
Few-body and many-body physics 
with zero-range interactions: 

theory and experiments with ultra-cold atomic gases
Félix Werner 

Laboratoire Kastler Brossel
Ecole Normale Supérieure / CNRS / Université Paris 6

ultracold Fermi gases group at ENS includes work done 
in collaboration with:

Y. Castin, D. Petrov, K. Van Houcke, 
E. Kozik, N. Prokof’ev, B. Svistunov

ENS experimental team:
B. Rem, A. Grier, I. Ferrier-Barbut, 
U. Eissman, T. Langen, N. Navon, 
L. Khaykovich, F. Chevy, C. Salomon

MIT experimental team:
M. Ku, A. Sommer, L. Cheuk, 
A. Schirotzek, M. Zwierlein

“Mathematical challenges of zero-range Physics”, Munich, 02/2014



•Some history

•Models

•Universality

•2-body problem

•3-body problem. Efimov effect

•4-body problem

•Many-body problem

•3-body losses

•Appendix 1: finite-range corrections

•Appendix 2: More on Diagrammatic Monte Carlo



Some history

nuclear physics

quantum gases

•Wigner 1933
•Bethe and Peierls 1935
•...
•Efimov 1970

•Einstein 1924
•cooling and trapping of atomic vapors, BEC 1995
     key: low-density limit
•Feshbach resonances    ~2000
•Strongly correlated degenerate Fermi gases,
unitary gas and BEC-BCS crossover     since ~2005  
•Efimov physics (mostly in Bose gases)  since ~2006



• then take N → ∞, L → ∞
with N/L3 fixed
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Models
3D
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mi = m
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Universality
                 (strict sense)
expected for equal mass fermions

•all eigenvalues and eigenstates of H converge 
 when b -> 0

•the limit is the same for “any” finite-range model 
(lattice models, continuous space models)

•this limit is described by the zero-range model
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II. TWO-COMPONENT FERMIONS

In this Section we consider spin-1/2 fermions. For a fixed number Nσ of particles in each spin state σ =↑, ↓, one
can consider that particles 1, . . . , N↑ have a spin ↑ and particles N↑ + 1, . . . , N↑ + N↓ = N have a spin ↓, i.e. the
wavefunction ψ(r1, . . . , rN ) changes sign when one exchanges the positions of two particles having the same spin [132].

A. Models

Here we introduce the three models used in this work to model interparticle interactions.

1. Zero-range model

In this well-known model (see e.g. [69–76] and refs. therein) the interaction potential is replaced by contact
conditions on the many-body wavefunction: For any pair of particles i #= j, there exists a function Aij , hereafter
called regular part of ψ, such that in 3D

ψ(r1, . . . , rN ) =
rij→0

(

1

rij
− 1

a

)

Aij (Rij , (rk)k $=i,j) +O(rij), (1)

and in 2D

ψ(r1, . . . , rN ) =
rij→0

ln(rij/a)Aij (Rij , (rk)k $=i,j) +O(rij), (2)

where the limit of vanishing distance rij between particles i and j is taken for a fixed position of their center of mass
Rij = (ri + rj)/2 and fixed positions of the remaining particles (rk)k $=i,j . Fermionic symmetry of course imposes
Aij = 0 if particles i and j have the same spin. When none of the ri’s coincide, there is no interaction potential and
Schrödinger’s equation reads

H ψ(r1, . . . , rN ) = E ψ(r1, . . . , rN ) (3)

with

H =
N
∑

i=1

[

− !2

2m
∆ri + U(ri)

]

ψ (4)

where m is the atomic mass and U is an external potential. The crucial difference between the Hamiltonian H and
the non-interacting Hamiltonian is the boundary condition (1,2).

