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Aim of this talk

To present some fundamental features of Bishop-style constructive
mathematics (BCM) and explain its role in the foundations of
mathematics.



Plan of this talk

1. Bishop and his foundational plan.

2. The influence of BCM to the foundations of mathematics.

3. How Bishop succeeded not to contradict with classical
mathematics.

4. The fundamental thesis of constructivism.

5. The real numbers under the fundamental thesis.

6. Bishop spaces.

7. The future of BCM.



Bishop and his foundational plan



Errett Bishop (1928-1983)



Bishop’s contributions

1. On polynomial and rational approximation theiry
(extensions of Mergelyan’s approximation theorem and the
theorem of F. Riesz and M. Riesz concerning measures on the
unit circle orthogonal to polynomials.)

2. On the general theory of function algebras
(Bishop-DeLeeuw theorem, existence of Jensen measures).

3. On Banach spaces and operator theory (the Bishop
condition, the Bishop-Phelps theorem).

4. On the theory of functions of several complex variables
(biholomorphic embedding theorem for a Stein manifold, new
proof of Remmert’s proper mapping theorem).

5. On constructive mathematics (basic real and complex
analysis, functional analysis, integration and measure theory,
theory of Banach algebras).



Halmos, 1985

He discovered many of the fundamental concepts about
function algebras and the relations among those concepts.
Then, almost discontinuously, he got religion, went into
constructive mathematics, wrote the book that made the
phrase famous, and started the sect of which he was the
leading but somewhat reluctant guru till the day he died.
Functional analysis misses him, and so does constructive
mathematics, and so, most of all, do we, his friends.

Bishop, as Brouwer, was thinking in constructive terms since he was
very young.

Bishop wrote the book that made the phrase famous to many
classical mathematicians.



E. Bishop: Foundations of Constructive Analysis, McGraw-Hill,
1967. (BISH∗)

E. Bishop and D. S. Bridges: Constructive Analysis, Grundlehren der
Math. Wissenschaften 279, Springer-Verlag, Heidelberg-Berlin-New
York, 1985. (BISH)



Bishop’s foundational program of mathematics

1. To provide a simple informal framework for constructive
mathematics that looks very similar to classical mathematics,
and does not contradict classical mathematics as Brouwer’s
intuitionistic mathematics. This framework is called BISH.

2. To develop a formalization of BISH, after developing large
parts of mathematics in BISH.

3. To implement the formalization of BISH into some computer
language.

Bishop primary aim was to influence the standard mathematician.
Instead his work had an enormous impact on the foundations of
mathematics and logic.



Informal constructive mathematics is concerned with the
communication of algorithms, with enough precision to be
intelligible to the mathematical community at large.

Formal constructive mathematics is concerned with the
communication of algorithms with enough precision to be
intelligible to machines.



The informal system BISH I

Use of intuitionistic logic.

1. The concept of function is primitive, therefore it is not a set.

2. There exists a primitive set of natural numbers.

3. A set X is completely defined when a method to construct an
abstract element of X , a method to prove that two elements of
X are equal, and a proof that this equality =X on X is an
equivalence relation are given.

4. There is no notion of equality between elements of sets X and
Y which are not subsets of some set Z .

5. An operation, or a rule, or an algorithm, is a primitive notion.
A function from a set X to a set Y is an extensional operation
i.e., ∀x∈X (f (x) ∈ Y ) and ∀x ,x ′∈X (x =X x ′ → f (x) =Y f (x ′)).



The informal system BISH II

1. A subset Y of X is a set for which we can show that
∀y∈Y (y ∈ X ).

2. If X ,Y are sets the set F(X ,Y ) of all functions from X to Y
is formed, where f =F(X ,Y ) g ↔ ∀x∈X (f (x) =Y g(x)), for
every f , g ∈ F(X ,Y ). The method of constructing an element
of F(X ,Y ) is considered to be a proof that ∀x∈X (f (x) ∈ Y ).

