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Abstract. We study the Borel sets Borel(F ) and the Baire sets Baire(F )
generated by a Bishop topology F on a set X. These are inductively de-
fined sets of F -complemented subsets of X. Because of the constructive
definition of Borel(F ), and in contrast to classical topology, we show
that Baire(F ) = Borel(F ). We define the uniform version of an F -
complemented subset of X and we show the Urysohn lemma for them.
We work within Bishop’s system BISH∗ of informal constructive mathe-
matics that includes inductive definitions with rules of countably many
premises.

1 Introduction

The set of Borel sets generated by a given family of complemented subsets of
a set X, with respect to a set Φ of real-valued functions on X, was introduced
in [2], p. 68. This set is inductively defined and plays a crucial role in providing
important examples of measure spaces in Bishop’s measure theory developed
in [2]. As this measure theory was replaced in [4] by the Bishop-Cheng measure
theory, an enriched version of [3] that made no use of Borel sets, the Borel sets
were somehow “forgotten” in the constructive literature.

In the introduction of [3], Bishop and Cheng explained why they consider
their new measure theory “much more natural and powerful theory”. They do
admit though that some results are harder to prove (see [3], p. v). As it is
also noted though, in [20], p. 25, the Bishop-Cheng measure theory is highly
impredicative, while, although we cannot explain this here, Bishop’s measure
theory in [2] is highly predicative. This fact makes the original Bishop-Cheng
measure theory hard to implement in some functional-programming language,
a serious disadvantage from the computational point of view. This is maybe
why, later attempts to develop constructive measure theory were done within an
abstract algebraic framework (see [7], [8] and [21].)

Despite the history of measure theory within Bishop-style constructive math-
ematics, the set of Borel sets is interesting on its own, and, as we try to show
here, there are interesting interconnections between the theory of Bishop spaces
and the notion of Borel sets. The notion of Bishop space, Bishop used the term
function space for it, was also introduced by Bishop in [2], p. 71, as a construc-
tive and function-theoretic alternative to the notion of a topological space. The
notion of a least Bishop topology generated by a given set of function from X
to R, together with the set of Borel sets generated by a family of complemented
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subsets of X, are the main two inductively defined concepts found in [2]. The
theory of Bishop spaces was not elaborated by Bishop, and it remained in obliv-
ion, until Bridges and Ishihara revived the subject in [5] and [12], respectively.
In [14]-[18] we tried to develop their theory.

This paper is the first step towards a systematic study of Borel sets and Baire
sets, that we introduce here, in Bishop spaces. A Bishop topology is a set of real-
valued functions on X, all elements of which are “a priori” continuous. The study
of Borel and Baire sets within Bishop spaces is a constructive counterpart to the
study of Borel and Baire algebras within topological spaces.

As it is indicated here, but needs to be elaborated further somewhere else,
using complemented subsets to represent pairs of basic open sets and basic closed
sets has as a result that some parts of the classical duality between open and
closed sets in a topological space are recovered constructively. This reinforces
our conviction that the notion of a complemented subset is one of the most
important positive notions introduced by Bishop to overcome the difficulties
that negatively defined concepts generate in constructive mathematics.

We work within Bishop’s informal system of constructive mathematics BISH∗,
that is BISH together with inductive definitions with rules of countably many
premises. Roughly speaking, [2] is within BISH∗, while [3] and [4] are within
BISH. A formal system for BISH∗ is Myhill’s system CST∗ in [13], or CZF
with dependence choice and some weak form of Aczel’s regular extension axiom
(see [1]).

All proofs that are not included here, are omitted as straightforward.

2 F -complemented subsets

A Bishop space is a constructive, function-theoretic alternative to the set-theoretic
notion of topological space and a Bishop morphism is the corresponding notion of
“continuous” function between Bishop spaces. In contrast to topological spaces,
continuity of functions is a primitive notion and a concept of open set comes a
posteriori. A Bishop topology on a set can be seen as an abstract and construc-
tive approach to the ring of continuous functions C(X) of a topological space
X.

Definition 1. A Bishop space is a couple F := (X,F ), where X is an inhabited
set (i.e., a set with a given element in it) and F is a subset of F(X), the set of
all real-valued functions on X, such that the following conditions hold:

(BS1) The set of constant functions Const(X) on X is included in F .

(BS2) If f, g ∈ F , then f + g ∈ F .

(BS3) If f ∈ F and φ ∈ Bic(R), then φ ◦ f ∈ F , where Bic(R) is the set of all
Bishop-continuous functions from R to R i.e., of all functions that are uniformly
continuous on every closed interval [−n, n], where n ≥ 1.

