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Abstract

We study constructively the relations between the finite cases of Dickson’s lemma. Although
there are many constructive proofs of them, the novel aspect of our proofs is the extraction of a
corresponding bound. We provide some new one-step unprovability results i.e., results of the form “a
finite case of Dickson’s lemma does not prove in one step a stronger case of it”. Moreover, we study
the infinite cases of Dickson’s lemma from the point of view of constructive reverse mathematics.
We work within Bishop’s informal system of constructive mathematics BISH.

1 Introduction

1.1 The finite and infinite cases of a combinatorial theorem τ

According to [10], p.391, the basic propositions of (classical) combinatorics

assert, crudely speaking, that every system of a certain class possesses a large subsystem
with a higher degree of organization than the original system.

The larger the subsystem is proven to be, the stronger the corresponding theorem is. Suppose
that τ is a theorem of combinatorics asserting for a system S in a class of systems Σ the existence
of a subsystem I of S that has property P , which generally S does not. In most cases property P is
hereditary, i.e., if I ′ ⊆ I and P (I), then P (I ′). If |X| denotes the cardinality of a set X, l ≥ 1 and ξ
is a cardinal strictly larger than ℵ0, usually the following finite and infinite cases of τ are considered.

1. The finite case τ(l): If |S| ≥ l, there is I ⊆ S such that |I| = l and P (I).

2. The strong finite case τ∗(l): There is M(l) > 0 such that if l ≤ |S| ≤ M(l), there is I ⊆ S such
that |I| = l and P (I).

3. The unbounded case: If |S| ≥ ℵ0, then ∀l≥1(τ(l)).

4. The infinite case τ(ℵ0): If |S| ≥ ℵ0, there is I ⊆ S such that |I| = ℵ0 and P (I).

5. The higher infinite case τ(ξ): If |S| ≥ ξ, there is I ⊆ S such that |I| = ξ and P (I).

For the constructive study of such a combinatorial theorem τ a general pattern can be described.
a. The finite case τ() is constructively proved, although there are finite combinatoric propositions,

like Friedman’s Proposition B, which is provable only with the use of large cardinals (see [14] and [16]),
or the proposition of Paris-Harrington, which is provable in second-order anlysis but not in Peano
arithmetic, and also lacks a constructive proof1.

b. In many cases a strong case τ∗(l) is also constructively proved. To find explicitly though, a bound
for the strong case τ∗(l) is usually a difficult problem, and for many well-studied combinatorial theorem,
like Higman’s lemma, or Kruskal’s theorem, the extraction of a bound M(l) from a constructive proof
of τ(l) is, to our knowledge, not yet known.

c.The unbounded case ∀l≥1(τ(l)) is generally constructively proved.
1On 2011, during a colloquium-talk at LMU, Veldman suggested to try to find such a proof.
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d. The infinite case τ(ℵ0) is not constructively provable, as one usually can provide a Brouwerian
counterexample to it, or show that τ(ℵ0) is constructively equivalent to some constructively unac-
ceptable proposition, like the limited principle of omniscience LPO. It is possible though, to find a
classically equivalent formulation of τ(ℵ0), which admits a constructive proof (see e.g., the intuitionis-
tic proof of the infinite Ramsey theorem in [6], or it’s constructive proof in Type Theory in [25]). It is
not uncommon that non-constructive proofs inspire, or have a constructive counterpart. E.g., minimal-
bad-sequence-proofs of Higman’s lemma, or of Dickson’s lemma inspired corresponding constructive
(inductive) proofs of them.

e. The higher infinite case τ(ξ) is generally beyond the scope of constructive combinatorics.
Often the proof of some case of τ is based on the use of a repetitive argument, that is on the repetition

of the same proof-step for an appropriate number of times. In this way the power of repetition of a
simple, single argument is revealed. Moreover, if a bound is extracted from the single proof-step,
then a bound is extracted from the whole proof. Most of the proofs included in this paper are based
on repetitive arguments. Although from such proofs we do not extract the best possible, or optimal
bounds, we find them interesting because they are somehow “elementary”.

1.2 The finite and infinite cases of Dickson’s lemma

Dickson’s lemma is the simplest theorem of the form “a certain quasi-order is a well-quasi-order”, and
it is connected to the the theory of Gröbner bases and the termination of Buchberger’s algorithm for
finding them (see [12] and [11]). This was one of the first examples of how a well-quasi-order can be used
as a technique applied to program termination (for more on this see [25]). Here we present though, the
finite and infinite cases of Dickson’s lemma independently from the theory of well-quasi-orders. First
we need a definition.

Definition 1.1. If X,Y are sets, F(X,Y ) denotes the set of functions from X to Y . Let k ∈ N such
that k ≥ 1, α1, . . . , αk ∈ F(N,N), (i, j) ∈ N2 such that i < j, and I ⊆ N. The pair (i, j) is called a
good pair of indices for α1, . . . , αk, or α1, . . . , αk are called good on (i, j), if αn(i) ≤ αn(j), for every
n ∈ {1, . . . , k}. We say that α1, . . . , αk are good on I, or I is good for α1, . . . , αk, if α1, . . . , αk are
good on every pair of indices (i, j) ∈ I2 such that i < j.

If k ≥ 1 and l ≥ 2, the following finite and infinite cases of Dickson’s lemma are usually considered.

1. DL(k, l): If α1, . . . , αk ∈ F(N,N), there exists Il = {i1 < i2 < . . . < il} ⊂ N such that α1, . . . , αk
are good on Il.

2. DL(k,∞): If α1, . . . , αk ∈ F(N,N), there exists I∞ = {i1 < i2 < . . . < in < ßn+1 < . . .} ⊆ N
such that α1, . . . , αk are good on I∞.

3. DL(k, U): If α1, . . . , αk ∈ F(U,N), where U is an unbounded2 subset of N, there exists an
unbounded subset IU of U such that α1, . . . , αk are good on IU .

If Σ = P(N), and S = n, where n := {0, . . . , n− 1}, or S = N, and if P (I), where I ⊆ n, for some
n ∈ N, or I ⊆ N, is the hereditary property defined as “the sequences α1, . . . , αk are good on I”, then
the cases DL(k, l) and DL(k,∞) are special cases of a combinatorial theorem τ , for which no higher
infinite case is meaningful.

Note that an infinite case DL(∞, 2) of DL(k, 2) does not hold; if we consider the sequence of
sequences (αn)∞n=1, where for every n ≥ 1 the sequence αn ∈ F(N,N) is

αn = (n, n− 1, . . . , 1, n+ 1, n+ 2, n+ 3, . . .),

we cannot find a pair of indices which is good for all αn; If n = αn(0), then αn(n− 1) = 1, for every
n ≥ 1. Hence, if i < j, then αj+1(i) > 1, while αj+1(j) = 1, i.e., (i, j) cannot be a good pair for αj+1.

2That is ∀n∈N∃m∈N(m > n ∧m ∈ U).
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This is a simple example of a finite combinatorial proposition the infinite case of which does not hold,
even classically3.

