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Abstract. In this paper, we show, almost constructively, a density the-
orem for hierarchies of limit spaces over separable metric spaces. Our
proof is not fully constructive, since it relies on the constructively not
acceptable fact that the limit relation induced by a metric space satis-
fies Urysohn’s axiom for limit spaces. By adding the condition of strict
positivity to Normann’s notion of probabilistic projection we establish
a relation between strictly positive general probabilistic selections on a
sequential space and general approximation functions on a limit space.
Showing that Normann’s result, that a (general and strictly positive)
probabilistic selection is definable on a separable metric space, admits a
constructive proof, and based on the constructively shown in [18] carte-
sian closure property of the category of limit spaces with general approx-
imations, our quite effective density theorem follows. This work, which
is a continuation of [18], is within computability theory at higher types
and Normann’s Program of Internal Computability.

1 Introduction

Normann introduced the distinction between internal and external computabil-
ity over a mathematical structure already in [11] and initiated, what can be
called, a “Program of Internal Computability” (PIC) in [12]-[16] (see also [10]).
As he mentions in [14], p.300, “the internal concepts must grow out of the struc-
ture at hand, while external concepts may be inherited from computability over
superstructures via, for example, enumerations, domain representations, or in
other ways”. Within PIC the characterization of functionals, like the Kleene-
Kreisel functionals, is done without reference to any realizing objects, but via
limit spaces. As Longley and Normann mention in [10], p.374, the framework
of limit spaces leads “in some cases to sharper results than other approaches;
moreover, the limit space approach generalizes well to type structures over other
base types such as R”.

Limit spaces were introduced in computability theory at higher types by
Scarpellini in [19], while Hyland in [7] showed that Scarpellini’s hierarchy is
identical to Kleene’s hierarchy of countable functionals over N. In [12] Normann
presented this hierarchy using limit spaces, and the corresponding density theo-
rem using the notion of the nth approximation of a functional, for every n ∈ N.
In [18] we generalized Normann’s presentation by defining two new subcategories
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of limit spaces, the limit spaces with general approximations and the limit spaces
with approximations. The constructively shown cartesian closure property for
these subcategories enabled us to to prove a constructive density theorem for
hierarchies of limit spaces over N and the Cantor space C. The corresponding
density theorem for hierarchies of limit spaces over a compact metric space had
an essentially classical proof.

In this paper we prove, almost constructively, a density theorem for hierar-
chies of limit spaces over an arbitrary separable metric space, generalizing and, in
our view, computationally advancing the result of [18]. All main proofs included
in this paper are within Bishop’s informal system of constructive mathematics
BISH (see [1], [2] and [3]). Since the fact that the limit relation on R induced by
its metric satisfies Urysohn’s axiom of a limit space implies1 the limited principle
of omniscience (LPO), we cannot say now that our results are fully constructive.
We discuss a constructive way out in the last section of this paper.

Nevertheless, our proof seems quite effective, since all the other parts of it
are completely constructive. It uses again the cartesian closure property of the
category of limit spaces with general approximations, and Normann’s result on
the existence of a probabilistic selection on a separable metric space. Adding
the condition of strict positivity to Normann’s notion of probabilistic selection a
connection between strictly positive probabilistic selections and general approx-
imation functions is established. This density theorem (Theorem 4) shows that
limit spaces with general approximations provide a framework for characteriz-
ing hierarchies of functionals over base types maybe even more efficiently than
general limit spaces.

2 Basic notions and facts

In order to be self-contained we include some basic definitions and facts necessary
to the rest of the paper. For a classical treatment of limit spaces see [8] and [9],
while for all general topological notions mentioned here see [6]. If X,Y are sets,
F(X,Y ) denotes the set of all functions from X to Y . The third condition of the
definition of a limit space is known as Urysohn’s axiom.

Definition 1. A limit space is a structure L = (X, limX), where X is a set, and
limX ⊆ X × F(N, X) is a relation satisfying the following conditions:

(L1) If x ∈ X and (x) denotes the constant sequence x, then limX(x, (x)).
(L2) If S denotes the set of all strictly monotone elements of the Baire space
F(N,N), then2 ∀α∈S(limX(x, xn)→ limX(x, xα(n))).
(L3) If x ∈ X and (xn)n∈N ∈ F(N, X), then ∀α∈S∃β∈S(limX(x, xα(β(n)))) →
limX(x, xn).

