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Sequential convergence in Topology

1 Intuitive, not enough, but still important.

2 Limit spaces and related notions capture the “sequential” part of topology.

3 A constructive theory of limit spaces is not elaborated so far.

4 How to add convergence in formal topology is still open.

5 Limit spaces are used in Computability at Higher Types (CHT).

6 Here we study limit spaces and their relation to CHT mostly within BISH.
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Limit Spaces

1 A limit space, or a Kuratowski limit space, or an L˚-space, is a pair L “ pX , limq,
where X is an inhabited set, and lim Ď X ˆXN is a relation satisfying the following
conditions:

(L1) If x P X , then limpx , xq.

(L2) If S denotes the strictly monotone elements of the Baire space N , then

@αPSplimpx , xnq Ñ limpx , xαpnqqq.

(L3) Urysohn’s axiom: If x P X and xn P XN, then

@αPSDβPSplimpx , xαpβpnqqqq Ñ limpx , xnq.

2 L satisfies the uniqueness property (sequential Hausdorff), if

(L4) @x,yPX@xnPXN plimpx , xnq Ñ limpy , xnq Ñ x “ yq.

3 L satisfies the weak uniqueness property, if

(L5) @x,x1PX plimpx
1, xq Ñ x 1 “ xq.
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limpRq

Proposition (BISH)

Suppose that R Ď X ˆXN. If limpRq Ď X ˆXN is defined inductively by the following
clauses:

(i) R Ď limpRq and tpx , xq | x P Xu Ď limpRq,
(ii) limpRqpx , xnq Ñ limpRqpx , xαpnqq, for each α P S,
(iii) @αPSDβPSplimpRqpx , xαpβpnqqqq Ñ limpRqpx , xnq,

then limpRq is the smallest limit relation including R.

Proposition (BISH)

There is a limit space satisfying the weak uniqueness but not the uniqueness property.

Proof.

Take R “ tpx , xnq, py , xnqu, where x , y P X s.t. x ‰ y and xn is a not eventually
constant sequence in X . Take limpRq to be the least limit relation including R defined
as above satisfying the additional condition of the weak uniqueness property.
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L-spaces

An L-space, or a pseudo-limit space is a pair pX , limq satisfying (L1), (L2) and (L4).

Lemma (BISH)

Suppose that pX , limq is a limit space, x P X and xn P XN such that limpx , xnq. If
α P N such that αpnq ą 0 and x 1n is the sequence defined by

x 1αpkq “ . . . “ x 1αpkq`αpk`1q´1 “ xk ,

for each k ě 0, then limpx , x 1nq.

An L-space which is not a limit space: pR, rlimq, where

rlimpx , xnq :Ø
ÿ

nPN
|x ´ xn| ă 8.

Clearly, rlimp0, 1
2n q, while

 rlimp0, 1,
1

2
,

1

2
,

1

4
,

1

4
,

1

4
,

1

4
, . . .q.

If pR, rlimq was a limit space, we should have that the above sequence of finite
repetitions converges to 0 too.
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Filter Spaces

1 A filter space, or a Choquet space, is a pair F “ pX ,Limq, where X is an inhabited
set, and Lim Ď X ˆ FpX q is a relation satisfying the following conditions:

(F1) If x P X and Fx “ tA Ď X | x P Au, then Limpx ,Fx q.

(F2) F Ď G Ñ Limpx ,F q Ñ Limpx ,Gq.

(F3) @GĚF DXĽHĚG pLimpx ,Hqq Ñ Limpx ,F q.

2 A convergence space is a pair F “ pX ,Limq s.t. (F1), (F2) and

(F4) Limpx ,F q Ñ Limpx ,Gq Ñ Limpx ,F X Gq.

3 (F3) Ñ (F4).
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Spanier’s quasi-topological spaces (1963)

A quasi-topological space is a structure pX , pK Ñ X qKPCHTopq, where CHTop is the
category of compact Hausdorff spaces and for each K ,K 1,K1, . . . ,Kn P CHTop the set
of functions K Ñ X Ď FpK ,X q satisfies the following conditions:

(QT1) The constant function x̂ P K Ñ X , for each x P X .
(QT2) f P K Ñ X Ñ g P CpK 1,Kq Ñ g ˝ f P K 1 Ñ X .
(QT3) If f1 P FpK1,Kq, . . . , fn P FpKn,Kq such that

n
ď

i“1

rngpfi q “ K ,

@gPFpK ,Xq@i pg ˝ fi P Ki Ñ X q,

then g P K Ñ X .
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Bishop’s function spaces (1967)

1 A function space is a pair pX ,F q, where F Ď FpX ,Rq, called the topology, satisfies
the following clauses:

(FS1) The constant function â P F , for each a P R.
(FS2) f , g P F Ñ f ` g , fg P F .
(FS3) f P F Ñ g P CpR,Rq Ñ g ˝ f P F .
(FS4) f P FpX ,Rq Ñ @εą0DgPF@xPX p|f pxq ´ gpxq| ď εq Ñ f P F .

