"Mathematical challenges of zero-range Physics", Munich, 02/2014

Few-body and many-body physics with zero-range interactions: theory and experiments with ultra-cold atomic gases

Félix Werner Laboratoire Kastler Brossel Ecole Normale Supérieure / CNRS / Université Paris 6

includes work done in collaboration with:

Y. Castin, D. Petrov, K. Van Houcke, E. Kozik, N. Prokof'ev, B. Svistunov

ENS experimental team:

- B. Rem, A. Grier, I. Ferrier-Barbut,
- U. Eissman, T. Langen, N. Navon,
- L. Khaykovich, F. Chevy, C. Salomon

MIT experimental team: M. Ku, A. Sommer, L. Cheuk, A. Schirotzek, M. Zwierlein

- Some history
- Models
- Universality
- 2-body problem
- 3-body problem. Efimov effect
- •4-body problem
- Many-body problem
- 3-body losses
- Appendix 1: finite-range corrections
- Appendix 2: More on Diagrammatic Monte Carlo

Some history

nuclear physics

- Wigner 1933
- Bethe and Peierls 1935
-
- Efimov 1970

quantum gases

- Einstein 1924
- cooling and trapping of atomic vapors, BEC 1995 key: low-density limit
- Feshbach resonances ~2000
- Strongly correlated degenerate Fermi gases, unitary gas and BEC-BCS crossover since ~2005
 Efimov physics (mostly in Bose gases) since ~2006

Models

•harmonic trap:
$$U(ec{r})=rac{1}{2}\,m_i\,\omega^2\,r^2$$

• homogeneous system in the thermodynamic limit: • box : $U(\vec{r}) = 0$ if $\vec{r} \in [0; L]^3$

 $+\infty$ otherwise

• then take $N \to \infty$, $L \to \infty$ with N/L^3 fixed scattering length

N = 2

free space

$$\frac{\text{continuous-space finite-range models}}{H = \sum_{i=1}^{N} \left[-\frac{1}{2m_i} \Delta_{\vec{r}_i} + U(\vec{r}_i) \right] + \sum_{1 \le i < j \le N} V(r_{ij})}$$

$$r_{ij} = \left\| \vec{r_i} - \vec{r_j} \right\|$$

For
$$a = \infty$$
: $V(r) = \frac{1}{mb^2} f\left(\frac{r}{b}\right)$

Universality

(strict sense) expected for equal mass fermions

- all eigenvalues and eigenstates of H converge when b -> 0
- the limit is the same for "any" finite-range model (lattice models, continuous space models)
- this limit is described by the zero-range model

zero-range model

$$H = \sum_{i=1}^{N} \left[-\frac{1}{2m_i} \Delta_{\vec{r}_i} + U(\vec{r}_i) \right]$$

$$\psi(\vec{\mathbf{r}}_{1},\ldots,\vec{\mathbf{r}}_{N}) = \left(\frac{1}{r_{ij}} - \frac{1}{a}\right) A_{ij} (\vec{\mathbf{R}}_{ij},(\vec{\mathbf{r}}_{k})_{k\neq i,j}) + O(r_{ij})$$
$$\vec{R}_{ij} \text{ fixed}$$
$$\vec{R}_{ij} = \frac{m_{i}\vec{r}_{i} + m_{j}\vec{r}_{j}}{m_{i} + m_{j}}$$

if Efimov effect: 3-body contact condition (see later) (no universality in the strict sense)

2-body problem

For a > 0: 2-body bound state $E = -\frac{\hbar^2}{ma^2}$

3-body problem

Unitary 3-body problem in a trap - equal mass fermions

•
$$\psi(\vec{r}_1, \vec{r}_2, \vec{r}_3) = -\psi(\vec{r}_3, \vec{r}_2, \vec{r}_1)$$