The original formulation of Dickson’s lemma in [13] is equivalent to DL(k, U), which, as we show
in section 4, is equivalent to DL(k,∞) and cannot be constructively accepted. On the other hand,
the finite case DL(k, l) has already a short constructive history. As Veldman and Bezem say in [6],
p.210, it was John Burgess who, in a letter from 1983, asked for a constructive proof of DL(2, 2),
which is shown to be a consequence of the intuitionistic Ramsey theorem in [6]. In [26] Veldman gave
an elementary inductive, constructive proof of DL(k, 2), independently from the intuitionistic Ramsey
theorem or some special intuitionistic principle. In [11] Coquand and Persson gave a constructive
proof of an inductive version of DL(k, k). In [4] a program is extracted from a classical proof of
DL(2, 2), by transforming the classical proof into a constructive one through a refined version of A-
translation, and the proof is implemented in MINLOG (see also [5], [21], [24]). From the program
extraction-point of view Dickson’s lemma has been studied within systems like Mizar, Coq and ACL2
(see[23], [11], [19], respectively). In [17] Hertz proof-mined two classical proofs of DL(k, 2) using the
Dialectica interpretation. We refer here only to direct constructive approaches to Dickson’s lemma.
Since the finite cases of Dickson’s lemma follow easily from Higman’s lemma, a constructive proof of
the latter gives a constructive proof of the former (see [22]). In [2] it is shown that all finite cases of
Dickson’s lemma imply Higman’s lemma for words of an alphabet with two letters.

The extraction of a bound for DL(k, l) i.e., the mining of a number Mα1,...,αk
(l) > 0 out of a proof

of DL(k, l) such that {i1 < . . . < il} is good for α1, . . . , αk and il ≤ Mα1,...,αk
(l) is, surprisingly, not

well-studied (neither constructively nor classically). An exception to this is the work [3], where with
the use of the finite pigeonhole principle a strong case of DL(2, 2) is shown. It doesn’t seem possible
though, to generalize this result to a method to prove strong cases of DL(k, 2), for k > 2.

The main results of this paper are the following.

1. Proposition 2.3, a strong case DL∗(1, l) of DL(1, l), for every l ≥ 3.

2. Proposition 2.6, a strong case DL∗(2, 2) of DL(2, 2).

3. Proposition 2.7, a strong case DL∗(2, l) of DL(2, l), for every l ≥ 3.

4. We explain how our proof of Proposition 2.7 generates a proof of a strong case DL∗(k, l) of
DL(k, l), where k > 2 and l ≥ 3, and how the latter together with the proof of Proposition 2.6
generate a proof of a strong case DL∗(k + 1, 2) of DL(k + 1, 2).

5. Theorem 3.2, a positive formulation of the non-existence of an one step-proof of DL(2, 2) from
DL(1, l).

6. Theorem 3.4, a positive formulation of the non-existence of an one step-proof of DL(3, 2) from
DL(2, 2).

7. Proposition 4.2 and Proposition 4.6, which express the (constructive) equivalence between DL(1,∞)
and LPO.

Results 5 and 6 are technically the more involved and are, as far as we know, together with result
7, new. They are motivated by Corollaries 3.3 and 3.5, respectively, which were conceived first.

We work within Bishop’s informal system of constructive mathematics BISH (see [7], [8], [9]). A
formal system that corresponds to BISH is CZF (see [1]) together with the principle of dependent
choices (DC), or Myhill’s system CST (see [20]).

2 Strong finite cases of Dickson’s lemma

The strong form DL∗(1, 2) of DL(1, 2), although trivial, is essential to the description of a bound in
all other strong cases DL∗(k, l) of DL(k, l) presented here.

3A deeper example is related to van der Waerden’s theorem. According to it, if N is partitioned into two classes, then
at least one of them contains arbitrarily long arithmetic progressions. But that does not imply that an infinite arithmetic
progression in one of them exists (see [15], p.69).
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Proposition 2.1 (DL∗(1, 2)). ∀n∈N∀α∈F(N,N)(α(0) ≤ n→ ∃i<α(0)+1(α(i) ≤ α(i+ 1))).

Proof. If n = 0, then α(0) = 0, and i = 0 is the required index. Next we suppose that ∀α∈F(N,N)(α(0) ≤
n→ ∃i<α(0)+1(α(i) ≤ α(i+1))) and we show that ∀α∈F(N,N)(α(0) ≤ n+1→ ∃i<α(0)+1(α(i) ≤ α(i+1))).
Let α ∈ F(N,N) such that α(0) ≤ n+ 1. If α(0) ≤ n, we use the inductive hypothesis. If α(0) = n+ 1,
then if α(0) ≤ α(1), we get i = 0. If α(0) > α(1), then α(1) ≤ n. By the inductive hypothesis on the
sequence α∗, where α∗(n) = α(n + 1), for every n ∈ N, there is j < α∗(0) + 1 = α(1) + 1 such that
α∗(j) ≤ α∗(j + 1) i.e., α(j + 1) ≤ α(j + 2), and i = j + 1 < (n+ 1) + 1 = α(0) + 1.

If α ∈ F(N,N), we use the notationMα(1, 2) := α(0)+1 for the bound of DL∗(1, 2) that corresponds
to α. It is immediate to see that Mα(1, 2) is an optimal bound for DL(1, 2). The first part of the next
simple corollary of DL∗(1, 2) expresses that for each sequence α we can find a good pair (i, j) for α
such that (j − i) is arbitrary large. For its last part recall that the lexicographic ordering <lex on N is
defined by (n1,m1) <lex (n2,m2) :↔ (n1 < n2) ∨ (n1 = n2 ∧m1 < m2), for every n1, n2,m1,m2 ∈ N.

Corollary 2.2. (i) For every α ∈ F(N,N) and n > 0

∃i∈N

i ≤ n−1∑
j=0

α(j) ∧ α(i) ≤ α(i+ n)

 .

Moreover, the bound
∑n−1

j=0 α(j) is the best possible i.e., there exists a sequence α such that α(i) >

α(i+ n), for every i ≤M <
∑n−1

j=0 α(j).
(ii) If n ∈ N, there is no sequence α ∈ F(N,N) such that ∀k∈N(α(k) < α(k + 1) ∧ α(k) < n).
(iii) There exists no function f : N× N→ N such that

f(n1,m1) < f(n2,m2)↔ (n1,m1) <lex (n2,m2),

for every n1, n2,m1,m2 ∈ N.

Proof. (i) If α ∈ F(N,N) and n > 0, we consider the sequence β ∈ F(N,N) defined by

β(m) =
∑
j<n

α(m+ j),

for every m ∈ N. By DL∗(1, 2) there exists i ≤ β(0) =
∑n−1

j=0 α(j) such that

β(i) ≤ β(i+ 1)↔
∑
j<n

α(i+ j) ≤
∑
j<n

α(i+ 1 + j)

↔ α(i) ≤ α(i+ n).