2 F pF0q is the least topology including F0 Ď FpX ,Rq, defined like limpRq.

3 Bishop-Bridges 1985: This definition “should not be taken seriously. The purpose
is merely to list a minimal number of properties that the set of all continuous
functions in a topology should be expected to have. Other properties could be
added; to find a complete list seems to be a nontrivial and interesting problem”.
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The Birkhoff-Baer topology

1 A set O Ď X is lim-open, or O P Tlim, if

@xPO@xnPXN plimpx , xnq Ñ evOpxnqq,

where if A Ď X , we define

evApxnq :“ Dn0@něn0 pxn P Aq.

2 A set F Ď X is called lim-closed, if it is the complement of a lim-open set, and in
CLASS this is equivalent to

@xPX@xnPXN pxn Ď F Ñ limpx , xnq Ñ x P F q.

3 A topological space pX , T q induces a limit space pX , limT q, where

lim
T
px , xnq :Ø xn

T
Ñ x .

4 A set D Ď X is called lim-dense, if

@xPX DdnPDN plimpx , dnqq.

5 (BISH) If D is lim-dense, then D is dense in pX , Tlimq.

6 (CLASS) I is dense in pR, Tcocq, but it is not lim-dense in pR, limTcoc q.
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Topological limit spaces and Sequential topological spaces

1 Trivially, lim Ď limTlim
. A limit space is called topological, if

lim Ě lim
Tlim

.

2 Trivially, T Ď TlimT
. A topological space is called sequential, if

T Ě TlimT .

3 If pX , T q is a sequential space and D is a limT -dense subset of it, then D is dense
in X .

4 An open (closed) subset of a sequential space is sequential.
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New limit spaces from old ones within BISH

Suppose that pX , limq and pY , limq are limit spaces.

1 pX ˆ Y , limq is the product limit space, where

limppx , yq, pxn, ynqq :Ø limpx , xnq ^ limpy , ynq.

2 pX Ñ Y , limq is the function limit space, where

f P X Ñ Y :Ø @xPX@xnPXN plimpx , xnq Ñ limpf pxq, f pxnqqq,

limpf , fnq :Ø @xPX@xnPXN plimpx , xnq Ñ limpf pxq, fnpxnqqq.

3 If A Ď X , then pA, limAq is the relative limit space, where

lim
A
“ limXpAˆ ANq.

4 If f : pX , limq Ñ pY , limq is lim-continuous, then f : pX , limq Ñ pf pX q, limf pXqq is
lim-continuous.
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Lim! and Hausdorff spaces

(BISH) If pX , Tlimq is a T2-space, then pX , limq has the uniqueness property.

The converse doesn’t hold in general (Dudley 1964).

Proposition

(CLASS) Suppose that pX , limq is a limit space, pY , limq is a limit space with the
uniqueness property, D is a lim-dense subset of X , and f , g : X Ñ Y are lim-continuous
functions. Then the following hold:

(i) If f|D “ g|D , then f “ g.
(ii) If f : pD, limDq Ñ pY , limq is lim-continuous, then it has at most one lim-continuous
extension to X .
(iii) The set Zpf , gq “ tx P X | f pxq “ gpxqu is lim-closed.
(iv) The graph Gf of f is lim-closed in pX ˆ Y , limq.
(v) If f is 1-1, then pX , limq has the uniqueness property.
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Useful continuity facts

1 A Ď X is called a lim-retract of X , if there is a lim-continuous function r : X Ñ A
such that rpaq “ a, for each a P A.

2 (BISH) If pX , limq, pY , limq are limit spaces, A is a lim-retract of X and f :
pA, limAq Ñ pY , limq is lim-continuous, then f has a lim-continuous extension
F : pX , limq Ñ pY , limq.