If ∀x,y∈X∀(xn)n∈N∈F(N,X)(lim(x, xn) → lim(y, xn) → x = y), then the limit

1 This is a result of Hannes Diener (personal communication).
2 If (xn)n∈N ⊆ X, for simplicity we write limX(x, xn) instead of limX(x, (xn)n∈N), and

limX(x, x) instead of limX(x, (x)).
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space has the uniqueness property. A subset D of X is called limX-dense, if
∀x∈X∃(dn)n∈N∈F(N,D)(limX(x, dn)), and L is called limX-separable, if there is
a countable limX-dense subset of X. If (X, limX), (Y, limY ) are limit spaces,
f : X → Y is called lim-continuous, if ∀x∈X∀(xn)n∈N∈F(N,X)(limX(x, xn) →
limY (f(x), f(xn))). The subset O of X is in the Birkhoff-Baer topology TlimX on
X, or is limX-open, if ∀x∈O∀(xn)n∈N∈F(N,X)(limX(x, xn)→ ev(xn,O)), where, if
A ⊆ X, ev(xn, A) :↔ ∃n0

∀n≥n0
(xn ∈ A). A topological space (X, T ) induces

a limit space (X, limT ), where limT (x, xn) :↔ (xn)n
T−→ x, and the symbol

(xn)n
T−→ x denotes the convergence of (xn)n∈N to x with respect to T . If (X, d)

is a metric space, limd denotes the limit relation on X induced by d. A limit
space (X, limX) is called topological, if limX = limTlimX , and a topological space
(X, T ) is called sequential, if T = TlimT .

It is easy to show constructively that D is dense in (X, TlimX ), if D is lim-
dense in (X, limX). Moreover, classically a metric space is a sequential space.
The following proposition is folklore in the classical literature, but one can show
that it holds constructively (see [17]).

Proposition 1. Let L = (X, limX),M = (Y, limY ) be limit spaces, and A ⊆ X.
The relative limit space LA := (A, limA) is defined by limA = (limX)|A×F(N,A),
and the product limit space L ×M := (X × Y, limX×Y ) is defined by the con-
dition limX×Y ((x, y), (xn, yn)) :↔ limX(x, xn) ∧ limY (y, yn), for every x ∈
X, y ∈ Y , (xn)n∈N ∈ F(N, X) and (yn)n∈N ∈ F(N, Y ). The exponential limit
space L → M := (X → Y, limX→Y ), where X → Y is the set of all lim-
continuous functions from L toM, is defined by the condition limX→Y (f, fn) :↔
∀x∈X∀(xn)n∈N∈F(N,X)(limX(x, xn)→ limY (f(x), fn(xn))),

Definition 2. A limit space with general approximations is a structure A =
(X, limX , (XApprn)n∈N) such that (X, limX) is a limit space, and, for every
n ∈ N the approximation functions XApprn : X → X satisfy the following
properties:

(A1) If x ∈ X, then XApprn(XApprn(x)) = XApprn(x).
(A2) XApprn(X) = {XApprn(x) | x ∈ X} is an inhabited finite set.
(A3) If x ∈ X and (xn)n∈N ∈ F(N, X), then

lim
X

(x, xn)→ lim
X

(x,XApprn(xn)).

A limit space with general approximations is a limit spaces with approximations,
if the following conditions are satisfied:

(A1
′) If x ∈ X, then XApprn(XApprm(x)) = XApprmin(n,m)(x).

(A4) XApprn is lim-continuous.

A limit space (X, limX) admits (general) approximations, if there are functions
(XApprn)n∈N such that (X, limX , (XApprn)n∈N)) is a limit space with (general)
approximations

The following two results were proved in [18] constructively.
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Proposition 2. If A = (X, limX , (XApprn)n∈N) is a limit space with general
approximations and x ∈ X, then limX(x,XApprn(x)). Moreover, the set A =⋃
n∈N XApprn(X) is a countable limX-dense subset of X, and therefore dense in

(X, TlimX ).

Theorem 1. If A = (X, limX , (XApprn)n∈N), B = (Y, limY , (YApprn)n∈N) are
limit spaces with (general) approximations, n ∈ N, x ∈ X, y ∈ Y , and f ∈
X → Y , we define

(X×Y)Apprn(x, y) := (XApprn(x),YApprn(y)),

f 7→ (X→ Y)Apprn(f),

(X→ Y)Apprn(f)(x) := YApprn(f(XApprn(x))).

The structures A × B = (X × Y, limX×Y , ((X×Y)Apprn)n∈N) and A → B =
(X → Y, limX→Y , ((X→ Y)Apprn)n∈N) are limit spaces with (general) approxi-
mations.

From the last two results the following density theorem for a hierarchy of
limit spaces over a compact metric space was shown in [18] classically.

Theorem 2. Let (X, d) be a compact metric space. If ι = X | ρ → σ is an
inductively defined type system T over the base type X, then in the T-typed
hierarchy of limit spaces over X, defined by

X (ι) := (X(ι), lim
ι

) := (X, lim
d

),

X (ρ→ σ) := (X(ρ)→ X(σ), lim
ρ→σ

),

the limit space X (τ) admits general approximations (τApprn)n∈N, for every type
τ in T. Moreover, there is a countable subset Dτ of X(τ), which is dense in
(X(τ), Tlimτ ), for every type τ in T.