In order to show the optimality of the specified bound4 consider, for an arbitrary n > 0, any infinite
sequence α extending the finite sequence 1, 0, . . . , 0︸ ︷︷ ︸

n

. Clearly,
∑n−1

j=0 α(j) = 1 and α(0) > α(0 + n),

while α(1) ≤ α(1 + n).
(ii) Suppose that such a sequence α exists, and consider any infinite extension of the finite sequence
β(0) = n0 > β(1) = α(n0) > β(2) = α(n0 − 1) > . . . > β(n0 + 1) = α(0). By DL∗(1, 2) there exists
i < β(0) + 1 = n0 + 1 such that β(i) ≤ β(i + 1), which contradicts the supposed strict monotonicity
of α.
(iii) Suppose that such a function f exists. By the definition of <lex we get (0, 0) <lex (0, 1) <lex

(0, 2) <lex . . . <lex (0, n) <lex . . . <lex (1, 0), while by the supposed property of f we have f(0, 0) <
f(0, 1) < f(0, 2) < . . . < f(0, n) < . . . < f(1, 0), which is impossible by (ii).

Note that by the unbounded case ∀l≥2(DL(1, l)) we get that ∀α∈F(N,N)∀n>0∃i,j∈N(j− i ≥ n∧α(i) ≤
α(j)), since by DL(1, n + 1) there exist i1 < . . . < in+1, such that α(i1) ≤ . . . ≤ α(in+1), therefore
in+1 − i1 ≥ n, and α(i1) ≤ α(in+1). By Corollary 2.2(i) though, we “strongly” know that the distance
between the elements of the good pair is exactly n.

4For n = 1 we get
∑n−1

j=0 α(j) = α(0), the optimal bound of DL∗(1, 2).
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Proposition 2.3 (DL∗(1, l)). If l ≥ 3 and α ∈ F(N,N), there exist i1, i2, . . . , il, and Mα(1, l) ∈ N such
that

i1 < i2 < . . . < il ≤Mα(1, l) and

α(i1) ≤ α(i2) ≤ . . . ≤ α(il),

where

Mα(1, l) =
N∑
j=1

Mj ,

N = α(i(1)) + 2,

M1 = Mα(1, l − 1),

Mj+1 = Mα(j)(1, l − 1),

for every j ∈ {1, ..., N − 1}, and Mα(1, l − 1) is the bound according to DL∗(1, l − 1) on α, α(j) is
the tail of α starting from the index Mj, Mα(j)(1, l − 1) is the bound according to DL∗(1, l − 1) on the
sequence α(j), and i(1) is the index determined by the application of DL∗(1, l − 1) on α.

Proof. Suppose first that l = 3. If we apply DL∗(1, 2) on α, we get an index i(1) ≤ α(0), such
that α(i(1)) ≤ α(i(1) + 1). We write M1 = Mα(1, 2) = α(0) + 1. If we apply DL∗(1, 2) on the
tail α(1) of α starting from M1, i.e., α(1)(n) = α(M1 + n), for every n ∈ N, then we get an index
i(2) ≤ α(1)(0) = α(M1), such that α(1)(i(2)) ≤ α(1)(i(2) + 1). We write M2 = α(M1) + 1. Repeating
these steps N = α(i(1)) + 2 number of times we get indices i(1) < i(2) < . . . < i(N), such that
the application of DL∗(1, 2) on α(i(1)), α(i(2)), . . . , α(i(N)) gives the existence of an index i(k), where
k ≤ α(i(1)), such that α(i(k)) ≤ α(i(k+1)). By the definition of the indices i(1) < i(2) < . . . < i(N) we
conclude that

α(i(k)) ≤ α(i(k+1)) ≤ α(i(k+1) + 1).

The initial segment of α required to find the indices i(k), i(k+1), and i(k+1) + 1 is Mα(1, 3) =
∑N

i=1Mi,
where M1 = α(0) + 1, and for every i ∈ {1, ..., N − 1} we have that Mj+1 = α(Mj) + 1.
If l > 3, we show that

DL∗(1, l)→ DL∗(1, l + 1)

by repeating N number of times the application of DL∗(1, l) on the corresponding tails of α, exactly
as in the l = 3 case. In this way we get indices i(1)1 < i

(2)
1 < . . . < i

(N)
1 , such that the application of

DL∗(1, 2) on α(i
(1)
1 ), α(i

(2)
1 ), ..., α(i

(N)
1 ) gives the existence of an index i(k)1 , such that α(i

(k)
1 ) ≤ α(i

(k+1)
1 ).

By the definition of the indices i(1)1 < i
(2)
1 < . . . < i

(N)
1 we conclude that

α(i
(k)
1 ) ≤ α(i

(k+1)
1 ) ≤ α(i

(k+1)
2 ) ≤ . . . ≤ α(i

(k+1)
l ).

Within the above proof the rightmost pair of the indices on which α weakly increases is a pair of
consecutive numbers. Generally, these indices are not consecutive. E.g.,

α(n) =

{
0 , if n = 2k
1 , if n = 2k + 1.

doesn’t weakly increase on any triad of consecutive numbers.

Definition 2.4. Let A be an inhabited set and n ≥ 1. A coloring of A with n colors, or an n-coloring
of A, is a function χ : A → n. If a1, a2 ∈ A, the set {a1, a2} is called a monochromatic pair under
χ, if χ(a1) = χ(a2). A subset B of A is called monochromatic under χ, if every two elements of B
form a monochromatic pair. The notation PH(n,m, l), where n ∈ N and m, l ∈ N ∪ {N}, expresses
that if χ is an n-coloring of a sequence of A of length m, then this sequence contains a monochromatic
subsequence B of length l.
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Consequently, the case PH(2,N, l) of the pigeonhole principle, where l ∈ N and l ≥ 2, says that if
χ is a 2-coloring of {αn : n ∈ N} ⊆ A, then {αn : n ∈ N} has a monochromatic subsequence of length
l.

Proposition 2.5. ∀l≥2(DL(1, l)→ PH(2,N, l)).

Proof. Suppose that l ≥ 2, α ∈ F(N,N) and χ is a 2-coloring of {αn : n ∈ N}. By DL(1, l) on χ◦α : N→
2 there are indices i1 < i2 < ... < il, such that χ(αi1) ≤ χ(αi2) ≤ . . . ≤ χ(αil). If χ(αil) = 0, therefore
χ(αi1) = χ(αi2) = . . . = χ(αil) = 0, the sequence αi1 , αi2 , . . . , αil is a monochromatic subsequence of
α of length l. If χ(αil) = 1, then we repeat the previous step on the tail αil+1, αil+2, . . . , of α. By
DL(1, l), there are indices n1 < n2 < ... < nl, such that χ(αil+n1) ≤ χ(αil+n2) ≤ · · · ≤ χ(αil+nl

).
If χ(αil+nl

) = 0, then we get a monochromatic subsequence of α of length l. If χ(αil+nl
) = 1, we

repeat the same procedure. It suffices to repeat the above steps at most l number of times to find a
monochromatic subsequence of α of length l.