3 If F “ f ˝r , then F is lim-continuous as a composition of lim-continuous functions,
and F paq “ f prpaqq “ f paq, for each a P A.

4 (BISH) If pX , limq and pY , limq are limit spaces and f : X Ñ Y is lim-continuous,
then f : pX , Tlimq Ñ pY , Tlimq is continuous.

5 (BISH) If pX , limq is a limit space and pY , limq is a topological limit space, then
the converse holds.
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A brief history of sequential convergence

1 Fréchet 1906: introduction of L-spaces.

2 Urysohn 1926: introduction of his axiom and of Fréchet-Urysohn spaces.

3 Hausdorff 1935: generalization of results of Urysohn to L-spaces.

4 Kuratowski’s Topology I 1958/66.

5 Kisyński’s theorem 1960: a limit space with the uniqueness property is topological.
The classical proof of: “a limit space inducing a Hausdorff topology is topological”
is much easier.

6 Dudley 1964: more results on sequential convergence.

7 Franklin’s characterisation theorem of sequential spaces 1965: a space is sequential
iff it is the quotient of a metric space.

8 60’s, 70’s and 80’s: multivalued convergence, theory of sequential envelopes, se-
quential regularity (Dolcher, Novák, Kamiński, Koutńık, Frič and others)
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Iosif Petrakis Limit Spaces with Approximations



A brief history of sequential convergence
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Limit spaces in CHT

1 Scarpellini 1971: introduced the category of limit spaces over N with the discrete
limit relation limd as a model for bar recursion of finite types.

2 Hyland 1975, 1979: he used filter spaces as a model for recursion theory in higher
types. The importance of limit spaces (sequential or filter ones) w.r.t. CHT lies
in the fact that they form a cartesian closed category, which is the categorical
formulation of “closure under explicit definition and λ-abstraction”, a property not
shared by the category of general topological spaces.

3 Under the influence of the work of Ershov and Scott, CHT was connected in the
80’s and 90’s mainly with the development of domain theory.

4 The interplay of notions and methods between domain theory and the theory of
(sequential or filter) limit spaces was from the beginning evident e.g., general ideas
of the proof of an effective density theorem of Hyland 1979 have their domain-
theoretic counterpart in the later work of U. Berger.

5 A scholar who in the most evident way expresses the interplay between these two
approaches in CHT is Dag Normann.
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A bit more on limit spaces in the literature

1 The category Lim and its relation to Seq, Equ, ωEqu (Scott, Simpson, Rosolini,
Bauer).

2 Schröder 2001-: study of weak limit spaces and their relation to TTE, effective
version of Kisyński’s theorem.

3 So far use of classical logic.

4 M. Escardó-Xu 2013: they define a category of concrete sheaves, called C -spaces,
forming a locally cartesian closed category modeling Gödel’s T and dependent
types. C -spaces as a constructive analogue (within BISH) of quasi-topological
spaces.
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4 M. Escardó-Xu 2013: they define a category of concrete sheaves, called C -spaces,
forming a locally cartesian closed category modeling Gödel’s T and dependent
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Normann’s Program of Internal Computability (IC)

1 Normann 1982: “the internal concepts [of computability] must grow out of the
structure at hand, while external concepts maybe inherited from computability over
superstructures via, for example, enumerations, domain representations, or in other
ways”

2 Normann 2000-: series of papers elaborating the main ideas of IC.
3 Motivation:

1 “the weaker tools we use to obtain a result, the more extra knowledge can be obtained
from the process of obtaining the result”

2 “proofs are simpler”
3 “the internally computable functions are defined from elements, relations and functions

present in the structure, using acceptable operators that form new functions. The problem
will be to decide what the acceptable operators are”

4 “on the one hand one does not have to translate everything to the set of representatives,
and on the other hand an internally defined object will always be well defined”

4 Soundness criterion: an internally computable object is externally computable.

5 There are externally computable objects which are not internally computable
[the Fan functional is Kleene-computable (it has a representative with a recursive
associate), but it is not S1-S9 definable over the total Kleene-Kreisel functionals].
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The core of IC

1 Mainly limit spaces are used.

2 It is “useful to see how far we can get towards constructing an effective infras-
tructure on such spaces without introducing superstructures and imposing external
notions of computability on the given structures ... One way to create a useful part
of an infrastructure will be to isolate a dense subset that in some way is effectively
dense.”.

