a family of F-complemented
subsets are defined inductively, we work within the extension BISH* of BISH with inductive
definitions with rules of countably many premises. In contrast to the classical theory, we show
that the Borel and the Baire sets of a Bishop space coincide. Our reformulation within BST
of the Bishop-Cheng definition of a measure space and of an integration space, based on the
notions of families of complemented subsets and of families of partial functions, facilitates a
predicative reconstruction of the originally impredicative Bishop-Cheng measure theory.

7.1 The Borel sets of a Bishop space

The Borel sets of a topological space (X, T) is the least set of subsets of X that includes the
open (or, equivalently the closed) sets in X and it is closed under countable unions, countable
intersections and relative complements. The Borel sets of a Bishop space (X, F') is the least
set of complemented subsets of X that includes the basic F-complemented subsets of X that
are generated by F, and it is closed under countable unions and countable intersections. As
the Borel sets of (X, F') are complemented subsets, it is not a coincidence that their closure
under complements is provable. In the next two sections F denotes a Bishop topology on a
set X and G a Bishop topology on a set Y. For simplicity, we denote the constant function
on X with value a € R also by a, and we may write equalities between elements of Pllr(X)
and equalities between elements of F' without denoting the corresponding subscripts.

Definition 7.1.1. Ifa,b € R, leta #r b:&= |a —b| > 0 < a > bV b < a. For simplicity we
may write a # b, instead of a #r b. The inequality x #% y on X generated by F is defined by

v #xye Ier(fra#k y),  where  [ra#ky:e f2) #R fy).

A complemented subset A of X with respect to ;éf( 1s called an F'-complemented subset of X,
and their totality is denoted by Pllr (X). An F-complemented subset A of X is uniformly
F-complemented, if

ElfeF(fi Al]][[FAO), where [ Al]][[FAO 1 Ve a1 Vye a0 (f T 7552 y),
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and A is strongly F-complemented, if there is f € F such that f: AY[pA°, f(x) = 1, for
every x € A, and f(y) =0, for everyy € A°.

Remark 7.1.2. If h € Mor(F,G) and A € Plla(Y), then h=1(A) e Pllr(X).
Proof. Let x € h™1(A') and y € h=1(A) i.e., h(x) € A! and h(y) € AY. Let g € G such that

g(h(z)) # g(h(y)). Hence, goh € F and (g o h)(z) # (g o h)(y). O
Definition 7.1.3. We denote by Fam(I, F, X ) and Set(I, F, X) the sets offamzlzes and sets of
F-complemented subsets of X, respectively. Let Op(X) := ( (’)1 X 1 F OO X o F) €

Fam(F, F, X)) be the family of basic open F-complemented subsets ofX where
or(f) := (0" ()05 (£)) = ([ > 0L [f < 0]).
[f>0]:={ze X [f(z) >0}, [f<0]:={zeX][f(z)<0},

and, as [f > 0, [f < 0] are extensional subsets of X, the dependent operations QX O%X o% F,
and 0[1) I are defined by the identity map-rule. If F' is clear from the context, we may write

Or(X) := (o}, O, 0}, 0], O o).
Clearly, f: ob(f)I[F03(f), for every f € F. Recall that a sequence of F-complemented
subsets of X is a structure B(X) := ( 1 BYX Bl 8,BO’X,ﬂ?) € Fam(NT, F, X), where

B(n) := (83(n), B(n)) € PUr(X), and B,: G3(n) — Bh(n) and B,: B(n) — (n) are
given by 8} = idg1(,y and B, = idgo (), respectively, for every n € N*. We also write

Un—1 Bo(n) and (,~, By(n), instead of |J,,cn+ Bo(n) and (), cn+ Bo(n), respectively. A family
A(X) == (af, AYX al, af, A%X a¥) € Fam(1, F, X) is defined similarly.

Definition 7.1.4. If A(X) := ()\O,El’X,)\l,)\O,EO’X,)\?) € Fam(/[, F, X)), the set Borel(A(X))
of Borel sets generated by A(X) is defined inductively by the following rules:

(Borely) el 7
Ao(i) € Borel(A(X))
ore Bo(1) € Borel(A(X)), By(2) € Borel(A(X)),... Cran(N
(Borelz) Unz1 Bo(n) € Borel(A(X)) & (2, Bo(n) € Borel(A(X))B(X) (NT.EX),
(Borels) B € Borel(A(X)), a0(0) —PlE(x) BA(X)eFam(l,F,X).

a(0) € Borel(A(X))

The corresponding induction principle Indgere1(A(x)) @S the formula

Vier (P(Xo(i))) & VB (x)eran(N+,F.X) [Vnew (Bo(n) € Borel(A(X)) & P(By(n))) =

P(gmn)) & P(ﬁﬁom))] &

V A(x)eran(1,F,X) Y Bepore1 (A (X)) ([P(B) & ap(0) =piip () Bl = P(ao(o))>

= \V/BGBorel(A(X)) (P(B))a

where P is any bounded formula. Let
Borel(F) := Borel(Op(X)),

and we call its elements the Borel sets of F.
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In Indgerei(a(x)) We quantify over the sets Fam(NT, F, X) and Fam(1, F, X), avoiding
quantification over PIlr (X)) in condition (Borels) and treating Pllr(X) as a set in (Bairey).
Proposition 7.1.5. (i) Op(X) is not in Set(F, F, X).

(ii) If f,g € F, then o(f) Uo(g) = o(f V g).

(iii) If B € Borel(F), then —B € Borel(F).

(iv) There are Bishop space (X, F) and f € F such that =[—o(f) = o(g)], for every g € F.
(v) o(f) = o([f VO] A ).

Proof. (i) If f € F, then o(f) = o(2f), but =(f = 2f).

(iii) This equality is implied from the following properties for reals aVb >0<a >0V b > 0

andaVb<0<a<0AbLO.
(iv) If a € R, thenag()(:)vnzl(a< %) anda>0®3n21(a2 %),hence

—o(f) = ([f < 0], [f > 0])
=(N1G-n>0. Ul <0)
= ﬁo( — f) € Borel(F)

If P(B) < —B € Borel(F), the above equality proves the first step of the corresponding
induction on Borel(F). The rest of the inductive proof is straightforward.

(v) Let the Bishop space (R, Bic(R)). If we take o(idr) := ([ > 0], [z < 0]), and if we suppose
that —o(idr) := ([z < 0],[z > 0]) = ([¢ > 0], [¢ < 0]) =: o(¢), for some ¢ € Bic(R), then
¢(0) > 0 and ¢ is not continuous at 0, which contradicts the fact that ¢ is uniformly continuous,
hence pointwise continuous, on [—1,1].

(vi) The proof is based on basic properties of R, like a A1 =0 = a = 0. O

Since Borel(F) is closed under intersections and complements, if A, B € Borel(F), then
A — B € Borel(F). Constructively, we cannot show, in general, that o(f) No(g) = o(f A g).
If f :=idr € Bic(R) and g := —idr € Bic(R), then o(idr) No(—idr) = ([z > 0] N[z < 0], [z <
0JU[—z <0]) = (0,[z <0]U[z > 0]) Since z A (—z) = —|z|, we get o(idg A (—idr)) =
o(—|z]) = (0,[|z| > 0]). The supposed equality implies that [z| > 0 < 2 <0V z > 0. Since
|z| > 0 is always the case, we get Vyer(z < 0V z > 0), which implies LLPO (see [24], p. 20).
If one add the condition |f| 4+ |g| > 0, then o(f) No(g) = o(f A g) follows constructively. The
condition (BSy4) in the definition of a Bishop space is crucial to the next proof.

Proposition 7.1.6. If (f,)22, C F, then f:=> " (fn VO)A2™" € F and

o) = U ott) = (Uth > 0. Ul <01

n=1 n=1

Proof. The function f is well-defined by the comparison test (see [19], p. 32). If g, :=
(fnVO)A27" for every n > 1, then

00 N
Z 9n — Z 9n
n=1 n=1

oo

> o

n=N-+1

oo oo

<Y s Y 5 %o

n=N-+1 n=N-+1
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the sequence of the partial sums 25:1 gn € F converges uniformly to f, hence by BSy we
get f € F. Next we show that [f > 0] C (J;2[fn > 0]. If z € X such that f(z) > 0, there
is N > 1 such that ZnNzl gn(x) > 0. By Proposition (2.16) in [19], p. 26, there is n > 1 and
n < N with g,(z) > 0, hence (fn(z)V 0) > g,(x) > 0, which implies f,(z) > 0. For the
converse inclusion, if f,(x) > 0, for some n > 1, then g,(x) > 0, hence f(z) > 0. To show
[f <0] CU 2 [fn <0], let € X such that f(z) <0, and suppose that f,(x) > 0, for some
n > 1. By the previous argument we get f(x) > 0, which contradicts our hypothesis f(z) < 0.
For the converse inclusion, let f,(z) <0, for every n > 1, hence f,(z) V0 =0 and g,(z) =0,
for every n > 1. Consequently, f(z) = 0. O

Proposition 7.1.7. If h € Mor(F,G) and B € Borel(G), then h~!(B) € Borel(F).
Proof. By the definition of h~!(B), if g € G, then

h~Y(oc(g)) = h~'(lg > 0],[g < 0))
= (h'g > 0], t[g < 0])
= ([(goh) >0],[(gon) <0])
:=o0p(goh) € Borel(F).

If P(B) := h~1(B) € Borel(F), the above equality is the first step of the corresponding in-
ductive proof on Borel(G). The rest of the proof follows from the properties h~! ( U, Bn) =
Uy Y (By) and K1 (02, By) = (Nhey k™ Y(By,) of complemented subsets. O

Definition 7.1.8. If ® is an extensional subset of F' and if idg: ® — F is defined by the
identity map-rule, let Ogp(X) := Op(X) oid} be the idL-subfamily of Op(X). We write
o0s(f) :==op(f), for every f € ®, and let

Borel(®) := Borel(Og(X)).

If Fy is a subbase of F, then, Borel(Fj) C Borel(F'). More can be said on the relation
between Borel(®) and Borel(F), when & is a base of F'.

Proposition 7.1.9. Let ¢ be a base of F.

(i) If for every f € F, op(f) € Borel(®), then Borel(F) = Borel(®).

(i) If for every g € ® and f € F, f N g € ®, then Borel(F) = Borel(®).

(iii) If for every g € B and everyn > 1, g — % € &, then Borel(F) = Borel(®).