2. Lattice models

These models were used for quantum Monte-Carlo calculations [40–43, 45, 77]. They can also be convenient for
analytics, as used in [14, 78, 79] and in this work. Here particles live on a lattice, i. e. the coordinates are integer
multiples of the lattice spacing b. The Hamiltonian reads

H = H0 + g0 W (5)

where

H0 =
N
∑

i=1

[

− !2

2m
∆ri + U(ri)

]

(6)

W =
∑

i<j

δri,rjb
−d (7)

2-body contact condition:

if Efimov effect: 3-body contact condition (see later)
(no universality in the strict sense)



2-body problem
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For a > 0 : 2−body bound state E = − �2
ma2
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Exactly solvable

Unitary 3-body problem in a trap - equal mass fermions 

Zero-range interactions:

When all rij ’s are > 0 :

Unitary Quantum Three-Body Problem in a Harmonic Trap

Félix Werner and Yvan Castin
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We consider either 3 spinless bosons or 3 equal mass spin-1=2 fermions, interacting via a short-range
potential of infinite scattering length and trapped in an isotropic harmonic potential. For a zero-range
model, we obtain analytically the exact spectrum and eigenfunctions: for fermions all the states are
universal; for bosons there is a coexistence of decoupled universal and efimovian states. All the universal
states, even the bosonic ones, have a tiny 3-body loss rate. For a finite range model, we numerically find
for bosons a coupling between zero angular momentum universal and efimovian states; the coupling is so
weak that, for realistic values of the interaction range, these bosonic universal states remain long-lived and
observable.

DOI: 10.1103/PhysRevLett.97.150401 PACS numbers: 03.75.Ss, 05.30.Jp

With a Feshbach resonance, it is now possible to produce
a stable quantum gas of fermionic atoms in the unitary
limit, i.e., with an interaction of negligible range and
scattering length a ! 1 [1]. The properties of this gas,
including its superfluidity, are under active experimental
investigation [2]. They have the remarkable feature of
being universal, as was tested, in particular, for the zero
temperature equation of state of the gas [3]. In contrast,
experiments with Bose gases at a Feshbach resonance
suffer from high loss rates [4–6], and even the existence
of a unitary Bose gas phase is a very open subject [7].

In this context, fully understanding the few-body unitary
problem is a crucial step. In free space, the unitary 3-boson
problem has an infinite number of weakly bound states, the
so-called Efimov states [8]. In a trap, it has efimovian states
[9,10] but also universal states whose energy depends only
on the trapping frequency [9]. Several experimental groups
are currently trapping a few particles at a node of an optical
lattice [11] and are controlling the interaction strength via a
Feshbach resonance. Results have already been obtained
for two particles per lattice node [12], a case that was
solved analytically [13]. Anticipating experiments with 3
atoms per node, we derive in this Letter exact expressions
for all universal and efimovian eigenstates of the 3-body
problem for bosons (generalizing [9] to a nonzero angular
momentum) and for equal mass fermions in a trap. We also
show the long lifetime of the universal states and their
observability in a real experiment, extending to universal
states the numerical study of [10].

If the effective range and the true range of the interaction
potential are negligible as compared to the de Broglie
wavelength of the 3 particles, the interaction potential
can be replaced by the Bethe-Peierls contact conditions
on the wave function  : it exists a function A such that
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in the limit rij & jri $ rjj ! 0 taken for fixed positions of
the other particle k and of the center of mass Rij of i and j.

In the unitary limit considered in this Letter, a ! 1. When
all the rij are nonzero, the wave function  obeys the
noninteracting Schrödinger equation
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! is the oscillation frequency and m the mass of an atom.
To solve this problem, we extend the approach of

Efimov [8,14] to the trapped case, and obtain the form
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Since the center of mass is separable for a harmonic trap-
ping, we have singled out the wave function  c:m:"C# of its
stationary state of energy Ec:m:, with C!"r1%r2%r3#=3.
The operator Q̂ ensures the correct exchange symmetry of
 : for spinless bosons, Q̂ ! P̂13 % P̂23, where P̂ij trans-
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spin state "#" so that Q̂ ! $P̂13. The Jacobi coordinates are
r ! r2 $ r1 and ! ! "2r3 $ r1 $ r2#=

%%%
3

p
. Yml is a spheri-

cal harmonic, l being the total internal angular momentum
of the system. The function ’""#, where " ! arctan"r=!#,
solves the eigenvalue problem

 $ ’00""# % l"l% 1#
cos2"

’""# ! s2’""# (4)

 ’"#=2# ! 0 (5)

 ’0"0# % $"$1#l 4%%%
3

p ’"#=3# ! 0 (6)

with $ ! $1 for fermions, $ ! 2 for bosons. An analyti-
cal expression can be obtained for ’""# [15], which leads
to the transcendental equation for s [16]:
 &
il
Xl

k!0

"$l#k"l% 1#k
k!