• Zero-range interactions:
 $\psi(\vec{r}_1, \vec{r}_2, \vec{r}_3) \stackrel{=}{\underset{r_{ij} \to 0}{=}} A \cdot \left(\frac{1}{r_{ij}} - \overset{\psi}{a}\right) + O(r_{ij})$
• When all r_{ij} 's are > 0 :
 $\sum_{i=1}^{3} \left[-\frac{\hbar^2}{2m} \Delta_{\mathbf{r}_i} + \frac{1}{2} m \omega^2 r_i^2 \right] \psi = E \psi.$

Exactly solvable

$$\begin{array}{ll} \hline \mathbf{C} \text{enter-of-mass is separable:} & \vec{C} = (\vec{r}_1 + \vec{r}_2 + \vec{r}_3)/3 \\ \psi(\vec{r}_1, \vec{r}_2, \vec{r}_3) = \psi_{\mathrm{cm}}(\vec{C}) \psi_{\mathrm{int}} & E = E_{\mathrm{cm}} + E_{\mathrm{int}} \end{array}$$

$$\begin{array}{ll} \text{Hyperradius:} & R = \sqrt{\sum_{i < j} r_{ij}^2/3} & \mathbf{5} \text{ remaining coordinates:} \\ \text{Hyperangles} & \vec{\Omega} \equiv \vec{R}/R \end{array}$$

$$\begin{array}{ll} \psi_{\mathrm{int}} = F(R) R^{-2} & \phi(\vec{\Omega}) \end{array}$$

$$F(R) = \text{wavefunction of a fictitious particle} \\ \text{in a potential } U_{\mathrm{eff}}(R) = \frac{\hbar^2}{2m} \frac{s^2}{R^2} + \frac{1}{2}m\omega^2 R^2 \\ E_{\mathrm{int}} = \text{energy of this fictitious particle} \\ = (s + 1 + 2q)\hbar\omega, \ q \in \mathbb{N} \end{array}$$

$$\phi(\vec{\Omega}) \text{ and } s \text{ are the same than in free space} \\ \text{known since Efimov} \end{array}$$

For l = 0 $-s \cos\left(s\frac{\pi}{2}\right) + \eta \frac{4}{\sqrt{3}} \sin\left(s\frac{\pi}{6}\right) = 0$ $\eta = -1$ For l = 1: smallest solution s = 1.772724267... Unitary 3-body problem - **BOSONS**

$$\psi_{\rm int} = F(R) R^{-2} \phi(\vec{\Omega})$$

 $U_{\text{eff}}(R) = \frac{\hbar^2}{2m} \frac{s^2}{R^2} + \frac{1}{2}m\omega^2 R^2$

one of the allowed values of s is imaginary (*) $\Rightarrow U_{eff}(R)$ is pathologically attractive \Rightarrow need to add the 3-body contact condition:

(*) For l = 0

$$-s\cos\left(s\frac{\pi}{2}\right) + \eta\frac{4}{\sqrt{3}}\sin\left(s\frac{\pi}{6}\right) = 0 \qquad \qquad \eta = +2$$

imaginary solution $s = i \cdot 1.0062378251...$

- 3 equal mass fermions: universal
- 3 bosons: Efimov effect
- <u>3 unequal mass fermions</u>:

$$N_{\uparrow} = 2, \quad N_{\downarrow} = 1$$

Efimov effect for $m_{\uparrow}/m_{\downarrow} > 13.607...$

4-body problem

- Fermions, $m_{\uparrow} = m_{\downarrow}$
- Fermions, $m_{\uparrow} \neq m_{\downarrow}$
- Bosons

