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The full mark in each exercise is 10 points. Correct answers with-

out proofs are not accepted. Each step should be justified. You

can hand in the solutions either in German or in English.

Exercise 29. Let f0 ∈ L2(S1).

(i) Find the Fourier series of the solution in C1(R+
t , C4(S1

x
)) of the partial differential equation

∂tf = −∆x(∆xf) − 20∆xf + 630f

that satisfies the condition
lim

t→0+
f(t, ·) = f0

where the limit is in L2(S1)). (Hint: the same as in Problems in class no. 29 and 30.)

(ii) Find all the f0’s for which lim
t→+∞

f(t, ·) exists in L2(S1) and compute this limit for such

f0’s.

Exercise 30. Consider the space S(Rn) of functions of rapid decrease on R
n with its natural

topology (this space was introduced in the Problem in class no. 32).

(i) Show that for every x ∈ R
n the linear map δx : S(Rn) → C with δx(f) := f(x) (the

“Dirac delta”) is continuous.

(ii) Let h ∈ L1(Rn) with
∫

h(x)dx = 1 and let hN(x) := Nnh(Nx) ∀x ∈ R
n. Show that the

linear map δ(N) : S(Rn) → C with δ(N)(f) :=

∫

Rd

hN(x)f(x) dx is continuous and

δ(N)(f)
N→∞
−−−→ δ(f) ∀f ∈ S(Rn) .

(iii) Show that for any f ∈ S(R) the limit lim
ε→0

∫

|x|>ε

1

x
f(x) dx exists and is finite.

(iv) Show that the linear map P
1

x
: S(R) → C with

(

P
1

x

)

(f) := lim
ε→0

∫

|x|>ε

1

x
f(x) dx

(the “Cauchy principal value”) is continuous.
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Exercise 31. Let (X, ‖ ‖
X
) be a normed space and let (X∗, ‖ ‖

X∗
) be its dual. Let φ ∈ X∗\{0}.

Prove that for any x ∈ X

dist(x, ker φ) =
|φ(x)|

‖φ‖
X∗

.

Exercise 32. Compute the norm of the following functionals:

(i) φ ∈ (C([−1, 1]), ‖ ‖∞)∗ with φ(f) :=

∫ 1

−1

xf(x) dx

(ii) φ ∈ (L1[−1, 1], ‖ ‖1)
∗ with φ(f) :=

∫ 1

−1

xf(x) dx

(iii) φ ∈ (L2[−1, 1], ‖ ‖2)
∗ with φ(f) :=

∫ 1

−1

xf(x) dx

(iv) φ ∈ (ℓ1, ‖ ‖ℓ1)
∗ with φ(x) :=

∞
∑

n=1

xn

n
(x = {xn}

∞
n=1)

(v) φ ∈ (ℓ2, ‖ ‖ℓ2)
∗ with φ(x) :=

∞
∑

n=1

xn

n
(x = {xn}

∞
n=1) .
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