(BS4) If f ∈ F(X) and (gn)∞n=1 such that U(f, gn,
1
n ) :⇔ ∀x∈X

(
|f(x)− gn(x)| ≤

1
n

)
, for every n ≥ 1, then f ∈ F .
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We call F a Bishop topology on X. If G := (Y,G) is a Bishop space, a Bishop
morphism from F to G is a function h : X → Y such that ∀g∈G

(
g ◦ h ∈ F

)
. We

denote by Mor(F ,G) the set of Bishop morphisms from F to G.

It is easy to show (see [2], p. 71) that a Bishop topology F is an algebra
and a lattice, where f ∨ g and f ∧ g are defined pointwise, and if a, b ∈ R, then
a∨ b := max{a, b} and a∧ b := min{a, b}. Moreover, Bic(R) is a Bishop topology
on R, Const(X) and F(X) are Bishop topologies on X. If F is a Bishop topology
on X, then Const(X) ⊆ F ⊆ F(X), and F ∗ := F ∩ F∗(X) is a Bishop topology
on X, where F∗(X) denotes the bounded elements of F(X).

Definition 2. Turning the definitional clauses (BS1) − (BS4) into inductive
rules one can define the least Bishop topology

∨
F0 on X that includes a given

subset F0 of F(X). In this case F0 is called a subbase of F . A base of F is a
subset B of F such that for every f ∈ F there is a sequence (gn)∞n=1 ⊆ B such
that ∀n≥1

(
U(f, gn,

1
n )
)
.

From now on, F denotes a Bishop topology on an inhabited set X and G a
Bishop topology on an inhabited set Y . For simiplicity, we denote the constant
function on X with value a ∈ R also by a.

A complemented subset of X is a couple (A1, A0) of subsets of X such that
every element of A1 is “apart” from every element of A0, where the apartness
relation x 6= y on a set X is a positive and stronger version of the negatively
defined inequality ¬(x =X y). Here x 6= y is defined through a given set of
functions from X to R. The induced apartness between A1 and A0 is a positive
and stronger version of the negatively defined disjointness A1 ∩A0 = ∅.

Definition 3. An inequality on X is a relation x 6= y such that the following
conditions are satisfied:

(Ap1) ∀x,y∈X
(
x =X y & x 6= y ⇒ ⊥

)
.

(Ap2) ∀x,y∈X
(
x 6= y ⇒ y 6= x

)
.

(Ap3) ∀x,y∈X
(
x 6= y ⇒ ∀z∈X(z 6= x ∨ z 6= y)

)
.

If a, b ∈ R, we define a 6=R b :⇔ |a − b| > 0. Usually, we write a 6= b instead of
a 6=R b. The inequality x 6=F y on X generated by F is defined by

x 6=F y :⇔ ∃f∈F
(
f(x) 6=R f(y)

)
.

A complemented subset of X with respect to 6=F , or an F -complemented subset of
X, is a pair A := (A1, A0) such that ∀x∈A1∀y∈A0

(
x 6=F y

)
. In this case we write

A1][FA
0, and we denote their totality by P ][F (X). The characteristic function

of A is the map χA : A0 ∪A1 → 2 defined by

χA(x) :=

{
1 , x ∈ A1

0 , x ∈ A0.

If A,B are in P ][F (X), then A = B :⇔ A1 = B1 & A0 = B0, and A ⊆ B :⇔
A1 ⊆ B1 & B0 ⊆ A0.
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Clearly, a 6= b ⇔ a > b ∨ a < b and A1][FA
0 ⇒ A1 ∩ A0 = ∅. If A,B ⊆ R,

the implication A ∩ B = ∅ ⇒ A ][Bic(R) B implies Markov’s principle, hence
it cannot be accepted in BISH∗. To see this, take A := {x ∈ R | ¬(x = 0)}
and B := {x ∈ R | x = 0}. If A ][Bic(R) B, then for every x ∈ A, there is
some φx ∈ Bic(R) such that φx(x) 6= φx(0). Every element of Bic(R) though, is
strongly extensional i.e., φx(x) 6= φx(0) ⇒ x 6= 0 (see Proposition 5.1.2 in [14],
p. 102). Actually, we have that ∀x,y∈R

(
x 6=Bic(R) y ⇔ x 6=R y

)
. In this way we

get ∀x∈R
(
¬(x = 0)⇒ x 6= 0

)
, which is equivalent to Markov’s principle (see [6],

p. 20).

Corollary 1. If A,B ∈ P ][F (X), then

A ∪B := (A1 ∪B1, A0 ∩B0) & A ∩B := (A1 ∩B1, A0 ∪B0),

A−B := (A1 ∩B0, A0 ∪B1) & −A := (A0, A1),

are F -complemented subsets of X.

