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Abstract
According to the standard, non type-theoretic accounts of Bishop’s constructivism (BISH), de-
pendent functions are not necessary to BISH. Dependent functions though, are explicitly used
by Bishop in his definition of the intersection of a family of subsets, and they are necessary to
the definition of arbitrary products. In this paper we present the basic notions and principles
of CSFT, a semi-formal constructive theory of sets and functions intended to be a minimal, ad-
equate and faithful, in Feferman’s sense, semi-formalisation of Bishop’s set theory (BST). We
define the notions of dependent sum (or exterior union) and dependent product of set-indexed
families of sets within CSFT, and we prove the distributivity of

∏
over

∑
i.e., the translation

of the type-theoretic axiom of choice within CSFT. We also define the notions of dependent sum
(or interior union) and dependent product of set-indexed families of subsets within CSFT. For
these definitions we need to extend BST with two classes, the universe of sets V0 and the universe
of functions V1.
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Keywords and phrases Bishop’s constructive mathematics, Martin-Löf’s type theory, dependent
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1 Introduction

Bishop’s original approach to constructive mathematics, developed in his seminal book
Foundations of Constructive Analysis, was an important motivation to Martin-Löf’s type
theory (MLTT). Martin-Löf opened his first published paper on type theory ([22], p. 73) as
follows.

The theory of types with which we shall be concerned is intended to be a full scale
system for formalizing intuitionistic mathematics as developed, for example, in the
book of Bishop.

As Martin-Löf explains in [21], p. 13, he got access to Bishop’s book only shortly after his
own book on constructive mathematics [21] was finished. A surprising historical fact is that
the first who considered a type-theoretic system as a formal system for Bishop’s book [4] was
Bishop himself. In the unpublished manuscript [5] Bishop developed an extensional dependent
type theory with one universe as a formal system for his book. In the also unpublished
manuscript [6] Bishop elaborated the implementation of his type theory into Algol. A
similar pattern is followed in [7], where, influenced by Gödel’s Dialectica interpretation,
Bishop introduced Σ, a variant of HAω, as a formal system for his book, and discussed the
implementation of Σ into Algol (see [7], p. 70).

The question Q of finding a formal system suitable for Bishop’s system of informal
constructive mathematics BISH was a major question in the foundational studies of the
1970’s. Myhill’s system CST, introduced in [25], and later Aczel’s CZF (see [1]), Friedman’s
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system B, developed in [16], and Feferman’s system of explicit mathematics T0 (see [14]
and [15]), are some of the systems motivated by Q, but soon developed independently from
it. These systems were influenced a lot from the classical Zermelo-Fraenkel set theory, and
could be described as “top-down” approaches to Q, as they have many “unexpected” features
with respect to BISH1. Beeson’s systems S and S0 in [2], and Greenleaf’s system of liberal
constructive set theory LCST in [17] were dedicated to Q. Especially Beeson tried to find
a faithful and adequate formalisation of BISH, and by including a serious amount of proof
relevance to his systems stands in between the set-theoretic, proof-irrelevant point of view
and the type-theoretic, proof-relevant point of view.

All aforementioned systems though, were not really “tested” with respect to BISH. Only
very small parts of BISH were actually implemented in them, and their adequacy for BISH
was mainly a claim, rather than a shown fact. The implementation of Bishop’s constructivism
within a formal system for it was taken seriously in the type-theoretic formalisations of BISH,
and especially in the work of Coquand (see e.g., [10] and [12]), Palmgren (see e.g., [18] and
the collaborative work [11]), the Nuprl research group of Constable (see e.g., [33]), and the
Minimalist Foundation of Sambin and Maietti (see [35] and [20]).

Bishop’s (informal) set theory (BST), developed in Chapter 3 of [4] (or [8]), is reflected
in MLTT through the theory of setoids (see especially the work of Palmgren [26]-[29]). The
identity type of MLTT (see [23]) though, has no counterpart in BST, a fact with many
consequences, as e.g., the existence in MLTT of a free setoid from a given type (see [28], p.
90), a result crucial to the proof of the presentation axiom in MLTT (see [11], p. 75).

Currently, we revisit question Q, aiming at a minimal, adequate and faithful formalisation
of BST. For that we elaborate a semi-formal constructive set and function theory (CSFT),
as the first necessary step to an adequate and faithful, full formalisation of BST. Although a
universe of sets V0 and a universe of functions V1 are included in CSFT, and not explicitly
mentioned in BST, in section 5 we explain why these classes are implicit in BST.

The standard, non type-theoretic view regarding dependency within BST is that dependent
functions are not necessary. Dependent functions though, do appear explicitly in Bishop’s
definition of the intersection of

⋂
t∈T λ(t), where T is an inhabited set and λ is a family of

subsets of some set X indexed by T . In [4], p. 65, Bishop writes that

. . ., an element u of
⋂
t∈T λ(t) is a rule that associates an element at of λ(t) to each

element t of T , such that . . .,

a definition repeated in [8], p. 70. Dependent functions are also necessary to the definition
of products of families of sets indexed by an arbitrary set, and can be avoided, if one is
restricted to countable products only. Although Bishop himself considered e.g., only countable
products of metric spaces, the constructive development of general algebra (see [24]), or
general topology (see e.g., [30] and [31]), require the use of arbitrary products, hence the use
of dependent functions. As we noted above, Bishop also defined in [5] a notion of dependent
types within his type-theoretic system for BISH.

The somewhat “silent” existence of dependency in BISH is replaced by a central presence
in CSFT. This is necessary, if we want to make some very basic definitions in BISH precise
enough to be formalised.

1 Using Feferman’s terminology from [15], these formal systems are not, in our view, faithful to BISH,
as they contain concepts or axioms that do not appear, neither explicitly nor implicitly, in BISH.
Feferman also introduced the notion of an adequate formalisation T of a body of informal mathematics
M . Namely, T is adequate for M , if every concept, argument, and result of M is represented by a
concept, proof, and a theorem, respectively, of T (see also [2], p. 153).
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2 Basic notions of CSFT

In this section we present in an informal and brief manner those fundamentals of CSFT
required to the material presented in the following sections. A complete presentation is
planned to be included in [32].

The general logical framework of CSFT is that of an intuitioniostic first-order predicate
logic with definitional equality. The expression2 a := b is read as “a is by definition equal to
b”. Similarly, the expression P :⇔ Q is read as “P is by definition equivalent to Q”. The
basic primitives of CSFT are the set of natural numbers N, equipped with its basic equality
=N, operations and order, a primitive notion of n-tuple of given objects, for every natural n
larger than 2, an undefined notion of finite routine, or construction, or algorithm, and the
assignment routines pri(a1, . . . , an) := ai, for every i between 1 and n, and for every n larger
than 2, where an assignment routine is defined as a certain finite routine.

A defined totality X is defined by a membership conditionMX i.e., x ∈ X :⇔MX(x),
andMX(x) is the membership formula for X. If X,Y are defined totalities with membership
formulasMX andMY , respectively, we say that X and Y are definitionally equal, X := Y ,
if
[
MX(x) :⇔MY (x)

]
. A totality is either the primitive N or a defined totality. A totality

X is called inhabited, if there is x0 ∈ X. A defined totality with equality is a defined totality
X equipped with an equality condition EX i.e., x =X y :⇔ EX(x, y), where the equality
formula EX(x, y) satisfies the defining conditions of an equivalence relation. A defined set is
a defined totality with equality such that the membership formulaMX(x) for X represents
a construction, or a finite routine. A set is the primitive N or a defined set.