"1$ s#l
"1$ s#k

#
2$ki"k$ s#eis"#=2#

% $"$1#l 4%%%
3

p ei"#=6#"2k%s#
$'

$ fi$ $ig ! 0; (7)

PRL 97, 150401 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
13 OCTOBER 2006

0031-9007=06=97(15)=150401(4) 150401-1  2006 The American Physical Society

ψ(�r1,�r2,�r3) =
rij→0

A ·
�

1
rij
− 1

a

�
+ O(rij)

ψ(�r1,�r2,�r3) = −ψ(�r3,�r2,�r1)

3-body problem



5 remaining coordinates: 
Hyperangles

Center-of-mass is separable: �C = (�r1 + �r2 + �r3)/3
ψ(�r1,�r2,�r3) = ψcm(�C) ψint EintEcmE = +

Hyperradius: R =
��

i<j

r 2
ij /3

ψint = F (R) R−2 φ(�Ω)
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84 CHAPTER 3. THREE TRAPPED ATOMS WITH RESONANT INTERACTIONS

3 fermions
l n sl,n
0 0 2.166221977

1 5.127352163
2 7.114476303
3 8.832247757

1 0 1.772724267
1 4.358249309
2 5.716434034
3 8.053186622

2 0 3.104976920
1 4.795405385
2 7.238828843
3 8.837105068

3 0 3.959308833
1 6.127419552
2 7.816290593
3 10.172447785

3 bosons
l n sl,n
0 0 i · 1.0062378251

1 4.465294619
2 6.818360913
3 9.324685319

1 0 2.863799435
1 6.462200440
2 7.852831918
3 9.822928538

2 0 2.823341917
1 5.508249355
2 6.449306509
3 9.272652269

3 0 4.090404751
1 5.771443207
2 8.406560584
3 9.607381634

Table 3.1 – The transcendental numbers sl,n obtained by numerical solution of Eq. (3.39).

This equation has some spurious integer solutions (l = 0, s = 2 for fermions ; l = 0, s = 4 and
l = 1, s = 3 for bosons) which must be eliminated because they lead to a vanishing wavefunction ψ.
For l = 0, Eq. (3.39) reduces to :

−s cos
(

s
π

2

)

+ η
4√
3
sin

(

s
π

6

)

= 0. (3.40)

Eq. (3.39) is readily solved numerically : for each l, the solutions form an infinite sequence (sl,n)n≥0,
see Table 3.1 and Fig. 3.2. An expected fact which we proved analytically in Article III is that
all solutions sl,n are real, except for bosons in the l = 0 channel, where a single purely imaginary
solution exists,

sl=0,n=0 ≡ s0 $ i× 1.00624, (3.41)

the well known Efimov solution.

3.1.d Hyperradial problem

The hyperradial problem writes :

−F ′′(R)− 1

R
F ′(R) +

(

s2

R2
+ ω2R2

)

F (R) = 2EF (R). (3.42)

We recall that the allowed values of s are given by the hyperangular problem discussed above.
Eq. (3.42) can be interpreted as Schrödinger’s equation for a fictitious particle of mass unity moving
in two dimensions in the effective potential (s2/R2 +ω2R2)/2, the hyperradius R being interpreted
as the distance of the fictious particle from the origin, and the hyperradial part F (R) of the 3-body
wavefunction being interpreted as the wavefunction of the fictitious particle. A detailed discussion
of this problem is given in Appendix B page 65, which we summarize here. The key point is that one
has to chose a boundary condition for R → 0 in order for the hyperradial problem to be hermitian

η = −1
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Unitary 3-body problem - BOSONS 
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all solutions sl,n are real, except for bosons in the l = 0 channel, where a single purely imaginary
solution exists,

sl=0,n=0 ≡ s0 $ i× 1.00624, (3.41)

the well known Efimov solution.