Clearly, −(−A)) = A, and A−B = A∩(−B). In [3], p. 16, and in [4], p. 73,
the “union” and the “intersection” of A and B are defined in a more complex
way, so that their corresponding characteristic functions are given through the
characteristic functions of A and B. Since here we do not use the characteristic
functions of the complemented subsets, we keep the above simpler definitions
given in [2], p. 66. If A2n := A and A2n+1 := B, for every n ≥ 1, the definitions
of A ∪B and A ∩B are special cases of the following definitions.

Corollary 2. If (An)∞n=1 ⊆ P ][F (X), then

∞⋃
n=1

An :=

( ∞⋃
n=1

A1
n,

∞⋂
n=1

A0
n

)
&

∞⋂
n=1

An :=

( ∞⋂
n=1

A1
n,

∞⋃
n=1

A0
n

)
,

are F -complemented subsets of X. Moreover,

−
∞⋂

n=1

An =

∞⋃
n=1

(−An) & −
∞⋃

n=1

An =

∞⋂
n=1

(−An).

Proposition 1. If h ∈ Mor(F ,G), A,B ∈ P ][G(Y ), (An)∞n=1 ⊆ P ][F (Y ) , let

h−1(A) :=
(
h−1(A1), h−1(A0)

)
.

(i) h−1(A) ∈ P ][F (X).

(ii) h−1(A ∪B) = h−1(A) ∪ h−1(B), and h−1(A ∩B) = h−1(A) ∩ h−1(B).

(iii) h−1(−A) = −h−1(A) and h−1(A−B) = h−1(A)− h−1(B).

(iv) h−1
(⋃∞

n=1An

)
=
⋃∞

n=1 h
−1(An) and h−1

(⋂∞
n=1An

)
=
⋂∞

n=1 h
−1(An).

Proof. (i) Let x ∈ h−1(A1) and y ∈ h−1(A0) i.e., h(x) ∈ A1 and h(y) ∈ A0. Let
g ∈ G such that g(h(x)) 6= g(h(y)). Hence, g ◦ h ∈ F and (g ◦ h)(x) 6= (g ◦ h)(y).
The rest of the proof is omitted as straightforward.
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3 Borel sets

The Borel sets in a topological space (X, T ) is the least set of subsets of X that
includes the open (or, equivalently the closed) sets in X and it is closed under
countable unions, countable intersections and relative complements. The Borel
sets in a Bishop space (X,F ) is the least set of complemented subsets of X that
includes the basic F -complemented (open-closed) subsets ofX that are generated
by F , and it is closed under countable unions and countable intersections (the
closure under relative complements is redundant in the case of Bishop spaces).
The next definition is Bishop’s definition, given in [2], p. 68, restricted though,
to Bishop topologies.

Definition 4. An I-family of F -complemented subsets of X is an assignment
routine λ that assigns to every i ∈ I an F -complemented subset λ(i) of X such
that ∀i,j∈I

(
i =I j ⇒ λ(i) =P][F (X) λ(j)

)
. An I-family of F -complemented sub-

sets of X is called an I-set of complemented subsets of X, if ∀i,j∈I
(
λ(i) =P][F (X)

λ(j)⇒ i =I j
)
. The set Borel(λ) of Borel sets generated by λ is defined induc-

tively by the following rules:

(Borel1)
i ∈ I

λ(i) ∈ Borel(λ)

(Borel2)
B(1) ∈ Borel(λ),B(2) ∈ Borel(λ), . . .⋃∞

n=1B(n) ∈ Borel(λ) &
⋂∞

n=1B(n) ∈ Borel(λ)
.

In the induction principle IndBorel(λ) associated to the definition of Borel(λ) we
take P to be any formula in which the set Borel(F ) does not occur.

∀i∈I
(
P (λ(i))

)
& ∀α:N→P][F (X)

[
∀n≥1

(
α(n) ∈ Borel(λ) & P (α(n))

)
⇒

P

( ∞⋃
n=1

α(n)

)
& P

( ∞⋂
n=1

α(n)

)]
⇒ ∀B∈Borel(λ)

(
P (B)

)
.

Let oF , or simply o, be the F -family of the basic F -complemented subsets of X:

oF (f) :=
(
[f > 0], [f ≤ 0]

)
,

[f > 0] := {x ∈ X | f(x) > 0}, [f ≤ 0] := {x ∈ X | f(x) ≤ 0}.
We write Borel(F ) := Borel(oF ) and we call its elements the Borel sets in F .

Proposition 2. (i) If we keep the pointwise equality of functions as the equality
of F , then the F -family o is not a set of F -complemented subsets of X.

(ii) o(1) = (X, ∅) and o(−1) = (∅, X).

(iii) If f, g ∈ F , then o(f) ∪ o(g) = o(f ∨ g).

(iv) If B ∈ Borel(F ), then −B ∈ Borel(F ).