3 Although Normann is working in CLASS, we work mostly in BISH.

4 Normann 2008 presented Kleene’s countable functionals over N using limit spaces
and the corresponding density theorem using the notion of the nth approximation
of a functional, for each n P N.

5 Here we generalize Normann’s presentation by defining two new subcategories of
limit spaces, Appr and Gappr and connect them to later work of Normann.

6 Dense sets are very direct to find in Appr and Gappr.

7 As Scott’s information systems have the approximation objects (tokens and formal
neighborhoods) as primitive notions, forming a constructive counterpart to abstract
algebraic domains, the approximation functions in a limit space with approximations
are given beforehand too.
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Limit spaces with approximations

1 A limit space with approximations is a structure A “ pX , lim, pApprnqnPNq such
that pX , limq is a limit space, and, for each n P N the approximation functions
Apprn : X Ñ X satisfy the following properties:

(A1) Apprn is lim-continuous.
(A2) ApprnpApprmpxqq “ Apprminpn,mqpxq, for each x P X .

(A3) Dn “ ApprnpX q “ tApprnpxq | x P Xu is an inhabited finite set.
(A4) limpx , xnq Ñ limpx ,Apprnpxnqq, for each x P X and xn P XN.

2 Corollary 1: (A5) ApprnpApprnpxqq “ Apprnpxq.

3 Corollary 2: n ă m Ñ Dn Ď Dm.

4 Corollary 3: B “ tDn | n P Nu is a countable filter base on X .

5 A structure A satisfying (A5), (A3) and (A4) is a limit space with general approx-
imations.
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Density theorem

Proposition

(BISH) If A is a limit space with (general) approximations and x P X , then

limpx ,Apprnpxqq, and the set

D “
ď

nPN
Dn

is an enumerable dense subset of pX , Tlimq.

Proof.

By (A4), considering the constant sequence x , we get limpx , xq Ñ limpx ,Apprnpxqq
i.e., D is a lim-dense subset of X . Therefore, D is a dense subset of pX , Tlimq. D is
enumerable.
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Extension theorem

For each function f defined on D there is a sequence of lim-continuous functions
which extend uniformly arbitrary big “parts” of f .

Proposition

(BISH) If A is a limit space with approximations, then

(i) Each set Dn is a lim-retract of X .
(ii) If pY , limq is a limit space, any lim-continuous function fn : pDn, limDn q Ñ pY , limq
has a lim-continuous extension Fn : pX , limq Ñ pY , limq.
(iii) If f : pD, limDq Ñ pY , limq is lim-continuous, then there is a sequence pFnqn of
lim-continuous functions Fn : X Ñ Y such that, for each n,

Fn|Dn
“ f|Dn

and Fn`1|Dn
“ Fn|Dn

.

Proof.

(i) Since each Apprn : pX , limq Ñ pX , limq is lim-continuous, each Apprn : pX , limq Ñ
pDn, limDn q is lim-continuous too. Since any a P ApprnpX q has the form Apprnpxq, for
some x P X , we get that Apprnpaq “ ApprnpApprnpxqq “ a.
(ii) Then a lim-continuous function fn : pDn, limDn q Ñ pY , limq has a lim-continuous
extension F .
(iii) fn “ f|Dn

is extended to a lim-continuous function Fn : X Ñ Y , and by Dn Ď Dn`1

we get that Fn`1|Dn
“ Fn|Dn

, for each n.
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Product of limit spaces with approximations

Proposition

(BISH) If pX , lim, pApprnqnPNq and pY , lim, pApprnqnPNq are limit spaces with (general)
approximations, and if we define on X ˆ Y

Apprnpx , yq :“ pApprnpxq,Apprnpyqq,

for each n, then pXˆY , lim, pApprnqnPNq is a limit space with (general) approximations,
where lim is the already defined lim-relation on X ˆ Y .
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Function space of limit spaces with approximations

Theorem

(BISH) If pX , lim, pApprnqnPNq and pY , lim, pApprnqnPNq are limit spaces with (general)
approximations, and if we define, for each n and f P X Ñ Y ,

f ÞÑ Apprnpf q,

Apprnpf qpxq :“ Apprnpf pApprnpxqqq,

for each x P X , then pX Ñ Y , lim, pApprnqnPNq is a limit space with (general) approxi-
mations, where lim is the already defined lim-relation on X Ñ Y .
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On the proof of (A3)

If ApprnpY q in inhabited, then ApprnpX Ñ Y q is inhabited: If y P Y , then for the
constant function ŷ we have that

Apprnpŷqpxq “ ApprnpŷpApprnpxqqq

“ Apprnpyq.