3.1.d Hyperradial problem

The hyperradial problem writes :

−F ′′(R)− 1

R
F ′(R) +

(

s2

R2
+ ω2R2

)

F (R) = 2EF (R). (3.42)

We recall that the allowed values of s are given by the hyperangular problem discussed above.
Eq. (3.42) can be interpreted as Schrödinger’s equation for a fictitious particle of mass unity moving
in two dimensions in the effective potential (s2/R2 +ω2R2)/2, the hyperradius R being interpreted
as the distance of the fictious particle from the origin, and the hyperradial part F (R) of the 3-body
wavefunction being interpreted as the wavefunction of the fictitious particle. A detailed discussion
of this problem is given in Appendix B page 65, which we summarize here. The key point is that one
has to chose a boundary condition for R → 0 in order for the hyperradial problem to be hermitian

η = +2
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3 fermions
l n sl,n
0 0 2.166221977

1 5.127352163
2 7.114476303
3 8.832247757

1 0 1.772724267
1 4.358249309
2 5.716434034
3 8.053186622

2 0 3.104976920
1 4.795405385
2 7.238828843
3 8.837105068

3 0 3.959308833
1 6.127419552
2 7.816290593
3 10.172447785

3 bosons
l n sl,n
0 0 i · 1.0062378251

1 4.465294619
2 6.818360913
3 9.324685319

1 0 2.863799435
1 6.462200440
2 7.852831918
3 9.822928538

2 0 2.823341917
1 5.508249355
2 6.449306509
3 9.272652269

3 0 4.090404751
1 5.771443207
2 8.406560584
3 9.607381634

Table 3.1 – The transcendental numbers sl,n obtained by numerical solution of Eq. (3.39).

This equation has some spurious integer solutions (l = 0, s = 2 for fermions ; l = 0, s = 4 and
l = 1, s = 3 for bosons) which must be eliminated because they lead to a vanishing wavefunction ψ.
For l = 0, Eq. (3.39) reduces to :

−s cos
(

s
π

2

)

+ η
4√
3
sin

(

s
π

6

)

= 0. (3.40)

Eq. (3.39) is readily solved numerically : for each l, the solutions form an infinite sequence (sl,n)n≥0,
see Table 3.1 and Fig. 3.2. An expected fact which we proved analytically in Article III is that
all solutions sl,n are real, except for bosons in the l = 0 channel, where a single purely imaginary
solution exists,

sl=0,n=0 ≡ s0 $ i× 1.00624, (3.41)

the well known Efimov solution.

3.1.d Hyperradial problem

The hyperradial problem writes :

−F ′′(R)− 1

R
F ′(R) +

(

s2

R2
+ ω2R2

)

F (R) = 2EF (R). (3.42)

We recall that the allowed values of s are given by the hyperangular problem discussed above.
Eq. (3.42) can be interpreted as Schrödinger’s equation for a fictitious particle of mass unity moving
in two dimensions in the effective potential (s2/R2 +ω2R2)/2, the hyperradius R being interpreted
as the distance of the fictious particle from the origin, and the hyperradial part F (R) of the 3-body
wavefunction being interpreted as the wavefunction of the fictitious particle. A detailed discussion
of this problem is given in Appendix B page 65, which we summarize here. The key point is that one
has to chose a boundary condition for R → 0 in order for the hyperradial problem to be hermitian

imaginary solution s = . . .
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Figure 6 – Pour N = 4 fermions piégés, distribution de probabilité P (R) de l’hyperrayon, dans
l’état fondamental du secteur l = 0. Trait plein : formule analytique obtenue pour le pseudopo-
tentiel, pour la valeur de l’énergie E = 5.028!ω calculée numériquement [28]. Points : résultats
numériques [28]. Dans le graphe de droite en échelle logarithmique, la droite tiretée est la loi de
puissance équivalente pour R → 0 à la formule analytique.

également tracé le résultat en échelle logarithmique (graphe de droite de la Figure), avec la loi de
puissance équivalente pour R # aho à la formule analytique (53) :

P (R) ∼
R→0

R2s+1 2

Γ(s+ 1)
. (55)

La formule analytique (53) est exacte pour le pseudopotentiel. Pour un modèle de portée finie
b, on s’attend à ce qu’elle soit valable pour R % b. La formule (55) doit donc s’appliquer pour
b # R # aho. C’est bien ce que l’on observe sur le graphe de droite de la Figure 6, les calculs
numériques étant effectués pour un potentiel d’interaction gaussien V (r) ∝ e−r2/(2b2) de portée
b = 0.01 aho.