E.g., if X,Y are sets, their product X × Y is the defined totality with equality given by

z ∈ X × Y :⇔ ∃x∈X∃y∈Y
(
z := (x, y)

)
,

z =X×Y w :⇔ pr1(z) =X pr1(w) & pr2(z) =Y pr2(w).

For simplicity, we usually write an equality formula, as that forX×Y , as follows: (x, y) =X×Y
(x′, y′) :⇔ x =X x′ & y =Y y′. In contrast to MLTT, we allow the use of definitional equality
within membership formulas (only). Clearly, if X,Y are sets, then X × Y is also a set, since
the construction of an element of X × Y is reduced to the construction of an element of X
and of an element of Y .

If X,Y are totalities, an assignment routine f : X  Y from X to Y is a finite routine
assigning an element y of Y i.e.,MY (y)), to each given element x of X i.e.,MX(x). In this
case we write f(x) := y. E.g., the assignment routine prX from X × Y to X is defined by

prX(x, y) := pr1(x, y) := x,

for every (x, y) ∈ X × Y . If X,Y, Z are totalities, f : X  Y and g : Y  Z are assignment
routines, the composition assignment routine g◦f : X  Z is defined by (g◦f)(x) := g(f(x)),
for every x ∈ X. If f and g are assignment routines from X to Y , they are definitionally
equal, f := g, if ∀x∈X

(
f(x) := g(x)

)
. E.g., for the assignment routine idX : X  X, defined

by idX(x) := x, for every x ∈ X, we have that f ◦ idX := f . If X,Y are sets, we call an
assignment routine from X to Y an operation, while a function f : X → Y from a set X to a
set Y is an extensional operation from X to Y i.e., f(x) =Y f(x′), for every x, x′ ∈ X such
that x =X x′. A function f : X → Y is an embedding of X into Y , if x =X x′, whenever

2 Bishop’s notation for definitional equality is a ≡ b.
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f(x) =Y f(x′). We denote such an embedding by f : X ↪→ Y . If X,Y are sets, the defined
totality with equality F(X,Y ) of functions from X to Y , defined by

z ∈ F(X,Y ) :⇔ z := f : X → Y,

f =F(X,Y ) g :⇔ ∀x∈X
(
f(x) =Y f(y)

)
,

is a set, asMF(X,Y )(z) represents a construction. A subset of a set X is a couple (A, iA),
where A is a set and iA : A ↪→ X. The powerset of X is the defined totality P(X) of subsets
of X with equality defined by

(A, iA) =P(X) (B, iB) :⇔ ∃f :A→B∃g:B→A
(
iA ◦ g =F(B,X) iB & iB ◦ f =F(A,X) iA

)

A X

B.

B

iA

f
iB

iBg

If f and g realize the equality between (A, iA) and (B, iB) in P(X), we write (f, g) :
(A, iA) =P(X) (B, iB). For simplicity, we may write A =P(X) B instead of (A, iA) =P(X)
(B, iB). To construct an element of P(X) one needs to construct a set A and an embedding
from A to X. This membership condition does not express a construction that can be carried
out in a finite time, since there is no known finite algorithm to construct a set. A class is
a defined totality with equality C such that for the membership formula of C it cannot be
accepted constructively that it reflects a construction. Consequently, P(X) is a class. If P (x)
is an extensional property on X i.e., a formula satisfying ∀x,y∈X

(
x =X y & P (x)⇒ P (y)

)
,

the totality with equality XP is defined by

x ∈ XP :⇔ x ∈ X & P (x),

and x =XP
x′ :⇔ x =X x′. We may also use the notation {x ∈ X | P (x)} for XP . If X

is a set, then XP is a set, and the couple (XP , iXP
), where iXP

: XP ↪→ X is defined by
iXP

(x) := x, for every x ∈ XP , is in P(X). We call XP the extensional subset of X generated
by P (x). If X is a set, the diagonal of X is the set

D(X) := {(x, y) ∈ X ×X | x =X y}

i.e., the extensional subset of X ×X generated by P (x, y) :⇔ x =X y on X ×X. If (A, iA)
and (B, iB) are subsets of X, their intersection A ∩B is defined by

A ∩B := {(a, b) ∈ A×B | iA(a) =X iB(b)}.

Let i : A∩B  X the assignment routine defined by i(a, b) := iA(pr1(a, b)) := iA(a), for every
(a, b) ∈ A∩B. The equality on A∩B is defined by (a, b) =A∩B (a′, b′) :⇔ i(a, b) =X i(a′, b′).
It is immediate to show that =A∩B satisfies the conditions of an equivalence relation and
that A ∩B is a set. Moreover, the assignment routine i is an embedding of A ∩B into X,
hence the couple (A ∩ B, i) is a subset of X. The union A ∪ B of A and B is the totality
defined by z ∈ A ∪B :⇔ z ∈ A or z ∈ B. If j : A ∪B  X is defined by

j(z) :=
{
iA(z) , z ∈ A
iB(z) , z ∈ B,
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for every z ∈ A ∪ B, we define z =A∪B w :⇔ j(z) =X j(w). It is immediate to show that
=A∪B satisfies the conditions of an equivalence relation and that A ∪B is a set. Moreover,
the assignment routine j is an embedding of A ∪B into X, hence the couple (A ∩B, j) is a
subset of X.

The universe of sets V0 is the defined totality with equality defined by

X ∈ V0 :⇔ X is a set,

X =V0 Y :⇔ ∃f :X→Y ∃g:Y→X
(
g ◦ f =idX

& f ◦ g = idY
)

Y X

Y .

X

g

idY
f

idX
f

If the functions f, g realize the equality between X and Y in V0, we write (f, g) : X =V0 Y.

It is easy to show that X =V0 Y satisfies the conditions of an equivalence relation3. The
defined totality with equality V0 is a class, since its membership condition does not reflect a
construction. It is also easy to see that if (f, g) : (A, iA) =P(X) (B, iB), then (f, g) : A =V0 B.
Since sets and functions in BST are objects that are not reduced to one another, the next
defined totality complements naturally the universe of sets V0 and it is proven instrumental
to the formulation of dependency within CSFT. The universe of functions V1 is the defined
totality with equality defined by

z ∈ V1 :⇔ ∃X,Y ∈V0∃f∈F(X,Y )
(
z := (X,Y, f)

)
,

(X,Y, f) =V1 (Z,W, g) :⇔ ∃eXZ∈F(X,Z)∃eZX∈F(Z,X)∃eY W∈F(Y,W )∃eW Y ∈F(W,Y )(
(eXZ , eZX) : X =V0 Z, & (eYW , eWY ) : Y =V0 W & eYW ◦ f = g ◦ eXZ

)

Z W.