4 fermions, $m_{\uparrow} = m_{\downarrow}$

universal

$$N_{\uparrow} = N_{\downarrow} = 2$$
, harmonic trap

4 fermions, $m_{\uparrow} \neq m_{\downarrow}$

$$N_{\uparrow} = 3, \ N_{\downarrow} = 1$$

if $13.384... < m_{\uparrow}/m_{\downarrow} < 13.607...$: 4 - body Efimov effect[Castin Mora Pricoupenko 2010] $\psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = R^{-7/2} F(R) f(\Omega)$ $F(R) \underset{R \to 0}{\sim} \text{Im} \left[\left(\frac{R}{R_f} \right)^{S} \right]$

numerical calculation of s

4 bosons

strong numerical + some experimental evidence: no 4-body parameter only a, R_t

[Hammer Platter 2007; von Stecher D'Incao Greene 2009; Deltuva 2011] [Ferlaino et al. 2009]

4-body quasi-bound states (i.e. resonances)

Many-body problem

Fermions,
$$N_{\uparrow} = N_{\downarrow} \to \infty$$

 $n = \frac{N}{L^3}$ fixed

Equation of state of the unitary gas in the normal unpolarised phase: Cross-validation between Bold Diagrammatic Monte Carlo and ultracold-atoms precision measurements

Figure 4 | Equation of state of the unitary Fermi gas in the normal phase. Density *n* (**a**) and pressure *P* (**b**) of a unitary Fermi gas, normalized by the density n_0 and the pressure P_0 of a non-interacting Fermi gas, versus the ratio of chemical potential μ to temperature *T*. Blue filled squares: BDMC (this work), red filled circles: experiment (this work). The BDMC error bars are estimated upper bounds on systematic errors. The error bars are one standard deviation systematic plus statistical errors, with the additional uncertainty from the Feshbach resonance position shown by the upper and lower margins as red solid lines. Black dashed line and red triangles: Theory and experiment (this work) for the ideal Fermi gas, used to assess the experimental systematic error. Green solid line: third order virial expansion. Open squares: first order bold diagram^{15,21}. Green open circles: Auxiliary Field QMC (ref. 11). Star: superfluid transition point from Determinental Diagrammatic Monte Carlo¹³. Filled diamonds: experimental pressure EOS (ref. 22). Open pentagons: pressure EOS (ref. 23).

in-situ absorbtion image [MIT]

virial expansion: = -0.29095295...

$$n\lambda^3 \underset{\beta\mu\to-\infty}{=} 2(e^{\beta\mu} + 2b_2e^{2\beta\mu} + 3b_3e^{3\beta\mu} + \ldots)$$

 b_n comes from the n – body problem

 $b_3 = -0.29095295...$

Liu Hu Drummond 2009

$$n\lambda^3 = 2(e^{\beta\mu} + 2b_2e^{2\beta\mu} + 3b_3e^{3\beta\mu} + \ldots)$$

ε

3-body losses

Fermions

3-body loss rate vanishes in the zero-range limit **Example: Unitary Fermi gas** T = 0

$$\Gamma \equiv -\frac{n}{n}$$

$$\Gamma \underset{b \to 0}{\sim} K b^{2s} n^{(2s+2)/3}$$

 $K \mod del$ -dependent constant

s = 1.772724267...

[Petrov Salomon Shlyapnikov 2004]

Bosons

3-body loss rate does not vanish in the zero-range limit

modified 3-body contact condition [Braaten Hammer 2003]

$$F(R) \underset{R \to 0}{\propto} \left(\frac{R}{R_t}\right)^{-s} - e^{-2\eta_*} \left(\frac{R}{R_t}\right)$$

 η_* inelasticity parameter

<u>Efimov trimers</u> decay rate $\Gamma \equiv -\frac{2}{\hbar} \operatorname{Im} E$ $\hbar \Gamma \simeq \frac{4\eta_*}{|s|} |E(\eta_* = 0)| \qquad \eta_* \ll 1$

<u>Unitary Bose gas</u>

comparison with ENS experiment [Rem et al. 2013]

FIG. 2 (color online). Temperature dependence of the three-body loss rate L_3 . Filled circles, experimental data; green dashed line, best fit to the data $L_3(T) = \lambda_3/T^2$ with $\lambda_3 = 2.5(3)_{\text{stat}}(6)_{\text{syst}} \times 10^{-20} \,(\mu\text{K})^2 \text{ cm}^6 \text{ s}^{-1}$; the shaded green band shows the 1σ quadrature sum of uncertainties. Solid line, prediction from Eq. (5), $\lambda_3 = 1.52 \times 10^{-20} \,(\mu\text{K})^2 \text{ cm}^6 \text{ s}^{-1}$ with $\eta_* = 0.21$ from Refs. [30,39].