A similar density theorem was shown constructively for ι = N and ι = C,
where C denotes the Cantor space. In section 4 we show a density theorem for a
hierarchy of limit spaces over an arbitrary separable space (Theorem 4), based
again on Proposition 2 and Theorem 1. In this case though we use appropriately
Normann’s notion of a probabilistic selection on a sequential space to define
general approximation functions on a separable metric space.

3 Positive and strictly positive probabilistic projections

The use of probability distributions in the study of hierarchies of functionals
over R appeared first in Normann’s work [12], following the work of DeJaeger
in [5]. The next definition includes a slight variation3 of Normann’s definition of

3 Namely, the continuity condition used by Normann is different from the condition
(P3) used here, but one can show that they are equivalent. Since no continuity
condition affects the main density theorem, we do not include here the proof of their
equivalence.
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a probabilistic projection found in [14]. Moreover, the notions of general, positive
and strictly positive probabilistic projections are introduced. Note that in the
following definition we use Normann’s starting point of a sequential space X,
but what we only need for the proof of Theorem 4, and this is how one should
read Definition 3 constructively, is that X is a metric space (recall that we need
classical reasoning to show that a metric space is sequential).

Definition 3. A structure P = (X, T , Y, (An)n∈N, (µn)n∈N) is called a sequen-
tial space with a general probabilistic projection from X to Y , if (X, T ) is a
sequential topological space, (An)n∈N is a sequence of inhabited finite subsets of
X, which is called the support of P, Y is a subset of X such that

A :=
⋃
n∈N

An ⊆ Y,

and (µn)n∈N is a sequence of functions of type

µn : X → F(An, [0, 1])

x 7→ µn(x),

that satisfies the following properties:

(P1) For every n ∈ N the function µn(x) : An → [0, 1] is a probability distribution
on An i.e., it satisfies the condition∑

a∈An

µn(x)(a) = 1.

(P2) If y ∈ Y , (yn)n∈N ⊆ Y such that limT|Y (y, yn), where limT|Y is the limit
relation on Y induced by the limit relation limT on X, and if (an)n∈N ⊆ A such
that an ∈ An, for every n ∈ N, the following implication holds:

∀n∈N(µn(yn)(an) > 0)→ lim
T|Y

(y, an).

The sequence of functions (µn)n∈N is called a general probabilistic projection
from X to Y . A sequential space (X, T ) admits a general probabilistic projection
from X to Y , if there is a general probabilistic projection from X to Y . A struc-
ture P = (X, T , Y, (An)n∈N, (µn)n∈N) is a sequential space with a probabilistic
projection from X to Y , if (µn)n∈N satisfies also the following condition:

(P3) If a ∈ An, for some n ∈ N, the function â : X → [0, 1], defined by

x 7→ µn(x)(a),

for every x ∈ X, is continuous.

A general probabilistic projection (µn)n∈N from X to Y is called positive, if the
following conditions are satisfied:

(P4) If a ∈ An, for some n ∈ N, then

µn(a)(a) > 0,
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∀b∈An(b 6= a→ µn(a)(b) < µn(a)(a)).

A positive probabilistic projection from X to Y is called strictly positive, if the
following condition is satisfied:

(P5) If a ∈ An, for some n ∈ N, then

µn(a)(a) = 1.

A (general) probabilistic projection (µn)n∈N from X to X is called a (general)
probabilistic selection on X, and the structure S = (X, T , X, (An)n∈N, (µn)n∈N),
or simpler S = (X, T , (An)n∈N, (µn)n∈N), is a sequential space with a (general)
probabilistic selection.

By condition (P1), if (µn)n∈N is a strictly positive probabilistic projection
from X to Y , then

∀b∈An(b 6= a→ µn(a)(b) = 0),

since, if µn(a)(b) > 0, for some b ∈ An such that b 6= a, then
∑
b∈An µn(a)(b) > 1,

which is a contradiction. Hence, µn(a)(b) ≤ 0, which together with the assumed
condition µn(a)(b) ≥ 0 gives µn(a)(b) = 0. A first constructive reading of con-
dition (P1) gives that ¬¬[∃a∈An(µn(x)(a) > 0)]; if ¬[∃a∈An(µn(x)(a) > 0)],
then ∀a∈An(µn(x)(a) ≤ 0), since if a ∈ An such that µn(x)(a) > 0, then we
get a contradiction, hence µn(x)(a) ≤ 0. Since ∀a∈An(µn(x)(a) ≥ 0), we get
∀a∈An(µn(x)(a) = 0), hence

∑
a∈An µn(x)(a) = 0 = 1. Next we show construc-

tively how to shift double negation.