It is easy to provide a bound for PH(2,N, l) based on the bounds determined by DL∗(1, l) on the
sequences considered in the previous proof.

Proposition 2.6 (DL∗(2, 2)). If α, β ∈ F(N,N), there exist i, j and Mα,β(2, 2) ∈ N such that

i < j < Mα,β(2, 2), and

α(i) ≤ α(j) ∧ β(i) ≤ β(j)),

where

Mα,β(2, 2) =
K∑
j=1

Mj ,

1 ≤ K ≤ N,

N = α(i
(1)
1 ) + 2,

M1 = Mα(1, 3),

β(i
(1)
1 ) ≤ 1→ K = 1,

β(i
(1)
1 ) ≥ 2→M2 = Mα(1)(1, β(i

(1)
1 ) + 1),

i
(1)
1 is the first index of the application of DL∗(1, 3) on α and α(1) is the tail of α starting from index
M1. If 1 ≤ j ≤ N − 1, then

β(i
(j+1)
1 ) ≤ β(i

(j)
1 )− 1→ K = j + 1,

β(i
(j+1)
1 ) ≥ β(i

(j)
1 )→Mj+1 = Mα(j)(1, β(i

(j+1)
1 ) + 1),

and i(j+1)
1 is the first index of the application of DL∗(1, β(i

(j)
1 + 1)) on α(j), where α(j) is the tail of α

starting from index Mj.

Proof. We show that
∀l≥2(DL∗(1, l))→ DL∗(2, 2),

hence by Proposition 2.3 we get a proof of DL∗(2, 2). Applying DL∗(1, 3) on α we find indices i(1)1 <

i
(1)
2 < i

(1)
3 , for which α(i

(1)
1 ) ≤ α(i

(1)
2 ) ≤ α(i

(1)
3 ), based on the initial segment of α of length M1 =

Mα(1, 3). We also consider the finite sequence β(i
(1)
1 ), β(i

(1)
2 ), β(i

(1)
3 ).

Suppose that β(i
(1)
1 ) ≤ 1. If we form the sequence γ(0) = β(i

(1)
1 ), γ(1) = β(i

(1)
2 ), γ(2) = β(i

(1)
3 ) and

extend it in any way we like, then, by DL∗(1, 2) there exists j ≤ γ(0) ≤ 1, such that γ(j) ≤ γ(j + 1)↔
β(i

(1)
j+1) ≤ β(i

(1)
j+2), while α(i

(1)
j+1) ≤ α(i

(1)
j+2) also holds. Hence, in case β(i

(1)
1 ) ≤ 1, we can find a pair of

indices for which DL∗(2, 2) is satisfied, and then trivially K = 1.
If β(i

(1)
1 ) = µ ≥ 2, we consider the tail α(1) of α which starts from index M1. By DL∗(1, µ + 1)

on α(1) we find a finite sequence of indices i(2)1 < i
(2)
2 < . . . < i

(2)
µ+1, for which i

(1)
1 < i

(1)
2 < i

(1)
3 <
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i
(2)
1 < i

(2)
2 < . . . < i

(2)
µ+1, such that α(1)(i

(2)
1 ) ≤ α(1)(i

(2)
2 ) ≤ . . . ≤ α(1)(i

(2)
µ+1). Of course, α also weakly

increases on these indices. Considering β(i
(2)
1 ) we work as follows:

If β(i
(2)
1 ) ≤ µ− 1, then we can find the required pair of indices using DL∗(1, 2). If β(i

(2)
1 ) ≥

µ = β(i
(1)
1 ), we repeat the previous step working with the tail α(2) of α which starts from index

M2 = Mα(1)(1, β(i
(1)
1 ) + 1).

If we are at step j, where 1 ≤ j ≤ N − 1, we find index i
(j+1)
1 , which is the first index of the

application of DL∗(1, β(i
(j)
1 + 1)) on α(j), the tail of α starting from the index Mj .

If β(i
(j+1)
1 ) ≤ β(i

(j)
1 )− 1, then, by DL∗(1, 2), the required pair of indices is found, and K = j + 1.

If β(i
(j+1)
1 ) ≥ β(i

(j)
1 ), we repeat the procedure at most N = α(i

(1)
1 ) + 2 number of times. Then

indices i(1)1 < i
(2)
1 < . . . < i

(N)
1 will have been constructed for which, by the previous constructions, we

have that
β(i

(1)
1 ) ≤ β(i

(2)
1 ) ≤ . . . ≤ β(i

(N)
1 ).

Applying DL∗(1, 2) on any extension of the finite sequence α(i
(1)
1 ), α(i

(2)
1 ), . . . , α(i

(N)
1 ), we find a pair

of indices on which α weakly increases. Since β already weakly increases on them, we have found the
required pair based on an initial segment of α, β of length at most M =

∑K
j=1Mj .

Proposition 2.7 (DL∗(2, l), l ≥ 3). If l ≥ 3 and α, β ∈ F(N,N), there exist i1, i2, . . . , il, and
Mα,β(2, l) ∈ N such that

i1 < i2 < . . . < il ≤Mα,β(2, l) and

α(i1) ≤ α(i2) ≤ . . . ≤ α(il),

β(i1) ≤ β(i2) ≤ . . . ≤ β(il),

where

Mα,β(2, l) =

K∑
k=1

M (k),

1 ≤ K ≤ Λ,

Λ = α(i(1)) + 1,

and i(1) is the first index determined by the application of DL∗(1, l) on the sequence α∗(n) = α(in),
where the indices in are formed as follows: i1 is the first component of the common good pair resulting
from the application of DL∗(2, 2) on α, β requiring the initial segment of α, β of lengthM1 = Mα,β(2, 2),
and in+1 is the first component of the common good pair resulting from the application of DL∗(2, 2) on
α(n), β(n), which are the tails of α, β starting from index Mn. Moreover,

M (1) =

N1∑
j=1

M
(1)
j ,

M
(1)
1 = Mα,β(2, l),

M
(1)
j+1 = Mα(j),β(j)(2, l),

while
β(i

(1)
1 ) ≤ 1→ K = 1,

β(i
(1)
1 ) ≥ 2→M (2) =

N2∑
j=1

M
(2)
j ,

where N2 = Mα∗(1)(1, β(i(1)) + 1), α∗(1) is the tail of α∗ starting from index iN1 ,M
(2)
1 = M

α
(1)
2 ,β

(1)
2

(2, l),M
(2)
j+1 =

M
α
(j)
2 ,β

(j)
2

(2, l), where α(1)
2 , β

(1)
2 are the tails of α, β starting from index M (1) and α(j)

2 , β
(j)
2 are the tails

of α, β, respectively, starting from index M (2)
j . If 2 ≤ k ≤ Λ− 1, then M (k+1) is defined through

M
(k)
j ’s, 1 ≤ j ≤ Nk, in a similar way.
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Proof. For simplicity we show here only the case l = 3. Applying DL∗(2, 2) on α, β using their initial
segment of length M (1)

1 = Mα,β(2, 2) we find a common good pair of indices (i1, j1) for them. Then
we apply DL∗(2, 2) on α(1), β(1), the tails of α, β starting from index M1, using the initial segment of
them of length M (1)

2 = Mα(1),β(1)(2, 2), and we find a common good pair of indices (i2, j2) for them.
We repeat this procedure enough number of times so that the sequences α∗(n) = α(in), β∗(n) = β(in)
reach a common good pair of indices (is, it) for them. Then (is, it, jt) is the required good triplet for
α, β. In order to find the pair (is, it) we need to repeat the initial procedure so many times so that
for the sequences α∗, β∗ we can find a common good pair of indices. It is clear that M,Λ and i(1) as
defined above for the case l = 3 determine the bound which corresponds to this proof.