Appendix 1:Partial derivatives of the energy
$$\psi(\vec{r}_1, \dots, \vec{r}_N) = \begin{pmatrix} \frac{1}{r_{ij}} - \frac{1}{a} \end{pmatrix} A_{ij}(\vec{R}_{ij}, (\vec{r}_k)_{k \neq i,j}) + O(r_{ij})$$
 $\left(\frac{\partial E}{\partial(-1/a)}\right)_{R_t} = \sum_{i < j} \int d\vec{R}_{ij} \left(\prod_{k \neq i,j} d\vec{r}_k\right) \left|A_{ij}(\mathbf{R}_{ij}, (\mathbf{r}_k)_{k \neq i,j})\right|^2$

For universal states:

$$\left(\frac{\partial E}{\partial r_e} \right)_a = 2\pi \sum_{i < j} \int d\vec{R} \int \left(\prod_{k \neq i, j} d\vec{r}_k \right) A_{ij}(\vec{R}, (\vec{r}_k)_{k \neq i, j})$$

$$\left[E + \frac{\hbar^2}{4m} \Delta_{\vec{R}} + \frac{\hbar^2}{2m} \sum_{k \neq i, j} \Delta_{\vec{r}_k} - \sum_{l=1}^N U(\vec{r}_l) \right] A_{ij}(\vec{R}, (\vec{r}_k)_{k \neq i, j})$$

$$\underbrace{\frac{\text{Applications: } 3 \text{ particles, } a = \infty}{Efimov \text{ trimers:}}} \\
\left(\frac{\partial E}{\partial(-1/a)}\right)_{R_t} = \sqrt{-E\frac{\hbar^2}{m}} \cdot \frac{\pi \tan(s\pi)\sin\left(s\frac{\pi}{2}\right)}{\cos\left(s\frac{\pi}{2}\right) - s\frac{\pi}{2}\sin\left(s\frac{\pi}{2}\right) - \frac{4\pi}{3\sqrt{3}}\cos\left(s\frac{\pi}{6}\right)} \\
\underbrace{\frac{\partial E}{\partial(-1/a)}}_{O(-1/a)} = \sqrt{\frac{2\hbar^3\omega}{m}} \cdot \frac{\Gamma(s+\frac{1}{2})s\sin\left(s\frac{\pi}{2}\right)}{\Gamma(s+1)\left[\cos\left(s\frac{\pi}{2}\right) - s\frac{\pi}{2}\sin\left(s\frac{\pi}{2}\right) - \eta\frac{2\pi}{3\sqrt{3}}\cos\left(s\frac{\pi}{6}\right)\right]} \\
\text{where } \eta = 2 \text{ for bosons, } -1 \text{ for fermions} \\
\left(\frac{\partial E}{\partial r_e}\right)_a = \sqrt{\frac{\hbar^3\omega}{8m}} \cdot \frac{\Gamma(s-\frac{1}{2})s(s^2-\frac{1}{2})\sin\left(s\frac{\pi}{2}\right)}{\Gamma(s+1)\left[-\cos\left(s\frac{\pi}{2}\right) + s\frac{\pi}{2}\sin\left(s\frac{\pi}{2}\right) + \eta\frac{2\pi}{3\sqrt{3}}\cos\left(s\frac{\pi}{6}\right)\right]}$$

Agreement with numerical results of: Braaten & Hammer; von Stecher, Greene & Blume; Werner & Castin

ε