Proof. (i) It follows by a straightforward induction on Borel(F).
(i) and (iii) Let f € F and (gn)3%; € ® such that V,>1(U(f, gn, £)). Then we have tha

or(7) € U oulan) = (Ul > 01, (s 0]
n=1 n=1
an;:

n=1
Le, [f >0 CU2ilgn > 0] and 2 [gn < 0] C [f <0]; if x € X with f(x) > 0 thereisn > 1
with gn(z) > 0, and if V,>1 (gn(x) < 0), then for the same reason —[f(x) > 0, hence f(z) < 0.
Because of (i), for (ii), it suffices to show that op(f) € Borel(®). We show that

o0

:UOq)(ngn)::(U[f/\gn >0,ﬂ (f N gn) <0>€Borel(<I>).
n=1 n=1

n=1
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If f(x) > 0, then we can find n > 1 such that g,(z) > 0, hence f(z) A gn(x) > 0. Hence we
showed that [f > 0] C U2, [(fAgn) > 0]. For the converse inclusion, let z € X and n > 1 such
that (fAgn)(x) > 0. Then f(z) > 0and z € [f > 0]. If f(z) < 0, then V,>1 (f(2) Agn(z) < 0).
Suppose next that Vyp>1(f(z) A gn(x) <0). If f(z) > 0, there is n > 1 with g,(x) > 0, hence

f(z) A gn(z) > 0, which contradict the hypothesis f(x) A gn(z) < 0. Hence f(z) <O0.
Because of (i), for (iii), it suffices to show that or(f) € Borel(®). We show that

on(f) = [jlo@(gn “L ( U o= 2) > 01 () [ —2) < 0]) € Borel(®).

n=1 n=1

First we show that [f > 0] € U, [(9n — ) > 0]. If f(z) > 0, there is n > 1 with f(z) > 1,

: 1
hence, since —5- < ga, ()

ie, x € [(ggn — ﬁ) > 0]. For the converse inclusion, let x € X and n > 1 such that
gn(z) — 2 > 0. Since 0 < gn(z) — L < f(z), we get € [f > 0]. Next we show that
[f <0] C ﬂzo:l[(gn — %) < 0]. Let x € X with f(x) < 0, and suppose that n > 1 with
gn(z) — 2 > 0. Then 0 > f(z) > 0. By this contradiction we get g,(z) — + < 0. For the
converse inclusion let z € X such that g,(x) — % < 0, for every n > 1, and suppose that
f(z) > 0. Since we have already shown that [f > 0] C Uy"; [(gn — L) > 0], there is some

n > 1 with g,(x) — % > 0, which contradicts our hypothesis, hence f(z) < 0. O

7.2 The Baire sets of a Bishop space

One of the deﬁnitionsE] of the set of Baire sets in a topological space (X, 7), which was given
by Hewitt in [60], is that it is the least o-algebra of subsets of X that includes the zero sets
of X i.e., the sets of the form f~1({0}), where f € C(X). Clearly, a Baire set in (X, 7) is a
Borel set in (X, 7), and for many topological spaces, like the metrisable ones, the two classes
coincide. In this section we adopt Hewitt’s notion in Bishop spaces and the framework of
F-complemented subsets.

Definition 7.2.1. Let Zp(X) := (¢F, 2%, ¢, 0", 29X, ¢)") € Fan(F, F, X) be the
family of zero F'-complemented subsets of X, where

Cr(f) = (T ). F () = (If = 0L [f #0)),
[f=0:={zeX|flx)=0}, [f<0]:={zeX]|flx)#0},

and, as [f =0, [f # 0] are extensional subsets of X, the dependent operations Z1X, Z0X Cll’F,

and C?’F are defined by the identity map-rule. If F' is clear from the context, we may write
Zp(X) = (¢, 2"%,¢1, 6, 2%%,¢7). Let

Baire(F) := Borel(Zp(X)),

and we call its elements the Baire sets of F.

LA different definition is given in [57]. See [I09] for the relations between these two definitions.
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Since a #0:< |a| >0< a < 0Va >0, for every a € R, we get

¢ = (f=0LlfI>0]) = (f=0LLf >0l Ulf <0]).

Proposition 7.2.2. (i) Baire(F) is not in Set(F, F, X).

(ii) If f,g € F', then C(f) N C(g) = SISV Igl)-

(iii) If B € Baire(F), then —B € Baire(F).

(iv) There are Bishop space (X, F) and f € F such that —=[—{(f) = (g), for every g € F.
(

vi) C(f) = C(IfIAT).

Proof. (i) If f € F, then {(f) = ¢(2f), but =(f = 2f).

(i) This equality is implied from the following property for reals |a|V [b] = 0 < |a| = 0A|b] =0
and |a| V [b] #0 < |a| >0V |b] > 0.

(iii) If f € F, then —{o(f) := ([f # 0], [f = 0]). If, for every n > 1,

1 1
o e (IfIA)—EF,
n n

U ¢t = (U = o, i # 0]) = ~¢() € Baire(),
n=1 n=1 =
First we show that [f # 0] = U;_;[gn = 0]. If [f(2)| > 0, there is n > 1 such that |f(z)| > 1,
hence |f(z)| AL =1 and g,(z) = 0. For the converse inclusion, let € X and n > 1 such that
gn(z) =0 |f(x)|A L =21 hence |f(2)| > L > 0. Next we show that [f = 0] = (7", [gn # 0].
If z € X such that f(z) =0, and n > 1, then g,(z) = —1 < 0. For the converse inclusion,
let z € X such that for all n > 1 we have that g,(z) # 0. If |f(x)| > 0, there is n > 1 such
that | f(z)| > L, hence g, (z) = 0, which contradicts our hypothesis. Hence, | f(z)| < 0, which
implies that |f(x)] =0 < f(x) = 0. If P(B) := —B € Baire(F), the above equality proves
the first step of the corresponding induction on Baire(F'). The rest of the inductive proof is
straightforwardﬂ

(v) Let the Bishop space (R, Bic(R)). If we take ¢(idg) := ([z = 0], [z # 0]), and if we suppose
that —¢(idr) := ([z # 0],[z = 0]) = ([¢ = 0], [¢ # ()]) =: {(¢), for some ¢ € Bic(R), then
»(0) >0V ¢(0) <0 and ¢(z) =0, if x <0 or z > 0. Hence ¢ is not continuous at 0, which
contradicts the fact that ¢ is uniformly continuous on [—1, 1].

(v) Using basic properties of R, this proof is straightforward. O

As in the case of Borel(F), we cannot show constructively that ¢(f) U (g) = C(|f| A lg])-
If we add the condition |f| + |g|] > 0 though, this equality is constructively provable.

Proposition 7.2.3. If (f,)02, C F, then f:=> 7" |fal A27" € F and

ijlC(fn)=<ﬁl @m&o)

2Hence, if we define the set of Baire sets over an arbitrary family © of functions from X to R, a sufficient
condition so that Ba1re(@) is closed under complements is that © is closed under |.|, under wedge with % and
under subtraction w1th , for every n > 1. If © := F(X,2), then —or(x,2)(f) = or(x,2)(1 = f) = Crx,2)(f),
hence by Proposition 11) we get Borel(F(X,2)) = Baire(F(X,2)).
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Proof. Proceeding as in the proof of Proposmon_ f is well-defined, and if g, := |f,|A27",
for every n > 1, the sequence of the partial sums Zn 1 9n € F converges uniformly to f
and by (BS4) we get f € F. Since f(z) =0 < Vp>1(gn(z) = 0) & Vp>1(fu(x) = 0), we get
[f =0] = [fn =0]. Toshow [f # 0] C U2 [fn # 0], if | f(z)| > 0, there is N > 1 such
that SN | g.(x) > 0. By Proposition (2.16) in [19], p. 26, there is some n > 1 and n > N
such that g, (z) > 0, hence |f,(z)| > gn(x) > 0. The converse inclusion follows trivially. [

Let F* := (X, F*) be the Bishop space generated by the bounded functions F* in F'.

Theorem 7.2.4. (i) If B € Baire(F), then B € Borel(F).
(i) If o(f) € Baire(F), for every f € F, then Baire(F) = Borel(F).

(iii) If f € F, then o(f) = —¢((—f) AO).
(iv) Baire(F*) = Baire(F) = Borel(F) = Borel(F™).

Proof. (i) By Proposition (iv) —o(f) = ([f <0],[f > 0]) € Borel(F), for every f € F,
hence —o(—f) = ([f > 0], [f < 0] € Borel(F) too. Consequently

—o(f)n—o(=f) = (If <0 N[f>0],[f >0 U[f <0]) = {(f) € Borel(F).

If P(B) := B € Borel(F), the above equality is the first step of the corresponding inductive
proof on Baire(F). The rest of the inductive proof is straightforward.

(ii) The hypothesis is the first step of the obvious inductive proof on Borel(F), which shows
that Borel(F) C Baire(F). By (i) we get Baire(F) C Borel(F).

(iii) We show that

([f > 0L [f <0) = ([(=f) AO# 0], [(—f) AO=0]).

First we show that [f > 0] C [(—f) A0 # 0]; if f(x) > 0, then —f(x) A0 = —f(x) < 0. For the
converse inclusion, let —f(x) A0 # 0 < —f(x) A0 >0or —f(z) A0 < 0. Since 0 > —f(z) AO,
the first option is impossible. If —f(z) A0 < 0, then —f(x) < 0 or 0 < 0, hence f(x) > 0.
Next we show that [f < 0] = [(—f) A0 =0]; since f(z) <0< —f(z) >0« —f(x) AO=0
(see [24], p. 52), the equality follows.

(iv) Clearly, Baire(F*) C Baire(F). By Proposition [7.2.2(vi) ¢(f) = ¢(|f| A 1), where
|fl A1 € F*. Continuing with the obvious induction we get Baire(F) C Baire(F*). By
case (iii) and Proposition [7.2.2{iv) we get o(f) € Baire(F), hence by case (ii) we conclude
that Baire(F) = Borel(F). Clearly, Borel(F*) C Borel(F). By Proposition [7.1.5(vi)
o(f)=o((fVv0)A1l), where (fV0)A1le F*. Continuing with the obvious induction we get
Borel(F) C Borel(F¥). O

Either by definition, as in the proof of Proposition or by Theorem (iii) and
Proposition if h € Mor(F,G) and B € Baire(G), then h~!(B) € Baire(F). Suppose
next that A is strongly F-complemented i.e., there is f € F such that f: A][,A° and
f(x) =1, for every x € A, and f(y) = 0, for every y € A%, If g := (fVO) A1l € F, then
0<g<1landV,eVyea0(g(x) =1& g(y) =0). In [I8], p. 55, the following relation between
complemented subsets is defined:

A< B:= A'cB' & A°cC BY.

If A is strongly F-complemented, then A < o(f). According to the classical Urysohn lemma for
C'(X)-zero sets, the disjoint zero sets of a topological space X are separated by some f € C'(X)
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(see [52], p. 17). Next we show a constructive version of this result, where disjointness is
replaced by a stronger, but positively defined form of it.