The formulation of DL∗(3, 2) has a complexity similar to that of the formulation of DL∗(2, 3),
while its proof follows the pattern of the proof of DL∗(2, 2). If α, β, γ are given sequences, then
applying DL∗(2, 3) on α, β using their initial segment of length M1 = Mα,β(2, 3) we find indices
i
(1)
1 < i

(1)
2 < i

(1)
3 ≤ M1, such that both α and β weakly increase on them. If γ(i

(1)
1 ) ≤ 1, we are

done, while if not, we apply DL∗(2, µ + 1) on α(1), β(1), the tails of α, β starting from the index M1,
where µ = γ(i

(1)
1 ). Let i(2)1 be the first index of this application. If γ(i

(2)
1 ) ≤ µ− 1 we stop, while

if γ(i
(1)
1 ) ≥ µ we repeat the procedure. At any step, either we have found the required pair, or the

sequence γ(i
(1)
1 ) ≤ γ(i

(2)
1 ) ≤ . . . , is formed. Our algorithm of finding the required pair terminates

with bound M = Mα,β,γ(3, 2), where M is the bound within which sequences α(i
(1)
1 ), α(i

(2)
1 ), . . . , and

β(i
(1)
1 ), β(i

(2)
1 ), . . . , have a common good pair of indices. Consequently, this is a good pair for γ too.

To determine M we work in a completely similar way to the determination of Mα,β(2, 3).
If k > 3, the formulations of DL∗(k, 2), and of DL∗(k, l), for every l ≥ 3, are similar to the

formulations of DL∗(3, 2) and of DL∗(3, k), respectively. The general proofs

DL∗(k, 2)→ DL∗(k, l),

and
∀l≥2(DL∗(k, l))→ DL∗(k + 1, 2)

are similar to the proofs of Propositions 2.7 and the proof of DL∗(3, 2), respectively. Although we
avoid here the cumbersome details of the general case, we may conclude the following regarding our
proof of DL∗(k, l):

1. It is based on two simple repetitive arguments, a “horizontal” one, found in the proof of the
implication DL∗(k, l)→ DL∗(k, l + 1), and a “vertical” one, found in the proof of the implication
∀l≥2(DL∗(k, l))→ DL∗(k + 1, 2). Both arguments depend on the simplest case DL∗(1, 2), some-
thing which is not the case in other constructive proofs of the finite cases of Dickson’s lemma
(e.g., like the ones in [26], [3]).

2. It provides a method to extract a bound Mα1,...,αk
(k, l) for DL(k, l).

3. Our proof of ∀l≥2(DL∗(k, l)) → DL∗(k + 1, 2) is the constructive analogue of the constructively
non-accepted proof

DL(k,∞)→ DL(k + 1, l),

according to which one first applies the case DL(k,∞) on α1, . . . , αk to determine some I∞ ⊆ N,
which is good for α1, . . . , αk, and then applies DL(1, l) on the subsequence of αk+1 determined
by I∞. Here we replaced DL(k,∞) by ∀l≥2(DL∗(k, l)).

3 One-step unprovability results

The results included in this section are, as far as we know new, and they are motivated by our intuition
that it is not possible to prove DL(k + 1, 2) from a finite number of cases DL(k, l) i.e., from “less
information” than ∀l≥2(DL(k, l)). First we show that no single case DL(1, l) proves DL(2, 2) “directly
in one step”. We give a simple example to explain what we mean: if we define

(n1, n2) ≤ (m1,m2)) :↔ n1 ≤ m1 ∧ n2 ≤ m2,

8



for every n1, n2,m1,m2 ∈ N, then

@f∈F(N2,N)∀n1,n2,m1,m2∈N(f(n1, n2) ≤ f(m1,m2)→

(n1, n2) ≤ (m1,m2)),

since, if there was such a function f , then f(0, 1) > f(1, 0) > f(0, 1). From this we conclude that
DL(1, 2) doesn’t prove DL(2, 2) in one step, since if there was such a function f and α, β are given
sequences, by DL(1, 2) on (f(α(n), β(n)))n there are indices i < j such that

f(α(i), β(i)) ≤ f(α(j), β(j))

hence
(α(i), β(i)) ≤ (α(j), β(j)).

A positive version of the above negation is the following, constructively stronger, formula:

∀f∈F(N2,N)∃n1,n2,m1,m2∈N(f(n1, n2) ≤ f(m1,m2) ∧

(n1, n2) � (m1,m2)).

Next we prove constructively a strong form of this positive version, for arbitrary l > 1, concluding that
no single case DL(1, l) can prove DL(2, 2) in one step. In this way a “meta-mathematical” question
leads to a positive mathematical fact. First we show the following lemma.

Lemma 3.1. Let M ∈ N, l > 1 and α, β ∈ F(N,N).

∃n1<n2<...<nl
(α(n1) = . . . = α(nl) < M ∨

β(n1) = . . . = β(nl) < M) ∨

∃n,m∈N(M ≤ α(n) ≤ β(m) ∨ M ≤ β(n) ≤ α(m)).

Proof. The numberK = (l−1)M+1 is the bound on the length of a sequence colored with theM colors
of {0, . . . ,M−1} in order to have a monochromatic subsequence of length l (this simple case of the finite
pigeonhole principle has an immediate inductive proof within BISH). If all the first K-terms of α are
strictly smaller than M , or all the first K-terms of β are strictly smaller than M , then the conclusion
follows immediately. Suppose that not all the first K-terms of α and not all the first K-terms of β are
strictly smaller than M . The use of the principle of the excluded middle here is unproblematic as the
related property is decidable. Hence, there are n1,m1 < K such that α(n1), β(m1) ≥ M . We repeat
the previous step on the tails α(1), β(1) of α, β starting from α(K + 1), β(K + 1), respectively. Then
again either the firstK-terms of α(1) are strictly smaller thanM , or the firstK-terms of β(1) are strictly
smaller than M . If not there are numbers n2,m2 such that K < n2,m2 < 2K and α(n2), β(m2) ≥M .
We repeat this procedure at most Λ = (α(n1) + 1)-number of times. If the first disjunct has not been
proved, applying DL∗(1, 2) on the sequence

γ(0) = α(n1), γ(1) = β(m1),

γ(2) = α(n2), γ(3) = β(m2), . . . ,

we get an index i < Λ such that M ≤ α(ni) ≤ β(mi) ∨ M ≤ β(mi) ≤ α(ni+1).

