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The full mark in each exercise is 10 points. Correct answers with-

out proofs are not accepted. Each step should be justified. You

can hand in the solutions either in German or in English.

Exercise 13. Let a : [0, 1] → C be a measurable function. Let Ta : Lp([0, 1]) → Lq([0, 1]),
with p, q ∈ [1,∞], be the operator of pointwise multiplication by a, i.e., (Taf)(x) := a(x)f(x).
Find the necessary and sufficient condition on a such that Ta is continuous

(i) when p < q,

(ii) when p > q.

Exercise 14. Let K : [0, 1] × [0, 1] → C be a continuous function. Consider the integral

operator f
T

7−→ Tf given by (Tf)(x) =
∫ 1

0
K(x, y) f(y) dy and denote by ‖T‖p→q its norm as

a Lp([0, 1]) → Lq([0, 1]) map.

(i) Show that ‖T‖1→1 6 sup
y∈R

∫ 1

0

|K(x, y)| dx .

(ii) Show that ‖T‖2→2 6

(

∫

[0,1]2
|K(x, y)|2 dx dy

)1/2

.

(iii) Show that ‖T‖∞→∞ 6 sup
x∈R

∫ 1

0

|K(x, y)| dy .

(iv) Consider T as a C([0, 1]) → C([0, 1]) map and take a sequence {fn}
∞
n=1 in C([0, 1]) such

that ‖fn‖∞ 6 1 for all n. Show that the sequence {Tfn}
∞
n=1 has a convergent subsequence

in the ‖ ‖∞-norm.

1



Exercise 15. Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be two normed spaces and let T : X → Y be a
linear map.

(i) Show that if dim X < ∞ then T is bounded and ∃x ∈ X, x 6= 0, such that ‖Tx‖Y =
‖T‖ ‖x‖X .

(ii) Show that if T is bounded then ker T (the kernel of T ) is closed in (X, ‖ ‖X).

(iii) Is the converse of (ii) true? Give a proof or a counterexample.

(iv) Assume that ker T is closed and that dim(Im T ) < ∞ (Im T is the image of T ). Show
that T is bounded. (Hint: use Problem 13 discussed in class.)

Exercise 16. Let f ∈ C([0, 1]). Define the polynomials pn,k and B
(f)
n by

pn,k(x) :=

(

n

k

)

xk(1 − x)n−k and B(f)
n (x) :=

n
∑

k=0

f
(k

n

)

pn,k(x) ,

x ∈ [0, 1] ,
n, k integers

with 0 6 k 6 n.

(i) Show that the following identity holds ∀x ∈ [0, 1] and ∀n = 0, 1, 2, . . . :

n
∑

k=0

(k − nx)2pn,k(x) = nx(1 − x) . (1)

(Hint: use the combinatorial properties of pn,k discussed in Problem 14 in class.)

(ii) Let δ > 0. Using (1) prove the estimate

∑

k s.t. |k−nx|> nδ

pn,k(x) 6
1

4nδ2
. (2)

(In the inequality selecting k it is understood that k is an integer between 0 and n.)

(iii) Using (2) show that
lim

n→∞

∥

∥f − B(f)
n

∥

∥

∞
= 0

i.e., the corresponding polynomial B
(f)
n ’s approximate f uniformly.
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