(v) There is a Bishop space (X,F ) and some f ∈ F such that −o(f) is not equal
to o(g) for some g ∈ F .

(vi) o(f) = o([f ∨ 0] ∧ 1).
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Proof. (i) and (ii) If f ∈ F , then o(f) = o(2f), but ¬(f = 2f). (ii) is trivial.
(iii) This equality is implied from the following property for reals

a ∨ b > 0⇔ a > 0 ∨ b > 0 & a ∨ b ≤ 0⇔ a ≤ 0 ∧ b ≤ 0.

(iv) If a ∈ R, then a ≤ 0⇔ ∀n≥1
(
a < 1

n

)
and a > 0⇔ ∃n≥1

(
a ≥ 1

n

)
, hence

−o(f) :=
(
[f ≤ 0], [f > 0]

)
=

( ∞⋂
n=1

[( 1

n
− f

)
> 0
]
,

∞⋃
n=1

[( 1

n
− f

)
≤ 0
])

:=

∞⋂
n=1

o
( 1

n
− f

)
∈ Borel(F ).

If P (B) := −B ∈ Borel(F ), the above equality proves the first step of the
corresponding induction on Borel(F ). The rest of the inductive proof is easy.
(v) Let the Bishop space (R,Bic(R)). If we take o(idR) :=

(
[x > 0], [x ≤ 0]

)
, and

if we suppose that −o(idR) :=
(
[x ≤ 0], [x > 0]

)
=
(
[φ > 0], [φ ≤ 0]

)
=: o(φ), for

some φ ∈ Bic(R), then φ(0) > 0 and φ is not continuous at 0, which contradicts
the fact that φ is uniformly continuous on every bounded subset of R.
(vi) The proof is based on basic properties of R, like a ∧ 1 = 0⇒ a = 0.

Since Borel(F ) is closed under intersections and complements, if A,B ∈
Borel(F ), then A −B ∈ Borel(F ). As Bishop remarks in [2], p. 69, the proof
of Proposition 2(iv) rests on the property of F that

(
1
n − f

)
∈ F , for every

f ∈ F and n ≥ 1. If we define similarly the Borel sets generated by any family of
real-valued functions Θ on X, then we can find Θ such that Borel(Θ) is closed
under complements without satisfying the condition f ∈ Θ ⇒

(
1
n − f

)
∈ Θ.

Such a family is the set F(X, 2) of all functions from X to 2 := {0, 1}. In this
case we have that

oF(X,2)(f) :=
(
[f = 1], [f = 0]

)
& − oF(X,2)(f) = oF(X,2)(1− f).

Hence, the property mentioned by Bishop is sufficient, but not necessary. Con-
structively, we cannot show, in general, that o(f) ∩ o(g) = o(f ∧ g). If f :=
idR ∈ Bic(R) and g := −idR ∈ Bic(R), then o(idR) ∩ o(−idR) =

(
[x > 0] ∩ [x <

0], [x ≤ 0] ∪ [−x ≤ 0]
)

=
(
∅, [x ≤ 0] ∪ [x ≥ 0]

)
Since x ∧ (−x) = −|x|, we

get o(idR ∧ (−idR)) = o(−|x|) =
(
∅, [|x| ≥ 0]

)
. The supposed equality implies

that |x| ≥ 0 ⇔ x ≤ 0 ∨ x ≥ 0. Since |x| ≥ 0 is always the case, we get
∀x∈R

(
x ≤ 0 ∨ x ≥ 0

)
, which implies LLPO (see [6], p. 20). If one add the con-

dition |f | + |g| > 0, then o(f) ∩ o(g) = o(f ∧ g) follows constructively. The
condition BS4 in the definition of a Bishop space is crucial to the next proof.

Proposition 3. If (fn)∞n=1 ⊆ F , then f :=
∑∞

n=1(fn ∨ 0) ∧ 2−n ∈ F and

o(f) =

∞⋃
n=1

o(fn) =

( ∞⋃
n=1

[fn > 0],

∞⋂
n=1

[fn ≤ 0]

)
.
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Proof. The function f is well-defined by the comparison test (see [4], p. 32). If
gn := (fn ∨ 0) ∧ 2−n, for every n ≥ 1, then∣∣∣∣ ∞∑

n=1

gn −
N∑

n=1

gn

∣∣∣∣ =

∣∣∣∣ ∞∑
n=N+1

gn

∣∣∣∣ ≤ ∞∑
n=N+1

|gn| ≤
∞∑

n=N+1

1

2n
N−→ 0,

the sequence of the partial sums
∑N

n=1 gn ∈ F converges uniformly to f , hence by
BS4 we get f ∈ F . Next we show that [f > 0] ⊆

