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Abstract: We ascribe to the Euclidean Fifth Postulate a genuine constructive role,
which makes it absolutely necessary in the parallel construction. In order to do this, we
provide a reconstruction of the general principles of a Euclidean construction of a geo-
metric property. As a consequence, the epistemological role of Euclidean constructions
is revealed. We also give some first philosophical implications of our interpretation to
the relation between Euclidean and non-Euclidean geometries. The Bolyai construc-
tion of limiting parallels is shortly discussed from the reconstructed Euclidean point of
view.

1 The Standard Interpretation of the Fifth Postulate

From Proclus up to our days a hermeneutic tradition regarding the Fifth Pos-

tulate (FP) has been developed, which we call the Standard Interpretation (SI).

According to it, the Euclidean FP, though differently formulated, actually as-

serts that through a given point outside a given straight line at most a unique

parallel straight line can be drawn to it. This formulation, commonly known as

Playfair’s Axiom (PA), is logically equivalent to the original FP. Since a parallel

line exists independently from PA, addition of PA establishes the existence of

exactly one such parallel. Expression of the SI predominance is that PA was

made the standard form of the FP in the axiomatic presentations of Euclidean

geometry.

In order to describe SI and its shortcomings we give briefly the Euclidean

line of presentation of the parallel construction in a formal scheme compatible

to our later reconstruction.

If a, b and c are Euclidean coplanar straight lines, we define the following

geometric properties:

T (a, b, c) ↔ c falls on a and b,

Qb(a) ↔ a is parallel to b,

Pb,c(a) ↔ T (a, b, c) and c makes the alternate angles equal to one another.

1 Published in History and Epistemology in Mathematics Education, Proceedings of
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The first major step in the Euclidean parallel construction is Proposition 27 of

Book I of the Elements.

Proposition I.27 (Criterion of Parallelism): Pb,c(a) → Qb(a).

Proposition I.28 contains two more criteria of parallelism reducible to the one of

Proposition I.27. In Proposition I.29 the converse implication is established.

Proposition I.29: Let a, b, c, such that T (a, b, c), then

Qb(a) → Pb,c(a).

In Proposition I.29 Euclid uses the FP for the first time. Its original formulation

is the following:

Euclidean Fifth Postulate: If T (a, b, c) and c makes the interior angles less

than two right angles (2x), then a, b, if produced indefinitely, meet on that side

on which are the angles less than 2x.

Proposition I.29 is required in the proof of Proposition I.30, a proposition crucial

for the development of the SI, since it proves the uniqueness of the parallel line.

This result though, is not included in the Elements.

Proposition I.30: If Qb(a) and Qb(c), then Qc(a).

Next proposition is the construction of the parallel line.

Proposition I.31: Construction of a straight line a, through a given point A

outside line b, such that Qb(a).

Its proof consists in the construction of lines c and a, such that Pb,c(a). Then,

by Proposition I.27, Qb(a) holds too.

Within SI the construction of Proposition I.31 requires only Proposition I.27

therefore, it is independent from the FP. So, it could be placed right after Propo-

sition I.27 and before Proposition I.29. This accepted independence of the FP

from the parallel construction is one of the reasons why mathematicians, be-

fore the emergence of non-Euclidean geometries, used to consider the FP as a

theorem rather than as a Postulate.

In SI the place of the parallel construction after the first use of the FP

is explained, though not with absolute certainty, as an expression of Euclid’s

need, before giving the construction, to place beyond all doubt the fact that

only one such parallel can be drawn2. If it was placed right after Proposition

I.27, then only the existence of the parallel line would be established. For the

SI the Euclidean line of presentation certifies the existence and the uniqueness

of the parallel line. Within SI the “true” meaning of the FP is the expression

of uniqueness for the parallel line. It is this emphasis of the SI on the unique-

ness of the parallel line, which pushed it forward as a central characteristic of

2 See Heath, vol. 1, p.316. Actually this is Proclus’ argument, as expressed in Proclus
Commentary (pp. 295-6).



Euclidean geometry. Gradually, the difference between Euclidean geometry and

non-Euclidean geometries was identified, roughly, with the different number of

parallels they permit.

