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The full mark in each exercise is 10 points. Correct answers with-

out proofs are not accepted. Each step should be justified. You

can hand in the solutions either in German or in English.

Exercise 9. Let S be any set and let (X, dX) be a metric space. Define

B(S,X) := {f : S → X | f is bounded}.

(Recall that f : S → X is bounded means that sup
s,s′∈S

dX(f(s1), f(s2)) < ∞.) For every f, g

∈ B(S,X) define
d∞(f, g) := sup

s∈S

dX(f(s), g(s)).

(i) Show that d∞ is a metric on B(S,X).

(ii) Assume that (X, dX) is complete. Show that then (B(S,X), d∞) is also complete.

Exercise 10. Let a = {an}
∞

n=1 be a sequence in R
+. Let

S(a) :=
{

x = (x1, x2, x3, . . . ) such that
∞

∑

n=1

|xn|
2 < ∞ and |xn| < an ∀n

}

⊂ ℓ2.

Prove that S(a) is open in ℓ2 if and only if infn an > 0.

Exercise 11. Let (X,µ) be a measure space and let {fn}
∞

n=1 be a sequence of integrable
functions on (X,µ). Suppose that there exists an integrable function f such that

(a) fn → f pointwise almost everywhere,

(b)
∫

X
|fn| dµ →

∫

X
|f | dµ as n → ∞.

Prove that
∫

X
|f − fn| dµ → 0 as n → ∞.
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Exercise 12. Recall that the distance d(x,W ) of a point x in the normed space (X, ‖ ‖X)
from a subspace W ⊂ X is defined as d(x,W ) := infw∈W ‖x − w‖X (see also the discussion in
Exercise 3, part (ii)).

(i) Consider the normed space ℓ∞ with the natural supremum norm. Let a = (a1, a2, a3 . . . ) ∈
ℓ∞ with an =

∑n

k=1
1
k2 . Compute the distance of a from the subspace

c0 := {x = (x1, x2, x3, . . . ) | xn ∈ C and lim
n→∞

xn = 0 } .

(ii) Consider the normed space C([−1, 1]) equipped with the supremum norm. Compute the
distance of the function f ∈ C([−1, 1]), f(x) = |x|, from the subspace C1([−1, 1]).

(iii) Compute the distance, in the L1-norm, of the function f ∈ L1(B2), f(x) = |x|−1, where

BR = {x ∈ R
3 | |x| 6 R} (the ball of radus R) ,

from the subspace {g | g ∈ L1(B2) and g ≡ 0 as x ∈ B1}.
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