YX

g

f

eXZ eYW

If the functions eXZ , eZX , eYW and eWY realize the equality between (X,Y, f) and (Z,W, g)
in V1 we write (eXZ , eZX , eYW , eWY ) : (X,Y, f) =V1 (Z,W, g). Clearly, V1 is a class.
It is straightforward to show that (X,Y, f) =V1 (Z,W, g) satisfies the conditions of an
equivalence relation. It is also easy to see that if (f, g) : (A, iA) =P(X) (B, iB), then
(f, g, idX , idX) : (A,X, iA) =V1 (B,X, iB).

3 The defined equality on the universe V0 expresses that V0 is univalent, as isomorphic sets are equal in
V0. In univalent type theory, which is MLTT extended with Voevodsky’s axiom of univalence (see [36]),
the existence of a pair of quasi-inverses between types A and B implies that they are equivalent in
Voevodsky’s sense, and by the univalence axiom, also propositionally equal. The univalence of V0 in
CSFT is not a surprise. Already in BST the type-theoretic axiom of function extensionality is just the
defined equality on the function space.
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3 Exterior union and dependent products in CSFT

The concept of a family of sets indexed by a (discrete) set was asked to be defined in [4]
(Exercise 2, p. 72), and the required definition, attributed to Richman, is included in [8],
(Exercise 2, p. 78), where the discreteness-hypothesis is omitted. The definition has a strong
type-theoretic flavor, although Richman’s motivation was categorical 4. The concept of a
(discrete) set-indexed family of sets is tacitly used in [4] in the definition of a countable
product of metric spaces (see also the related comment in [8], p. 125.). We reformulate
Richman’s definition using the universes V0, V1 and the notion of assignment routine.

I Definition 1. Let I be a set and D(I) its diagonal. A family of sets indexed by I, or
an I-family of sets, is a couple Λ := (λ0, λ1), where λ0 : I  V0 and λ1 : D(I)  V1 are
assignment routines such that for every (i, j) ∈ D(I)

λ1(i, j) := (λ0(i), λ0(j), λij)

such that for every i ∈ I we have that λii := idλ0(i), and for every i, j, k ∈ I, satisfying i =I j

and j =I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λjk

λij λik

We call I the index set of the family Λ, the function λij the transport function5 from λ0(i)
to λ0(j), and the assignment routine λ1 the modulus of function-likeness of λ0. If Y is a set
and λ0(i) := Y , for every i ∈ I, and λ1(i, j) := (Y, Y, idY ), for every (i, j) ∈ D(I), we call Λ
the constant I-family Y .

Next why see why we used the term modulus of function-likeness for the routine λ1.

I Remark. If Λ = (λ0, λ1) is an I-family of sets and i =I j, then (λij , λji) : λ0(i) =V0 λ0(j).

Proof. By Definition 1 we have that λii = λji ◦ λij and λjj = λij ◦ λji. J

I Definition 2. Let Λ2 := (λ2
0, λ

2
1), where λ2

0 : 2  V0 with λ2
0(0) := X and λ2

0(1) := Y ,
and λ2

1 : {(0, 0), (1, 1)} V1 is defined by λ2
1(0, 0) := (X,X, idX) and λ2

1(1, 1) := (Y, Y, idY ).
We call Λ2 the 2-family of X and Y . The n-family of the sets X1, . . . Xn, for every n ≥ 1,
is defined similarly. Let ΛN := (λN

0 , λ
N
1 ), where λN

0 : N  V0 with λN
0 (n) := Xn, and

λN
1 : {(n, n) | n ∈ N}  V0 is defined by λN

1 (n, n) := (Xn, Xn, idXn
), for every n ∈ N. We

call ΛN the N-family of (Xn)n.

Following Beeson’s notation in [3], p. 44, we use the type-theoretic notation of
∑

-types
for the exterior union of a set-indexed family of sets.

4 In a personal communication Richman referred to the definition of a set-indexed family of objects of a
category, given in [24], p.18, as the source of the definition attributed to him in [8], p. 78.

5 We draw this term from MLTT.
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I Definition 3. Let Λ := (λ0, λ1) be an I-family of sets. The exterior union, or disjoint
union,

∑
i∈I λ0(i) of Λ is defined by

w ∈
∑
i∈I

λ0(i) :⇔ ∃i∈I∃x∈λ0(i)
(
w := (i, x)

)
.

(i, x) =∑
i∈I

λ0(i) (j, y) :⇔ i =I j & λij(x) =λ0(j) y.

I Remark. The equality on
∑
i∈I λ0(i) satisfies the conditions of an equivalence relation,

and
∑
i∈I λ0(i) is a set.

Proof. Let (i, x), (j, y) and (k, z) ∈
∑
i∈I λ0(i). Since i =I i and λii := idλ0(i), we get

(i, x) =∑
i∈I

λ0(i) (i, x). If (i, x) =∑
i∈I

λ0(i) (j, y), then j =I i and λji(y) = λji(λij(x)) =
λii(x) := idλ0(i)(x) := x, hence (j, y) =∑

i∈I
λ0(i) (i, x). If (i, x) =∑

i∈I
λ0(i) (j, y) and

(j, y) =∑
i∈I

λ0(i) (k, z), then from the hypotheses i =I j and j =I k, we get i =I k, and
λik(x) = (λjk ◦ λij)(x) := λjk(λij(x)) = λjk(y) = z. Clearly, the membership condition of∑
i∈I λ0(i) reflects a construction. J

I Definition 4. Let Λ := (λ0, λ1) be an I-family of sets. The first projection on
∑
i∈I λ0(i)

is the assignment routine pr1(Λ) :
∑
i∈I λ0(i) I, defined by, for every (i, x) ∈

∑
i∈I λ0(i),

pr1(Λ)(i, x) := pr1(i, x) := i.

We may only write pr1, when the family of sets Λ is clearly understood from the context.

By the definition of equality on
∑
i∈I λ0(i) we get immediately that pr1 :

∑
i∈I λ0(i)→ I.

At the moment, for the second projection rule pr2(i, x) := x, for every (i, x) ∈
∑
i∈I λ0(i),

we do not have a way to describe its codomain. If ΛN is the N-family of (Xn)n (Definition 2),
its exterior union is by definition∑

n∈N

Xn =: {(n, x) | n ∈ N & x ∈ Xn},

(n, x) =∑
n∈N

Xn
(m, y) :⇔ n =N m & x =Xn

y.

Traditionally, the countable product of this sequence of sets is defined by∏
n∈N

Xn :=
{
φ : N→

∑
n∈N

Xn | ∀n∈N

(
φ(n) ∈ Xn

)}
,

which is a rough writing of the following∏
n∈N

Xn :=
{
φ : N→

∑
n∈N

Xn | ∀n∈N

(
pr1(φ(n)) =N n

)}
.

In the second writing the condition pr1(φ(n)) =N n implies that pr1(φ(n)) := n, hence, if
φ(n) := (m, y), then m := n and y ∈ Xn. When the equality of I though, is not like that of
N, we cannot solve this problem in a satisfying way. One could define

φ ∈
∏
i∈I

λ0(i) :⇔ φ ∈ F

(
I,
∑
i∈I

λ0(i)
)

& ∀i∈I
(
pr1(φ(i)) := i

)
.