Proposition 3. If n ∈ N, a1, . . . , an ≥ 0, and l > 0, then

n∑
i=1

ai = l→ ∃j∈{1,...,n}(aj > 0).

Proof. We show ∀n∈NP (n), where

P (n) := ∀a1,...,an≥0∀l>0

(
n∑
i=1

ai = l→ ∃j∈{1,...,n}(aj > 0)

)
.

If n = 1, then j = 1. To show P (n + 1) from P (n) let a1, . . . , an+1 ≥ 0, and

l > 0 such that
∑n+1
i=1 ai = l. If b :=

∑n
i=1 ai ≥ 0, then b + an+1 = l. By the

constructive version of trichotomy of reals (see [2], p.26) we have that an+1 > 0
or an+1 <

l
2 . In the first case we get that the required j = n + 1. If an+1 <

l
2 ,

then b = l−an+1 > l− l
2 = l

2 . Consequently,
∑n
i=1 ai = b > 0, and by condition

P (n) on a1, . . . , an and b we get some j ∈ {1, . . . , n} such that aj > 0.

Hence, if (µn)n∈N is a general probabilistic projection from X to Y , the set

In(x) := {a ∈ An | µn(x)(a) > 0}

is inhabited. The intuition behind the notion of a probabilistic projection from
X to Y can be described as follows. The fact µn(x)(a) > 0 expresses that a is
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“close” to x, and moreover, the closer to 1 the positive value µn(x)(a) is, the
closer to x a is. The fact µn(x)(a) = 0 expresses that a is “not close” to x.
With this interpretation conditions (P2) and (P4) are quite natural. Note that
the notion of a general probabilistic projection from X to Y corresponds to
the notion of a limit space with general approximations, since in both cases a
continuity condition is not necessarily satisfied. As in the case of limit spaces
with (general) approximations, a dense subset is (classically) generated from a
general probability projection.

Proposition 4. (i) If P = (X, T , Y, (An)n∈N, (µn)n∈N) is a sequential space
with a general probability projection from X to Y , and Y is a closed, or open,
subspace of X, then A is dense in Y .
(ii) If P = (X, T , (An)n∈N, (µn)n∈N) is a sequential space with a general proba-
bility selection, then A is dense in X.

Proof. We show (i), and (ii) follows immediately from (i). If y ∈ Y , let (an)n∈N ⊆
A such that an ∈ An and µn(y)(an) > 0. The existence of such an element an
of An follows from condition (P1). Since limT (y, y), by condition (P2) we get
limT|Y (y, an) i.e., A is limT|Y -dense in X. Since a closed, or open, subspace of
a sequential space is sequential, and since a limS -dense subset of a sequential
space (Z,S) is also dense in Z, we conclude that A is dense in Y .

Since A is countable, the relative space Y is separable. Consequently, if Y
is not a separable subspace of X, there can be no probabilistic projection from
X to Y . As in the density theorem for limit spaces with general approximations
the continuity condition (P3) plays no role in the above proof. Next follows the
lim-version of Definition 3.

Definition 4. A structure N = (X, limX , Y, (An)n∈N, (µn)n∈N) is a limit space
with a general lim-probabilistic projection from X to Y , if (X, limX) is a limit
space and Y, (An)n∈N, (µn)n∈N are as in Definition 3, though the limit relation
in (P2) is the limit relation on Y inherited from limX . A limit space with a
lim-probabilistic projection from X to Y is a limit space with a general lim-
probabilistic projection from X to Y such that the following condition is satisfied:

(P3
′) If a ∈ An, for some n ∈ N, the function â : X → [0, 1], defined by

x 7→ µn(x)(a), for every x ∈ X, is lim-continuous i.e.,

lim
X

(x, xm)→ lim
[0,1]

(µn(x)(a), µn(xm)(a)),

for every x ∈ X and (xm)m∈N ⊆ X, where lim[0,1] is the limit relation on [0, 1]
generated by its Euclidean metric. A limit space with a (general) lim-probabilistic
selection, and the notions of a (strictly) positive (general) lim-probabilistic pro-
jection (selection) are defined as in Definition 3.

In the next classically shown proposition the hypothesis of positivity is used.
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Proposition 5. If (X, limX , (An)n∈N, (µn)n∈N) is a limit space with a posi-
tive, general lim-probabilistic selection, then there are approximation functions
(XApprn)n∈N on X such that (X, limX , (XApprn)n∈N) is a limit space with gen-
eral approximations, and XApprn(X) = An, for every n ∈ N.