The uniqueness interpretation though, is in our view inadequate. In the first

place, there is no explanation within SI why Euclid preferred his formulation

of the FP than the uniqueness assumption. Also, study of the Elements shows

that Euclid seems indifferent to questions of uniqueness. In the First Postulate

(construction of a line segment between two points) there is no mention of the

uniqueness of the segment, though it is used in Proposition I.4 in the form:

two straight lines cannot enclose a space. The circle of the Third Postulate

(construction of a circle of any center and radius) is not mentioned to be unique

either. Examination of the perpendicular constructions of Propositions I.11 and

I.12 reveals the aforementioned Euclidean attitude too.

2 The basic principles of a Euclidean construction and the
constructive role of the Fifth Postulate

The first three Euclidean constructions have a direct constructive role: they pro-

vide the fundamental elements for the subsequent line and circle constructions.

We believe that the Fourth and the Fifth Postulate have an indirect, though

genuine, constructive role. They are less elementary, participating in the less

elementary parallel construction.

The constructive role of the Fourth Postulate: It is used in Proposition

I.16 (through Proposition I.15), which is necessary in the proof of Proposition

I.27. By this line of thought, it participates in the construction of Proposition

I.31. Also, by the Fourth Postulate, the right angle is a fixed and universal stan-

dard, to which other angles can be compared. The FP, treating the 2x as a fixed

quantity, “depends” on the Fourth Postulate.

To reveal the constructive character of the FP, we need to understand the con-

ceptual requirements of ancient Greek mathematics regarding the nature of ge-

ometric construction as they are embodied in the Euclidean Elements. These

requirements are not explicitly found in Euclid, but we consider them as an ac-

curate reconstruction of the Euclidean constructive spirit.

The Basic Principles of the Euclidean Construction K(P ) of a geomet-

ric property P :

K1: Construction K(P ) is the construction K(a, P ) of a geometric object a

satisfying geometric property P , i.e.,

P (a) and K(P ) = K(a, P ).

K(a, P ) is a construction establishing an abstract object a, satisfying, as



accurately as possible, the definition of P 3.

K2: If an object b, satisfying geometric property R, is used in construction

K(a, P ), then construction K(b, R) must have already been established.

Thus, K2 guarantees that K(a, P ) does not contain constructive gaps, i.e.,

all geometric concepts used in construction K(a, P ) are already constructed4.

K3: If a is a geometric object satisfying P and Q is another geometric property,

such that whenever a satisfies P it satisfies Q, but not the converse, i.e.,

P (a) → Q(a) and ¬(Q(a) → P (a)),

then K(a,Q) cannot be established through K(a, P ).

The principle K3 is the most crucial of our reconstruction. It guarantees

that the construction of the abstract object a satisfying property Q cannot

be established through the construction of the less general property P , i.e.,

construction K(a, P ) respects the generality hierarchy of geometric concepts. For

example, the construction of an isosceles triangle cannot be established through

the construction of an equilateral triangle, since there are isosceles triangles

which are not equilateral5.

K4: If a is a geometric object satisfying P and Q is another geometric property,

such that whenever a satisfies P it satisfies Q, and the converse, i.e.,

P (a) ↔ Q(a),

then K(a,Q) can be established through K(a, P ), and the converse.

Thus, K4 guarantees that whenever properties P and Q are logically equiva-

lent, having the same generality, they do not differ with respect to construction.

K4 is the natural complement to K3 and they form together the core of the

Euclidean constructive method.

In order to understand the use of the above set of principles on the parallel

construction and their relation to the FP we shall give some useful definitions.

A construction K(a, P ) is called direct, if K(a, P ) establishes an object a

which satisfies completely the definition of P . In that case we call P a finite

property. A geometric property Q is called infinite, if it is impossible to give

3 The expression “as accurately as possible” in K1 will be evident in section 3. K1 can
also be found, though not as explicitly as here, in the intuitionistic literature on the
concept of species (intuitionistic property). A constructive principle such as K1 can
be detected in Brouwer’s notes. Also, for Griss, a species is defined by a property of
mathematical objects, but such a property can only have a clear sense after we have
constructed an object which satisfies it (see Heyting 1971, p.126). The role of K1 in
Brouwer’s concept of species is examined in Petrakis 2007.