Numériquement on trouve qu’il existe un état excité d’énergie E′, telle que E′−E = 2.003!ω, ce
qui est proche du résultat exact 2!ω valable pour le pseudopotentiel. La distribution de probabilité
de l’hyperrayon P (R) pour cet état est en bon accord avec la formule (54), cf. Figure 7.

Pour un nombre de particules plus grand, D. Blume et al. ont effectué des calculs numérique par
une méthode Monte-Carlo à nœuds fixés. L’accord avec la formule analytique (53) est satisfaisant
pour l’état fondamental à N = 17 particules, cf. Figure 8. On peut en déduire que le biais résultant
du choix de la surface nodale ainsi que l’effet de la portée finie des interactions sont assez faibles.
Cela constitue une vérification assez précise de l’hypothèse d’universalité.

3 Trois bosons pour |a| = ∞.

Considérons maintenant N particules bosoniques identiques sans spin, de fonction d’onde Φ("r1, . . . ,"rN )
symétrique. Pour N = 2 particules, toute la Section 1 s’applique [il faut simplement symétriser les
états de diffusion ayant le comportement asymptotique (3) pour obtenir les états de diffusion phy-
siques]. Mais dans le cas N = 3 considéré dans la suite, la situation change dramatiquement.

Dans cette Section la longueur de diffusion est infinie.
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Figure 7 – Mêmes quantités que la Figure 6, pour un état excité à N = 4 particules, dont l’énergie
calculée numériquement [28] vaut E′ = E + 2.003!ω, conformément au résultat analytique E′ =
E + 2!ω valable pour le pseudopotentiel.
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Figure 8 – Mêmes quantités que la Figure 6, pour l’état fondamental à N = 17 particules. Les
valeurs numériques sont obtenues par une méthode Monte-Carlo à nœuds fixés, l’énergie obtenue
étant E = 34.64(12)!ω [28].
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FIG. 2: In the Efimovian channel l = 1 with even parity,
modulus of the purely imaginary Efimov exponent s = iS as
a function of the mass ratio α = M/m. In the numerics, xmax

ranges from 40 to 120, dx = 1/10, dθ = π/20. The dashed line
results from a linear fit of |s|2 as a function of α in a vicinity
of the critical value αc(3; 1), |s|2fit ! 2.23 × (α − αc). The
vertical dotted line indicates the 2 + 1 critical value αc(2; 1).

Finally, we completed our study of the four-body Efi-
mov effect by calculating, as a function of the mass ratio
α, the exponent s = iS in the even sector of l = 1, the
real quantity S being such that the operator MiS has a
zero eigenvalue. The result is shown in Fig.2. Close to
the 2+ 1 critical mass ratio αc(2; 1) ! 13.607, the values
of |s| are not far from the three-boson Efimov exponent
|s0| ! 1 proved to have observable effects [3]. Close to the
3+1 critical mass ratio αc(3; 1), |s| varies as expected as
(α−αc)1/2 (see dashed line). Low values of |s| may lead
to extremely low Efimov tetramer binding energies: For

an interaction of finite range b, setting Rf ≈ b and n = 1
in Eq.(6), we estimate the ground state Efimov tetramer
energy for |s| $ 1 as EEfim

min ≈ −e−2π/|s|!2/(2m̄b2) [17].
For |s| = 0.5, taking the mass of 3He for m and a few nm
for b gives EEfim

min /kB in the nK range, accessible to cold
atoms. Moreover, for a large but finite scattering length
a, successive Efimov tetramers come in for values of a in
geometric progression of ratio eπ/|s|, so that too low val-
ues of |s| require unrealistically large values of the scat-
tering length. Another experimental issue is the narrow-
ness of the mass interval. Several pairs of atomic species
have a mass ratio in the desired interval, e.g. 3He∗ and
41Ca (α ! 13.58), and with exotic species, 11B and 149Sm
(α ! 13.53), 7Li and 95Mo (α ! 13.53). A more flexi-
ble solution is to start with usual atomic species having a
slightly off mass ratio, such as 3He∗ and 40K (α ! 13.25),
and to use a weak optical lattice to finely tune the effec-
tive mass of one of the species [18].