It is clear that the proof also works ifM = 0, and that n1, n2, . . . , nl, n,m ≤ B = K(α(n1)+1) i.e.,
B is an extracted bound. If φ1, . . . , φn are formulas, then

∧n
i=1 φi (

∨n
i=1 φi) denotes the conjunction

(disjunction) of φ1, . . . , φn.

Theorem 3.2. If l > 1 and m ∈ N, then

∀f∈F(N2,N)∃i1,j1,...,il,jl∈N

(
l∧

s=1

(m ≤ is) ∧
l∧

s=1

(m ≤ js) ∧

9



l−1∧
r=1

[f(ir, jr) ≤ f(ir+1, jr+1)] ∧

∧
1≤r<s≤l

(ir, jr) � (is, js)

)
.

Proof. First we show this for the cases l = 2, 3 and then we prove that the case l − 2 implies the case
l, for every l > 3.

If l = 2, then fixing m and applying DL∗(1, 2) on the sequence

α(0) = f(m+ 1,m), α(1) = f(m,m+ 1),

α(2) = f(m+ 2,m), α(3) = f(m,m+ 2), . . . ,

i.e.,
α(2n) = f(m+ (n+ 1),m),

α(2n+ 1) = f(m,m+ (n+ 1)),

we get i < α(0) + 1 such that α(i) ≤ α(i+ 1). If i = 2k, for some k ∈ N, then

f(m+ k + 1,m) ≤ f(m,m+ k + 1),

and if i = 2k + 1, for some k ∈ N, then

f(m,m+ k + 1) ≤ f(m+ k + 2,m)

while
(m+ k + 1,m) � (m,m+ k + 1),

(m,m+ k + 1) � (m+ k + 2,m).

If l = 3, we apply Lemma 3.1 on
M = f(m+ 1,m+ 1),

l = 3,

α(n) = f(m,m+ n+ 1),

β(n) = f(m+ n+ 1,m).

If there are n1 < n2 < n3 such that f(m,m+ n3 + 1) = f(m,m+ n2 + 1) = f(m,m+ n1 + 1) < M ,
then

(m,m+ n3 + 1) � (m,m+ n2 + 1) ∧

(m,m+ n3 + 1) � (m,m+ n1 + 1) ∧

(m,m+ n2 + 1) � (m,m+ n1 + 1).

If there are n1 < n2 < n3 such that β(n3) = β(n2) = β(n1) < M , we work similarly. Next we suppose
that there exist indices i, j such that

f(m+ 1,m+ 1) ≤ f(m,m+ i+ 1) ≤ f(m+ j + 1,m).

Again we conclude that
(m+ 1,m+ 1) � (m,m+ i+ 1) ∧

(m+ 1,m+ 1) � (m+ j + 1,m) ∧

(m,m+ i+ 1) � (m+ j + 1,m).

If there exist indices i, j such that f(m + 1,m + 1) ≤ f(m + i + 1,m) ≤ f(m,m + j + 1), we work
similarly.
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For the inductive step we fix f and we suppose that there exist i1, j1, i2, j2, . . . , il−2, jl−2 such that

m+ 1 ≤ i1, j1, i2, j2, . . . , il−2, jl−2 ∧

l−3∧
r=1

[f(ir, jr) ≤ f(ir+1, jr+1)] ∧

∧
1≤r<s≤l−2

(ir, jr) � (is, js)).

Applying Lemma 3.1 on
M = f(il−2, jl−2),

l,

α(n) = f(m,m+ n+ 1),

β(n) = f(m+ n+ 1,m),

and working as in case l = 3, we reach the required conclusion for f . Note that if 1 ≤ r ≤ l − 2, then
(ir, jr) � (m,m+ i+ 1) and (ir, jr) � (m+ j + 1,m), since by our hypothesis m+ 1 ≤ ir, jr.

The next corollary is an immediate consequence of Theorem 3.2 (the conditionm ≤ i1, j1, i2, j2, . . . , il, jl
in Theorem 3.2, which shows that many such l-tuples of natural numbers can be found, is not necessary
to its proof).

Corollary 3.3. If l > 2, then

@f∈F(N2,N)∀i1,j1,...,il,jl∈N

(
l−1∧
r=1

[f(ir, jr) ≤ f(ir+1, jr+1)]→

∨
1≤r<s≤l

(ir, jr) ≤ (is, js)

)
.

Corollary 3.3 can be interpreted as the mathematical formulation of the expression “DL(1, l) doesn’t
prove DL(2, 2) in one step”. If there was such a function f , and α, β are given sequences, applying
DL(1, l) on the sequence(f(α(n), β(n)))n we would get indices i1 < . . . < il such that

f(α(i1), β(i1)) ≤ f(α(i2), β(i2)) ≤ . . . ≤ f(α(il), β(il)).

Then we would have ∨
1≤r<s≤l

(α(ir), β(ir)) ≤ (α(is), β(is)),

which by the constructive interpretation of disjunction implies DL(2, 2). The inequality (n1, n2, n3) ≤
(m1,m2,m3) on N3 is defined, as in the case of N2, pointwisely.

Theorem 3.4.

∀f1,f2∈F(N3,N)∃n1,n2,n3,m1,m2,m3∈N

(
f1(n1, n2, n3) ≤ f1(m1,m2,m3) ∧

f2(n1, n2, n3) ≤ f2(m1,m2,m3) ∧

(n1, n2, n3) � (m1,m2,m3)

)
.
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Proof. We suppose first that f1(1, 0, 0) = f2(1, 0, 0) = 0. Then f1(1, 0, 0) ≤ f1(0,m2,m3), f2(1, 0, 0) ≤
f2(0,m2,m3) and (1, 0, 0) � (0,m2,m3), for every m2,m3 ∈ N.

Next we suppose that f1(1, 0, 0) = 0 and f2(1, 0, 0) = l2 > 0. Clearly, if there are m2,m3 ∈ N
such that f2(0,m2,m3) ≥ l2, then (1, 0, 0) and (0,m2,m3) are the required triplets. Taking L = l2 + 1
and m > 0 and applying Theorem 3.2 on L,m and the function f(i, j) = f1(0, i, j) we find indices
i1, j1, . . . , iL, jL ≥ m such that

l2∧
r=1

[f1(0, ir, jr) ≤ f1(0, ir+1, jr+1)] ∧

∧
1≤r<s≤L

(ir, jr) � (is, js)).