Hence,

Apprnpŷq “
{Apprnpyq

If y inhabits ApprnpY q, then the constant function Apprnpŷq “
{Apprnpyq “ ŷ

inhabits ApprnpX Ñ Y q. I.e., in this case the nth approximation of ŷ is identical to it.
To prove the finiteness of ApprnpX Ñ Y q we show that the nth-approximation of a
function in the function limit space acts equally on its input and on the
nth-approximation of it, since

Apprnpf qpApprnpxqq “ Apprnpf pApprnpApprnpxqqqq

A5
“ Apprnpf pApprnpxqqq

“ Apprnpf qpxq.

Then Apprnpf q : X Ñ Y is determined by its restriction

Apprnpf q|ApprnpXq
: ApprnpX q Ñ ApprnpY q

Apprnpf q|ApprnpXq
“ Apprnpgq|ApprnpXq

Ñ Apprnpf q “ Apprnpgq.

|ApprnpX Ñ Y q| ď |ApprnpY q
ApprnpXq|.
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On the proof of (A4)

@xPX@xnPXN plimpx , xnq Ñ limpf pxq, fnpxnqqq

@xPX@xnPXN plimpx , xnq Ñ limpf pxq,Apprnpfnqpxnqqq.

We fix x P X and xn P XN such that limpx , xnq. By (A4) on X we get that

limpx , xnq Ñ limpx ,Apprnpxnqq,

while by the definition of limpf , fnq on x and the sequence Apprnpxnq we have that
limpf pxq, fnpApprnpxnqqq. By (A4) on Y we get that

limpf pxq,ApprnpfnpApprnpxnqqqq Ø limpf pxq,Apprnpfnqpxnqq.

Iosif Petrakis Limit Spaces with Approximations



The countable functionals over N

ι “ N | ρÑ σ,

Ctpιq :“ pN, lim
Tdi

q,

CtpρÑ σq :“ pCtpρq Ñ Ctpσq, lim
ρÑσ

q,

To each limit space pCtpρq, limρq the following approximation functions are added:

Apprn,ιpmq “ minpn,mq,

while if F P CtpρÑ σq and f P Ctpρq we define

F ÞÑ Apprn,ρÑσpF q,

Apprn,ρÑσpF qpf q “ Apprn,σpF pApprn,ρpf qqq.
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Corollary 1

Corollary

(BISH) The structure Aρ “ pCtpρq, limρ, pApprn,ρqnPNq is a limit space with ap-
proximations, for each ρ. Moreover, there exists an enumerable dense subset Dρ in
pCtpρq, Tlimρ q, for each ρ.

Proof.

ρ “ ι: each Apprn is limTdi
-continuous i.e., limTdi

pm,ml q implies that
limTdi

pApprnpmq,Apprnpml qq, since the hypothesis amounts to the sequence ml

being eventually the constant sequence m, therefore the sequence Apprnpml q is
eventually the constant sequence Apprnpmq.

ApprnpNq “ t0, 1, . . . , nu.

Condition (iv) is written as limTdi
pm,ml q Ñ limTdi

pm,Apprl pml qq. Since the premiss
says that the sequence ml is after some index l0 constantly m, then for l ě maxpl0,mq
we get that the sequence Apprl pml q is constantly m.

The fact that pCtpρ Ñ σq, limρÑσ , pApprn,ρÑσqnPNq is a limit space with approx-
imations is a direct consequence of our Theorem. Moreover, by density theorem
Dρ “

Ť

nPN ApprnpCtpρqq is an enumerable dense subset of pCtpρq, Tlimρ q, for each
ρ.
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Approximation functions on the Cantor space C

Bpαpkqq “ tβ P C | αpkq ă βu

is a countable base of a topology T on C. The space pC, T q is a T1, compact space
with a countable base of clopen sets, and without isolated points. Consequently,

lim
T
pα, αnq Ø @kDn0@něn0 pαnpkq “ αpkqq

Ø @kDn0@něn0 pαnpkq “ αpkqq,

for each α P C and αn P CN. We define the approximation functions Apprn : C Ñ C by

α ÞÑ Apprnpαq,

Apprnpαq “ αpn ` 1q ˚ 0.
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The functionals over the Cantor space C