3. If B is a rule which associates to every element x of a set A a
set B(x), the sum set, or disjoint union

∑
x∈A B(x) and the

infinite product
∏

x∈A B(x) are defined by∑
x∈A

B(x) := {(x , y) | x ∈ A ∧ y ∈ B(x)},

∏
x∈A

B(x) := {f ∈ F(A,
⋃
x∈A

B(x)) | ∀x∈A(f (x) ∈ B(x))},

where the exterior union
⋃

x∈A B(x) is defined by Richman.



The choice principles in BISH

The principle of dependent choice, which implies the principle
of countable choice, and Myhill’s axiom of nonchoice

Q ⊆ X × X → x0 ∈ X → ∀x∈X∃y∈X (Q(x , y))→

→ ∃f ∈F(N,X )(f (0) = x0 ∧ ∀n∈N(Q(f (n), f (n + 1)))).

∀n∈N∃x∈X (P(n, x))→ ∃f ∈F(N,X )(∀n∈N(P(n, f (n))),

∀x∈X∃!y∈Y (A(x , y))→ ∃f :X→Y ∀x∈X (A(x , f (x))).

The informal system BISH without countable choice is called RICH,
as F. Richman advocated the development of constructive math in
BISH without choice.



The informal system BISH∗

BISH∗ = BISH + inductive definitions with rules of countably many
premises.

The measure theory in Bishop 1967 is bases on the inductive notion
of Borel set.

The measure theory of Bishop-Bridges 1985 without inductive
definitions.



Bishop’s formalizations of Bishop 1967

A General Language (∼1968/9): he developed a dependent type
theory for BISH∗, before Martin-Löf (unpublished).

Mathematics as a numerical language (1969): HAω, and he
indicates how to compile his formalization into the programming
language Algol.

How to compile mathematics into Algol (∼1969): he indicates
how to compile his type theory into Algol (unpublished).



The influence of BCM to the foundations of mathematics



Formal systems for Bishop 1967

1. Martin-Löf type theory (Bishop sets-setoids, equality in
sets-propositional equality)

2. Constructive set theory (Myhill: CST and CST∗, Friedman,
Aczel and Rathjen: CZF + DC, CZF + DC + REA)

3. Feferman’s explicit mathematics (Feferman, Jäger).

4. HAω, the only system that existed before Bishop 1967 (Bishop,
Goodman and Myhill)



How Bishop succeeded not to contradict with classical mathematics



Uniform continuity theorem

UCT: If f : [a, b]→ R is continuous, then it is uniformly continuous.

It holds in Brouwer’s intuitionistic mathematics (INT) (proof based
on fan theorem and the non-classical continuity principle).

It holds in classical mathematics (CLASS).

It is false in constructive recursive mathematics (RUSS). Based on
Specker’s theorem (there is an increasing sequence of rational
numbers in [0, 1] that does not converge to any real number), there
is continuous f : [0, 1]→ (0, 1) that is not uniformly continuous.

Bishop’s way out: forget about pointwise continuous function. A
continuous function f : [a, b]→ R is by definition uniformly
continuous. A function f : R→ R is continuous, if it continuous on
every interval [−n, n].



The great achievements of Bishop

1. BISH is in the common territory of INT, CLASS and RUSS.

A proof of a formula A in BISH generates a proof of the
interpretation of A in INT, CLASS and RUSS.

2. He showed that one can reconstruct large parts of mathematics
in BISH in a way recognizable to any mathematician.

He succeeded there where Brouwer failed.



The fundamental thesis of constructivism



How can there be numbers that are not computable by
any known method? Does that not contradict the very
essence of the concept of number, which is concerned with
computation?



Goldbach(n) ≡ n is the sum of two primes,

n1 ≡

 0 , ∀n∈N

(
(4 ≤ n ≤ 102 & Even(n))⇒ Goldbach(n)

)
1 , otherwise

n2 ≡

 0 , ∀n∈N

(
(4 ≤ n ≤ 10100 & Even(n))⇒ Goldbach(n)

)
1 , otherwise

n3 ≡

 0 , ∀n∈N

(
(4 ≤ n & Even(n))⇒ Goldbach(n)

)
1 , otherwise



With some patience a mathematician can compute n1, and, possibly
with the help of some computing machine, he can, in principle,
compute n2.