⋃∞
n=1[fn > 0]. If x ∈ X such that

f(x) > 0, there is N ≥ 1 such that
∑N

n=1 gn(x) > 0. By Proposition (2.16) in [4],
p. 26, there is n ≥ 1 and n ≤ N with gn(x) > 0, hence (fn(x) ∨ 0) ≥ gn(x) > 0,
which implies fn(x) > 0. For the converse inclusion, if fn(x) > 0, for some
n ≥ 1, then gn(x) > 0, hence f(x) > 0. To show [f ≤ 0] ⊆

⋃∞
n=1[fn ≤ 0], let

x ∈ X such that f(x) ≤ 0, and suppose that fn(x) > 0, for some n ≥ 1. By the
previous argument we get f(x) > 0, which contradicts our hypothesis f(x) ≤ 0.
For the converse inclusion, let fn(x) ≤ 0, for every n ≥ 1, hence fn(x) ∨ 0 = 0
and gn(x) = 0, for every n ≥ 1. Consequently, f(x) = 0.

Proposition 4. If h ∈ Mor(F ,G) and B ∈ Borel(G), then h−1(B) ∈ Borel(F ).

Proof. By the definition of h−1(B) in Proposition 1, if g ∈ G, then

h−1(oG(g)) := h−1
(
[g > 0], [g ≤ 0]

)
:=
(
h−1[g > 0], h−1[g ≤ 0]

)
=
(
[(g ◦ h) > 0], [(g ◦ h) ≤ 0]

)
:= oF (g ◦ h) ∈ Borel(F ).

If P (B) := h−1(B) ∈ Borel(F ), the above equality is the first step of the
corresponding inductive proof on Borel(G). The rest of the inductive proof
follows immediately from Proposition 1(iv).

Definition 5. If B ⊆ F , let oB be the B-family of F -complemented subsets of
X defined by oB(f) := oF (f), for every f ∈ B. We denote by Borel(B) the set
of Borel sets generated by oB.

If F0 is a subbase of F , then, Borel(F0) ⊆ Borel(F ). More can be said on
the relation between Borel(B) and Borel(F ), when B is a base of F .

Proposition 5. Let B be a base of F .

(i) If for every f ∈ F , oF (f) ∈ Borel(B), then Borel(F ) = Borel(B).

(ii) If for every g ∈ B and f ∈ F , f ∧ g ∈ B, then Borel(F ) = Borel(B).

(iii) If for every g ∈ B and every n ≥ 1, g− 1
n ∈ B, then Borel(F ) = Borel(B).

Proof. (i) It follows by a straightforward induction on Borel(F ).
(ii) and (iii) Let (gn)∞n=1 ⊆ B such that ∀n≥1

(
U(f, gn,

1
n )
)
. We have that

oF (f) ⊆
∞⋃

n=1

oB(gn) :=

( ∞⋃
n=1

[gn > 0],

∞⋂
n=1

[gn ≤ 0]

)
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i.e., by Definition 3, [f > 0] ⊆
⋃∞

n=1[gn > 0] and
⋂∞

n=1[gn ≤ 0] ⊆ [f ≤ 0]; if
x ∈ X with f(x) > 0 there is n ≥ 1 with gn(x) > 0, and if ∀n≥1

(
gn(x) ≤ 0

)
,

then for the same reason f(x) cannot be > 0, hence f(x) ≤ 0.
Because of (i), for (ii) it suffices to show that oF (f) ∈ Borel(B). We show that

oF (f) =

∞⋃
n=1

oB(f ∧ gn) :=

( ∞⋃
n=1

[(f ∧ gn) > 0],

∞⋂
n=1

[(f ∧ gn) ≤ 0]

)
∈ Borel(B).

If f(x) > 0, then we can find n ≥ 1 such that gn(x) > 0, hence f(x)∧ gn(x) > 0.
Hence we showed that [f > 0] ⊆

⋃∞
n=1[(f ∧ gn) > 0]. For the converse inclusion,

let x ∈ X and n ≥ 1 such that (f ∧gn)(x) > 0. Then f(x) > 0 and x ∈ [f > 0]. If
f(x) ≤ 0, then ∀n≥1

(
f(x)∧ gn(x) ≤ 0

)
. Suppose next that ∀n≥1

(
f(x)∧ gn(x) ≤

0
)
. If f(x) > 0, there is n ≥ 1 with gn(x) > 0, hence f(x) ∧ gn(x) > 0, which

contradict the hypothesis f(x) ∧ gn(x) ≤ 0. Hence f(x) ≤ 0.
Because of (i), for (iii) it suffices to show that oF (f) ∈ Borel(B). We show that

oF (f) =

∞⋃
n=1

oB
(
gn−

1

n

)
:=

( ∞⋃
n=1

[(
gn−

1

n

)
> 0
]
,

∞⋂
n=1

[(
gn−

1

n

)
≤ 0
])
∈ Borel(B).