Next we consider the sequence f2(0, i1, j1), . . . , f2(0, iL, jL). Either there is a term f2(0, it, jt), where
1 ≤ t ≤ L, such that f2(0, it, jt) ≥ l2, which gives directly what we want to show, or all these L terms
are numbers strictly smaller than l2. But then there are two of them which are equal i.e., there exist
r < s such that

f2(0, ir, jr) = f2(0, is, js).

Clearly (0, ir, jr) and (0, is, js) are the required triplets. Note that both of them are non-zero triplets,
since the indices determined by Theorem 3.2 were larger than m, and m > 0.

We call the previous two cases the basic proof-step, and the arguments used for them work for any
fixed non-zero triplet (k1, k2, k3) for which f1(k1, k2, k3) = f2(k1, k2, k3) = 0, or f1(k1, k2, k3) = 0 and
f2(k1, k2, k3) = l2 > 0. If, for example, k2 > 0, we consider the function f(n,m) = f1(n, 0,m).

Finally, we treat5 the case f1(1, 0, 0) = l1 > 0 and f2(1, 0, 0) = l2 > 0. Without loss of generality
we assume that l1 ≤ l2. We consider the functions

gi(k1, k2, k3) = fi(k1, k2, k3)−· l1,

where −· is the modified subtraction and i ∈ {1, 2}. Clearly, g1(1, 0, 0) = 0 and g2(1, 0, 0) = l2− l1 ≥ 0,
hence by the previous basic proof-step there exist

(n1, n2, n3), (m1,m2,m3) 6= (0, 0, 0)

such that
2∧
i=1

(fi(n1, n2, n3)−· l1) ≤ (fi(m1,m2,m3)−· l1) ∧

(n1, n2, n3) � (m1,m2,m3).

First we suppose that fi(n1, n2, n3) ≥ l1, for every i ∈ {1, 2}, and we consider the following cases:
If fi(n1, n2, n3) > l1, for every i ∈ {1, 2}, then we get fi(m1,m2,m3) > l1, and we conclude

2∧
i=1

(fi(n1, n2, n3) ≤ fi(m1,m2,m3)) ∧

(n1, n2, n3) � (m1,m2,m3).

If f1(n1, n2, n3) = l1 and f1(m1,m2,m3) < l1, then we repeat the previous basic proof-step starting
from the two values f2(m1,m2,m3) and f1(m1,m2,m3) < l1. If f1(n1, n2, n3) = l1 and f1(m1,m2,m3) ≥
l1, then if f2(n1, n2, n3) > l1, then (n1, n2, n3), (m1,m2,m3) is the required pair of triplets, while if
f2(n1, n2, n3) = l1, we consider two cases: If f2(m1,m2,m3) < l1, then we repeat the basic proof-step
starting from the inequality f1(m1,m2,m3) and f2(m1,m2,m3) < l1. If f2(m1,m2,m3) ≥ l1, then
(n1, n2, n3), (m1,m2,m3) is the required pair of triplets.

5Classically this case has a simpler proof. Given functions f1, f2 either one of them is 0 on some non-zero triplet,
or not. In the latter case let Λi = min{fi(n1, n2, n3 | (n1, n2, n3) 6= (0, 0, 0)} and Λ = min{Λ1,Λ2}. If we consider the
functions gi(n1, n2, n3) = fi(n1, n2, n3)− Λ, there is a triplet on which one of them takes the value 0.
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If f1(n1, n2, n3) < l1 or f2(n1, n2, n3) < l1, we repeat the basic proof-step starting from f1(n1, n2, n3)
and f2(n1, n2, n3).

In each case either we find the required pair of triplets, or we find a starting triplet on which f1 or
f2 has less value than at the starting triplet of the previous step. If we repeat the above steps at most
l1 number of times6, we reach a basic proof-step, where f1 or f2 has on some non-zero triplet the value
0.

Corollary 3.5.

@f1,f2∈F(N3,N)∀n1,n2,n3,m1,m2,m3∈N

(
f1(n1, n2, n3) ≤ f1(m1,m2,m3) ∧

f2(n1, n2, n3) ≤ f2(m1,m2,m3)→

(n1, n2, n3) ≤ (m1,m2,m3)

)
.

The above immediate consequence of Theorem 3.4 can be interpreted as a mathematical formulation
of the expression “DL(2, 2) doesn’t prove DL(3, 2) in one step”. If there were such functions f1, f2 and
α1, α2, α3 ∈ F(N3,N) are given, then applying DL(2, 2) on

(f1(β(n)))n, (f2(β(n)))n,

where, for each n ∈ N,
β(n) = (α1(n), α2(n), α3(n)),

we would get indices i < j such that

f1(α1(i), α2(i), α3(i)) ≤ f1(α1(j), α2(j), α3(j)) ∧

f2(α1(i), α2(i), α3(i)) ≤ f2(α1(j), α2(j), α3(j))

which would imply
(α1(i), α2(i), α3(i)) ≤ (α1(j), α2(j), α3(j)).

4 On the infinite cases of Dickson’s lemma

In this section we study the infinite cases of Dickson’s lemma from the point of view of constructive
reverse mathematics (for more information on this subject see [18]). First we show the equivalence
between the various infinite cases of Dickson’s lemma.

Proposition 4.1. If k > 1, the following are equivalent.
(i) DL(1,∞).
(ii) DL(k,∞).
(iii) DL(1, U).
(iv) DL(k, U).

Proof. (i)→ (ii) DL(1,∞) is the first step in the inductive proof of DL(k,∞). It is also used in the proof
of the inductive step DL(k,∞)↔ DL(k + 1,∞). If α1, α2, . . . , αk+1 ∈ F(N,N), by DL(k,∞), there is
a sequence i1 < i2 < i3 < . . ., such that αm(i1) ≤ αm(i2) ≤ αm(i3) ≤ . . ., for evey m ∈ {1, 2, . . . , k}.
If we apply DL(1,∞) on the sequence αm+1(i1), αm+1(i2), αm+1(i3), . . ., we get a weakly increasing
subsequence of it. By hypothesis, the sequences α1, α2, . . . , αk weakly increase on its indices too.
The implication (ii) → (i) is trivial.
Next we show that (i) → (iii). With the use of the principle of dependent choices DC a sequence
s0 < s1 < ... < sn < sn+1 < . . ., of elements of U is constructed. By DL(1,∞) on the sequence α∗,

6It is easy to extract a bound from this proof considering the bound of Theorem 3.2. Note also that the whole
argument can be rephrased as an inductive one over the minimum of the values of f1, f2 on a non-zero triplet.
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where α∗(n) = α(sn), for every n ∈ N, a subsequence (k(n))n∈N is formed on which α is good. But
then α is also good on M = {sk(n) : n ∈ N}, and M is an unbounded subset of N.
The equivalence (iii) ↔ (iv) is shown as the equivalence (i) ↔ (ii).
Finally we show that (iii)→ (i). If we take U = N, then by DL(1, U) there existsM unbounded subset
of N such that i < j → α(i) ≤ α(j), for every i, j ∈ M . With the use of DC a sequence m0 < m1 <
. . . < mn < mn+1 < . . . , is formed in M such that α(m0) ≤ α(m1) ≤ . . . ≤ α(mn) ≤ α(mn+1) ≤ . . .
.