There is no known finite, purely routine, process to convert n3 to
canonical form. The provability of the formula

∀n∈N

(
(4 ≤ n & Even(n))⇒ Goldbach(n)

)
is known as the Goldbach conjecture, which is one of the oldest
and best-known unsolved problems in number theory and all of
mathematics.

The current computing machines have verified the Goldbach
conjecture up to 4× 1018.

PEM, in general has no computational content (GC is true or false,
but we cannot compute the value of n3)!



A representation m of a natural number is called real, if it can be
converted, in principle, to a canonical natural number m∗ by a finite,
purely routine, process.

Fundamental thesis of constructivism: Only real representations
of natural numbers are accepted constructively.

The thesis is extended to real only representations of functions of
type N→ N and to real representations of rational numbers.

Canonicity property of Martin-Löf intensional type theory.



The real numbers under the fundamental thesis



A real number x is a regular sequence x : N+ → Q i.e.,

∀n,m∈N+

(
|xm − xn| ≤

1

m
+

1

n

)
.

x =R y ≡ ∀n∈N+

(
|xn − yn| ≤

2

n

)
.

The relation =R is an equivalence relation on R.

x is strictly positive ≡ ∃n∈N+

(
xn >

1

n

)

x is positive ≡ ∀n∈N+

(
xn ≥ −

1

n

)



The definition of a real number differs from the classical one, as
classically a real number is the equivalence class of the reals, as
defined here, with respect to the equivalence relation of their
equality.

The avoidance of equivalence classes is a central feature of
Bishop-style constructive mathematics.



The Royden number is the sequence % : N+ → Q, where,

%n ≡
n∑

k=1

ak
2k
,

ak =

 0 , ∀n∈N

(
(4 ≤ n ≤ k & Even(n))⇒ Goldbach(n)

)
1 , otherwise

Proposition

The following hold:

(i) % is a real number.

(ii) % ≥ 0.

(iii) If there is a proof of the disjunction

% > 0 ∨ % = 0,

then the Goldbach conjecture is decided i.e., there is a proof of the
Goldbach conjecture or a proof of the negation of the Goldbach
conjecture.



The previous result explains why we gave a separate definition of
x ≥ 0 and didn’t define it as the disjunction x > 0 ∨ x = 0.

Corollary

If there is a proof of the disjunction

% > 0 ∨ % = 0 ∨ % < 0,

then the Goldbach conjecture is decided.

Hence the classical trichotomy

x < y ∨ x = y ∨ x > y

cannot be accepted, the following property is its constructive
alternative.

Proposition

If x , y , z ∈ R such that x < y , then

x < z ∨ z < y .



Proposition

The modified Royden number %∗ is defined by

%∗ ≡
∞∑
k=1

a2k

(−2)k
,

a2k =

 0 , ∀n∈N

(
(4 ≤ n ≤ 2k & Even(n))⇒ Goldbach(n)

)
1 , otherwise

(i) %∗ ∈ R.
(ii) If there is a proof of the disjunction

%∗ ≥ 0 ∨ %∗ ≤ 0,

then the Goldbach conjecture is decided.



Corollary

Consider the following equation (E ):

x(x − %∗) = 0.

(i) The real number 0 ∧ %∗ is a solution of (E ).
(ii) If there is a proof of the disjunction

(0 ∧ %∗) = 0 ∨ (0 ∧ %∗) = %∗,

then the Goldbach conjecture is decided.
(iii) If there is a proof of the implication

x(x − %∗) = 0⇒ (x = 0 ∨ x = %∗),

then the Goldbach conjecture is decided.



Let Q∗[x ] ≡ Q[x ] \ {0̄}. The set of algebraic real numbers A is
defined by

A ≡ {x ∈ R | ∃f ∈Q∗[x](f (x) = 0)}.

Theorem (Julian, Mines, Richman)

If a, b ∈ A, then
a < b ∨ a = b ∨ a > b.