To conclude, in the zero range model at unitarity, we
studied the interaction of three same spin state fermions
of mass M with another particle of mass m. For M/m <
13.384, no Efimov effect was found. Over the interval
13.384 < M/m < 13.607, remarkably a purely four-body
Efimov effect takes place, in the sector of even parity and
angular momentum l = 1, that may be observed with a
dedicated cold atom experiment. For M/m > 13.607,
the three-body Efimov effect sets in, and the zero range
model has to be supplemented by three-body contact con-
ditions that break its separability. The intriguing ques-
tion of wether the Efimov tetramers then survive as res-
onances, decaying in a trimer plus a free atom, is left for
the future. F. Werner is warmly thanked for discussions.
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Four-body Efimov effect
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We study three same spin state fermions of mass M interacting with a distinguishable particle of
mass m in the unitary limit where the interaction has a zero range and an infinite s-wave scattering
length. We predict an interval of mass ratio 13.384 < M/m < 13.607 where there exists a purely four-
body Efimov effect, leading to the occurrence of weakly bound tetramers without Efimov trimers.

PACS numbers: 34.50.-s,21.45.-v,67.85.-d
Keywords:

In a system of interacting particles, the unitary limit
corresponds to a zero range s-wave interaction with infi-
nite scattering length [1]. In particular, this excludes any
finite energy two-body bound state. Interestingly, in the
three-body problem, the Efimov effect may take place [2],
leading to the occurrence of an infinite number of three-
body bound states, with an accumulation point in the
spectrum at zero energy. This effect occurs in a variety
of situations, the historical one being the case of three
bosons, as recently studied in a series of remarkable ex-
periments with cold atoms close to a Feshbach resonance
[3]. It can also occur in a system of two same spin state
fermions of mass M and a particle of another species of
massm, in which case the fermions only interact with the
third particle, with an infinite s-wave scattering length:
An infinite number of arbitrarily weakly bound trimers
then appears in this 2 + 1 fermionic problem if the mass
ratio α = M/m is larger than αc(2; 1) ! 13.607 [2].
The four-body problem has recently attracted a lot of

interest [4]. The question of the existence of a four-body
Efimov effect is however to our knowledge still open. We
give a positive answer to this question, by investigating
the 3 + 1 fermionic problem in the unitary limit. We
explicitly solve Schrödinger’s equation in the zero range
model [2] and we determine the critical mass ratio to have
a purely four-body Efimov effect in this system, that is
without Efimov trimers.
In the zero-range model, the Hamiltonian reduces to a

non-interacting form, here in free space

H =
4

∑

i=1

−
!2

2mi
∆ri , (1)

with m1 = m2 = m3 = M and m4 = m. The interac-
tions are indeed replaced by contact conditions on the
wavefunction, ψ(r1, r2, r3, r4), where ri, i = 1, 2, 3 is the
position of a fermion and r4 is the position of the other
species particle: At the unitary limit, for i = 1, 2, 3, there
exist functions Ai such that

ψ(r1, r2, r3, r4) =
Ai(Ri4; (rk)k !=i,4)

|ri − r4|
+O(|ri − r4|) (2)

when ri tends to r4 for a fixed value of the i-4 centroid
Ri4 ≡ (Mri+mr4)/(m+M) different from the positions
of the remaining particles rk, k $= i, 4. The wavefunction
is also subject to the fermionic exchange symmetry with
respect to the first three variables ri, i = 1, 2, 3.
In what follows, we shall assume that there is no

three-body Efimov effect, a condition that is satisfied
by imposing M/m < αc(2; 1) ! 13.607. The eigen-
value problem Hψ = Eψ with the contact conditions
in Eq.(2) is then separable in hyperspherical coordi-
nates [5]. After having separated out the center of
mass C of the system, one introduces the hyperradius

R =
[

∑4
i=1 mi(ri −C)2/m̄

]1/2
, with m̄ = (3M + m)/4

the average mass, and a set of here 8 hyperangles Ω whose
expression is not required. For a center of mass at rest,
the wavefunction may be taken of the form