This approach has the problem that the property

Q(φ) :⇔ ∀i∈I
(
pr1(φ(i)) := i

)
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is not necessarily extensional; let φ =
F
(
I,
∑

i∈I
λ0(i)

) θ i.e., ∀i∈I
(
φ(i) =∑

i∈I
λ0(i) θ(i)

)
, and

suppose that Q(φ). If we fix some i ∈ I, and φ(i) := (i, x) and θ(i) := (j, y), we only get
that j =I i. The universe of functions V1 allows us to take a different approach to the
definition of an arbitrary product, which, in our view, reflects accurately Bishop’s formulation
of dependent functions in [4], p. 65.

I Definition 5. Let Λ := (λ0, λ1) be an I-family of sets, and let 1 := {x ∈ N | x =N 0} =: {0}.
A dependent function over Λ is an assignment routine Φ : I  V1, where, for every i ∈ I,

Φ(i) := (1, λ0(i), φi)

such that, for every (i, j) ∈ D(I), the following diagram commutes

1 λ0(i)

1 λ0(j)

id1

φi

φj

λij

Since φi : 1 → λ0(i), the triple Φ(i) determines the element φi(0) ∈ λ0(i). If i =I j,
the commutativity of the above diagram gives that φj(0) =λ0(j) λij(φi(0)). A dependent
function Φ is a function-like object i.e., i =I j ⇒ Φ(i) =V1 Φ(j), since (id1, id1, λij , λji) :
(1, λ0(i), φi) =V1 (1, λ0(j), φj). Since id1 is the only function from 1 to 1, from now on we
avoid mentioning it in commutative diagrams.

I Definition 6. Let Λ := (λ0, λ1) be an I-family of sets. The I-product of the family Λ is
the totality

∏
i∈I λ0(i) of dependent functions over Λ equipped with the equality

Φ =∏
i∈I

λ0(i) Θ :⇔ ∀i∈I
(
φi(0) =λ0(i) θi(0)

)

1 λ0(i)

1 λ0(i)

φi

θi

λii

If Y is a set and Λ is the constant I-family Y , we use the notation Y I :=
∏
i∈I Y.

Clearly, the equality on
∏
i∈I λ0(i) satisfies the conditions of an equivalence relation, and∏

i∈I λ0(i) is a set. As expected, the dependent product generalises the cartesian product.

I Proposition 7. If Λ2 is the 2-family of the sets X and Y , then∏
i∈2

λ2
0(i) =V0 X × Y.

Proof. If Φ ∈
∏
i∈I λ

2
0(i), then Φ : 2 V1, where Φ(0) := (1, X, φ0) with φ0 : 1→ X, and

Φ(1) := (1, X, φ1) with φ1 : 1→ Y , such that the following diagrams commute
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1 X

X1 1 Y

1 Y .
φ0

φ0

idX

φ1

φ1

idY

Since this is always the case, φ0, φ1 are arbitrary. If Φ,Θ ∈
∏
i∈I λ

2
0(i), then Φ =∏

i∈I
λ2

0(i) Θ,
if the following diagrams commute

1 X

X1 1 Y

1 Y
θ0

φ0

idX

θ1

φ1

idY

i.e., if θ0(0) =X φ0(0) and θ1(0) =Y φ1(0). If we define f :
∏
i∈I λ

2
0(i) → X × Y by

f(Φ) := (φ0(0), φ1(0)), and g : X × Y →
∏
i∈I λ

2
0 by g(x, y) := Φx,y with φ0(0) := x and

φ1(0) := y, it is immediate to show that (f, g) :
∏
i∈I λ

2
0(i) =V0 X × Y. J

If ΛN := (λN
0 , λ

N
1 ) is the N-family of (Xn)n, and if Φ ∈

∏
n∈N Xn, then, for every n ∈ N,

we have that Φ(n) := (1, Xn, φn) and the required diagram is commutative. If (Xn, ρn) is
a metric space, for every n ∈ N, Bishop’s definition in [4], p. 79, of the countable product
metric on

∏
n∈N Xn takes the form

ρ(Φ,Θ) :=
∞∑
n=1

ρn
(
φn(0), θn(0)

)
2n .

I Proposition 8. If Λ := (λ0, λ1) is the constant I-family Y , then Y I =V0 F(I, Y ).

Proof. Let the assignment routine e : Y I  F(I, Y ) be defined by Φ 7→ e(Φ), and e(Φ)(i) :=
φi(0), where Φ(i) := (1, λ0(i), φi), for every i ∈ I. This routine is well-defined, since,
if i =I j, and using the equality λij(φi(0)) =λ0(j) φj(0), we get e(Φ)(i) := φi(0) =λ0(j)
φj(0) := e(Φ)(j), hence e(Φ) is in F(I, Y ). The assignment routine e is also a function i..e,
Φ =Y I Θ ⇒ e(Φ) =F(I,Y ) e(Θ), since for every i ∈ I, we have that e(Φ)(i) := φi(0) =λ0(i)
θi(0) := e(Θ)(i). Let the assignment routine e′ : F(I, Y ) Y I be defined by f 7→ e′(f), and
e′(f)(i) := (1, Y, fi), where fi : 1→ Y is defined by fi(0) := f(i). The assignment routine e′ is
a function i.e., f =F(I,Y ) g ⇒ e′(f) =Y I e′(g), by the equalities fi(0) := f(i) =Y g(i) := gi(0)
and the resulting commutativity of the following diagram

1 Y

1 Y

gi

fi

idY

for every i ∈ I. Since e′(f)(i) := (1, Y, fi), we get e(e′(f))(i) := fi(0) := f(i), hence e◦e′ := f .
Since e′(e(Φ))(i) := (1, Y, e(Φ)i), where e(Φ)i : 1→ Y is defined by e(Φ)i(0) := e(Φ)(i) :=
φi(0), we get e(Φ)i := φi, and since Φ(i) := (1, Y, φi), for every i ∈ I, we conclude that
e′(e(Φ)) := Φ. Consequently, (e, e′) : Y I =V0 F(I, Y ). J
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I Definition 9. Let Λ := (λ0, λ1) be an I-family of sets. The
∑
i∈I λ0(i)-family MΛ :=

(µ0, µ1) of sets is defined by
µ0(i, x) := λ0(i),

µ1
(
(i, x), (j, y)

)
:=
(
µ0(i, x), µ0(j, y), µ(i,x)(j,y)

)
:= (λ0(i), λ0(j), λij),

for every (i, x) ∈
∑
i∈I λ0(i) and

(
(i, x), (j, y)

)
in the diagonal of

∑
i∈I λ0(i). The second

projection on
∑
i∈I λ0(i) is the assignment routine pr2(Λ) :

∑
i∈I λ0(i)  V1, defined, for

every (i, x) ∈
∑
i∈I λ0(i), by

pr2(Λ)(i, x) := (1, λ0(i), φ(i,x)),

where φ(i,x) : 1→ λ0(i) is defined by φ(i,x)(0) := x. We may only write pr1, when the family
of sets Λ is clearly understood from the context.

I Proposition 10. If Λ and MΛ are as in Definition 9, then

pr2(Λ) ∈
∏

w∈
∑

i∈I
λ0(i)

µ0(w) :=
∏

w∈
∑

i∈I
λ0(i)

λ0(pr1(w)).