Theorem 7.2.5 (Urysohn lemma for zero complemented subsets). If A := (A', A%) € PllF (X),
then A is strongly F-complemented if and only if

3jgerTeso(A < C(f) & —A<C(9) & |f]+ 9] = ¢).

Proof. (=) Let h € F such that 0 < h < 1, A! C [h = 1] and AV C [h = 0]. We take
fi=1-—heF,g:=handc:= 1. First we show that A < {(f). If z € A}, then h(x) = 1,
and f(z) =0. If y € A°, then h(y) = 0, hence f(y) =1 and y € [f # 0]. Next we show that
—A <{(g9). Ify e A% then h(y) =0 = g(y). If v € AL, then h(z) =1 = g(y) i.e., x € [g # 0].
If z € X, then 1 =|1—h(z)+ h(z)| < [1 = h(z)| + |h(z)].

(<) Let h:=1— (1|f|Al) € F. If z € A!, then f(z) = 0, and hence h(z) = 1. If y € A,
then g(y) = 0, hence |f(y)| > ¢, and consequently h(y) = 0. O

The condition (BS3) of a Bishop space is crucial to the next proof.

Corollary 7.2.6. ILetA := (A', A%) € PllIF(X) and f € F. If f(A) := (f(Al), f(4A")) is
strongly Bic(R)-complemented, then A is strongly F-complemented.

Proof. By the Urysohn lemma for zero complemented subsets there are ¢, 6 € Bic(R) and ¢ > 0
with f(A) < ¢(@), —f(A) < ¢(6) and |¢|+ 6] > c. Consequently, A < C(¢0 f),—A < (8o f)
and |po f| + 10 o f| > c. Since by (BS3) we have that ¢ o f € F and fo f € F, by the
other implication of the Urysohn lemma for zero complemented subsets we conclude that A is
strongly F-complemented. O

7.3 Measure and pre-measure spaces

There are two, quite different, notions of measure space in traditional Bishop-style constructive
mathematics. The first, which was introduced in [9] as part of Bishop’s measure theory (BMT)
(see Note[7.6.6), is an abstraction of the measure function A — ;(A), where A is a member of a
family of complemented subsets of a locally compact metric space X. The use of complemented
subsets in order to overcome the difficulties generated in measure theory by the use of negation
and negatively defined concepts is one of Bishop’s great conceptual achievements, while the use
of the concept of a family of complemented subsets is crucial to the predicative character of
this notion of measure Spa(xﬂ The indexing required behind this first notion of measure space
is evident in [9], and sufficiently stressed in [12] (see Note[7.6.7). The second notion of measure
space, introduced in [I8] and repeated in [19] as part of the far more general Bishop-Cheng
measure theory (BCMT), is highly impredicative, as the necessary indexing for its predicative
reformulation is missing. A lack of predicative concern is evident also in the integration theory
of BCMT. Next we define a predicative variation of the Bishop-Cheng notion of measure space
using the predicative conceptual ingredients of the initial Bishop notion of measure space. We
also keep the operations of complemented subsets introduced in [9], and not the operations
used in [I8] and [19]. Following Bishop’s views in [12], we introduce the notion of pre-measure
space, which is understood though, in a way different from the classical term.

3Myhill’s impredicative interpretation in [80] of Bishop’s first definition is discussed in Note [7.6.8
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As in Definition if A(X) := (A, EVX, AL NS, E0X ND) € Fam(I, X)), the set \ol(X)

of complemented subsets of X is the totality I, equipped with the equality :?(X) R

Ao() =pii(x) Ao(j), for every i,j € I. For simplicity we write Ag(i) := (A§(), A3()) instead
of i for an element of \gI(X).

Definition 7.3.1 (Measure space within BST). Let (X,=x,#x) be an inhabited set, A(X) :=
(A5, EVX AN, 9% 0\D) € Fam(1, X), and let ju: M\oI(X) — [0, +00) such that the following
conditions hold:

(MS;) VijerJker (Ao(i) UAo(j) = Ao(k) & Ao(i) N Ao(d) = Xo(l) &
1(Xo(2)) + 1(Xo(5)) = m(Ao(k)) + M(Ao(l))>'
(MS2) VierV A(X)eFan(1,X) [ﬂkez <>\o(i) Na(0) = Ao(k)> =

(Frer(Ao(?) — an(0) = Xo(1)) & p(Xo(7)) = p(Ao(k)) + M(Ao(l))}

(MS3) Jier (1(Xo(4)) > 0.
(MSy) VaeF(N,I){vBeF(N,I) [VmeN< ﬂ Ao(a(n)) = Ao(ﬁ@”))) &
n=1

Elmlirfoou()\o(ﬁ(m))) & mlirfoou()\o(ﬁ(m))) > 0= Jdex <£U € ﬂ Aé(a(n)))] }
neN

The triplet M = (X, \oI(X), p) is called a measure space with \oI(X) its set of integrable,

or measurable sets, and p its measure.

With respect to condition (MS; ), we do not say that the set \gI (X)) is closed under the union
or intersection of complemented subsets (as Bishop-Cheng do in their definition). This amounts
to the rather strong condition V; jer3x1e1 (Ao (i) UXo(4) := Ao(k) & Ao(i)NAo(5) :== Ao(1)). The
weaker condition (MS;) states that the complemented subsets Ao(i) U Xg(j) and Ag(7) N Ao(J)
“pseudo-belong” to M\oI(X) i.e., there are elements of it, which are equal to them in PI[(X). In
contrast to the formulation of condition (MSs) by Bishop and Cheng, we avoid quantification
over the class PI(X), by quantifying over the set Fam(1, X). In our formulation of (MS4) we
quantify over F(N, I), in order to avoid the use of some choice principle. If we had written

mendien( (] Aolaln) =1, Xa(h) )

n=1

instead, we would need countable choice to express the limit to infinity of the terms ,u()\g(k)).
Next we define the notion of a pre-measure space, giving an explicit formulation of Bishop’s
idea, expressed in [12], p. 67, and quoted in Note to formalise his first definition of
measure space, applied though, to Definition The main idea is to define operations on I
that correspond to the operations on complemented subsets, and reformulate accordingly the
clauses for the measure p. The fact that p is defined on the index-set is already expressed in
the definition of the set A\gI(X). The notion of a pre-measure space provides us a method to
generate measure spaces.
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Definition 7.3.2 (Pre-measure space within BST). Let (X,=x,#x) be an inhabited set, and
let (I,=r) be equipped with operations V: I X I ~» I N: I XI~>1, and~:1~1.Ifi,j€l
and i1, ...,im € I, where m > 1, leﬁ

invji=iN(~]) & i<jieiNG=1i,

m m
\/in::il\/...\/im& /\in::il/\.../\im
n=1 n=1

Let A(X) == (A5, EVX AN, 9% 0\9) € Set(I,X), and p: I — [0,4+00) such that the
following conditions hold:

(PMSl) sze]<)\0( )UA()( ) Ao(Z\/]) & )\0( )ﬂ)\o( ) )\0(2/\]) & —Ao(i) :)\o(N Z) &
)+ ) = (0 3)+ i 1) ).
(PMS3) VierV A(X)eFan(1,X) [erl <>\0( ) N ap(0) = Ao(k)> =

Xa() = @0(0) = Aofi ~ ) & i) = k) + i ~ )|

(PMS3) Jier (u(i)) > 0.
(PNIS,) teesiun[3 i (A a) & i (A at) >0
= Jpex (a: e )\é(a(n))ﬂ.
neN

The triplet M(A(X)) := (X, I, ) is called a pre-measure space, the function u a pre-measure,
and the index-set I a set of integrable, or measurable indices.

Corollary 7.3.3. Let M(A) := (X, 1, ) be a pre-measure space and i,j € I.

(i) The operations V, A and ~ are functions.

(ii) The triplet (I,V,A) is a distributive lattice.

(iii) ~ (~1) =1 1.

(iv) ~ (i Aj) =1 (~ @)V (~]).

(Vi<je~j<~i

(vi) i <j < Aali) € Xo(j)-

(vii) Ao(2) = Ao(d) = Aol ~ j).

Proof. We show that V is a function, and for A and ~ we proceed similarly.
i=1i & j=7 = Xo(i) = Xo(i) & Xo(j) = Ao (j")
= Ao(1) U Xo(5) = Xo(@') U Ao (j")
= )\0( ) Ao(Z Vj )
=ivji=1dVvj.

4The operations Vo in and /], i, are actually recursively defined.
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(ii) The defining clauses of a distributive lattice follow from the corresponding properties
of complemented subsets for A N B and A U B, from (PMS;), and from the fact that
A(X) € Set(I, X). E.g., toshow iV j = j Vi, we use the equalities Ag(i V j) = Ao(1) UXo(j) =
A0(7) UXo(i) = Ao(j Vi). For the rest of the proof we proceed similarly. O

In the next example of a pre-measure space the index-set I is a Boolean algebra.

Proposition 7.3.4. Let (X =x, #F(X 2) ) be a set, and A(X) := (6&,51’)(,5%,50,50’)(,5?) €
Set(F(X,2), X) the family of complemented detachable subsets of X, where by Remark [4.6.9

0(f) = (8(f), 0(f)) := (If = 0], [f = 1]).
If xog € X and pg,: F(X,2) ~ [0, 400) is defined by the rule

pao (f) == f(zo); [ € F(X,2),
then the triplet M(A(X)) := (X,F(X,2), ug,) s a pre-measure space.
Proof. We define the maps V, A : F(X,2) x F(X,2) — F(X,2) and ~: F(X,2) — F(X,2) by

fVg:=f+g—1Ffg, fAhg:=Ffg, ~f=1-f [fgeFX,2),

where 1 also denotes the constant function on X with value 1. By definition of the union and
intersection of complemented subsets we have that

80(f) U do(g) == (d5(f) U5(9),05(f) N dg(g))

= (dp(f) U dg(9),05(1 = f)nés(1 —g))
= (66(f +9—f9),05((1 = )1 —9)
= (06(f+9—f9),06(1—(f+9—9)))
(5é(f+g £9),00(f +9— f9))
=do(f V g).

= (65(f) N d5(9), (1 — f) U d5(1 — g))

= (65(f9),55(1 =)+ (1 —g) = (1= f)(1—g)))
= (65(f9),86(1 — fg))

= (55(f9),50(f9))

Clearly, do(~ f) := do(1 — f) = —d0(f). Clearly, the operation jiz, is a function. As

Pao (f) + Hao (9) = pao(f + 9 — f9) + 120 (f9) &

f(wo) + g(x0) = f(wo) + g(x0) — f(w0)g(z0) + f(20)9(0),

(
which is trivially the case, (PMS;) follows. Let f € F(X,2) and B := (B!, B") a given
complemented subset of X with a(0) := B. If g € F(X,2) such that

do(f)NB:= (5(f) N B, &(1 — f)uB®) = (6(9), &5(1 — 9)) &
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S5(f)NB' =d5(9) & &1~ f)uB®=6(1~g),

So(f(1—g)) = (f%(f(l—g)) 5 (f(1—g)))
= (%(/)n >, 8( >u<sé<1 9))
= (%N 53 <

= ([66(f)ndg(1

= (DU [5(f) mBO], N
( (f)NnB°, &(f)uBY)
(f) - B.