First we show that [f > 0] ⊆
⋃∞

n=1

[(
gn − 1

n

)
> 0

]
. If f(x) > 0, there is n ≥ 1

with f(x) > 1
n , hence, since − 1

2n ≤ g2n(x)− f(x) ≤ 1
2n , we get

g2n(x)− 1

2n
≥
(
f(x)− 1

2n

)
− 1

2n
= f(x)− 1

n
> 0

i.e., x ∈
[(
g2n − 1

2n

)
> 0
]
. For the converse inclusion, let x ∈ X and n ≥ 1 such

that gn(x) − 1
n > 0. Since 0 < gn(x) − 1

n ≤ f(x), we get x ∈ [f > 0]. Next we
show that [f ≤ 0] ⊆

⋂∞
n=1[

(
gn− 1

n

)
≤ 0]. Let x ∈ X with f(x) ≤ 0, and suppose

that n ≥ 1 with gn(x)− 1
n > 0. Then 0 ≥ f(x) > 0. By this contradiction we get

gn(x) − 1
n ≤ 0. For the converse inclusion let x ∈ X such that gn(x) − 1

n ≤ 0,
for every n ≥ 1, and suppose that f(x) > 0. Since we have already shown that
[f > 0] ⊆

⋃∞
n=1

[(
gn − 1

n

)
> 0
]
, there is some n ≥ 1 with gn(x)− 1

n > 0, which
contradicts our hypothesis, hence f(x) ≤ 0.

4 Baire sets

One of the definitions1 of the set of Baire sets in a topological space (X, T ), which
was given by Hewitt in [11], is that it is the least σ-algebra of subsets of X that
includes the zero sets of X i.e., the sets of the form f−1({0}), where f ∈ C(X).
Clearly, a Baire set in (X, T ) is a Borel set in (X, T ), and for many topological
spaces, like the metrizable ones, the two classes coincide. In this section we adopt
Hewitt’s notion in Bishop spaces and the framework of F -complemented subsets.

1 A different definition is given in [10]. See [19] for the relations between these two
definitions.
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Definition 6. Let ζF , or simply ζ, be the F -family of the F -zero complemented
subsets of X:

ζF (f) :=
(
[f = 0], [f 6= 0]

)
,

[f = 0] := {x ∈ X | f(x) = 0}, [f 6= 0] := {x ∈ X | f(x) 6= 0}.
We write Baire(F ) := Borel(ζF ) and we call its elements the Baire sets in F .

Since a 6= 0 :⇔ |a| > 0⇔ a < 0 ∨ a > 0, for every a ∈ R, we get

ζF (f) =
(
[f = 0], [|f | > 0]

)
=
(
[f = 0], [f > 0] ∪ [f < 0]

)
.

Proposition 6. (i) If we keep the pointwise equality of functions as the equality
of F , then the F -family ζ is not a set of F -complemented subsets of X.

(ii) ζ(0) = (X, ∅) and ζ(1) = (∅, X).
(iii) If f, g ∈ F , then ζ(f) ∩ ζ(g) = ζ(|f | ∨ |g|).

(iv) If B ∈ Baire(F ), then −B ∈ Baire(F ).

(v) There is a Bishop space (X,F ) and some f ∈ F such that −ζ(f) is not equal
to ζ(g) for some g ∈ F .

(vi) ζ(f) = ζ(|f | ∧ 1).

Proof. (i) and (ii) If f ∈ F , then ζ(f) = ζ(2f), but ¬(f = 2f). (ii) is trivial.
(iii) This equality is implied from the following property for reals

|a| ∨ |b| = 0⇔ |a| = 0 ∧ |b| = 0 & |a| ∨ |b| 6= 0⇔ |a| > 0 ∨ |b| > 0.

(iv) If f ∈ F , then −ζ(f) :=
(
[f 6= 0], [f = 0]

)
. For every n ≥ 1, let

gn :=
(
|f | ∧ 1

n

)
− 1

n
∈ F.

We show that
∞⋃

n=1

ζ(gn) :=

( ∞⋃
n=1

[gn = 0],

∞⋂
n=1

[gn 6= 0]

)
= −ζ(f) ∈ Baire(F ).