In contrast to ∀l≥2(DL(1, l)), the infinite case DL(1,∞) is not constructively acceptable. In [26]
Veldman gave a Brouwerian counterexample to DL(1,∞). Here we show its constructive equivalence
to LPO, which is the following formula

∀α∈F(N,2)
(
∃n∈N(α(n) = 1) ∨ ∀n∈N(α(n) = 0)

)
.

LPO is only classically true and a taboo for all varieties of constructive mathematics. Next we show
that DL(1,∞) implies LPO.

Proposition 4.2. DL(1,∞)→ LPO.

Proof. We prove that if α ∈ F(N,2), then ∃n∈N(α(n) = 1) ∨ ∀n∈N(α(n) = 0), which is trivially
equivalent to the original formulation of LPO. Applying DL(1,∞) on α we get a sequence of indices
i1 < i2 < i3 < . . ., such that α(i1) ≤ α(i2) ≤ α(i3) ≤ . . . . Note that if α(i1) = 1, then α(in) = 1, for
each n ≥ 1. Through α we define a sequence β ∈ F(N,2) by

β(n) =

{
1 , if ∀m≤in(α(m) = 1)
0 , if ∃m≤in(α(m) = 0).

By DL(1,∞) on β, a sequence of indices j1 < j2 < j3 < . . . , is formed such that β(j1) ≤ β(j2) ≤
β(j3) ≤ . . . . If β(j1) = 0, then ∃m≤ij1 (α(m) = 0), and the conclusion of LPO is reached. If β(j1) = 1,
then again β(jm) = 1, for each m ∈ N. In that case we show that ∀n∈N(α(n) = 1). Consider a fixed
n ∈ N. Then we can find ik > n and jl > k. Since β(jl) = 1, ∀m≤ijl (α(m) = 1). But k < jl implies
that n < ik < ijl , therefore α(n) = 1.

In [21], p.148, Ratiu asked whether DL(k, U) implies LPO. By Propositions 4.1 and 4.2 we get an
affirmative answer to this.

Proposition 4.3. If P (n) is a decidable predicate on N, then LPO→ [∀n∈N(P (n)) ∨ ∃n∈N(¬P (n))].

Proof. If we define

α(n) =

{
1 , if ¬P (n)
0 , if P (n)

then LPO on α is exactly ∀n∈N(P (n)) ∨ ∃n∈N(¬P (n)).

Definition 4.4. If i ∈ N and α ∈ F(N,N), we call i a peak for α, Peakα(i), if and only if ∀n>i(α(i) >
α(n)).

Proposition 4.5. If α ∈ F(N,N), then

LPO→ ∀i∈N
(

Peakα(i) ∨ ∃n>i(α(i) ≤ α(n))

)
.

Proof. If N>i = {n ∈ N : n > i} and e : N → N>i is the bijection defined by e(n) = (n+ 1) + i, for
every n ∈ N, then for the decidable predicate

Pi(n)↔ α(e(n)) < α(i)↔ α((n+ 1) + i) < α(i),

Proposition 4.3 gives

∀n∈N(α((n+ 1) + i) < α(i)) ∨ ∃n∈N(α((n+ 1) + i) ≥ α(i)).

Therefore, either i is a peak for α, or there is an index after i of at least the same value as i under α,
which is exactly what we need to prove.
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Proposition 4.6. LPO→ DL(1,∞).

Proof. Through the previous decidability of Peakα(i) we define a sequence β ∈ F(N,2) by

β(n) =

{
0 , if ∃m>n(α(n) ≤ α(m))
1 , if Peakα(n)

By LPO, if ∀n∈N(β(n) = 0) ↔ ∀n∈N∃m>n(α(n) ≤ α(m)), then, since 0 is positively not a peak for
α, ∃n1>0(α(0) ≤ α(n1)). Similarly, ∃n2>n1(α(n1) ≤ α(n2)), and so on. By DC a sequence 0 = n0 <
n1 < n2 < . . ., is constructed such that α(n0) ≤ α(n1) ≤ α(n2) ≤ . . . . If ∃n∈N(β(n) = 1) ↔
∃n∈N(Peakα(n)), and if we consider the tail of α

α(n+ 1), α(n+ 2), α(n+ 3), . . . ,

then
α(j) ∈ {0, 1, . . . , α(n)− 1},

for every j ≥ n+ 1. Since this tail of α is a new sequence, then either it has positively no picks, and
the previous case is applied, or there is some index n+m+ 1 which is a peak for the sequence α(n+
1), α(n+2), α(n+3), . . . . Since α(n+m+ 1) ∈ {0, 1, . . . , α(n)− 1}, then α(j) ∈ {0, 1, . . . , α(n)− 2},
for every j > n+m+ 1. After at most α(n)-1 number of steps we will have found a tail of α with no
peaks. If we apply then the argument of the first case, we reach our conclusion.

In analogy to Proposition 2.5 we show that DL(1,∞) implies Stolzenberg’s principle PH(2,N,N).

Proposition 4.7. DL(1,∞)→ PH(2,N,N).

Proof. Suppose that α ∈ F(N,N) and that χ is a 2-coloring of {αn : n ∈ N}. By DL(1,∞) on
χ ◦ α : N → 2 there are indices i1 < i1 < i3 < . . ., such that χ(αi1) ≤ χ(αi2) ≤ χ(αi3) ≤ . . . . Since
DL(1,∞)→ LPO, either all terms of [χ(αin)]n are 0, or there is a term αin such that χ(αin) = 1. In
the first case (αin)n itself is monochromatic, while in the second the tail αn, αn+1, αn+2 . . ., of α is
monochromatic.

5 Concluding remarks

The extraction of a bound Mα1,...,αk
(l) from our proof of DL(k, l) resembles the extraction of a term

out of a proof in the field of program extraction. It is an example of term extracted in an informal
system of mathematics, like BISH.

The following open questions, or tasks need to be addressed in future work.

1. To study further these terms Mα1,...,αk
(l), since by Berger’s constructive proof in [2] of Higman’s

lemma for words of an alphabet with two letters by the finite cases of Dickson’s lemma, a bound
for this case of Higman’s lemma can be formulated.

2. Results like Proposition 2.3 have already been implemented in MINLOG. The implementation
forced the inductive formulation of appropriate lemmas that cover the repetitive arguments used
in the informal proofs. It will be interesting to codify formally the more complex repetitive
arguments found in the rest constructive proofs presented here.

3. To extend the tools found in the proofs of Theorems 3.2 and 3.4 in order to prove these results
in complete generality.

4. To extend our study of the finite and infinite cases of Dickson’s lemma to a similar study of the
finite and infinite cases of combinatorial theorems like Higman’s lemma, or Kruskal’s theorem.
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