To complete the proof of (PMSs), we need to show

fag (f) = b (9) + 2o (f (1 = 9)) & f(20) = g(20) + f(20)(1 — g(20))-

If g(z0) = 0, the equality holds trivially. If g(zo) = 1, and since &}(g) = 6;(f) N B!, we also
have that f(xg) = 1, and the required equality holds. As piz,(1) =1 > 0, (PMS3) follows. For
the proof of (PMSy) we fix a : N — F(X, 2), and we suppose that

3 im_ (A en) i s Aaa) >0

st ( Aan)on e i (A o) =0 o

n=0 n=0

amlg}rloo H an(zo) & mlirfoogan(xo) > 0.

5
= dp

Finally, we have that

lim Hanxo > 0= lim Hanmo =1

m——+o0 m——+oo

-~ 3moENVmZmO ( H Oén(xO) - 1>

n=0
= YneN (an(:L‘O) = 1)
&3 € ﬂ 5o (o). O
neN

Proposition 7.3.5. Let M(A(X)) := (X, I, u) be a pre-measure space. If p*: Aol ~~ [0, +00),
where p*(Xo(2)) = p(i), for every Ao(i) € Aol, then M = (X, \I(X), ") is a measure
space.

Proof. By Proposition p* is a function. For the proof of (MS;) we fix i,j € I and we
take k:=1iV jand [l :=i A j. From (PMS;) and (PMS,) we get
1 (Xo(d) + 1" (Ao(d)) == (i) + n(d)
= p(iVj)+p(iAjg)
= AoV 7)) 4+ 17 (Ko A )
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For the proof of (MSz) we fix i € I and A € Fam(1, X)) with a(0) := B. If Ao(i) N B = Ag(k),
for some k € I, we take | := i ~ k € I and by (PMSs) p*(Xo(7)) := uo(2) = p(k) + p(i ~ k) :=
w(AXo(k)) + p*(Ao(i ~ k)). Condition (MS3) follows immediately from (PMS3). For the proof
of (MSy), we fix a, f € F(N, I), and we suppose that

VmeN< ﬂ Ao(a(n)) = )\o(ﬁ(m))) &3 lim p*(Ao(B(m))) & lim p*(Ae(B(m))) >0«

m——+4oo m——+oo

VmgN( ﬂ Xo(a(n)) = )\o(ﬁ(m))> &3 lim p(B(m)) & lim p(B(m)) > 0.
n=1

m——+oo m——+o0

If m > 1, by (PMS;) we have that

Mo(B(m)) = () olaln) = >\0< A a<n>),
n=1

hence, since Ag is a set of complemented subsets, S(m) = A,_, «(n), and consequently

p(B(m)) = p(Ajy a(n)). Hence

st o Aaw) & tin o A o) o

By (PMSy) we conclude that there is some & € X such that z € (),cy Aj(c(n)). O

Corollary 7.3.6. Let M(A(X)) := (X,F(X,2), uy,) be the pre-measure space of comple-
mented detachable subsets of X. If pk : 6oF(X,2)(X) ~ [0, +00) is defined by 115, (80(f)) =
tao (f) = F(z0), for every do(f) € P (X,2)(X), then M(X) := (X, 60F(X,2)(X), 3, is
measure space.

Next we formulate in our framework the definition of a complete measure space given by
Bishop and Chengl’| (see Note [7.6.5).

Definition 7.3.7. A measure space M := (X, \oI(X), ) is called complete, if the following
conditions hold:

(M) Vie1¥ A0 cran(L.5) (Aé(i) C ad(0) & A(i) € a(0) = Fner(ao(0) = Ao<k>)>.
(CMy) vaeF(N,I){vﬁeF(N,I)vle[0,+oo] [vaN< U Ao(a(n)) = /\o(ﬁ(m))> &
n=1
3 lim p(Ro(B(m))) & Tim p(Ao(B(m))) =1

= Suer (U o) = Ma(h) & n(aa(h) =1)] 1

neN

(CM3) Vi jelV A(X)eFan(1,X) (Ao(i) C ap(0) € Ao(j) & p(Ao(i)) = p(Xo(j))

= Jrer(ao(0) = )\o(k))>~

°In the definition of Bishop and Cheng the symbol of definitional equality | := lim,, o p(Xo(B(m))) is
used, but as this a convergence condition, one can use the equality of R for the same purpose
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Regarding the completeness conditions and the space M(X), we show the following.
Proposition 7.3.8. Let M(X) := (X, 00F(X,2)(X), uu3,) be the measure space of comple-
mented detachable subsets of X .

(i) M(X) satisfies condition (CMy).

(ii) The limited principle of omniscience (LPO) implies that M(X) satisfies condition (CMy).
(iii) In general, M(X) does not satisfy condition (CMs).

Proof. (i) Let f € F(X,2), let B := (B!, B°) be a given complemented subset of X with
ao(0) := B, and let §;(f) C B! and §3(f) C BY. Since X = §}(f)Ud)(f) € (B'UBY) C X,
we get B' U BY = X, and hence B = ¢(xB).

(ii) Let o, B : N — F(X,2), and [ € (0,400) such that

en (U dofan) =Gu() ) 3 tim_fan) & tim_f(an) =1

The last conjunct is equivalent to J0eNVm>me (Bm(xg) = l), and since S, (zg) € 2, we get
l € 2. For every x € X the sequence n — «a,(z) is in F(N, 2), hence by (LPO) we define the
function f from X to 2 by the rule

1, Fuen(an(z)
f(-%') _{ 0 7vnezgan<x)

By the definition of interior union and intersection it is immediate to show that

U do(an) = 0(f) & | d(an) = 65(f) & ) 3(an) = 3(f)-

neN neN neN

)

1
0).

which implies

It remains to show that f(zo) =1[. If | = 0, then 3,,,eNYm>m, (ﬂm xo) 0),
1), which implies

that Ven (an(;ro) = 0) = f(xo) :=0. If | =1, then 3,,eNVim>me (ﬁm x0)
that Elne{l,...,mo}(an(xO) = 1) = f(.%’()) =1

(iii) If X := 3, let f : 3 — 2 be defined by f(0) :=1, f(1) :==0=: f(2) and let g: 3 — 2 be
the constant function with value 1. If B := ({0}, {1}), then 63(f) := {0} = B* C §j(g) and
0 =050(g) € B° C 8(f). If 29 := 0, then po(f) = po(g), but B cannot “pseudo-belong” to
D(3), since B! U BY is a proper subset of 3. ]

7.4 Real-valued partial functions

We present here all facts on real-valued partial functions necessary to the definition of an
integration space within BST (Definition [7.5.1)).

Definition 7.4.1. If (X,=x,#x) is an inhabited set, we denote by fa = (A,i}, fR) a
real-valued partial function on X



7.4. REAL-VALUED PARTIAL FUNCTIONS 211

We say that fa is strongly extensional, if ff‘ is strongly extensional, where A is equipped with
its canonical inequality as a subset of X i.e., for every a,a’ € A

fR(a) #r fR(d) = i} (a) #x 4 (d).

Let §(X) := §F(X,R) be the class of partial functions from X to R, and §¢(X) the class of
strongly extensional partial functions from (X =x,#x) to (R, =g, #R).

Definition 7.4.2. Let fa := (A,i%, fR), fp = (B, %, fR) in F(X)

iX ix
A2y xPop
fﬁ\ /fg

R.

IfANER, let Mfa = (A%, M R) € F(X), and f4 O fp = (AﬂB,ime, (ffl O fg)imB)’
(RO fR) s = fRa) O fRO0);  (a.b) € ANB, Oe{+ AV}

The operation (f} O fg)inB: ANB ~ R s a function, as if (a,b) =anp (a/,V) & iX =x
i¥ (a’), and since i (b) =x i (a) and i (V') =x i} (a’), we get a =4 a’, hence fR(a) =r fR(d’),

and b =p V', hence fR(b) =g fR(V'). If A denotes also the constant function A € R on X

X
A(

i id
xSy
I /
R,

we get as a special case the partial function fq4 A X 1= (A nx, ime, (ffl A )\)

R
ANX

ANX = {(a,2) € Ax X | iX(a) =x z}, ianx(a,z) = i}(a), and (fRAN) (a,2) =
fR(a) A Az) := fR(a) AN, for every (a,7) € AN X. By Definition m if A(X,R) :=
(X, EX, A, PR) € Fam(I, X, R), if (i,5) € D(I), the following diagram commutes

/A_ij\
Ao(7) \

i Ao(7)

i

& /JX
X

IR /R
R?

fir= (@), 5 ) €F(X), fR=PR:xo(i) >Ry i€l

If fR is strongly extensional, then, for every u,w € \o(i), we have that fR(u) #r fR(w) =
EX(u) #x & (w). As in Definition 4.1.11] If x: N* — I, the family A(X,R) ok := (Ao
k,EX ok, A\ ok, PRo n) € Fam(N™', X, R) is the k-subsequence of A(X,R), where

(Ao o k)(n) := Xo(k(n)), (EX o H)n = Eﬁn), (A1 oK) (1,1) = Ne(nyr(n) = 1dxg(k(n))s

) , where

>
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(PR o /{)n =PR = fs(n); neNT.

K(n)
Let M\I(X,R) be the totality I, and we write f; € Aol (X, R), instead of i € I, as we define
i =x1(XR) J S i =5x) i
If we consider the intersection [),,cn+ (Ao © &) (1) := [,en+ Ao(£(n)), by Definition
O () Ao((n) e @ K No(k(n) & Vimen+ (Exn (Pn) =x €y (Pm)),

neN+ neNt
D= o © 19 EX4(P1) =x EX1)(O1),

en R () Nolk(n) = X, e TT(@) 1= (EX 0 k)1(@1) 1= EX,)(D1).

neN+

Definition 7.4.3. Let A(X,R) := (Mo, £X, A1, PR) € Fam(I, X,R), k: Nt = I, and A(X,R)or
the r-subsequence of A(X,R). If (A,i%)) C M,en+ Ao(k(n)), we define the function

ZA: Fam: A= R, ( i f5<n>>(@) =2 f5<n>([iﬂ(a)]n>s a€ 4,

neN+ neN+ neN+
under the assumption that the series on the right converge in R, for every a € R.

In the special case [, cn+ Ao(k(n)), idn, o)) € Npent Ao(k(n)), we get the function

N N
Z&wﬂwmwa(zmQ@fZ&ﬁﬁéeﬂmm»

neNt neNt neNt neN+ neNt
under the assumption on the convergence of the corresponding series.