Proof. It suffices to show that if (i, x) =∑
i∈I

λ0(i) (j, y), the following diagram commutes

1 λ0(i)

1 λ0(j)

φ(i,x)

φ(j,y)

λij

By the related definitions we get λij(φ(i,x)(0)) := λij(x) =λ0(j) y := φ(j,y)(0). J

3.1 The distributivity of ∏ over ∑
Next we prove the translation of the type-theoretic axiom of choice within CSFT (Theorem 16),
or, as it was suggested to us by M. Maietti, the distributivity of

∏
over

∑6. For the proof
of Theorem 16 we need some preparation.

I Definition 11. Let X,Y be sets, and R := (ρ0, ρ1) a family of sets indexed by X × Y . If
x ∈ X let Λx := (λx0 , λx1), where λx0 : Y  V0 and λx1 : D(Y ) V1 are defined by

λx0(y) := ρ0(x, y),

λx1(y, y′) :=
(
λx0(y), λx0(y′), λxyy′

)
:=
(
ρ0(x, y), ρ0(x, y′), ρ(x,y)(x,y′)

)
,

for every y ∈ Y and every (y, y′) ∈ D(Y ), respectively. Let also M := (µ0, µ1), where
µ0 : X  V0 and µ1 : D(X) V1 are defined by

µ0(x) :=
∑
y∈Y

ρ0(x, y),

6 We would like to E. Palmgren for pointing to us that such a distributivity holds in every locally cartesian
closed category. In [37] it is mentioned that this fact is generally attributed to Martin-Löf and his
work [23]. It is easy to show that sets in CSFT form a cartesian closed category already, but we include
the proof of the type-theoretic axiom of choice in CSFT in order to be self-contained.
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µ1(x, x′) :=
(
µ0(x), µ0(x′), µxx′

)
:=
(∑
y∈Y

ρ0(x, y),
∑
y∈Y

ρ0(x′, y), µxx′

)
,

for every x ∈ X and every (x, x′) ∈ D(X), respectively, where, for every (y, u) ∈
∑
y∈Y ρ0(x, y),

µxx′ :
∑
y∈Y

ρ0(x, y)→
∑
y∈Y

ρ0(x′, y)

µxx′(y, u) :=
(
y, ρ(x,y)(x′,y)(u)

)
.

I Lemma 12. The couples Λx := (λx0 , λx1) and M := (µ0, µ1) in Definition 11 are families
of sets indexed by Y and X, respectively.

Proof. Since by hypothesis R is an X × Y -family of sets, we get

λx1(y, y) :=
(
ρ0(x, y), ρ0(x, y), ρ(x,y)(x,y)

)
:=
(
ρ0(x, y), ρ0(x, y), idρ0(x,y)

)
,

and the commutativity of the left diagram

λx0(y′) λx0(y′′)

λx0(y) ρ0(x, y)

ρ0(x, y′) ρ0(x, y′′)
λxy′y′′

λxyy′ λxyy′′ ρ(x,y)(x,y′) ρ(x,y)(x,y′′)

ρ(x,y′)(x,y′′)

is by definition the known commutativity of the right diagram. Similarly,

µ1(x, x) :=
(
µ0(x), µ0(x), µxx

)
:=
(∑
y∈Y

ρ0(x, y),
∑
y∈Y

ρ0(x, y), µxx
)
,

where µxx :
∑
y∈Y ρ0(x, y)→

∑
y∈Y ρ0(x, y) is defined by

µxx(y, u) :=
(
y, ρ(x,y)(x,y)(u)

)
:=
(
y, idρ0(x,y)(u)

)
:= (y, u),

for every (y, u) ∈
∑
y∈Y ρ0(x, y). For the commutativity of the left diagram

µ0(x′) µ0(x′′)

µ0(x) ρ0(x, y)

ρ0(x′, y) ρ0(x′′, y)
µx′x′′

µxx′ µxx′′ ρ(x,y)(x′,y) ρ(x,y)(x′′,y)

ρ(x′,y)(x′′,y)

we use the known commutativity of the right diagram, since

µx′x′′
(
µxx′(y, u)

)
:= µx′x′′

(
y, ρ(x,y)(x′,y)(u))

)
:=
(
y, ρ(x′,y)(x′′,y)(ρ(x,y)(x′,y)(u))

)
:=
(
y, ρ(x,y)(x′′,y)(u)

)
:= µxx′′(y, u),

for every (y, u) ∈
∑
y∈Y ρ(x, y). J

I Lemma 13. Let R := (ρ0, ρ1), Λx := (λx0 , λx1) and M := (µ0, µ1) be the families of sets of
Definition 11. If Φ ∈

∏
x∈X µ0(x), then Φ generates a function fΦ : X → Y .
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Proof. By definition, Φ : X  V1, where, for every x ∈ X,

Φ(x) := (1, µ0(x), φx) :=
(
1,
∑
y∈Y

ρ0(x, y), φx
)
,

where φx : 1 →
∑
y∈Y ρ0(x, y). We define the assignment routine fΦ : X  Y by the rule

fΦ(x) := pr1(φx(0)), for every x ∈ X. Next we show that the routine fΦ is a function. Let
x =X x′. By the commutativity of the following diagram

1 µ0(x)

1 µ0(x′)

φx

φx′

µxx′

we have that, if φx(0) := (y, u), for some y ∈ Y and u ∈ ρ0(x, y), then

µxx′(φx(0)) := µxx′(y, u) :=
(
y, ρ(x,y)(x′,y)(u)

)
=∑

y∈Y
ρ0(x′,y) φx′(0),

hence, since pr1 is a function, we get

f(x′) := pr1(φx′(0)) =Y pr1
(
y, ρ(x,y)(x′,y)(u)

)
:= y := pr1(φx(0)) := f(x).

J

I Lemma 14. Let R := (ρ0, ρ1), Λx := (λx0 , λx1) and M := (µ0, µ1) be the families of sets of
Definition 11. If f : X → Y , let Nf := (νf0 , ν

f
1 ), where νf0 : X  V0 and νf1 : D(X)  V1

are defined by
νf0 (x) := ρ0(x, f(x)),

νf1 (x, x′) :=
(
νf0 (x), νf0 (x′), νfxx′

)
:=
(
ρ0(x, f(x)), ρ0(x′, f(x′)), ρ(x,f(x))(x′,f(x′)

)
,

for every x ∈ X and every (x, x′) ∈ D(X), respectively, then Nf is an X-family of sets.

Proof. Since by hypothesis R is an X × Y -family of sets, we get

νf1 (x, x) :=
(
ρ0(x, f(x)), ρ0(x, f(x)), ρ(x,f(x))(x,f(x))

)
:=
(
ρ0(x, f(x)), ρ0(x, f(x)), idρ0(x,f(x))

)
.