4 Though K2 is very natural to accept, it is not trivial. In a sense, Bolyai’s construction
of limiting parallels violates it; see section 4.

5 Euclid uses the concept of an isosceles triangle in Proposition I.5, without providing
first a construction of it, because this construction is a simple generalization of the
equilateral one (Proposition I.1). Evidently, Euclid found no reason to include this,
strictly speaking, different, but expected construction.



a direct construction of Q. This impossibility is not a logical one, but just a

result of the definition of Q. A construction K(a,Q) is called indirect, if K(a,Q)

establishes an object a, which satisfies the definition of Q indirectly, i.e., through

a logically equivalent, finite property P . Most of Euclidean constructions are

direct. For example, at the end of the perpendicular construction of Proposition

I.12, Euclid restates the definition of the perpendicular line, showing that he

has constructed an object which satisfies completely that very definition. So, the

property of a perpendicular line is a finite property.

On the other hand, the parallel property is an infinite property. Euclid de-

fined parallel lines (Definition 23 of Book 1) as straight lines which, being in

the same plane and being produced indefinitely in both directions, do not meet

one another in either direction. It is impossible to give a direct construction of a

line parallel to a given one, since we cannot reproduce the above definition. The

infinite character of this definition lies in our mental inability to produce a line

indefinitely and act as if this product was a completed object. Each moment we

know a finite part of the on going line, from which we cannot infer that every

extension of it does not meet the given line. The formation of the parallel line

never ends.

Euclidean construction of the infinite parallel property: Euclid gradu-

ally established (mainly through the Fourth Postulate and Propositions I.16 and

I.27) the geometric property Pb,c(a), which is a finite property. Given a line b,

we can construct directly lines c and a such that Pb,c(a) (actually this is the con-

struction of Proposition I.31), using only the direct construction of Proposition

I.23 (construction of a rectilinear angle equal to a given one, on a given straight

line and at a point on it).

The implication Pb,c(a) → Qb(a) is established by Proposition I.27, but it would

be a violation of K3 if construction K(a, Pb,c(a)) was considered as construc-

tion K(a,Qb(a)). Construction K(a, Pb,c(a)) can be considered as construction

K(a,Qb(a)) only if the converse implication Qb(a) → Pb,c(a) is proved. Then, P

and Q will have the same generality and we can apply K4. That is why Euclid

“postponed” the parallel construction, placing it after Proposition I.29, which

establishes the converse implication.

The constructive role of the FP: The FP is this (intuitively true) proposition,

through which the implication Qb(a) → Pb,c(a) is established, and then by K4,

construction K(a, Pb,c(a)) of Proposition I.31 is also construction K(a,Qb(a))

of parallels.

Euclid used the FP in the formulation needed, so that the proof of Proposition

I.29 requires one only conceptual step, reaching his goal in the most direct way.

So, Euclid does not postpone the use of the FP as long as possible6, recognizing

its “problematic” nature. On the contrary, he uses it exactly the moment he

6 For a recent reference to this long repeated view see Hartshorne.



needs it, revealing in that way its function.

In Euclid, if P is a finite property then K(P ) is always given through P itself

and not through an equivalent property Q, i.e., K4 is not used in constructions of

finite properties. It is used only when an infinite property Q is to be constructed.

Otherwise, its function wouldn’t be clear.

The indirect construction of an infinite geometric property is not the only

way ancient Greeks used to handle an infinite property. If an infinite property Q

has no finite equivalent, it may have a special case F with a strong finite char-

acter accompanying the infinite one. We call F a finite-infinite property. Infinite

anthyphairesis (infinite continued fraction) Q is an infinite property studied in

Book X of the Elements, which does not have a finite equivalent. Periodic anthy-

phairesis (periodic continued fraction) F is a special case of Q, which possesses

a strong finite character beside its infinity. Although the sequence of the quo-

tients forming the periodic continued fraction never ends (infinity of F ), its finite

period expresses our knowledge of this sequence (finite character of F )7.