Proof. If n ∈ N, suppose that An = {a(n)1 , . . . , a
(n)
m(n)}. If x ∈ X, let

i0,n(x) :=

{
i ∈ {1, . . . ,m(n)} | µn(x)(a

(n)
i ) > 0, and

∀j∈{1,...,m(n)}(µn(x)(a
(n)
j ) ≤ µn(x)(a

(n)
i ))

}
.

By the properties of the order on classical real numbers i0,n(x) is well-defined.
For every x ∈ X and every n ∈ N we define

XApprn(x) := a
(n)
i0,n(x)

.

Since (µn)n∈N is positive, if i ∈ {1, . . . ,m(n)}, then

i0,n(a
(n)
i ) = {i},

and XApprn(a
(n)
i ) = a

(n)

i0,n(a
(n)
i )

= a
(n)
i . The conditions XApprn(XApprn(x)) =

XApprn(x) and XApprn(X) = An are then immediately satisfied. By the defi-
nition of i0,n(x) we have that

µn(x)(XApprn(x)) > 0.

If (xn)n∈N ⊆ X such that limX(x, xn), then since µn(xn)(XApprn(xn)) > 0, for
every n ∈ N, by condition (P2) of Definition 4 we get limX(x,XApprn(xn)).

Note that constructively we can’t find an algorithm providing an element of
i0,n(x). We overcome this difficulty in Proposition 7, where the hypothesis of
a strictly positive probabilistic selection is used. The next proposition is also
shown classically.

Proposition 6. (i) A limit space (X, limX , (XApprn)n∈N) with general approx-
imations admits a strictly positive, general lim-probabilistic selection.
(ii) A limit space (X, limX , (XApprn)n∈N) with approximations, where (X, limX)
has the uniqueness property, admits a strictly positive general lim-probabilistic
selection.

Proof. (i) We define An = XApprn(X), and for every x ∈ X the function x 7→
µn(x) is defined by

µn(x)(a) =

{
1 , if a = XApprn(x)
0 , ow.
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Clearly, µn(x) is a probability distribution on An. Since µn(xn)(an) > 0 ↔
an = XApprn(xn), we get limX(x, xn)→ limX(x, an). If a ∈ XApprn(X), there
is some x ∈ X such that a = XApprn(x), hence

µn(a)(a) = µn(XApprn(x))(XApprn(x)) = 1 > 0,

since XApprn(x) = XApprn(XApprn(x)).
(ii) Suppose that limX(x, xm) and that µn(x)(a) = 1 ↔ a = XApprn(x).
By the classical proof of Proposition 21(i) in [18], pp.749-750, the sequence
(XApprn(xm))m∈N is eventually constant with value a. Thus, (µn(xm)(a))m∈N
is eventually constant 1. The case a 6= XApprn(x) is treated similarly.

The above proof corroborates the aforementioned intuition behind the exis-
tence of a probabilistic projection, that is µn(x)(a) > 0 expresses a proximity
of a to x, while µn(x)(a) = 0 expresses a non-proximity of a to x. Regarding
the proof of Proposition 6(ii), the lim-continuity of the approximation functions
XApprn entails the lim-continuity of the function â, where a ∈ A. Next follows
the constructive version of Proposition 5, which is essential to the proof of Theo-
rem 4. One needs to replace the condition of positivity by the condition of strict
positivity.

Proposition 7. If (X, limX , (An)n∈N, (µn)n∈N) is a limit space with a strictly
positive, general lim-probabilistic selection, then there are approximation func-
tions (XApprn)n∈N on X such that (X, limX , (XApprn)n∈N) is a limit space with
general approximations, and XApprn(X) = An, for every n ∈ N.

Proof. If n ∈ N, suppose that An = {a(n)1 , . . . , a
(n)
m(n)}. If x ∈ X, the set

I0,n(x) := {i ∈ {1, . . . ,m(n)} | µn(x)(a
(n)
i ) > 0}

is inhabited, i.e., for every n ∈ N there exists i ∈ I0,n(x). If Sx ⊆ N×
⋃∞
n=1 I0,n(x)

is defined by Sx(n, i) := i ∈ I0,n(x), then by the principle of countable choice4

there is a function fx : N →
⋃∞
n=1 I0,n(x) such that fx(n) ∈ I0,n(x), for every

n ∈ N. We define
XApprn(x) := a

(n)
fx(n)

,

for every x ∈ X and every n ∈ N. Since (µn)n∈N is a strictly positive probabilistic

selection on X, if i ∈ {1, . . . ,m(n)}, then I0,n(a
(n)
i ) = {i}, hence

f
a
(n)
i

(n) = i,

and XApprn(a
(n)
i ) = a

(n)
f
a
(n)
i

(n) = a
(n)
i . The conditions XApprn(XApprn(x)) =

XApprn(x) and XApprn(X) = An are then immediately satisfied. By the defi-
nition of I0,n(x) we have that

µn(x)(XApprn(x)) > 0.