In CLASS one finds important theorems in disjunctive form for
which no method is known (yet) that decides which disjunct is the
case. E.g., Jensen proved in the early 70’s that the universe of sets
V is either “very close” to Gödel’s constructible universe L, which is
an inner model of Zermelo-Fraenkel axiomatic set theory ZF in
which the axiom of choice and the generalised continuum hypothesis
are true in it, or “very far” from it.

Theorem
Exactly one of the following hold:

(i) Every singular cardinal γ is singular in L, and (γ+)L = γ+.
(ii) Every uncountable cardinal is inaccessible in L.

Note that the proof of this theorem cannot specify which one of the
two cases holds. The existence of large cardinals implies (ii), but
this existence is unprovable in ZFC



A similar dichotomy for the inner model HOD (hereditarily ordinal
definable sets) was proved by Woodin a few years ago.

Assuming the existence of an extendible cardinal, the first
alternative of Woodin’s dichotomy implies that HOD is close to V ,
and the second that HOD is far from V .

At the moment there is no evidence which one of the two
alternatives is the right one, a fact with important consequences for
the future of set theory.



Bishop spaces



2 difficulties in constructivising general topology

Bishop 1973: The constructivisation of general topology
is impeded by two obstacles.

First, the classical notion of a topological space is not
constructively viable.

Second, even for metric spaces the classical notion of a
continuous function is not constructively viable; the reason
is that there is no constructive proof that a (pointwise)
continuous function from a compact (complete and totally
bounded) metric space to R is uniformly continuous.

Since uniform continuity for functions on a compact space
is the useful concept, pointwise continuity (no longer
useful for proving uniform continuity) is left with no useful
function to perform. Since uniform continuity cannot be
formulated in the context of a general topological space,
the latter concept also is left with no useful function to
perform.



What if

there is a constructive notion F of an abstract topological space
which does not copy or follow the pattern of the classical
topological space, and at the same time

what if there is a constructive notion h of a “continuous” function
between two such spaces F and G such that although uniform
continuity is not part of the definition of this notion, in many
expected cases it is reduced to uniform continuity.

Then we can hope to overcome the 2 difficulties in the
constructivisation of topology.

F = Bishop space,
h = Bishop morphism.

There are such reducibility results, which indicate that

a Bishop morpmism is an abstract notion of uniform
continuity.



Other approaches to constructive topology

1. Intuitionistic topology (Brouwer, Freudenthal, Troelstra,
Waaldjik).

2. Grayson’s direct study of the axioms of topology using
intuitionistic logic.

3. Formal topology (Martin-Löf, Sambin): a constructive and
predicative generalization of the theory of frames and locales.

4. The theory of Bishop’s neighborhood spaces (Ishihara): points
are accepted, it is within BISH and its concepts are positively
defined.

5. The theory of apartness spaces (Bridges, V̂ıţă): points are
accepted and it is within BISH.

3: It is point-free.
3-4: The notion of a base is central.
1-4: The topological structure “mimics” the classical one.
5: The topological structure does not “mimic” the classical one.
1-5: The topological structure comes first and the continuous
functions are defined a posteriori.



The short history of the subject

1. Bishop introduced function spaces, here called Bishop spaces,
in 1967.

2. Myhill commented on them in his 1975-paper.

3. Bridges revived the subject in 2012.

4. Directly after that Ishihara studied the relation of the
subcategory Fun of the category Bis of Bishop spaces with the
category of neighborhood spaces Nbh (2013).

5. We showed that we can develop non-trivial parts of general
topology within TBS.



The main characteristics of TBS

1. The theory of Bishop spaces (TBS) is an approach to
constructive point-function topology.

2. Points are accepted from the beginning, hence it is not a
point-free approach to topology.

3. Most of its notions are function-theoretic. Set-theoretic notions
are avoided or play a secondary role to its development.

4. It is constructive. We work within Bishop’s informal system of
constructive mathematics BISH, inductive definitions with
rules of countably many premises included.

