Mathematisches Institut der LMU – SS2010 Prof. L. Erdős Ph.D., A. Michelangeli Ph.D.

Issued: Monday 31 May 2010

Due: Monday 7 June 2010 by 12 p.m. in the designated "Funktionalanalysis" box on the 1st floor Students who will be attending the Mon 7 June tutorial have to hand in their solution sheets at 10:15 in class. **Info:** www.math.lmu.de/~michel/SS10_FA.html

The full mark in each exercise is 10 points. Correct answers with-
out proofs are not accepted. Each step should be justified. You
can hand in the solutions either in German or in English.

Exercise 17. Let $p \in (1, \infty)$. Consider the map $T : L^p(\mathbb{R}^+, \mathrm{d}x) \to L^p(\mathbb{R}^+, \mathrm{d}x)$ defined by

$$(Tf)(x) := \frac{1}{x} \int_0^x f(t) \mathrm{d}t$$

Show that $||T|| = \frac{p}{p-1}$. (*Hint:* you may exploit two alternative strategies:

- 1. find an isomorphism $L^p(\mathbb{R}^+, \mathrm{d}x) \xrightarrow{U} L^p(\mathbb{R}, \mathrm{d}y)$ of the form $(Uf)(y) = f(e^y)\phi(y)$ where ϕ is some appropriate fixed function, then identify UTU^{-1} and compute its norm using Problem in class no. 17;
- 2. or show by the Bounded Extension principle that it is enough to prove the statement for suitably regular, non-negative functions f and then use integration by parts in the integral for $||Tf||_p^p$; last, show that the constant is optimal.)

Exercise 18. Consider the function f defined for almost every $x \in \mathbb{R}^3$ as $f(x) = \frac{1}{|x|(|x|+1)^3}$.

- (i) Decide for which $p \in [1, \infty]$ one has $f \in L^p(\mathbb{R}^3)$.
- (ii) Decide for which $q \in [1, \infty]$ one has $\frac{\mathbb{1}_{\mathcal{B}_1}}{|\cdot|^{3/2}} * f \in L^q(\mathbb{R}^3)$. (Here $\mathbb{1}_{\mathcal{B}_1}$ is the characteristic function of the unit ball $\{x \in \mathbb{R}^3 \mid |x| \leq 1\}$ and $\frac{1}{|\cdot|}$ is the function $x \mapsto \frac{1}{|x|}$.)
- (iii) Show that $\frac{1}{|\cdot|^{3/2}} * f \in L^q(\mathbb{R}^3)$ for every $q \in (2, \infty]$. (*Hint:* notice that here you *cannot* apply any of the inequalities seen in class. Derive instead a suitable pointwise bound on $\frac{1}{|\cdot|^{3/2}} * f$ and show that this bound is in L^q .)

Exercise 19. Let $f \in L^p(\mathbb{R})$ with $1 \leq p < \infty$. Show that

$$\int_{-\infty}^{+\infty} |f(x+t) - f(x)|^p \, \mathrm{d}x \to 0 \qquad \text{for } t \to 0$$

Exercise 20.

(i) Show that in any inner-product space the *parallelogram law* for the corresponding norm is satisfied:

$$||x+y||^2 + ||x-y||^2 = 2 ||x||^2 + 2 ||y||^2 \qquad \text{(where } ||x||^2 = \langle x, x \rangle\text{)}$$

(ii) Conversely, let $(X, \| \|)$ be a normed vector space on \mathbb{R} or \mathbb{C} in which the parallelogram law holds. Show that X is an inner product space, i.e., one can find an inner product \langle , \rangle on X such that $\|x\|^2 = \langle x, x \rangle$.

(Hint:

- Define a map $X \times X \ni (x, y) \mapsto \langle x, y \rangle$ in terms of norms of the arguments, which held true if X would be an inner product space. In doing so you have to distinguish whether the vector space is over the real or complex field.
- Then deduce from the parallelogram law that \langle , \rangle thus defined satisfies the properties of a scalar product. For the proof of $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ use parallelograms in the three-dimensional parallelepiped spanned by the vectors x, y, z. For the proof of $\langle x, \lambda y \rangle = \lambda \langle x.y \rangle$, λ being a scalar, first assume that λ is integer, then rational, then consider the general case.)