If (xn)n∈N ⊆ X such that limX(x, xn), then since µn(xn)(XApprn(xn)) > 0, for
every n ∈ N, by condition (P2) of Definition 4 we get limX(x,XApprn(xn)).

4 This principle is generally accepted within BISH (see [3], p.12).
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4 The density theorem

In [14] Normann proved that a complete and separable metric space X admits
a probabilistic projection from X to a closed subspace Y of X of the form
Y =

⋃
nAn, where An ⊆ An+1 ⊆ X, for every n ∈ N. In [13] Normann defined a

probabilistic selection on a separable metric space. The proof is not given in [13],
although it is actually in [14], which appeared later, but was written before [13].
In between Normann realized that completeness played no role in his original
proof.

Here we show that the probabilistic selections defined by Normann differ in
a crucial way. The one given in [14] is shown here to be positive, while the one
given in [13] is shown to be strictly positive, a property crucial to the proof
of Theorem 4. Next we give a new constructive treatment of Normann’s result
adding the properties of positivity and strict positivity, respectively. Note that
Normann included his equivalent to (P3) continuity condition to his results, but
since the proof of continuity requires classical reasoning and does not play a role
in our proof of Theorem 4, it is avoided here. The only non-effective element in
the formulation of the following theorem (and not in its proof) is that (X, limd)
is a limit space, hence that limd satisfies Urysohn’s axiom.

Theorem 3 (Normann (BISH)). Suppose that (X, d) is a separable metric
space and A = {an | n ∈ N} is a countable dense subset of X, where d(an, am) >
0, if n 6= m. If An = {a1, . . . , an}, for every n ∈ N and, for every 1 ≤ j ≤ n, we
define5

µn(x)(aj) :=
Nn,x(aj)

Dn,x
,

Nn,x(aj) := (d(x,An) + 2−n)−· d(x, aj),

Dn,x :=

n∑
i=1

[(d(x,An) + 2−n)−· d(x, ai)],

µ′n(x)(aj) :=
N ′n,x(aj)

D′n,x
,

N ′n,x(aj) := (d(x,An) + δn)−· d(x, aj),

D′n,x :=

n∑
i=1

[(d(x,An) + δn)−· d(x, ai)],

where

d(x,An) := min{d(x, ai) | 1 ≤ i ≤ n},

δn := min{2−n, d(ai, aj) | i 6= j, i, j ∈ {1, . . . , n}},

a−· b := (a− b) ∨ 0.

5 If c, d ∈ R, we use the notations c ∨ d := max{c, d}, and c ∧ d := min{c, d}.
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(i) The structure (X, limd, (An)n∈N, (µn)n∈N) is a limit space space with a posi-
tive, general lim-probabilistic selection on X.
(ii) The structure (X, limd, (An)n∈N, (µ

′
n)n∈N) is a limit space with a strictly

positive, general lim-probabilistic selection on X.

Proof. (i) The fact that Dn,x > 0 and conditions (P1) and (P2) are shown as in
case (ii). For the positivity condition we have first that

µn(aj)(aj) =
2−n

Dn,aj

> 0,

for every j ∈ {1, . . . , n}. If i 6= j, then Nn,aj (ai) = 2−n −· d(aj , ai) = (2−n −
d(aj , ai))∨0. Since 2−n−d(aj , ai) < 2−n and 0 < 2−n, we get (2−n−d(aj , ai))∨
0 < 2−n (here we used the following property of real numbers: a∨ b < c↔ a < c
and b < c, see [4], p.57, Ex.3). Hence, µn(aj)(ai) < µn(aj)(aj).
(ii) If c1, . . . , cn > 0, then one shows6 that their minimum

∧n
i=1 ci > 0, hence,

since there are no repetitions in the sequence of A, we have that δn > 0. Next we
show7 that D′n,x > 0. The subspace An is totally bounded, since for every ε > 0
it is an ε-approximation of itself, and since the distance dx at x, defined by aj 7→
d(x, aj), is uniformly continuous on An, there exists inf dx(An) (see [2], p.94).
It is immediate to see that inf dx(An) = d(x,An) is the greatest lower bound of
{d(x, aj) | j ∈ {1, . . . , n}}, and hence equal to

∧n
i=1 d(x, ai), since

∧n
i=1 d(x, ai)

can be shown8 to be the greatest lower bound of {d(x, aj) | j ∈ {1, . . . , n}} too.
By the definition of the infimum of a bounded below set of real numbers for
δn
2 > 0 we get that the existence of some j ∈ {1, . . . , n} such that

d(x, aj) < d(x,An) +
δn
2
→ −δn

2
< d(x,An)− d(x, aj)→

0 < δn −
δn
2
< d(x,An) + δn − d(x, aj)→

0 <
δn
2
< (d(x,An) + δn)−· d(x, aj)→

0 < D′n,x.