ι “ C | ρÑ σ,

Cpιq :“ pC, lim
T
q,

CpρÑ σq :“ pCpρq Ñ Cpσq, lim
ρÑσ

q,

and supply these spaces with the approximation functions Apprn,ι as defined above,
and the arrow functions Apprn,ρÑσ , we get the following corollary:

Corollary

(BISH) The structure Aρ “ pCpρq, limρ, pApprn,ρqnPNq is a limit space with approxima-
tions, for each ρ. Moreover, there exists an enumerable dense subset Dρ in pCpρq, Tlimρ q,
for each ρ.
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Compact metric spaces in BISH

If pX , dq is a metric space, a set Y Ď X is called an ε-approximation to X , if

@xPX DyPY pdpx , yq ă εq.

A metric space pX , dq is totally bounded, if for each ε ą 0 there exists some Y Ď X
s.t. Y is a finite ε-approximation to X , and it is compact, if it is complete and totally
bounded.

Lemma

(BISH) If pX , dq is an inhabited compact metric space and r P p0, 1
2
s, there exist

sequences pxuquP2ăN and γ P S such that, for each n ě 1, we have that

(i) txu | |u| “ γpnqu is an rn-approximation to X .

piiq |u| “ γpnq Ñ @wP2ăN pdpxu , xu˚w q ă
rn´1

1´r
q.

piiiq |u| “ γpnq Ñ dpx , xuq ă rn´1 ´ rn`1 Ñ

Ñ DwP2ăN p|u ˚ w | “ γpn ` 1q ^ dpx , xu˚w q ă rn`1q.

pivq |u| “ γpnq Ñ |u ˚ w | ă γpn ` 1q Ñ xu˚w “ xu .

Note that u ˚ w denotes the concatenation of the finite sequences u,w , and that the
proof of the above lemma uses for the definition of γ the principle of dependent
choices on N.
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Approximation functions on a compact metric space

Proposition

If pX , dq is an inhabited compact metric space, limd is the limit relation induced by its
metric d, and Apprn : X Ñ X is defined, for each n, by

Apprnpxq “

"

xminătuP2ăN|xuPApprnpXq ^ dpx,xuqărnu , if x R ApprnpX q

x , if x P ApprnpX q,

where ă is any fixed total ordering on 2ăN, and

ApprnpX q “ txu | |u| “ γpnqu

and the sequences pxuquP2ăN and γ P S are determined in the Lemma, then the structure
A “ pX , limd , pApprnqnPNq is a limit space with general approximations.
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Proof

Proof.

The property ApprnpApprnpxqq “ Apprnpxq follows automatically by the definition of
Apprnpxq. The fact that ApprnpX q is finite follows by the finiteness of the set of nodes
in 2ăN of fixed length γpnq. Finally we show that limd px , xnq Ñ limd px ,Apprnpxnqq.
The premiss is

@εą0Dn0@něn0 pdpx , xnq ă εq,

while the conclusion amounts to

@εą0Dn0@něn0 pdpx ,Apprnpxnqq ă εq.

We fix some ε ą 0, and by the unfolding of the premiss we find n0p
ε
2
q such that

dpx , xnq ă
ε
2

, for each n ě n0p
ε
2
q. Also, there is some n1 such that rn ă ε

2
, for each

n ě n1. For each n ě maxpn0p
ε
2
q, n1q we have that

dpx ,Apprnpxnqq ď dpx , xnq ` dpxn,Apprnpxnqq

ă
ε

2
` rn

ă
ε

2
`
ε

2
.
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The functionals over a compact metric space X

ι “ X | ρÑ σ,

X pιq :“ pX , lim
d
q,

X pρÑ σq :“ pX pρq Ñ X pσq, lim
ρÑσ

q,

and add to these spaces the approximation functions Apprn,ι as defined above, and
the arrow functions Apprn,ρÑσ , we get directly by the fact that Gappr is cartesian
closed the following corollary.

Corollary

The structure Aρ “ pX pρq, limρ, pApprn,ρqnPNq is a limit space with general approxima-
tions, for each ρ. Moreover, there exists an enumerable dense subset Dρ in pX pρq, Tlimρ q,
for each ρ.

Of course, we could use a type system where the base types are determined by more
than one compact metric spaces and have a similar result similar.