3 The epistemological role of Euclidean constructions

Our description of the Euclidean constructive principles reveals also the dif-

ference between Euclidean construction and Euclidean existence. We use the

following notation:

∃aQ(a) : there exists geometric object a satisfying geometric property Q.

In Euclid ∃aQ(a) is established either by K(a,Q) or by K(a, P ), where P (a) →
Q(a) but not the converse. Euclidean geometry is (except, e.g., Eudoxus’ the-

ory of ratios) the basic paradigm of a constructive mathematical theory, since

existence of a mathematical object or concept is constructively established. For

example, if the construction of Proposition I.31 was placed right after Propo-

sition I.27, that would only show the existence of a parallel line. This proof of

existence though, does not constitute construction of the parallel line.

The traditionally accepted independence between the FP and the construc-

tion of Proposition I.31 is based on the identification between ∃aQ(a) and

K(a,Q)8. For Euclid though, construction of property Q is generally an en-

terprise larger than the exhibition-construction of a single object satisfying Q.

7 Ancient Greeks had also found a necessary and sufficient condition for an infinite
anthyphairesis to be periodic (logos criterion). Its knowledge and its importance
in Plato’s system have been developed in recent times in Negrepontis’ program on
Plato. See, for example, Negrepontis 2006. In Negrepontis’ reconstruction of Plato,
the concept of a finite-infinite property is of central importance.

8 According to Zeuthen 1896, the main purpose of a geometric construction is to
provide a proof of existence, so the purpose of the FP is to ensure the existence of
the intersection point of the non parallel lines. This approach fails to see though, the
difference between existence and construction.



Parallel construction shows this fact very clearly. We safely reach the following

conclusions:

∃aQ(a) shows that property Q is not void, that it possesses, in modern terms,

an extension. Therefore, it is meaningful to study it. On the other hand, K(a,Q)

shows that we have found a way to grasp mentally property Q, fully if Q is finite,

as much as possible if Q is infinite.

Traditionally, the Elements are considered as the original model of the axiomatic

method and logical deduction. In our view, they are also, and even more, the

model of the constructive method. It is this combination of the axiomatic and

the constructive method that reflects the philosophical importance of the Ele-

ments. For the first time in the history of mathematics a mathematical theory

answers simultaneously the ontological and the epistemological problem of the

mathematical concepts involved. The ontology of Euclidean geometric objects

and concepts is of mental (and not empirical) nature. Almost certainly Euclidean

ontology is Platonic ontology9. This mental ontology of mathematical concepts

imposes the constructive method. It is the construction of mathematical concepts

which provides their study with a firm epistemology.

Euclid does not only care about the logical relations between geometric con-

cepts and objects. He also needs to answer the main epistemological question:

how do we understand the concepts that we employ in our deductions? And his

answer is: we understand them because we construct them. So, geometric con-

structions form the indispensable epistemology of Euclidean geometry10.

4 The relation between Euclidean and non-Euclidean
Geometries

It is impossible here to study fully the relation between Euclidean geometry

(EG) and non-Euclidean geometries (n-EG). We shall only stress some points

which derive directly from our previous analysis.

There is here too a traditional view regarding the above relation. Accord-

ing to it, EG and n-EG can be seen as mathematical structures of the same

kind, differing only in the number of parallels. One such common mathematical

framework is the Hilbert plane concept11. A Hilbert plane (HP) is a system of

9 Euclid was a Platonist and his definitions are closely related to the Platonic ones
(see Heath p.168). The most accurate description of the Elements would be: Platonic
Euclidean geometry. A Kantian ontological foundation of geometrical objects and
concepts would transform the same corpus of results and constructions into Kantian
Euclidean geometry.

10 For a recent discussion on the role of Euclidean constructions see Harari 2003. Un-
fortunately, the interpretation proposed there is, in our opinion, unsatisfactory. Also,
Knorr’s arguments on the subject (see Knorr 1983) are not, in our view, satisfactory
too.