5. It has simple foundation and it follows the style of standard
mathematics.



Continuity as a primitive notion
A Bishop space is a pair F = (X ,F ), where X is an inhabited set
and F ⊆ F(X ), a Bishop topology, or simply a topology, satisfies
the following conditions:

(BS1) a ∈ R→ a ∈ F .
(BS2) f ∈ F → g ∈ F → f + g ∈ F .
(BS3) f ∈ F → φ ∈ B(R)→ φ ◦ f ∈ F ,
(BS4) f ∈ F(X )→ U(F , f )→ f ∈ F .

U(g , f , ε) := ∀x∈X (|g(x)− f (x)| ≤ ε),

U(Φ, f ) := ∀ε>0∃g∈Φ(U(g , f , ε)).

fg , λf ,−f , f ∨ g , f ∧ g , |f | ∈ F

Const(X ) ⊆ F ⊆ F(X )

A morphism from F to G is a function h : X → Y such that

∀g∈G (g ◦ h ∈ F ).

Mor(F ,G) is the set of the morphisms from F to G.
F = Mor(F ,R), R = (R,B(R)) is the Bishop space of reals.



f0 ∈ F0

f0 ∈ F(F0)

a ∈ R
a ∈ F(F0)

f , g ∈ F(F0)

f + g ∈ F(F0)
,

f ∈ F(F0), φ ∈ B(R)

φ ◦ f ∈ F(F0)

(g ∈ F(F0), U(g , f , ε))ε>0

f ∈ F(F0)
,

g1 ∈ F(F0) ∧ U(g1, f ,
1
2 ), g2 ∈ F(F0) ∧ U(g2, f ,

1
22 ), g3 ∈ F(F0) ∧ U(g3, f ,

1
23 ), . . .

f ∈ F(F0)

∀f0∈F0(P(f0))→
∀a∈R(P(a))→
∀f ,g∈F(F0)(P(f )→ P(g)→ P(f + g))→
∀f ∈F(F0)∀φ∈B(R)(P(f )→ P(φ ◦ f ))→
∀f ∈F(F0)(∀ε>0∃g∈F(F0)(P(g) ∧ U(g , f , ε))→ P(f ))→
∀f ∈F(F0)(P(f )).

Lifting of morphisms: If G = (Y ,F(G0)), then
h : X → Y ∈ Mor(F ,G) if and only if ∀g0∈G0(g0 ◦ h ∈ F ).



Theorem (Uniform continuity theorem for morphisms)

If a, b ∈ R such that a < b, then f : [a, b]→ R ∈ Mor(R|[a,b],R) if
and only if f is uniformly continuous on [a, b].

Theorem
If X and Y are compact metric spaces, then
h : X → Y ∈ Mor(U(X ),U(Y )) if and only if h is uniformly
continuous.



Bridges’s forward uniform continuity theorem within TBS

Theorem
Suppose that X is a compact metric space, Y is a metric space,
and h : X → Y such that ∀g∈U0(Y )(g ◦ h ∈ Cu(X )). Then the
following hold:

(i) h is pointwise continuous and h(X ) is bounded.
(ii) h is uniformly continuous if and only if h(X ) is totally bounded.
(iii) If Y is locally compact, then h is uniformly continuous.

Theorem (Forward uniform continuity theorem, BISH + AS)

Suppose that X is a compact metric space, Y is a metric space and
h : X → Y . If ∀g∈U0(Y )(g ◦ h ∈ Cu(X )), then h is uniformly
continuous i.e.,

h ∈ Mor(U(X ), C0(Y ))⇒ h is uniformly continuous.

The converse holds trivially, since dy is uniformly continuous.
Bridges 1976: (FUCT) “a possible constructive substitute for
UCT”.



The future of BCM



BCM today: Munich, JAIST (Ishihara), Cristchurch (Bridges),
Stockholm (Palmgren), Gothenburg (Coquand).

I. Constructive reverse mathematics.

II. Applications to physics, financial mathematics, constructive
operations research etc.

III. Handbook of Bishop’s constructive mathematics.

IV. Many interactions between BISH and Martin-Löf type theory
and HoTT.

V. Implementation of results in BISH in proof assistants like Coq,
Agda, Minlog etc.
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