Proposition 7.4.4. If in Definition the partial functions fy () := ()\o(lﬁ(n)), 5;{)%”), fs(n))

are strongly extensional, for every n € NT, then the real-valued partial function

N A(X,R)ok
en

A
Ja= (A’ TS ff(m)

is strongly extensional.

Proof. Let a,a’ € A such that

<imﬁw:#ﬂ:(imﬁm.

neN+
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There is N € N such that, if e := [l — I'| > 0, then
N

b o)t (00 S ()
n=1

+ Zf&n)([z‘ma’)]n) -

- (201 S 10| -

N N
<3 a8 ([3),) - 32 (30, )
n=1 n=1
N
> [ (1400, ) - 2 (190, )|
n=1
N
n=1
By the property of positive real numbers z +y > 0 =[x > 0V y > 0 (see [20], p. 13), then

1 (3@, ) = 12 (13001,

for some n € N* with 1 <n < N. Since fS(n) is strongly extensional, by Definition

e (1), ) =x € (190, ) #x &5 (1@, ) = e (), ),

which is the required canonical equality of a,a’ in A as a subset of X. O

(L)

,4;

0<

I

Clearly, we have that (see Definition [2.7.1])

A(XR)M m
A(XR)o
ﬂ

ZQGNJr fR

nGNJr n(n

N
Z fRn)> S( m ol A(XR) Z f/?(n))'

neNt neN+ neN+t

(A, em
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7.5 Integration and pre-integration spaces

Next we reformulate predicatively the Bishop-Cheng definition of an integration space (see
Note [7.6.10| to compare it with the original definition).

Definition 7.5.1 (Integration space within BST). Let (X,=x,#x) be an inhabited set,
A(X,R) := (X, EX, A, PR) € Fam(I, X, R), such that f; := ()\o(i),é'f(,ff) is strongly exten-
sional, for every i € I, let \oI(X,R) be the totality I, equipped with the equality i =) 1(x R)
J = fi=rx) [, Jor every i € I, and let a mapping

/:)\OI(X,R)—>R, fir—>/fi; 1el,

such that the following conditions hold:

(IS1) VierVaerTjer <afi =3x) fi & /fj =R a/fi)-

(IS2) Vi,jeﬁkel(fﬁfj =3x) fr & /fk =R /fi +/fj>-

(1S3) VierJjer (Ifil =5x) f5)-

(IS4) VZEIHJEI (fz/\ 1 —3F(X f])

(IS5) VielVeer(N+ ){[ fam) ER & frn) < fz]

eIV keF(N+,1 n§+/ n§+/ /
R
3(q>,u) € (Nyent Ao(k(n)) N Ao <<n§\l:+ fr) ) n§+f JER &

Z fRn) ) < f(u). )}
neN+t

(IS6) 3ie]</fi =R 1)-

(IS7) VierVaer(N+,1) (Vne\H (n(ifz A 1> =3(X) fa(ﬂ)) =

lim fa(n) eR & lim fa (n) = /fz)

n——+oo n—-4oo

1
(ISs) VierVaeF(N+,1) <vn€N+ (n(n!fi! A1) =5x) fa(n)) =

lim fam) €ER & lim Ja(n) =R O>.

n—-+oo n——4oo
We call the triplet £ := (X, \oI(X,R), [) an integration space.
In the formulation of (IS5) we have that

( N AO(Hm))) A Ao(4) ::{(@,@e( N Ao(m(n))) x Xo(i) | E30)(®) =x Sf(u)},

neN+ neN+
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SX X
’L

fR\ /R
If, for every a € R, such that a > 0, and every ¢ € I, we define

fi A a::a(lfi A 1>,
a

the formulation of (IS7) and (ISg) becomes, respectively,

viEIVOzEF(N+,I) (Vn€N+ (fl N n =F(X) fa(n)) = lim foc (n) =R /fz):

n—+4oo
1 .
VieIVaeF(N+,1) (Vnew (’fi! A n) =3(X) fa(n)> = niﬂjm/fa(n) =R 0>,

where, for simplicity, we skip to mention he existence of the corresponding limits in R. We
also quantify over F(N*, I), in order to avoid the use of countable choice. If we had written in
its premise the formula V,,cn+Jjer ( i N n=x) fj), we would need countable choice (N—1T)
to generate a sequence in I to describe the limit of the corresponding integrals. Moreover, by
(IS1), (IS3) and (IS4), and the definition of f A a above we get VeV, er+Tjer (fz- Aa =gx) fj).

Definition 7.5.2 (Pre-integration space within BST). Let (X,=x,#x) be an inhabited set,
and let the set (I,=y) be equipped with operations -q: I ~ I, for everya € R, +: I X I ~~ I,
|.|: I~ I, and A1: I ~ I, where

w(t)=a-i, +(i,5):=i+34, ||@):=Vi|; i€l, aeR.
Let also the operation Ny: I ~~ I, defined by the previous operations with the rule
Ng :=q0N0-y-1; a€R&a>D0.

Let A(X,R) := ()\O,EX A, PR € Set(I, X,R) i.e., f; =5x) f;j = i =1 j, for everyi,j €I,
and f; == ()\ ), E; ,fR) is strongly extensional, for every i € 1. Let also a mapping

f[%& iw/a

such that the following conditions hold:

(PISy) VierVacr (afi =3(x) fai & /a'i =R a/i).
(PIS») Vi jer (fi“‘fj =5x) firg & /(i+j) =R /2 +/j>-
(PIS3) Vier (1fil =50x) fial)-

(PIS4) Vier (fi N1 =3(x) far(i))-
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(PISs) VielVier(N+ 1 {[ Z/ JER & Z/ /}

neN+ neN+

R
3(¢’7u) c (ﬂnem%( (n))) N Aold <( Z fnn) Z f G R &

neN+t neNt

> R <fR()>}

neN+

(PISe) aief(/i =R 1).

(PIS) vz-e,( lim / M) ER & Tim [ An(i) =r / z>

n—>+o00 n—>+o00

(PISy) der ([ rs(iber & tim [ n (i) =0).

n—-+oo n—> +oo
We call the triplet Lo := (X, I, [) a pre-integration space.

All the operations on I defined above are functions. E.g., since A(X,R) € Set(/, X,R),
i=ri = fi =zx) fr = afi =5x) afv = faoi =5x) fori = a-i=pd -i.

It is immediate to see that a pre-integration space induces an integration space, if

VierVaer+ (fz N a=gx f] = Aa(i) =1 j)a

and hence (PIS7) and (PISg) imply (IS7) and (ISg), respectively, with the integral

L

The notion of a pre-integration space is simpler than that of an integration space, and also
closer to the Bishop-Cheng notion of an integration space. One could say that a pre-integration
space is the “right” notion of integration space within BST. In [I8], p. 52 Bishop and Cheng
formulate the non-trivial theorem that a measure space induces the integration space of the
corresponding simple functions (see also [19], p. 285). In [129] Zeuner interpreting the various
constructions of Bishop and Cheng into the framework of pre-measure and pre-integration
spaceﬂ gave a proof of this theorem within BST. Here we only sketch this construction.

Let A(X) := (AS, €M, ML A8, 9%, M) € Fam(I, X)) and g € I. To each i € I corresponds
the real-valued partial function

xi = (Ao UAG(0), &, xT) € F(X),

5The notion of pre-measure space used in [129], which is a bit different from the one included here, is an
appropriate copy of Bishop’s definition of a measure space given in [9] (see Note |7.6.6)).
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where &YX is the canonical embedding of A}(i) U AJ(i) into X, and xR is given by the rule of
the partial function x,(;). The symbol id in the above diagram denotes the corresponding
function defined by the identity-map rule. If m,n € NV, i1,...,4n,51,...,m € I, and
ai,,...ai,,b1,..., by €R, the equality of the following real-valued partial functions is given
by the commutativity of the following diagram

n n

n

k=1 k=1 k=1

Zb]lle = <m ()\é(jl) U A8(]l))7l%(l’fil()\é(“)u)\g(]ly ijlX?l> € S(X%
=1 =1

/?\

M1 (A(ir) UXG(ir)) N2y (A5G UAG(Gn)

N \%
Nz G ERUAD (i) X N (A GPUAS ()

n R m R
D b1 iy, X, I=1 szle

)

for some (unique up to equality) functions e and €’. If pug: NT ~ V is defined by the rule
po(n) := (R x I)", for every n € N*, and if the corresponding dependent operation p; is
defined in the obvious way, let the totality

SI,AX) = > (RxI)",

neNt

(TL, u) =S(I,A(X)) (ma w) = Z Qi Xy, —=F(X) Z ble]lv )
k=1 =1

where u = ((al,il),...,(an,in)) and w = ((bl,jl),...,(bm,jm)). The family of simple
functions generated by the family A(Z, X) of complemented subsets of X is the structure
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A(X,R) := (domg, Z¥,dom, PR) € Fam(S(I, A(X), X,R), where domg: S(I, A(X)) ~ Vq is
defined by the rule

n

domg(n,u) := ﬂ (A[l)(zk) U Ag(ik)); U= ((al,il), . (an,in)), neNT,
k=1

the embedding Z,fu: domp(n,u) — X is defined in a canonical way through the embed-
dings c‘:ilk’X and SSC’X, where k£ € {1,...,n}. If (n,u) =gy ax) (m,w), the mapping
dom (1) (m,w) : domg(n, u) — domg(m, w) is defined, in order to avoid choice, as the mapping
E (3 u)(m,w)> Where E'is a modulus of equality for D(S(I, A(X))) with E, )(nu) = iddom(n,u);
for every (n,u) € S(I, A(X)). The fact that A(X,R) € Set(S(I, A(X), X,R) is immediate to
show. Hence, to every (n,u) € S(I, A(X)) corresponds the partial function

S(nu) ‘= <dom0(n ), 20 Zazkxlk> €FX);  w:=((a1,41),...,(an,in)).

k=1

If M(A(X)) := (X, I,p)is a pre-measure space, then M(A (X)) induces the pre-integration
space L(A(X)) i= (X, S(I, A(X)), ), where

/H; S(I,A(X)) = R, (n,u)»—>/ﬂ(n,u),

/(n, u) = Zaku(ik); w:=((a1,41),. .., (an, in)).
® k=1

The many steps of this involved proof of Bishop and Cheng, appropriately translated into the
predicative framework of BST, are found in [129], pp. 34-45.