Remark

(CLASS) A metric space pX , dq is a sequential space.
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A corollary of Kisyński’s theorem

Kisyński’s theorem suffices to prove classically that all limit spaces in the above
hierarchies are topological, since all of them satisfy the uniqueness property.

Corollary

(CLASS) (i) If f : pX , TlimX
q Ñ pY , TlimY

q is continuous and pY , limY q has the unique-
ness property, then f : pX , limX q Ñ pY , limY q is lim-continuous.
(ii) If pX , limq is a limit space and pY , limY q has the uniqueness property, then

CpX ,Y q “ X Ñ Y ,

where CpX ,Y q denotes the set of continuous functions from X to Y w.r.t. the topolo-
gies induced by the corresponding limits.
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Functionals over separable and non-compact metric spaces

1 The use of probability distributions first in the study of hierarchies of functionals
over R in Normann 2008 following the work of DeJaeger 2003.

2 We study the notion of a positive probabilistic projection adding the property of
positivity to Normann’s notion of probabilistic projection.

3 The probabilistic projections proved to exist by Normann are actually positive ones.

4 Through positivity the notion of a probabilistic projection is connected to general
approximation limit spaces.
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Probabilistic projections

Suppose that pY , T q is a sequential topological space, An is an inhabited finite subset
of Y , for each n P N, and

A “
ď

nPN
An Ď X Ď Y .

A probabilistic projection from Y to X is a sequence of functions

µn : Y Ñ FpAn, r0, 1sq y ÞÑ µnpyq,

(P1) µnpyq : An Ñ r0, 1s is a probability distribution on An, for each n P N i.e., it
satisfies the condition

ÿ

aPAn

µnpyqpaq “ 1.

(P2) The function â : Y Ñ r0, 1s defined by

y ÞÑ µnpyqpaq

is continuous, for each a P An and for each n P N.

(iii) For each x P X , xn Ď X such that limpx , xnq and for each an Ď A such that
an P An, for each n P N, we have that

@npµnpxnqpanq ą 0q Ñ lim
T
px , anq,

where limT is the limit relation on X induced by the limit relation limT on Y .
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Positive probabilistic projections

1 We denote a probability projection by P “ pY , T ,X , pAnqnPN, pµnqnPNq, while the
sequence of sets pAnqnPN is called the support of P.

2 We call a probabilistic projection from Y to X general, if conditions (P1) and (P3)
are satisfied but not necessarily the continuity condition (P2).

3 We call a (general) probabilistic projection from Y to X positive, if

µnpaqpaq ą 0,

for each a P An and for each n P N.
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Density theorem

Next natural density theorem explains why Y is considered sequential. Without this
hypothesis we can only conclude that A is lim-dense in pX , limT q.

Proposition

Suppose that Y is a sequential space, X is a closed (or open) subspace of Y and
P “ pY , T ,X , pAnqnPN, pµnqnPNq is a (general) probability projection from Y to X .
Then A is dense in X with the relative topology.

Proof.

Since limpx , xq, by (P3) we get limpx , anq, for some an such that µnpxqpanq ą 0, for
each n P N. There is always such an an, since µnpxq is a probability distribution on An.
Thus, A is limT 1 -dense in X , where T 1 is the relative topology of Y on X . Since a
closed (or open) subspace of a sequential space is also sequential, A is T 1-dense.
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lim-probabilistic projections

A lim-probabilistic projection P “ pY , lim,X , pAnqnPN, pµnqnPNq where pY , limq is a
limit space, X ,A are as above and the functions pµnqnPN satisfy (P1), (P3) and

(P4) The function â : Y Ñ r0, 1s defined by y ÞÑ µnpyqpaq is lim-continuous, for each
a P An and for each n P N i.e.,

limpy , ymq Ñ limpµnpyqpaq, µnpymqpaqq,

Proposition

(BISH) (i) If pY , T ,X , pAnqnPN, pµnqnPNq is a (positive) probabilistic projection, then
pY , limT ,X , pAnqnPN, pµnqnPNq is a (positive) lim-probabilistic projection.

(BISH) (ii) If pY , limq is a topological limit space and pY , lim,X , pAnqnPN, pµnqnPNq is a
(positive) lim-probabilistic projection, then pY , Tlim,X , pAnqnPN, pµnqnPNq is a (positive)
probabilistic
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Probabilistic selections

1 A probabilistic selection on a sequential space Y is a probabilistic projection from
Y to Y , and we denote it by pY , T , pAnqnPN, pµnqnPNq.