11 This framework is not as absolute as it is often named, since it does not contain



points, lines and planes satisfying the well known Hilbert axioms of incidence,

betweenness and congruence. In a HP the parallel line (as any other geometric

property) is not constructed, only its existence is established. A HP is neutral

with respect to the uniqueness of the parallel line. A Euclidean plane is a HP

permitting one only parallel and a hyperbolic plane is a HP permitting more

than one parallels. The consequences of this “coexistence” of EG and n-EG were

very serious. Foundations of mathematics and mathematics itself were influenced

immensely from the loss of the a priori character of EG. EG became just one

possible geometry. Kantian a priori suffered a serious blow and especially the a

priori of space. As a result of this, all major foundational programs rested either

on a Kantian a priori of discrete nature or on a purely logical substratum12.

Our reconstruction of the parallel construction suggests a strong rejection of

the traditional view. In our opinion, EG has a certain constructive character,

which n-EG lack. Of course, this opinion echoes Kant. In 1995 Webb remarks13:

[It was a commonplace of older Kantian scholarship that the discovery of

non-euclidean geometry undermined his theory of the synthetic a priori

status of geometry. It is commonplace of newer Kant scholarship that he

already knew about non-euclidean geometry from his friend Lambert, one

of the early pioneers of this geometry, and that in fact its very possibility

only reinforces Kant’s doctrine that euclidean geometry is synthetic a

priori because only its concepts are constructible in intuition.]

The common HP language (or any other common mathematical framework)

ignores the role and the necessity of the FP in the parallel construction just

as the epistemological role of constructions. Modern geometry generally, seems

quite indifferent to epistemological questions.

We can only indicate here that EG and n-EG are not directly comparable,

from the constructive point of view. Therefore, EG has not lost its a priori char-

acter. To show that the Euclidean concepts are the only (mentally) constructible

ones is a big enterprise. We shall only describe here why Bolyai’s construction of

limiting parallels is unacceptable from the Euclidean point of view. A hyperbolic

plane (LP) is a HP satisfying the following axiom:

Lobachevsky’s axiom (L): If a is a line and A is a point outside a, there exist

rays Ab,Ac, not on the same line, which do not intersect a, and each ray Ad in

the angle bAc intersects a.

the elliptic plane, in which there exist no parallels at all, and every line through
the pole of a given line is perpendicular to it. Hilbert’s classic work is still the best
introduction to Hilbert planes (Hilbert 1971). A more absolute framework, which
contains elliptic geometry, is the concept of a Bachmann plane, or metric plane (see
Bachmann 1973).

12 Putnam’s assessment (Putnam 1975, p.x) is characteristic: “...the overthrow of EG
is the most important event in the history of science for the epistemologist”.

13 See Webb 1999, p.1.



For the Bolyai’s construction we need the following propositions:

Proposition 4.1: A triangle in a hyperbolic plane has angle sum less than 2x.

A quadrilateral PQRS is a Lambert quadrilateral, if it has right angles at P,Q

and S.

Proposition 4.2: In a hyperbolic plane the fourth angle (the angle at R) of a

Lambert quadrilateral PQRS is acute, and a side adjacent to it is greater than

its opposite side (QR > PS and SR > PQ).

Proposition 4.3: Suppose we are given a line a and a point P not on a, in a

hyperbolic plane. Let PQ be the perpendicular to a. Let m be a line through P ,

perpendicular to PQ. Choose any point R on a, and let RS be the perpendicular

to m. If Pc is a limiting parallel ray intersecting RS at X, then PX = QR.

Elementary Continuity Principle (ECP): If one endpoint of a line segment

is inside a circle and the other outside, then the segment intersects the circle.

Bolyai’s construction of limiting parallel: Consider a hyperbolic plane sat-

isfying ECP. Suppose we are given a line a and a point P not on a. Let PQ

be the perpendicular to a. Let m be a line through P , perpendicular to PQ.

Choose any point R on a, and let RS be the perpendicular to m. Then the circle

of radius QR around P will meet the segment RS at a point X, and the ray PX

will be the limiting parallel ray to a through P .