7.6 Notes

Note 7.6.1. The set of Borel sets generated by a given family of complemented subsets of a
set X, with respect to a set ® of real-valued functions on X, was introduced in [9], p. 68. This
set is inductively defined and plays a crucial role in providing important examples of measure
spaces in Bishop’s measure theory developed in [9]. As this measure theory was replaced in [19]
by the Bishop-Cheng measure theory, an enriched version of [I§] that made no use of Borel sets,
the Borel sets were somehow “forgotten” in the constructive literature. In the introduction
of [1§], Bishop and Cheng explained why they consider their new measure theory “much more
natural and powerful theory”. They do admit though, that some results are harder to prove
(see [18], p. v). As it is also noted in [120], p. 25, the Bishop-Cheng measure theory is highly
impredicative, while Bishop’s measure theory in [9] is highly predicative. This fact makes the
original Bishop-Cheng measure theory hard to implement in some functional-programming
language, a serious disandvantage from the computational point of view. This is maybe why,
later attempts to develop constructive measure theory were done within an abstract algebraic
framework (see [38], [41] and [I2I]). Despite the above history of measure theory within
Bishop-style constructive mathematics the set of Borel sets is interestingly connected to the
theory of Bishop spaces.
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Note 7.6.2. The definition of Borel(A (X)) is given by Bishop in [9], p. 68, although a rough
notion of a family of complemented subsets is used, condition (Borels) is not mentioned, and
F is an arbitrary subset of F(X), and not necessarily a Bishop topology. If we want to avoid
the extensionality of Borel(A (X)), we need to introduce a “pseudo”-membership condition

A € Borel(A(X)) ¢ Ipeporar(a(x)) (A =piir (x) B)-

A similar condition is necessary, if we want to avoid extensionality in the definition the least
Bishop topology \/ Fy. Such an approach though, is not practical, and not compatible to the
standard practice to study extensional subsets of sets. The quantification over Fam(1, F, X) is
not equivalent to the quantification over the class PIIr (X), as in order to define a family in
Fam(1, F, X), we need to have already constructed an F-complemented subset of X. Le., an
element of Fam(1, F, X) is generated by an already constructed, or given element of Pllr (X),
and not from an abstract element of it. Recall that we never define an assignment routine
from a class, like Pllr(X), to a set like Fam(1, F, X).

Note 7.6.3. The notion of a least Bishop topology generated by a given set of function from
X to R, together with the set of Borel sets generated by a family of complemented subsets of
X, are the main two inductively defined concepts found in [9]. The difference between the two
inductive definitions is non-trivial. The first is the inductive definition of a subset of F(X),
while the second is the inductive definition of a subset of the class Pllr (X).

Note 7.6.4. As Bishop remarks in [9], p. 69, the proof of Proposition [7.1.5[(iii) rests on the
property of F' that (% — f) € F, for every f € F and n > 1. If we define similarly the Borel
sets generated by any set of real-valued functions © on X, then we can find © such that
Borel(O) is closed under complements without satisfying the condition f € © = (% —f ) € 0.
Such a set is F(X,2). In this case we have that

opx2)(f) = ([f =1L[f=0]) & —orx2)(f)=o0rx21—f)
Hence, the property mentioned by Bishop is sufficient, but not necessary.

Note 7.6.5. A measure space is defined in [19], p. 282, and a complete measure space in [19],
p. 289. These definitions appeared first in [I8] p. 47 and p. 55, respectivelyﬂ

Bishop-Cheng definition of a measure space. A measure space is a triplet (X, M, u)
consisting of a nonvoid set X with an inequality #, a set M of complemented sets in X, and
a mapping p of M into R%*, such that the following properties hold.

(BCMS;) If A and B belong to M, then so do AV B and A A B, and p(A4) + pu(B) =
p(AV B)+ u(AAB).

)
(BCMSy) If A and A A B belong to M, then so does A — B, and u(A) = u(AA B) + u(A— B).
(BCMS3) There exists A in M such that u(A) > 0.
)1

(BCMS4
positive, then (), A} is nonvoid.

f (A;,) is a sequence of elements of M such that limg_, u( /\k An) exists and is

n=1

We then call i the measure, and the elements of M the integrable sets, of the measure space
(X, M, u). For each A in M the nonnegative number p(A) is called the measure of A.

"In [18], p. 55, condition (BCM; ) appears in the equivalent form: if B is an element of M such that B* C A*
and B® C A°, then A € M, where we have used the terminology that corresponds to the formulation of (BCM)
in the definition of Bishop-Cheng.
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Bishop-Cheng definition of a complete measure space. A measure space (X, M, p) is
complete if the following three conditions hold.

(BCCMS;) If A is a complemented set, and B is an element of M such that y4 = xp on
B'UB°, then A € M.

(BCCMSy) If (Ay) is a sequence of elements of M such that

N
= gl V an)

n=1

exists, then \/, A, belongs to M and has measure .

(BCCMS3) If A is a complemented set, and if B, C' are elements of M such that B < A < C
and p(B) = u(C), then A € M.

As there is no indication of indexing in the description of M, the Bishop-Cheng definition of a
measure space seems to employ the powerset axiom in the formulation of M. The powerset
axiom is clearly used in (BMS;) and BCMs.

Note 7.6.6. The following definition of Bishop is given in [9], p. 183.

Bishop definition of a measure space. Let I’ be a nonvoid family of real-valued functions
on a set X, such that e — f € F whenever ¢ > 0 and f € F. Let § be any family of
complemented subsets of X (relative to F'), closed with respect to countable unions, countable
intersections, and complementation. Let 9t be a subfamily of § closed under finite unions,
intersections, and differences. Let the function p : 9 — R%* satisfy the following conditions:

(BMS;) There exists a sequence S; C Sy C ... of elements of 9 such thatﬂ U2, Sn = Xo
and limy,_yo0 (AN Sy) = pu(A) for all A in 9.

(BMSs) If A € §, and if there exist B and N in 9 such that (i) u(N) = 0, (i7) * € A whenever
x € B— N, and (iii) * € —A whenever z € —B — N, then A € M and pu(A) = u(B).
(BMS3) If A € 9, if B € §, and if ANB € M, then A—B € M and pu(A) = p(A—B)+u(ANB).
(BMS,4) We have u(A) + u(B) = u(AU B) + u(AN B) for all A and B in M.

(BMSs) For each sequence {An} of sets in 90 such that ¢ := limp_o0 p(Up_; Ak) [respectively,
¢ == limyo0 11( Npy Ak)] exists, the set A := [Jpo; Aj (respectively, A := (32, A) is in M,
and pu(A) =c.

(BMSg) Each A in 9t with p(A) > 0 is nonvoid.

Then the quintuple (X, F,§, 0, 1) is called a measure space, 1 is the measure, § is the class
of Borel sets, and M is the class of integrable sets.

If in Bishop’s definition we understand the families of complemented subsets § and 9t as
indexed families (A);cr, (A)jes over some sets I and J, respectively, with J C I, then the
quantifications involved in the clauses of Bishop’s definition are over I and .J, and not over
some class. Since in [9], p. 65, a family of subsets of X is defined as an appropriate set-indexed
family of sets, Bishop’s first definition of measure space is predicative.

Note 7.6.7. Regarding the exact definition of a measure space within the formal system X
introduced by Bishop in [12], Bishop writes in [12], p. 67, the following:

®Bishop here means [J°° | Sn = X.
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To formalize in ¥ the notion of an abstract measure space, definition 1 of chapter
7 of [9] must be rewritten as follows. A measure space is a family M = {A; her
of complemented subsets of a set X relative to a certain family F of real-valued
function on X, a map p : T — R%*, and an additional structure as follows: The
void set () is an element A;, of M, and u(tp) = 0. If s and ¢ are in T', there exists an
element svt of T" such that A+ < As U Az. Similarly, there exist operations A and
~on T, corresponding to the set theoretic operations N and —. The usual algebraic
axioms are assumed, such as ~(s v t) = ~s A ~t. Certain measure-theoretic
axioms, such as pu(s v t) + p(s A t) = p(s) + w(t), are also assumed. Finally,
there exist operations V and A. If, for example, {¢,} is a sequence such that
C = limg oo p(t1 V...V tg) exists, then V{¢,} is an element of T with measure
C. Certain axioms for V and A are assumed. If T is the family of measurable
sets of a compact space relative to a measure u, and the set-theoretic function
p: T — RO and the associated operations are defined as indicated above, the
result is a measure space in the sense just described.

Considerations such as the above indicate that essentially all of the material in [9],
appropriately modified, can be comfortably formalised in .

The expression Ag,; < As U Ay is probably a typo (it is the writing Ag,¢ = As U Ay, which
expresses the “weak belongs to” relation for A\o/). Bishop does not mention that M is a set of
complemented subsets of X, he only says that it is a family of such sets. This is not the case
n [19], p. 282. This explanation given by Bishop regarding the explicit and unfolded writing
of many of the definitions in constructive mathematics refer to [9]. I have found no similar
comment of Bishop with respect to his later measure theory, developed with Cheng. Moreover,
I have found no such comment in the extensive work of Chan on Bishop-Cheng measure and
probability theory.

Note 7.6.8. In [80], p. 354, Myhill criticised Bishop for using a set of subsets M in the
definition of a measure space, hence, according to Myhill, Bishop used the powerset axiom.
Since M is an I-set of subsets of X, in the sense described in section Myhill’s critique is
not correct. Bishop’s exaplanation in the previous extract is also a clear reply to a critique
like Myhill’s. Notice that Myhill’s paper [80] refers only to [9], and it does not mention [12],
which includes Bishop’s clear explanation. This is quite surprising, as Myhill’s paper, received
in January 1974, was surely written after the publication of [66], in which Bishop’s paper [12]
is included and Myhill is one of its three editors! Myhill’s critique would be correct, if he was
referring to the Bishop-Cheng measure space defined in [I8], a work published quite some
time before Myhill submit [80]. Myhill though, does not refer to [18] in [80].

Note 7.6.9. Definition is the explicit writing within BST of the corresponding definition
in [19], pp. 216-217.

Note 7.6.10. The following definition is given in [I8], p. 2, and it is repeated in [19], p. 217.
Bishop-Cheng definition of an integration space. A triplet (X, L, ) is an integration
space if X is a nonvoid set with an inequality #, L is a subset of §F(X) (this set is F%¢(X) in
our terminology), and I is a mapping of L into R such that the following properties hold.
(BCISy) If f,g € L and o, B € R, then af 4+ B¢, |f], and f A1 belong to L, and I(af 4+ Bg) =
ol (f) + BI(g).
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(BCISy) If f € L and (f,) is a sequence of nonnegative functions in L such that ) I(fy)
converges and Y I(fn) < I(f), then there exists x € X such that ), f,(z) converges and
2o fala) < f(2).

(BCIS3) There exists a function p in L with I(p) = 1.

(BCIS,4) For each f in L, lim, 0o I(f An) = I(f) and lim, e I(|f| An~1) = 0.