First we show that [f 6= 0] =
⋃∞

n=1[gn = 0]. If |f(x)| > 0, there is n ≥ 1 such that
|f(x)| > 1

n , hence |f(x)| ∧ 1
n = 1

n , and gn(x) = 0. For the converse inclusion, let
x ∈ X and n ≥ 1 such that gn(x) = 0⇔ |f(x)| ∧ 1

n = 1
n , hence |f(x)| ≥ 1

n > 0.
Next we show that [f = 0] =

⋂∞
n=1[gn 6= 0]. If x ∈ X such that f(x) = 0, and

n ≥ 1, then gn(x) = − 1
n < 0. For the converse inclusion, let x ∈ X such that for

all n ≥ 1 we have that gn(x) 6= 0. If |f(x)| > 0, there is n ≥ 1 such that |f(x)| >
1
n , hence gn(x) = 0, which contradicts our hypothesis. Hence, |f(x)| ≤ 0, which
implies that |f(x)| = 0 ⇔ f(x) = 0. If P (B) := −B ∈ Baire(F ), the above
equality proves the first step of the corresponding induction on Baire(F ). The
rest of the inductive proof is immediate2.

2 Hence, if we define the set of Baire sets over an arbitrary family Θ of functions from
X to R, a sufficient condition so that Baire(Θ) is closed under complements is that
Θ is closed under |.|, under wedge with 1

n
and under subtraction with 1

n
, for every

n ≥ 1. If Θ := F(X, 2), then −oF(X,2)(f) = oF(X,2)(1 − f) = ζF(X,2)(f), hence by
Proposition 4(ii) we get Borel(F(X, 2)) = Baire(F(X, 2)).
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(v) Let the Bishop space (R,Bic(R)). If we take ζ(idR) :=
(
[x = 0], [x 6= 0]

)
, and

if we suppose that −ζ(idR) :=
(
[x 6= 0], [x = 0]

)
=
(
[φ = 0], [φ 6= 0]

)
=: ζ(φ),

for some φ ∈ Bic(R), then φ(0) > 0 ∨ φ(0) < 0 and φ(x) = 0, if x < 0 or x > 0.
Hence φ is not continuous at 0, which contradicts the fact that φ is uniformly
continuous on every bounded subset of R.
(vi) This proof is straightforward.

As in the case of basic Borel sets in F , we cannot show constructively that
ζ(f) ∪ ζ(g) = ζ(|f | ∧ |g|). If we add the condition |f | + |g| > 0 though, this
equality is constructively provable.

Proposition 7. If (fn)∞n=1 ⊆ F , then f :=
∑∞

n=1 |fn| ∧ 2−n ∈ F and

ζ(f) =

∞⋂
n=1

ζ(fn) =

( ∞⋂
n=1

[fn = 0],

∞⋃
n=1

[fn 6= 0]

)
.

Proof. Working as in the proof of Proposition 3, f is well-defined and if gn :=
|fn| ∧ 2−n, for every n ≥ 1, then the sequence of the partial sums

∑N
n=1 gn ∈

F converges uniformly to f , and by BS4 we get f ∈ F . Since f(x) = 0 ⇔
∀≥1(gn(x) = 0) ⇔ ∀≥1(fn(x) = 0), we get [f = 0] =

⋂∞
n=1[fn = 0]. Next we

show that [f 6= 0] ⊆
⋃∞

n=1[fn 6= 0]. If |f(x)| > 0, then there is N ≥ 1 such that∑N
n=1 gn(x) > 0. By Proposition (2.16) in [4], p. 26, there is some n ≥ 1 and

n ≥ N such that gn(x) > 0, hence |fn(x)| ≥ gn(x) > 0. The converse inclusion
follows trivially.

Theorem 1. (i) If B ∈ Baire(F ), then B ∈ Borel(F ).

(ii) If o(f) ∈ Baire(F ), for every f ∈ F , then Baire(F ) = Borel(F ).

(iii) If f ∈ F , then o(f) = −ζ
(
(−f) ∧ 0

)
.

(iv) Baire(F ∗) = Baire(F ) = Borel(F ) = Borel(F ∗).

Proof. (i) By Proposition 2(iv) −o(f) =
(
[f ≤ 0], [f > 0]

)
∈ Borel(F ), for every

f ∈ F , hence −o(−f) =
(
[f ≥ 0], [f < 0] ∈ Borel(F ) too. Consequently

−o(f) ∩ −o(−f) =
(
[f ≤ 0] ∩ [f ≥ 0], [f > 0] ∪ [f < 0]

)
= ζ(f) ∈ Borel(F ).

If P (B) := B ∈ Borel(F ), the above equality is the first step of the correspond-
ing inductive proof on Baire(F ). The rest of the inductive proof is trivial.
(ii) The hypothesis is the first step of the obvious inductive proof on Borel(F ),
which shows that Borel(F ) ⊆ Baire(F ). By (i) we get Baire(F ) ⊆ Borel(F ).
(iii) We show that(

[f > 0], [f ≤ 0]
)

=
(
[(−f) ∧ 0 6= 0], [(−f) ∧ 0 = 0]

)
.