Condition (P1) is immediately satisfied. For the proof of condition (P2) we fix
x ∈ X, (xn)n∈N ⊆ X, such that limd(x, xn), and (an)n∈N such that an ∈ An
and µ′n(xn)(an) > 0, for every n ∈ N. We need to show that limd(x, an) ↔
∀ε>0∃n0∀n≥n0(d(x, an) ≤ ε). Let ε > 0. By the hypothesis limd(x, xn) there

6 The argument for the case of two positive numbers is the one used in the inductive
step of the induction on n. If c1, c2 > 0, there are rationals q1, q2 such that 0 < q1 < c1
and 0 < q2 < c2 (see [2], p.25). Since q1∧q2 is either q1 or q2, we get that q1∧q2 < c1
and q1 ∧ q2 < c2, hence 0 < q1 ∧ q2 ≤ c1 ∧ c2.

7 Classically, this is trivial, since there is some j ∈ {1, . . . , n} such that d(x,An) =
d(x, aj), hence D′

n,x ≥ (d(x,An) + δn)−· d(x, ai) = δn ∨ 0 = δn > 0.
8 The proof is based on the fact that if c ≤ a and c ≤ b, then c ≤ a ∧ b, since if
c > a∧ b, then c > a or c > b (this is the dual of a property of the maximum of real
numbers included in [4], p.57, Ex.3).
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is n1 ∈ N such that ∀n≥n1
(d(x, xn) ≤ ε

4 ). By the density of A in X there
exists a ∈ A such that d(x, a) ≤ ε

4 . If a = an2
, for some n2 ∈ N, we get that

∃a∈An2
(d(x, a) ≤ ε

4 ). Clearly, there exists n3 ∈ N such that 2−n3 ≤ ε
4 . If we

define n0 := max(n1, n2, n3), for every n ∈ N such that n ≥ n0 we get An ⊇ An0

and d(x,An) ≤ d(x, a) ≤ ε
4 . Moreover, if n ≥ n0, then

d(xn, An) ≤ d(xn, x) + d(x,An) ≤ ε

4
+
ε

4
=
ε

2
.

The first inequality above is shown as follows: If b ∈ An, then using some basic
properties of ≤ on R (see [2], p.23) we get

d(xn, An) ≤ d(xn, b) ≤ d(xn, x) + d(x, b)→
d(xn, An)− d(xn, x) ≤ d(x, b)→
d(xn, An)− d(xn, x) ≤ min{d(x, b) | b ∈ An} = d(x,An)→
d(xn, An) ≤ d(xn, x) + d(x,An).

Moreover, if n ≥ n0, then

µ′n(xn)(an) > 0→ d(xn, an) ≤ 3ε

4
,

since, using the property9 ∀c∈R(c ∨ 0 > 0→ c ∨ 0 = c) we have that

µ′n(xn)(an) > 0→ N ′n,xn(an) > 0

↔ (d(xn, An) + δn)−· d(xn, an) > 0

→ (d(xn, An) + δn)− d(xn, an) > 0

→ d(xn, an) < d(xn, An) + δn ≤
ε

2
+ 2−n ≤ ε

2
+
ε

4
=

3ε

4
.

Hence, if n ≥ n0, we get

d(x, an) ≤ d(x, xn) + d(xn, an) ≤ ε

4
+

3ε

4
= ε.

Next we show the strict positivity of (µ′n)n∈N. If n ∈ N and j ∈ {1, . . . , n},
then N ′n,aj (aj) = δn, since d(aj , An) = d(aj , aj) = 0. Moreover, D′n,aj (aj) =∑n
i=1[(d(aj , An) + δn)−· d(aj , ai)] =

∑n
i=1(δn −· d(aj , ai)) = δn −· d(aj , aj) = δn,

since for every i 6= j, we have that δn −· d(aj , ai) = 0, since δn ≤ d(aj , ai) ↔
δn − d(aj , ai) ≤ 0. Consequently, µ′n(aj)(aj) = 1. Similarly, if i 6= j, we have
that N ′n,aj (ai) = δn −· d(aj , ai) = 0 i.e., µ′n(aj)(ai) = 0.