2 Normann: “a probabilistic selection from a dense subset may replace the use of a
continuous or even effective selection of a sequence from a dense subset converging
to a given point, when such topological selections are impossible”.

3 A lim-probabilistic selection on a limit space Y is a lim-probabilistic projection
from Y to Y , and we denote it by pY , lim, pAnqnPN, pµnqnPNq.

4 Next proposition shows the connection of positive probabilistic selections to limit
spaces with general approximations.
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Positive probabilistic selections and limit spaces with general approximations

Proposition

If pY , limT , pAnqnPN, pµnqnPNq is a positive lim-probabilistic selection on Y , there are
approximation functions Apprn such that pY , lim, pApprnqnPNq is a limit space with
general approximations and ApprnpX q “ An, for each n.

Proof.

Suppose that each An is given with a fixed modulus of finiteness en. We define

Apprnpxq “

"

ai0 , if x R An

x , if x P An,

where
i0 “ mintj P N | enpaq “ j ^ µnpxqpaq ą 0u.

Clearly, ApprnpX q “ An by the second case of the above definition. The condition
ApprnpApprnpxqq “ Apprnpxq is also satisfied by definition. Suppose next that x P
X , xn Ď X and limpx , xnq. We also have that

µnpxqpApprnpxqq ą 0,

since, if x R An, then by definition µnpxqpai0 q ą 0, while if x P An, we have µnpxqpxq ą 0
by the positivity condition. Hence, µnpxnqpApprnpxnqq ą 0 for each n. By (P3) we
conclude limpx ,Apprnpxnqq.
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Conversely

Proposition

(i) pBISHq A limit space with general approximations pX , lim, pApprnqnPNq induces a
positive, general lim-probabilistic selection pX , lim, pAnqnPN, pµnqnPNq on X .

(ii) pCLASSq A limit space with approximations pX , lim!, pApprnqnPNq that
satisfies the uniqueness property induces a positive lim-probabilistic selection
pX , lim, pAnqnPN, pµnqnPNq on X .

Proof.

(i) We define An “ Dn “ ApprnpX q and x ÞÑ µnpxq, where

µnpxqpaq “

"

1 , if a “ Apprnpxq
0 , ow.

Clearly µnpxq is a probability distribution on An, and, since µnpxnqpanq ą 0 Ø

an “ Apprnpxnq, we get limpx , xnq Ñ limpx , anq. Also, µnpaqpaq “ 1 ą 0, since
a “ Apprnpxq, for some x P X , therefore, Apprnpaq “ ApprnpApprnpxqq “ a.

(ii) Suppose that limpx , xmq and µnpxqpaq “ 1 Ø a “ Apprnpxq. The sequence
pApprnpxmqqm is eventually constant a. Thus, µnpxmqpaq is eventually constant 1. The
case a ‰ Apprnpxq is treated similarly.
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Existence of a probabilistic projection

Proposition

(CLASS) Suppose that pX , dq is a separable metric space where A “ ta1, a2, . . . , u is
a countable dense subset of X . If we define An “ ta1, . . . , anu and, for each 1 ď j ď n,

µnpxqpaj q :“
pdpx ,Anq ` 2´nq ´̈ dpx , aj q

řn
i“1rpdpx ,Anq ` 2´nq ´̈ dpx , ai qs

,

where dpx ,Anq “ mintdpx , ai q | 1 ď i ď nu is the distance of x from An and a ´̈ b :“
maxpa´ b, 0q, then pX , Td , pAnqnPN, pµnqnPNq is a positive probabilistic selection on X .
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Final comments

1 The product of lim-probabilistic selections does not preserve the continuity condi-
tion.

2 Normann 2009 defined Q-spaces: sequential Hausdorff spaces with a countable
pseudo-base of closed sets, to show that for semi-convex Y , and X ,Y are Q-
spaces with probabilistic selection, then X Ñ Y is a Q-space with a probabilistic
selection.

3 The existence of dense subsets in the product X ˆ Y and the function spaces
X Ñ Y is direct by the fact that X ,Y are limit spaces with general approxima-
tions. It suffices that X ,Y are sequential spaces admitting positive lim-probabilistic
selections.

4 Of course, the results of Normann on Q-spaces are of independent interest and
value.

5 The limit spaces with approximations are useful in the separable non-compact case
too.

6 There are more related results but even more open questions.
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