Since by Lemma 13 fΦ is a function, the commutativity of the left diagram

νf0 (x′) νf0 (x′′)

νf0 (x) ρ0(x, f(x))

ρ0(x′, f(x′)) ρ0(x′′, f(x′′))
νfx′x′′

νfxx′ νfxx′′
ρ(x,f(x))(x′,f(x′)) ρ(x,f(x))(x′′,f(x′′))

ρ(x′,f(x′))(x′′,f(x′′))

is by definition the known commutativity of the right diagram. J

I Lemma 15. Let R := (ρ0, ρ1) be the family of sets in Definition 11, and Nf := (νf0 , ν
f
1 )

the family of sets defined in Lemma 14. If Ξ := (ξ0, ξ1), where ξ0 : F(X,Y )  V0 and
ξ1 : D(F(X,Y )) V1 are defined by

ξ0(f) :=
∏
x∈X

νf0 (x) :=
∏
x∈X

ρ0(x, f(x))
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ξ1(f, f ′) :=
(
ξ0(f), ξ0(f ′), ξff ′

)
,

where
ξff ′ :

∏
x∈X

ρ0(x, f(x))→
∏
x∈X

ρ0(x, f ′(x))

is defined by
ξff ′(H)(x) :=

(
1, ρ0(x, f ′(x)), h′x

)
,

h′x(0) := ρ(x,f(x))(x,f ′(x))
(
hx(0)

)
,

and
H(x) :=

(
1, νf0 (x), hx

)
:=
(
1, ρ0(x, f(x)), hx

)
for every H ∈

∏
x∈X ρ0(x, f(x)) and x ∈ X, then Ξ is a family of sets indexed by F(X,Y ).

Proof. First we show that if f =F(X,Y ) f
′, then ξff ′(H) ∈

∏
x∈X ρ0(x, f ′(x)) :=

∏
x∈X ν

f ′

0 (x),
by showing that if x =X x′, then the commutativity of the left diagram

1 ρ0(x, f(x)) 1 ρ0(x, f ′(x))

1 ρ0(x′, f(x′)) 1 ρ0(x′, f ′(x′))

hx

hx′

νfxx′

h′x

h′x′

νf
′

xx′

implies the commutativity of the right one. By definition we have that

νf
′

xx′

(
h′x(0)

)
:= νf

′

xx′

(
ρ(x,f(x))(x,f ′(x))

(
hx(0)

))
:= ρ(x,f ′(x))(x′,f ′(x′))

(
ρ(x,f(x))(x,f ′(x))

(
hx(0)

))
=ρ0(x′,f ′(x′)) ρ(x,f(x)(x′,f ′(x′))

(
hx(0)

)
.

since the couples (x, f(x)), (x, f ′(x)) and (x′, f ′(x′)) are equal in X × Y , by the hypotheses
x =X x′ and f =F(X,Y ) f

′. Moreover, by the commutativity of the left diagram above we get

hx′(0) =ρ0(x′,f(x′)) νfxx′

(
hx(0)

)
=ρ0(x′,f(x′)) ρ(x,f(x))(x′,f(x′))

(
hx(0)

)
,

hence,

h′x′(0) := ρ(x′,f(x′)(x′,f ′(x′)
(
hx′(0)

)
=ρ0(x′,f(x′)) ρ(x′,f(x′)(x′,f ′(x′)

(
ρ(x,f(x))(x′,f(x′))

(
hx(0)

))
=ρ0(x′,f(x′)) ρ(x,f(x)(x′,f ′(x′))

(
hx(0)

)
,

and consequently, νf
′

xx′

(
h′x(0)

)
=ρ0(x′,f(x′)) h′x′(0). Next we show that ξ1 satisfies the

properties of Definition 1. By definition ξff (H)(x) :=
(
1, ρ0(x, f(x)), h′x

)
, where

h′x(0) := ρ(x,f(x))(x,f(x))
(
hx(0)

)
:= idρ0(x,f(x))

(
hx(0)

)
:= hx(0),

hence ξff (H) := H, and since H is arbitrary, we get ξff := idξ0(f). Finally, if f =F(X,Y )
f ′ =F(X,Y ) f

′′, we show the commutativity of the following diagram
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ξ0(f ′) ξ0(f ′′).

ξ0(f)

ξf ′f ′′

ξff ′ ξff ′′

If H ∈ ξ0(f), we show ξff ′′(H) =ξ0(f ′′) ξf ′f ′′(ξff ′(H)) i.e.,

ξff ′′(H) =∏
x∈X

ρ0(x,f ′′(x)) ξf ′f ′′(ξff ′(H)).

By definition we have that [ξf ′f ′′(ξff ′(H))](x) := (1, ρ0(x, f ′′(x)), h′′x), where

h′′x(0) := ρ(x,f ′(x))(x,f ′′(x))
(
h′x(0)

)
.

Since ξff ′(H)(x) := (1, ρ0(x, f ′(x)), h′x), where h′x(0) := ρ(x,f(x))(x,f ′(x))
(
hx(0)

)
, we get

h′′x(0) := ρ(x,f ′(x))(x,f ′′(x))

(
ρ(x,f(x))(x,f ′(x))

(
hx(0)

))
= ρ(x,f(x))(x,f ′′(x))

(
hx(0)

)
:= τx(0),

where ξff ′′(H)(x) := (1, ρ0(x, f ′′(x)), τx), with τx(0) := ρ(x,f(x))(x,f ′′(x))
(
hx(0)

)
, and since

x ∈ X is arbitrary, the required commutativity is shown. J

I Theorem 16 (Distributivity of
∏

over
∑

). Let X,Y be sets, and R := (ρ0, ρ1), Λx :=
(λx0 , λx1), M := (µ0, µ1) the families of sets of Definition 11. If

Φ ∈
∏
x∈X

µ0(x) :=
∏
x∈X

∑
y∈Y

ρ0(x, y),

there is ΘΦ ∈
∏
x∈X ν

fΦ
0 (x), where fΦ : X → Y is defined in Lemma 13, and(

fΦ,ΘΦ
)
∈

∑
f∈F(X,Y )

∏
x∈X

νf0 (x) :=
∑

f∈F(X,Y )

∏
x∈X

ρ0(x, f(x)).

Moreover, the assignment routine

ac :
∏
x∈X

∑
y∈Y

ρ0(x, y)  
∑

f∈F(X,Y )

∏
x∈X

ρ0(x, f(x))

ac(Φ) :=
(
fΦ,ΘΦ

)
is a function.

Proof. By Proposition 10 we have that

pr2(Λx) ∈
∏

w∈
∑

y∈Y
λx

0 (y)

λx0(pr1(w)) :=
∏

w∈
∑

y∈Y
ρ0(x,y)

ρ0(x, pr1(w)),

where, if (y, u) ∈
∑
y∈Y ρ0(x, y), then pr2(Λx)(y, u) :=

(
1, ρ0(x, y), σ(y,u)

)
, and σ(y,u) : 1→

ρ0(x, y) is defined by σ(y,u)(0) := u. We define the assignment routine ΘΦ : X  V1 by

ΘΦ(x) :=
(
1, νfΦ

0 (x), θx
)

:=
(
1, ρ0(x, fΦ(x)), θx

)
,

where θx : 1 → ρ0(x, fΦ(x)) is defined by θx(0) := σ(y,u)(0) := u, and φx(0) := (y, u) :=
(fΦ(x), u). Since (y, u) := φx(0) ∈

∑
y∈Y ρ0(x, y), we have that u ∈ ρ0(x, y) := ρ0(x, fΦ(x)).

In order to show that ΘΦ ∈
∏
x∈A ν

fΦ
0 (x) :=

∏
x∈A ρ0(x, fΦ(x)), we need to show, for x =X x′,

the commutativity of the following diagram
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1 ρ0(x, fΦ(x))

1 ρ0(x′, fΦ(x′)).