A “geometric” interpretation of the probabilistic selection (µn)n∈N of The-
orem 3 goes as follows. By its definition Nn,x(aj) ≥ 0, while µn(x)(aj) = 0 ↔
Nn,x(aj) = 0↔ d(x, aj) ≥ d(x,An)+2−n. If x /∈ An that can happen if aj is suf-
ficiently far from the point of An at which x attains its minimum distance from

9 If c ∨ 0 > 0, then c > 0 ∨ 0 > 0 (see [4], p.57). Hence, c > 0 is the case, and then we
get immediately that c ∨ 0 = c.
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An, or if x ∈ An and d(x, aj) ≥ 2−n. Moreover, µn(x)(aj) > 0 ↔ Nn,x(aj) >
0↔ d(x, aj) < d(x,An)+2−n i.e., either x attains its minimum distance from An
at aj or, otherwise, the distance d(x, aj) is less than 2−n-close to the minimum
distance d(x,An) i.e., aj is very close to the point of An at which x attains its
minimum distance from An. A similar interpretation can be given for Normann’s
probabilistic selection (µ′n)n∈N. Note that a simpler definition, like

νn(x)(aj) =
d(x, aj)∑n
i=1 d(x, ai)

gives rise to a probability distribution on An, which trivially satisfies the con-
tinuity condition, but it is not positive, and the hypothesis νn(xn)(an) > 0 is
equivalent to xn 6= an, which is far from satisfying condition (P2) of a proba-
bilistic selection.

Note that the constructive proof of Theorem 3 works for dense subsets A
of X with a decidable equality, like Q in R. Next follows a density theorem
for hierarchies of limit spaces over separable metric spaces, the countable dense
subsets of which are appropriately enumerated, or have a decidable equality.

Theorem 4 (density theorem). Let (X, d) be a separable metric space, and
let A = {an | n ∈ N} be a dense subset of X, where d(an, am) > 0, if n 6= m.
If ι = X | ρ → σ is an inductively defined type system T over the base type X,
then in the T-typed hierarchy of limit spaces over X, defined by

X (ι) := (X(ι), lim
ι

) := (X, lim
d

),

X (ρ→ σ) := (X(ρ)→ X(σ), lim
ρ→σ

),

the limit space X (τ) admits general approximations (τApprn)n∈N, for every type
τ in T. Moreover, there is a countable subset Dτ of X(τ), which is limτ -dense
in Xτ , therefore dense in (X(τ), Tlimτ ), for every type τ in T.

Proof. If τ = ι, then by Theorem 3(ii) (X, limd, (An)n∈N, (µ
′
n)n∈N) is a limit

space with a strictly positive, general lim-probabilistic selection on X. By Propo-
sition 7 there exist approximation functions (XApprn)n∈N on X such that the
structure (X, limd, (XApprn)n∈N) is a limit space with general approximations,
and XApprn(X) = An, for every n ∈ N. We define ιApprn := XApprn, for every
n ∈ N. By Theorem 1, if f ∈ X(ρ) → X(σ), and n ∈ N, then the function
(ρ→ σ)Apprn, defined by

[(ρ→ σ)Apprn](f)(x) = σApprn(f(ρApprn(x))),

for every x ∈ X(ρ), is the n-th approximation function that the limit space
X (ρ → σ) admits. The existence of the countable subset Dτ of X(τ) that is
limτ -dense in Xτ , therefore dense in (X(τ), Tlimτ ), for every type τ in T, follows
from Proposition 2.
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Note that constructively we only have that Td ⊆ Tlimd , where Td is the topol-
ogy on X induced by its metric. Thus, what we determine through Theorem 4
are countable limτ -dense subsets of each limit space Xτ . Of course, classically,
these are exactly the subsets one needs to find. Clearly, a density theorem for
a hierarchy of limit spaces over more than one separable metric spaces can be
shown similarly.

5 Concluding remarks

The proof of the main density theorem presented in this paper reveals, in our
view, the merits of the generalization of Normann’s notion of the nth approxima-
tion of a functional in the typed hierarchy over N through the notion of a limit
space with general approximations. The quite effective character of its proof is
also worth noticing. As Normann writes in [14], p.305,

[We would like to claim that an internal approach to computability in
analysis will result in easy-to-use, high level, programming languages for
computing in analysis, but the development cannot support this claim
yet. The possibility of finding support for such a claim, together with
basic curiosity, is nevertheless the motivation behind trying to find out
what internally based algorithms might look like.]

The application of limit spaces with approximations to the (classical) study of
limit spaces over other base types looks also promising. Moreover, it is interesting
to see if the general idea behind the theory of limit spaces with approximations
can be extended to other notions of space. Namely, to find a cartesian closed
category A, such that if X is an object of A, general approximation functions
XApprn of type X → X can be defined10, for every n ∈ N, such that the objects
of A with general approximations form a cartesian closed subcategory of A.

A plan to provide a fully constructive proof of Theorem 4 is the following. We
expect that abstracting from the constructive properties of limd we can define
a notion of a constructive limit space (X, climX) that preserves the cartesian
closure property of limit spaces (with the same definition of the limit relation on
the function space). In this case the proof of Theorem 4 goes through completely
constructively, since the proof of Theorem 1 does not depend on Urysohn’s ax-
iom. We hope to realize this plan in future work.
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