Proof. Since Q = x, PR > QR, and from Proposition 4.1 the angle at Q is

the largest angle in triangle PQR. Also, PS < QR, since PQRS is a Lambert

quadrilateral satisfying Proposition 4.2. Therefore, endpoints R and S of segment

RS are outside and inside circle (P,QR) and, by ECP, segment RS intersects

(P,QR) at a (unique) point X. PX is the limiting parallel ray to a through P ,

since L guarantees its existence and by Proposition 4.3 we know that it satisfies

PX = QR.

The curious feature of the above proof, namely that we prove that this con-

struction works only by first assuming (via L) that the object we wish to con-

struct already exists, is common knowledge14. But the presupposed existence

of the limiting parallel is axiomatic and not constructive; therefore, Bolyai’s

construction violates the Euclidean Principle K2.

Another aspect of the problematic character of Bolyai’s construction is re-

lated to constructive principles K3 and K4. Proposition 4.3 is in analogy to

Proposition I.29, since it can be written in the form

L → PX = QR.

In our language, L is an infinite property and PX = QR is a finite one. In order

to consider, from the Euclidean point of view, the direct construction of X as

14 See, for example, Hartshorne, p.398.



the construction of the limiting ray, we have to prove directly, in a hyperbolic

plane satisfying ECP, the analogue to Proposition I.27:

PX = QR → L.

Such a direct proof has not yet been found. Therefore, although the above line

and circle construction of the most important concept of hyperbolic geometry

shows Bolyai’s constructive sensitivity, it does not satisfy the constructive prin-

ciples of the Euclidean parallel construction.

The usual proof of the existence of limiting parallel is based on Dedekind’s

continuity axiom15.

Dedekind’s Continuity Axiom (D): Any (set theoretical) separation of points

on a line (i.e., a Dedekind cut) is produced by a unique point.

Axiom D is highly problematic from the Euclidean point of view. Its set the-

oretical nature is highly non constructive. So, the question, whether Bolyai’s

construction could be used to prove the existence of limiting parallel for a sys-

tem of axioms that includes ECP but does not include D, was naturally raised

by Greenberg16.

Pejas, working in the framework of Bachmann plane geometry, a geometry

without betweenness and continuity axioms, succeeded to classify all Hilbert

planes17. Greenberg, using Pejas’ classification of Hilbert planes succeeded in

answering his question positively18.

Proposition 4.4 (Pejas-Greenberg): If the ECP holds and the fourth angle of

a Lambert quadrilateral is acute, then Bolyai’s construction gives the two lines

through P that have a “common perpendicular at infinity” with a through the

ideal points at which they meet a. Among Hilbert planes satisfying the ECP, the

Klein models are the only ones which are hyperbolic, and Bolyai’s construction

gives the asymptotic parallels for them.

An important corollary is the following proposition.

Proposition 4.5: Every Archimedean, non-Euclidean19 HP in which the ECP

holds is hyperbolic.

Though Pejas-Greenberg managed to show that the Bolyai construction does

yield the limiting parallel replacing D with more elementary axioms, their proof

is indirect, since it is based on a classification theorem.

15 See, for example, Greenberg 1980, p.156.
16 See Greenberg 1979a.
17 A Hilbert plane corresponds to an ordered Bachmann plane with free mobility. As

Greenberg puts it (see Greenberg 1979b), Hilbert’s approach is thus incorporated
into Klein’s Erlangen program, whereby the group of motions becomes the primordial
object of interest. For Pejas classification theorem see Pejas 1961.

18 In Greenberg 1979a.
19 A HP is called non-Euclidean if PA axiom fails.



So, from the (Euclidean) constructive point of view, there is still no direct

constructive proof of the concept of limiting parallel20.
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to Hilbert, in From Dedekind to Gödel, J. Hintikka (ed.), Kluwer Academic Pub-

lishers, pp. 1-20, 1995.

H. G. Zeuthen: Die geometrische Construction als ‘Existenzbeweis’ in der antiken

Geometrie, Mathematische Annalen 47, 222-228, 1896.

20 We conjecture, on philosophical grounds, that such a proof cannot be found.