θx

θx′

νfΦ
xx′

Since Φ ∈
∏
x∈X µ0(x) :=

∏
x∈X

∑
y∈Y ρ0(x, y), we have the commutativity of the diagram

1
∑
y∈Y ρ0(x, y)

1
∑
y∈Y ρ0(x′, y),

φx

φx′

µxx′

where by Definition 11 this commutativity becomes

µxx′(φx(0)) := µxx′(y, u) :=
(
y, ρ(x,y)(x′,y)(u)

)
:=
(
y, ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=∑

y∈Y
ρ0(x′,y) φx′(0) := (y′, u′) := (fΦ(x′), u′).

Since the equality (
y, ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=∑

y∈Y
ρ0(x′,y) (y′, u′)

is by definition the equality(
y, ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=∑

y∈Y
λx′

0 (y) (y′, u′),

we have that y =Y y′ and

λx
′

yy′

(
ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=λx′

0 (y′) u′,

while by the definition of λx′

yy′ and since λx′

0 (y′) := ρ0(x′, y′) we get

ρ(x′,y)(x′,y′)
(
ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=ρ0(x′,y′) u′

i.e.,
ρ(x′,fΦ(x))(x′,fΦ(x′)

(
ρ(x,fΦ(x))(x′,fΦ(x))(u)

)
=ρ0(x′,y′) u′.

By the commutativity of the following diagram

ρ0(x′, fΦ(x))

ρ0(x, fΦ(x))

ρ0(x′, fΦ(x′))

ρ(x,fΦ(x))(x′,fΦ(x))

ρ(x′,fΦ(x))(x′,fΦ(x′))

ρ(x,fΦ(x))(x′,fΦ(x′))

we get
ρ(x,fΦ(x))(x′,fΦ(x′)(u) =ρ0(x′,y′) u′,

and the required commutativity of the diagram for ΘΦ is shown as follows:

νfΦ
xx′(θx(0)) := νfΦ

xx′(σ(y,u)(0)) := νfΦ
xx′(u0) := ρ(x,fΦ(x))(x′,fΦ(x′))(u) =ρ0(x′,y′) u′ := θx′(0).
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Next we show that ac is a function i.e., Φ =∏
x∈X

µ0(x) Φ′ ⇒ ac(Φ) =∑
f∈F(X,Y )

ξ0(f) ac(Φ′).
If

Φ(x) := (1, µ0(x), φx) := (1,
∑
y∈Y

ρ0(x, y), φx),

Φ′(x) := (1, µ0(x), φ′x) := (1,
∑
y∈Y

ρ0(x, y), φ′x),

the hypothesis Φ =∏
x∈X

µ0(x) Φ′ is reduced to φx(0) =µ0(x) φ
′
x(0), for every x ∈ X. By

definition the equality (
fΦ,ΘΦ

)
=∑

f∈F(X,Y )
ξ0(f)

(
fΦ′ ,ΘΦ′

)
is reduced to fΦ =F(X,Y ) fΦ′ and

ξfΦfΦ′ (ΘΦ) =ξ0(fΦ′ ) ΘΦ′ :⇔ ξfΦfΦ′ (ΘΦ) =∏
x∈X

ρ0(x,fΦ′ (x)) ΘΦ′ .

If x ∈ X, then
fΦ(x) := pr1(φx(0)) =Y pr1(φ′x(0)) := fΦ′(x),

hence, since x ∈ X is arbitrary, fΦ =F(X,Y ) fΦ′ . By definition Φ(x) := (1,
∑
y∈Y ρ0(x, y), φx)

and ΘΦ(x) := (1, ρ0(x, fΦ(x)), θx), where θx(0) := σ(y,u)(0) := u, and φx(0) := (y, u) :=
(fΦ(x), u). Similarly, Φ′(x) := (1,

∑
y∈Y ρ0(x, y), φ′x) and ΘΦ′(x) := (1, ρ0(x, fΦ′(x)), θ′x),

where θ′x(0) := σ(y′,u′)(0) := u′, and φ′x(0) := (y′, u′) := (fΦ′(x), u′). Moreover,

ξfΦfΦ′ (ΘΦ)(x) := (1, ρ0(x, fΦ′(x)), h′x),

h′x(0) := ρ(x,fΦ(x))(x,fΦ′ (x))
(
θx(0)

)
:= ρ(x,fΦ(x))(x,fΦ′ (x))(u).

By definition, we need to show that, for every x ∈ X,

θ′x(0) =ρ0(x,fΦ′ (x)) h′x(0) :⇔ u′ =ρ0(x,fΦ′ (x)) ρ(x,fΦ(x))(x,fΦ′ (x))(u).

Since

φx(0) =µ0(x) φ
′
x(0) :⇔ φx(0) =∑

y∈Y
ρ0(x,y) φ

′
x(0) :⇔ (fΦ(x), u) =∑

y∈Y
λx

0 (y) (fΦ′(x), u′),

we get
λxyy′(u) =ρ0(x,y′) u

′ :⇔ ρ(x,fΦ(x))(x,fΦ′ (x))(u) =ρ0(x,y′) u
′,

which is exactly what we need to show. J

4 Interior union and dependent products in CSFT

Next we formulate Bishop’s definition of a set-indexed family of subsets, given in [4], p. 65,
in analogy to our definition of a set-indexed family of sets.

I Definition 17. Let X and I be sets. A family of subsets of X indexed by I is a triple
λ := (λ0, σ1, λ1), where λ0 : I  V0, and σ1 : I  V1, such that, for every i ∈ I, we have
that σ1(i) := (λ0(i), X, ei) and ei is an embedding of λ0(i) into X. Moreover, λ1 : D(I) V1
is called the modulus of function-likeness of λ0, and for every i ∈ I it satisfies λii := idλ0(i),

while for every (i, j) ∈ D(I) it satisfies (λij , λji) : λ0(i) =P(X) λ0(j) i.e., the following inner
diagrams commute
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λ0(i) X

λ0(j).

λ0(j)

ei

λij
ej

ej
λji

I Remark. If λ := (λ0, σ1, λ1) is an I-family of subsets of X, then Λλ := (λ0, λ1) is an
I-family of sets.

Proof. Let i =I j =I k. If a ∈ λ0(i), by the commutativity of the following inner diagrams

λ0(i) X

λ0(j) λ0(k)

λ0(i)ei

λij
ej λikek

ei

λjk

and omitting the subscripts in the following equalities, we have that

ek
(
λjk(λij(a))

)
= ej(λij(a)) = ei(a) = ek

(
λik(a)

)
,

hence λjk(λij(a)) = λik(a), and since a ∈ λ0(i) is arbitrary, we get λjk ◦ λij = λik. J

I Definition 18. Let λ := (λ0, σ0, λ1) be an I-family of subsets of X. The interior union of
λ is the totality

⋃
i∈I λ0(i) defined by

z ∈
⋃
i∈I

λ0(i) :⇔ ∃i∈I∃x∈λ0(i)
(
z := (i, x)

)
.

Let the assignment routine ε :
⋃
i∈I λ0(i)  X be defined by ε(i, x) := ei(x), for every

(i, x) ∈
⋃
i∈I λ0(i), where ei : λ0(i) ↪→ X is the embedding of λ0(i) into X, for every i ∈ I.