The notion of an integration space is a constructive version of the Daniell integral, introduced
in [43]. The Bishop-Cheng definition of an integration space is impredicative, as the class F(X)
is treated as a set. The notion of a subset is defined only for sets, and L is considered a subset
of F(X). The extensional character of L is also not addressed. This impredicative approach
to L is behind the simplicity of the Bishop-Cheng definition. E.g., in (BCIS,) the formulation
of the limit is immediate as the terms f An € L and I is defined on L. In Definition [7.5.]
though, we need to use an element a(n) of the index-set I such that f An =gx) fam), in
order to express the limit.

Note 7.6.11. The Bishop-Cheng definition of the “set” L' (or LP, where p > 1) of integrable
functions is also impredicative, as it rests on the use of the totality §°¢(X) as a set (see
Definition (2.1) in [19], p. 222). In [129], pp. 49-60, the pre-integration space L' of canonically
integrable functions is studied instead within BST, as the completion of an integration space.
The set L' is predicatively defined in [9], p. 190, as an integrable function is an appropriate
measurable function, which is defined using quantification over the set-indexed family 9t of
integrable sets in a Bishop measure space (see Note [7.6.6)).



Chapter 8

Epilogue

8.1 BST between dependent type theory and category theory

In this Thesis we tried to show how the elaboration of the notion of a set-indexed family of sets
within BST expands the range of BISH both in its foundation and its practice. Chapters
are concerned with the foundations of BISH, and chapters [6] and [7] with the practice of BISH.

Chapter [2| presents the set-like objects, the families of which are studied later: sets, subsets,
partial functions, and complemented subsets. Operations between these objects generate
corresponding operations between their families and family-maps. Chapter [3] includes the
fundamental notions and results about set-indexed families of sets. A family of sets A € Fam(]),
together with its Y - and []-set, and a family map ¥: A = M, are examples of notions with
a strong type-theoretic, or categorical flavour, depending on the point of observation view.
This is not accident, as MLTT was motivated by Bishop’s book [9]. Moreover, BST can
roughly be described as a fundamental informal theory of totalities and assignment routines,
and (informal) category theory as a fundamental (informal) theory of objects and arrows. A
fundamental similarity between BST and MLTT is the explicit use of dependency, which is
suppressed in category theory. The fundamental categorical concepts of a functor and a natural
transformation, which are translated within BST as an I-family of sets and a family-map
between [-families of sets, have an immediate and explicit formulation within dependent type
theory or within BST (see Note . The formulation of dependency though, within
category theory is much more involved (see e.g., [85]). On the other hand, a fundamental
similarity between BST and category theory is the use of definitions that do not “force” facts
and results, as in the case of MLTT and its recent extension HoTT. While the language of
MLTT is clearly closer to BST, a large part of pure category theory, the size of the totalities
involved excluded, follows the “pattern” of doing constructive mathematics in the style of
BISH: all notions are defined, no powerful axioms are used, and despite the generality in the
categorical formulations, most results have a concrete algorithmi(ﬂ meaning.

The interconnections between category theory and dependent type theory is a standard
theme behind foundational studies on mathematics and theoretical computer science the
last forty years. The recent explosion of univalent foundations, spearheaded by the Fields

!The question of the constructive character of general category theory is addressed in [75]. There construc-
tivism in mathematics is identified with Brouwer’s intuitionism. The inclusion of Bishop-style constructivism
and of type-theoretic constructivism in the interpretation of mathematical constructivism is necessary and
sheds more light on the original question.
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medalist Vladimir Voevodsky, regenerated the study of these interconnections. The appropriate
categorical understanding of the univalence axiom brought category-theorists and type-theorists
even closer. BST seems to be in some kind of common territory between dependent type
theory and category theory. It also features simultaneously the proof-irrelevance of category
theory and classical mathematics, and the proof-relevance of MLTT. In contrast to HoTT,
where a type A has a rich space-structure due to the induction principle corresponding to the
introduction of the identity family =4: A — A — U on A, the notion of space in BISH, as
in classical set-based mathematics, is not identical to that of a set. This is also captured in
category theory, where the category of sets behaves differently from the category of topological
spaces. We need to add, by definition, extra structure to a set X, in order to acquire a
non-trivial space structure. In this Thesis the concept of space considered was that of a Bishop
space. This is one option, which is shown to be very fruitful, if we work within BISH*, but it
is not the only one.

As in the case of MLTT or HoTT, a non-trivial part of category theory can be studied
within BST. We gave a glimpse of that in Note Working in a similar fashion, most of
the theory of small categories can appropriately be translated into BST. This modelling of
pure category theory “suffers”, as any modelling, from the inclusion of features, like conditions
(Catg), (Caty), and (Functs), that depend on the system BST itself and are not part of the
original theory. In any event, such a translation is not meant to be an attempt to replace pure
category theory, but to embed into BISH concepts and facts from category theory useful to
the practice of BISH. For example, all categorical notions and facts of constructive algebra
presented in [76], within a category theory irrelevant to the version of Bishop’s theory of sets
underlying [76], can, in principle, be approached within BST and the corresponding category
theory within BST. Unfolding proof-relevance in BISH through BST, categorical facts, like
the Yoneda lemma for Fam(7) in section are translated from MLTT + FunExt to BISH. It
remains to find though, interesting applications of such results to BISH.

Inductive definitions bring the language of BISH* closer to dependent type theory. The
induction principles that accommodate inductive definitions in the latter correspond to
universal properties in category theory. The formalisation of BST, and its possible extension
BST* with inductive definitions with rules of countably many premises, is an important open
problem. The natural requirement for a faithful and adequate formal system for BST and
BST* makes the choice of the formal framework even more difficult. It seems that a version of
a formal version of extensional Martin-Lof type theory, and the corresponding theory of setoids
within it, is a formal system very close to the informal system BST. As we have explained in
Note a formal version of intensional MLTT does not seem to be a faithful formal system
for the informal theory BISH. The logical framework of an extensional version of dependent
type theory though, and the identification of propositions with types, is quite far from the
usual practice of BISH, which is, in this respect, close to the standard practice of classical
mathematics. It is natural to search for a formal system of BST where logic is not built in, as
in MLTT, and which reflects the way sets are defined in BST. We hope that the presentation
of BST in this Thesis will be helpful to the construction of such a formal counterpart.

Category theory can also be very helpful to the formulation of the properties of Bishop
sets and functions. The work of Palmgren [83] on the categorical properties of the category
of setoids and setoid maps within intensional MLTT is expected to be very useful to this.
A similar formulation of the categorical properties of the theory of setoids and setoid maps
within extensional MLTT could be even closer to the formulation of the categorical properties
of Bishop sets and functions.
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8.2

Further open questions and future tasks

We collect here some further open questions and future tasks stemming form this Thesis.

10.
11.

12.

. To develop the theory of neighbourhood spaces using the notion of a neighbourhood

family of subsets of a set X that covers X (see Note 4.11.2)).

. Is it possible to use families of complemented subsets to describe a neighbourhood space?

The starting idea is to assign to each i € I a complemented subset v (i) := (1§ (i), (i)
of X, such that /(i) is open and v§(i) is closed. The benefit of such an approach to
constructive topology is that the classical duality between open and closed sets is captured
constructively. E.g., the 1-component of the complement —v(i) := (v(i), (i) of
vo(7) is a closed set and its 0-component is an open set.

Can we use complemented subsets of N in a constructive reconstruction of recursion
theory, instead of just subsets of N7 This question is inspired from the work of Nemoto
on recursion theory within intuitionistic logic.

To explore further the notion of an impredicative set, and the hierarchy mentioned in
Note B.I11.12]

To find interesting purely mathematical applications of set-relevant families of sets and
of families of families of sets.

To investigate the possibility of a BHK-interpretation of a negated formula (see Note|5.7.7)).
To develop a (predicative) theory of ordinals within BST.

To study families of sets with a proof-relevant equality over an index-set with a proof-
relevant equality.

To translate more notions and results from MLTT and HoTT to BISH through BST.
As a special case, to translate higher inductive types (HITs) into BISH, other than the
truncation ||A|| of A. If we work directly with a space in BST i.e., with a Bishop space
F = (X, F), and not with an arbitrary type, as in HoTT, we can define within BST
notions like the cone and the suspension of F. If 1, := [0, 1], we call I}, := {0}U(0, 1)U{1}
the pseudo-interval [0,1]. To 5, we can associate the least Bishop topology generated
by the restriction of the identity map to it. The relation ~% on X x I, defined by

(z,7) ~% (2,0) e (4,8 € {0y U(0,1) & i=y ' &x=x2a') or i=y 1=y 7,

is an extensional equivalence relation. If Y := X x 15, and 75°: Y — 75°Y is the function
that maps (z,1) to its equivalence class (see section , then 7°Y (Y), equipped with
an an appropriate Bishop topology, is the cone of F. For the suspension of F we work
similarly.

To find interesting mathematical applications of (—2), (—1)- and O-sets in BISH.

To elaborate the study of category theory within BST. So far we have formulated
within BST most of the category theory formulated within the Calculus of Inductive
Constructions in [61].

To develop along the lines of Chapter [6] the theory of spectra of other structures, like
groups, rings, modules etc.
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13.

14.

15.

16.
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To develop further the theory of Borel sets of a Bishop topology. E.g., to find the exact
relation between the Borel sets Borel(F) and Borel(G) and the Borel sets Borel(F x G)
of the product Bishop space F x G. And similarly for all important constructions of
new Bishop spaces from given ones.

To formulate various parts of the constructive algebra developed in [76] and [68] within
BST.

To elaborate the theory of (pre-)measure spaces and (pre-)integrations spaces. The past
work [129] and the forthcoming work [102] are in this direction.

To approach Chan’s probability theory in [35], which is within BCMT, through a
predicative reconstruction of BCMT within BST.
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Appendix

9.1 Bishop spaces

We present the basic notions and facts on Bishop spaces that are used in the previous sections.
For all concepts and results from constructive real analysis that we use here without further
explanation we refer to [19]. For all proofs that are not included in this section we refer

o [88]. We work within the extension BISH* of BISH with inductive definitions with rules of
countably many premises. A Bishop space is a constructive, function-theoretic alternative
to the classical notion of a topological space, and a Bishop morphism is the corresponding
function-theoretic notion of “continuous function” between Bishop spaces.

Definition 9.1.1. If X is a set and R is the set of real numbers, we denote by F(X) the set
of functions from X to R, and by Const(X) the subset of F(X) of all constant functions on
X. Ifa € R, we denote by @* the constant function on X with value a. We denote by N the
set of mon-zero natural numbers. A function ¢ : R = R is called Bishop continuous, or simply
continuous, if for every n € Nt there is a function we, : RT — RT, € — wy n(€), which is
called a modulus of continuity of ¢ on [—n,n], such that the following condition is satisfied

v:p,ye[fn,n]ﬂx - y| < w(b,n(e) = ’¢($) - (ZS(y)‘ < 6)7

for every € > 0 and every n € N*. We denote by Bic(R) the set of continuous functions from
R to R, which is equipped with the equality inherited from F(R).