First we show that [f > 0] ⊆ [(−f) ∧ 0 6= 0]; if f(x) > 0, then −f(x) ∧ 0 =
−f(x) < 0. For the converse inclusion, let −f(x) ∧ 0 6= 0 ⇔ −f(x) ∧ 0 >
0 or −f(x) ∧ 0 < 0. Since 0 ≥ −f(x) ∧ 0, the first option is impossible. If
−f(x) ∧ 0 < 0, then −f(x) < 0 or 0 < 0, hence f(x) > 0. Next we show that
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[f ≤ 0] = [(−f) ∧ 0 = 0]; since f(x) ≤ 0⇔ −f(x) ≥ 0⇔ −f(x) ∧ 0 = 0 (see [6],
p. 52), the equality follows.
(iv) Clearly, Baire(F ∗) ⊆ Baire(F ). By Proposition 6(vi) ζ(f) = ζ(|f | ∧ 1),
where |f | ∧ 1 ∈ F ∗. Continuing with the obvious induction we get Baire(F ) ⊆
Baire(F ∗). By case (iii) and Proposition 6(iv) we get o(f) ∈ Baire(F ), hence
by case (ii) we conclude that Baire(F ) = Borel(F ). Clearly, Borel(F ∗) ⊆
Borel(F ). By Proposition 2(vi) o(f) = o((f ∨ 0) ∧ 1), where (f ∨ 0) ∧ 1 ∈ F ∗.
Continuing with the obvious induction we get Borel(F ) ⊆ Borel(F ∗).

Either by definition, as in the proof of Proposition 4, or by Theorem 1(iii) and
Proposition 4, if h ∈ Mor(F ,G) and B ∈ Baire(G), then h−1(B) ∈ Baire(F ).

5 Uniformly F -complemented subsets

Next follows the uniform version of the notion of an F -complemented subset.

Definition 7. If A := (A1, A0) ∈ P ][F (X), we say that A is uniformly F -
complemented, and we write A1 6=F A0, if

∃f∈F∀x∈A1∀y∈A0

(
f(x) = 1 & f(y) = 0

)
.

Taking (f∨0)∧1 we get A1 6=F A0 ⇔ ∃f∈F
[
0 ≤ f ≤ 1 & ∀x∈A1∀y∈A0

(
f(x) =

1 & f(y) = 0
)]

. In [3], p. 55, the following relation is defined:

A ≤ B :⇔ A1 ⊆ B1 & A0 ⊆ B0.

If A1 6=F A0, then A ≤ o(f). According to the classical Urysohn lemma for
C(X)-zero sets, the disjoint zero sets of a topological space X are separated by
some f ∈ C(X) (see [9], p. 17). We show a constructive version of this, where
disjointness is replaced by a stronger, but positively defined form of it.

Theorem 2 (Urysohn lemma). If A := (A1, A0) ∈ P ][F (X), then

A1 6=F A0 ⇔ ∃f,g∈F∃c>0

(
A ≤ ζ(f) & −A ≤ ζ(g) & |f |+ |g| ≥ c

)
.

Proof. (⇒) Let h ∈ F such that 0 ≤ h ≤ 1, A1 ⊆ [h = 1] and A0 ⊆ [h = 0].
We take f := 1 − h ∈ F, g := h and c := 1. First we show that A ≤ ζ(f).
If x ∈ A1, then h(x) = 1, and f(x) = 0. If y ∈ A0, then h(y) = 0, hence
f(y) = 1 and y ∈ [f 6= 0]. Next we show that −A ≤ ζ(g). If y ∈ A0, then
h(y) = 0 = g(y). If x ∈ A1, then h(x) = 1 = g(y) i.e., x ∈ [g 6= 0]. If x ∈ X, then
1 = |1− h(x) + h(x)| ≤ |1− h(x)|+ |h(x)|.
(⇐) Let h := 1−

(
1
c |f | ∧ 1

)
∈ F . If x ∈ A1, then f(x) = 0, and hence h(x) = 1.

If y ∈ A0, then g(y) = 0, hence |f(y)| ≥ c, and consequently h(y) = 0.

The condition BS3 is crucial to the next proof.

Corollary 3. If A := (A1, A0) ∈ P ][F (X) and f ∈ F , then

f(A1) 6=Bic(R) f(A0)⇒ A1 6=F A0.
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Proof. If f(A) :=
(
f(A1), f(A0)

)
is uniformly Bic(R)-complemented, then by

Urysohn lemma there are φ, θ ∈ Bic(R) and c > 0 with f(A) ≤ ζ(φ),−f(A) ≤
ζ(θ) and |φ|+ |θ| ≥ c. Consequently, A ≤ ζ(φ◦f),−A ≤ ζ(θ◦f) and |φ◦f |+ |θ◦
f | ≥ c. Since by BS3 we have that φ ◦ f and θ ◦ f ∈ F , by the other implication
of the Urysohn lemma we get A1 6=F A0.
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