The equality on
⋃
i∈I λ0(i) is defined by

(i, x) =⋃
i∈I

λ0(i) (j, y) :⇔ ε(i, x) =X ε(j, y).

It is immediate to show that (i, x) =⋃
i∈I

λ0(i) (j, y) satisfies the conditions of an equival-
ence relation, and

⋃
i∈I λ0(i) is a set. Moreover, the assignment routine ε is an embedding of⋃

i∈I λ0(i) into X, hence the couple
(⋃

i∈I λ0(i), ε
)
is a subset of X. Note that the defined

totalities
∑
i∈I λ0(i) and

⋃
i∈I λ0(i) have the same membership formula, but their equalities

are different. The equality of
∑
i∈I λ0(i) is determined externally by the transport function

λij and the equalities of λ0(j), while the equality of
⋃
i∈I λ0(i) is determined internally by

the embeddings ei, ej and the equality of X.

I Definition 19. Let λ := (λ0, σ0, λ1) be an I-family of subsets of X. A dependent function
over λ is7 a dependent function over the I-family of sets Λλ. Based on Definition 5, and

7 The definition of
∏

i∈I
λ0(i), given in [8], p. 70, as the set

{
f : I →

⋃
i∈I

λ0(i) | ∀i∈I

(
f(i) ∈ λ0(i)

)}
is not compatible with the precise definition of

⋃
i∈I

λ0(i), given previously in the same page, and it is
not included in [4].
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using a superscript to emphasize that we deal with a family of subsets, we denote their set
by
∏X

i∈I λ0(i).

Next we formulate precisely Bishop’s definition of the intersection of a set-indexed family
of subsets, given in [4], p. 65.

I Definition 20. Let λ := (λ0, σ1, λ1) be an I-family of subsets of X, where I is inhabited
by some element i0. The intersection

⋂
i∈I λ0(i) of λ is the totality defined by

Φ ∈
⋂
i∈I

λ0(i) :⇔ Φ ∈
X∏
i∈I

λ0(i) & ∀i,i′∈I
(
ei(φi(0)) =X ei′(φi′(0))

)
,

where, for every i ∈ I, Φ(i) := (1, λ0(i), φi) and σ1(i) := (λ0(i), X, ei). Let the assignment
routine e :

⋂
i∈I λ0(i) X be defined by e(Φ) := ei0

(
φi0(0)

)
. If Φ,Θ ∈

⋂
i∈I λ0(i), we define

Φ =⋂
i∈I

λ0(i) Θ :⇔ e(Φ) =X e(Θ).

It is immediate to show that Φ =⋂
i∈I

λ0(i) Θ satisfies the conditions of an equivalence
relation, and

⋂
i∈I λ0(i) is a set. Moreover, the assignment routine e is an embedding

of
⋂
i∈I λ0(i) into X, hence the couple

(⋂
i∈I λ0(i), e

)
is a subset of X. As expected,

Definition 18 is the family-version of the definition of A ∪ B, and Definition 20 is the
family-version of the definition of A ∩B.
I Remark. Let A,B ∈ P(X), and let λ2 := (λ2

0, σ
2
1 , λ

2
1) be a 2-family of subsets of X, where

λ2
0, λ2

1 are defined as in Definition 2, σ2
1 (0) := (A,X, iA), and σ2

1 (1) := (B,X, iB). Then⋃
i∈2

λ0(i) =P(X) A ∪B &
⋂
i∈2

λ0(i) =P(X) A ∩B.

Proof. We work similarly to the proof of Proposition 7. J

5 Concluding remarks

There are many issues regarding the relation between BST and CSFT that, due to lack of
space, cannot be elaborated here. E.g., in the literature of constructive mathematics (see
e.g., [9]) the powerset P(X) of a set X is treated as a set. Bishop’s comment in [4], p. 68,
on the existence of a map (i.e., a function) from the complemented subsets of X to P(X)
seems to support such a view. In his definition though, of a set-indexed family of subsets
in [4], p. 65, Bishop is careful to use the notion of a rule (an assignment routine) which
only behaves like a function. As Bishop himself explains in [7], p. 67, on the occasion of the
precise definition of a measure space, one must rewrite appropriately the material in [4], in
order to be “comfortably” formalised. Such an appropriate rewriting explains our use of the
universes V0 and V1. In our view, the totality V0 is implicit in Bishop’s formulation in [4], p.
72, regarding the definition of a set-indexed family of sets. There he writes about

. . . a rule which assigns to each t in a discrete set T a set λ(t).

Similarly, the universe V1 is just a way to rewrite appropriately notions of rules that assign
elements of an index set to sets and functions between them with certain properties.

A variation of Definition 1 is the constructive version of the direct spectrum over a directed
set (see [13], p. 420). If I is a set and i ≺ j an extensional and transitive relation on I × I,
let ≺ (I) := {(i, j) ∈ I× I | i ≺ j}. An I-transitive family of sets with respect to ≺ is a couple
Λ≺ := (λ0, λ

≺
1 ), where λ0 : I  V0, λ≺1 :≺ (I) V1 where λ≺1 (i, j) := (λ0(i), λ0(j), λ≺ij), such

that for every i, j, k ∈ I with i ≺ j and j ≺ k the following diagram commutes
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λ0(j) λ0(k).

λ0(i)

λ≺jk

λ≺ij λ≺ik

If (I,≺) is a directed preorder i.e., i ≺ j is irreflexive, transitive, and directed i.e.,
∀i,j∈I∃k∈I

(
i ≺ k & j ≺ k

)
, we call Λ≺ a direct family of sets over I. One can define

on
∑
i∈I λ0(i) the following equality

(i, x) =∑
i∈I

λ0(i) (j, y) :⇔ ∃k∈I
(
i ≺ k & j ≺ k & λ≺ik(x) =λ0(k) λ

≺
jk(y)

)
.

In [4], p. 65, Bishop defined an I-set of subsets of a set X as an I-family λ := (λ0, σ0, λ1)
of subsets of X such that ∀i,j∈I

(
λ0(i) =P(X) λ0(j)⇒ i =I j

)
i.e., the converse to i =I j ⇒

λ0(i) =P(X) λ0(j) also holds. A basic property of such a family is that functions on the index
set I generate functions on the set λ0I defined by z ∈ λ0I :⇔ ∃i∈I

(
z := λ0(i)

)
, equipped

with the equality λ0(i) =λ0I λ0(j) :⇔ λ0(i) =P(X) λ0(j). This property is crucial to the
definition of measure space, given in [8], p. 282 (see Bishop’s comment in [7], p. 67).

A general feature of BST is its harmonious relationship with the topology of Bishop spaces
(see [30]). If Fi is a Bishop topology on λ0(i), for every i ∈ I, one can define (using the notion
of a least Bishop topology) a canonical Bishop topology on the exterior union

∑
i∈I λ0(i) and

the dependent product
∏
i∈I λ0(i). A precise formulation of this concept relies on the study

of inductively defined sets within Bishop’s system BISH∗ and its expected reconstruction
within an appropriate extension CSFT∗ of CSFT. The development of CSFT∗, the extension
of CSFT with inductive definitions of sets using rules with countably many premisses, is,
hopefully, future work.
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