Note that we could have defined the modulus of continuity wg ,, as a function from N* to N*.
Clearly, a continuous function ¢: R — R is uniformly continuous on every bounded subset of R.
The latter is an impredicative formulation of uniform continuity, since it requires quantification
over the class of all subsets of R. The formulation of uniform continuity in the Definition
though, is predicative, since it requires quantification over the sets N*, F(RT,RT) and [—n,n].

Definition 9.1.2. If X is a set, f,g € F(X), € >0, and ® C F(X), let
U(X; f,9.€) = Vaex (lg(z) — fz)| <€),

U(Xa @7 f) = ve>0£|96<13' (U(fa g, 6))
If the set X is clear from the context, we write simpler U(f,g,€) and U(®, f), respectively.
We denote by ®* the bounded elements of ®, and its uniform closure ® is defined by

@ = {f e F(X) [ U(®, f)}.
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A Bishop topology on X is a certain subset of F(X). Since the Bishop topologies considered

here are all extensional subsets of F(X), we do not mention the embedding z'IF;(X) : F— F(X),
which is given in all cases by the identity map-rule.

Definition 9.1.3. A Bishop space is a pair F := (X, F), where F' is an extensional subset of
F(X), which is called a Bishop topology, or simply a topology of functions on X, that satisfies
the following conditions:

(BS1) Ifa €R, then@X € F.
(BSy) If f,g € F, then f+g € F.
(BS3) If f € F and ¢ € Bic(R), then ¢o f € F

X —R

F> qboN Jqﬁ € Bic(R)

R.

(BS,) F = F.

If F:= (X, F) is a Bishop space, then F* := (X, F*) is the Bishop space of bounded
elements of F. The constant functions Const(X) is the trivial topology on X, while F(X) is
the discrete topology on X. Clearly, if F' is a topology on X, then Const(X) C F C F(X), and
the set of its bounded elements F™* is also a topology on X. It is straightforward to see that
the pair R := (R, Bic(R)) is a Bishop space, which we call the Bishop space of reals. A Bishop
topology F' is a ring and a lattice; since |idr| € Bic(R), where idg is the identity function on R,
by BSs we get that if f € F then |f| € F. By BSy and BSs3, and using the following equalities

(f+9?*—f*—¢°

fg: 92 EF,
ng=Hwﬂﬂg}=f+”H;f_g|€R
ng:nmﬂﬁg}=f+gTJf_melﬂ

we get similarly that if f,g € F, then f-g, fVg, fAg € F. Turning the definitional clauses of a
Bishop topology into inductive rules, Bishop defined in [9], p. 72, the least topology including
a given subbase Fy. This inductive definition, which is also found in [19], p. 78, is crucial to
the definition of new Bishop topologies from given ones.

Definition 9.1.4. The Bishop closure of Fy, or the least topology \/ Fy generated by some
Fy C F(X), is defined by the following inductive rules:

fo € Fy a€R f,g€V\ Fo feVF, g=rx) f
foeVE aX¥eVF f+geVEF ge\ Iy ’
feVF, ¢cBicR) (9€VFo, Uf,9,6) .~

pofeVE feVh '

We call \/ Fy the Bishop closure of Fy, and Fy a subbase of \/ Fy.
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If Fy is inhabited, then (BS;) is provable by (BSs3). The last, most complex rule above can
be replaced by the rule

gle\/FO A U(f?gl?%)? 926\/F0 A U(f7g272i2)7
feVF ’

a rule with countably many premisses. The corresponding induction principle Indy; g, is

Vfoers (P(fo)) & Yaer (P(@Y)) & Y gey 1, (P(f) & P(g) = P(f +9)

& Yiey rVger(x) (9 =r(x) [ = P(9))
& Ysey ryVoenicr) (P(f) = P(¢o f))

& Vsey ry (Yes03gey 1, (P(9) & U(f,g,€)) = P(f))

= Vey r (P(f)),

where P is any bounded formula. Next we define the notion of a Bishop morphism between
Bishop spaces. The Bishop morphisms are the arrows in the category of Bishop spaces Bis.

Definition 9.1.5. If F := (X, F) and G = (Y,G) are Bishop spaces, a function h: X —Y
is called a Bishop morphism, if Vgeq(go h € F)

h
X —Y

FBQONJQGG

R.

We denote by Mor(F,G) the set of Bishop morphisms from F to G. As F is an extensional
subset of F(X), Mor(F,G) is an extensional subset of F(X,Y). If h € Mor(F,G), the induced
mapping h*: G — F from h is defined by the rule

h*(g) :==goh; ge€Q@G.

If F:= (X, F) is a Bishop space, then F' = Mor(F,R), and one can show inductively that
if G:= (Y, Go), then h: X — Y € Mor(F,G) if and only if V,,eq,(g0 0 h € F)

h
X —Y

FBgoOf\‘JgoéGo

R.

We call this fundamental fact the \/-lifting of morphisms. A Bishop morphism is a Bishop
isomorphism, if it is an isomorphism in the category Bis. We write F ~ G to denote that F
and G are Bishop isomorphic. If h € Mor(F, G) is a bijection, then h is a Bishop isomorphism
if and only if it is open i.e., Vicrpdsea (f =go h).
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Definition 9.1.6. Let F := (X, F),G := (Y, G) be Bishop spaces, and (A,i4) C X inhabited.
The product Bishop space F x G := (X x Y, F x G) of F and G, the relative Bishop space
Fla:= (A, Fj4) on A, and the pointwise exponential Bishop space F — G = (Mor(F,G), F —
G) are defined, respectively, by

geG
FxG:w=\/[{foprx.|f€F}U{gopry |geG}] = \/ foprx.gopry,
feF
Fla=\/{ful feF}t=\/ fia
fer
Aty L oe
\_/'
fla
geG
F—>G;:\/{¢w,g\xex,gec} = \/qﬁx,g,
rzeX

Qb:c,g : Mor(Fv g) — Ra ¢x,g(h) = g(h(ﬁC)), S X: g € G

One can show inductively the following \/-liftings

\ Fox \/ Go:=\/ [{fooprx,| fo € Fo} U{goopry | 90 € Go}]

90€Go
= \/ Joopry,goopry,

fo€Fp

(\/FO)|A = \/{fO|A | fo € Fo} =: \/ fojas

Jo€Fp
90€Go
F— \/Go = \/{gf)x,go | z € X, g0 € GO} = \/ ¢5E790'
zeX

The relative topology F'4 is the least topology on A that makes i 4 a Bishop morphism, and the
product topology F' x G is the least topology on X x Y that makes the projections pry and
pry Bishop morphisms. The term pointwise exponential Bishop topology is due to the fact
that F' — G behaves like the the classical topology of the pointwise convergence on C(X,Y),
the set of continuous functions from the topological space X to the topological space Y.

9.2 Directed sets

Definition 9.2.1. Let I be a set and i <1 j a binary extensional relation on I i.e.,
Vijiger(i=1i & j=1j &i=<rj=i=<1j).

If i X1 j is reflexive and transitive, then (I,<r) is called a a preorder. We call a preorder
(I,=<1) a directed set, and inverse-directed, respectively, if

VijerTeer (i <1k & j <1 k),
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Vijerdver(i =1 k & j =1 k).

The covariant covariant diagonal DS(I) of <1, the contravariant diagonal D7 (I) of <1, and
the <r-upper set I;; of i,7 € I are defined, respectively, by

DI(1) = {(if) € T T i <1 j},
D7(I):={(j,i) e I x I| j =11},
I5={kel|i<rk&j=rk}

Since i <y j is extensional, D=(I), D7(I), and IZ-“? are extensional subsets of I x I.

Definition 9.2.2. Let (I,<1) be a poset i.e., a preorder such that [z <rj&j=<r 2] =1i=57,
for every i,j, € I. A modulus of directedness for I is a function 6: I x I — I, such that for
every 1,4,k € I the following conditions are satisfied:

(02) If i <1 j, then 6(i,7) =1 6(j, 1) =1 J.

In what follows we avoid for simplicity the use of subscripts on the relation symbols.
If (I,<) is a preordered set and (J,e) C I, where e : J < I, and using for simplicity the
same symbol =, if we define j < j' 1< e(j) < e(j’), for every j,j' € J, then (J, %) is only a
preordered set. If J is a cofinal subset of I, which classically it is defined by the condition
Vierdje J(i < j), then (J, <) becomes a directed set. To avoid the use of dependent choice, we
add in the definition of a cofinal subset J of I a modulus of cofinality for J.

Definition 9.2.3. Let (I,<) be a directed set and (J,e) C I, and let j < j' & e(j) < e(j'),
for every j, 7' € J. We say that J is cofinal in I, if there is a function cofy : I — J, which
we call a modulus of cofinality of J in I, that satisfies the following conditions:

(Cofl) VjeJ(COfJ(e(.j)) —J j)
idy

J——1 — J.
e cofy

(Cofa) Viier (z <1 = cof (i) = cofJ(i’)).

(Cofs) Vier (i < e(cof (1)),
We denote the fact that J is cofinal in I by (J, e, cof j) Ct I, or, simpler, byJ C* I.

Taking into account the embedding e of J into I, the condition (iii) is the exact writing of
the classical defining condition V;e73jes (z < j). To add the condition (i) is harmless, since <
is reflexive. If we consider the condition (iii) on e(j), for some j € J, then by the condition (i)
we get the transitivity e(j) < e(cof j(e(j))) = e(j). The condition (ii) is also harmless to add.
In the classical setting if i < ¢/, and 7, € J such that i < j and ¢’ < j/, then there is some
i’ € I such that j' <" and j <4". If i < j”, for some j" € J,
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~//

J

|

A\

i’\i/J

then j < j”. Since ¢ < j” too, the condition (ii) is justified. The added conditions (i) and (ii)
are used in the proofs of Theorem [6.5.12f and Lemma [6.5.11(ii), respectively. Moreover, they
are used in the proof of Theorem The extensionality of < is also used in the proofs of

Theorem [6.5.12] and Theorem [6.6.5]

E.g., if Even and 0dd denote the sets of even and odd natural numbers, respectively, let
e: Even — N, defined by the identity map-rule, and cofgyen: N — 2N, defined by the rule

n , n € Even
cofan(m) =\ 141 e oad.

Then (Even, e, cofgyen) C N.
Remark 9.2.4. If (I,<) is a directed set and (J,e,cof ;) C° I, then (J,<) is directed.

Proof. Let j,j' € J and let i € I such that e(j) < 7 and e(j’) < i. Since i < e(cof ;(7)), we
get e(j) < e(cof s(i)) and e(j’) < e(cof s(i)) i.e., j < cof (i) and j' < cof j(i). O
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