ψ(r1, r2, r3, r4) = R−7/2F (R)f(Ω). (3)

f(Ω) is given by the solution of a Laplacian eigenvalue
problem on the unit sphere of dimension 8, which is non
trivial because of the contact conditions. On the con-
trary, the hyperradial part F is not directly affected by
the contact conditions, due in particular to their invari-
ance by the scaling ri → λri [6], and solves the effective
2D Schrödinger equation

EF (R) = −
!2

2m̄

(

∂2
R +

1

R
∂R

)

F (R) +
!2s2

2m̄R2
F (R). (4)

The quantity s2 is given by the hyperangular eigenvalue
problem. It belongs to a infinite discrete set and is real
since there is no Efimov effect on the unit sphere (R $= 0),
that is here no three-body Efimov effect.
Mathematically, Eq.(4) admits for all energies E two

linearly independent solutions, respectively behaving as
R±s for R → 0. If s2 > 0, one imposes F (R) ∼ Rs,
with s > 0, which is correct except for accidental, non-
universal four-body resonances (see note [43] in [5]), and
Eq.(4) then does not support any bound state. On the
contrary, if s2 < 0, in which case we set s = iS, S > 0, F
experiences an effective four-body attraction, with a fall

2

to the center leading to a unphysical continuous spectrum
of bound states [7]. To make the model self-adjoint, one
then imposes an extra contact condition [7], as in the
usual three-body Efimov case [8]:

F (R) ∼
R→0

Im

[

(

R

Rf

)iS
]

, (5)

where the four-body parameter Rf depends on the mi-
croscopic details of the true, finite range interaction [9].
With the extra condition Eq.(5) one then obtains from
Eq.(4) an Efimov spectrum of tetramers:

En = −
2!2

m̄R2
f

e
2
S arg Γ(1+iS)e−2πn/S , ∀n ∈ Z. (6)

The whole issue is thus to determine the values of the
exponents s. In particular, the critical mass ratio αc(3; 1)
corresponds to one of the exponents being equal to zero,
the other ones remaining positive. To this end, we cal-
culate the zero energy four-body wavefunction with no
specific boundary condition on F (R). Then, from Eq.(4)
with E = 0, it appears that F (R) ∝ R±s. The calcula-
tion is done in momentum space, with the ansatz for the
Fourier transform of the four-body wavefunction:

ψ̃(k1,k2,k3,k4) =
δ(
∑4

i=1 ki)
∑4

i=1
!2k2

i

2mi

× [D(k2,k3) +D(k3,k1) +D(k1,k2)] , (7)

where the fermionic symmetry imposes D(k2,k1) =
−D(k1,k2), and the denominator originates from the ac-
tion ofH in Eq.(1) written in momentum space. WhenH
acts on one of the three 1/|r4−ri| singularities in Eq.(2),
this produces in the right hand side of Schrödinger’s
equation a Dirac distribution δ(r4 − ri) multiplied by a
translationally invariant function of the three fermionic
positions, which after Fourier transform gives each of the
D[(kj)j #=i,4] terms in Eq.(7). Taking the Fourier trans-
form of Eq.(3) with F (R) ∝ R±s, and using a power-
counting argument, one finds the scaling law

D(λk1,λk2) = λ−(±s+7/2)D(k1,k2). (8)

Implementing in momentum space the contact condi-
tions, that is the fact that O(|ri−r4|) vanishes for ri = r4

in Eq.(2), gives rise to an integral equation:

0 =

[

1 + 2α

(1 + α)2
(k21 + k22) +

2α

(1 + α)2
k1 · k2

]1/2

D(k1,k2)

+

∫

d3k3
2π2

D(k1,k3) +D(k3,k2)

k21 + k22 + k23 +
2α
1+α (k1 · k2 + k1 · k3 + k2 · k3)

,

(9)

where we recall that α = M/m. Eq.(9) can also be ob-
tained as the zero range limit of finite range models [11].

We now use rotational invariance to impose the value
l ∈ N of the total angular momentum of the four-body
state and to restrict to a zero angular momentum along
the quantization axis z. Then, according to Eq.(7), the
effective two-body function D(k1,k2) has the same an-
gular momentum l. This allows to express D in terms

of 2l + 1 unknown functions f (l)
ml of three real variables

only, the moduli k1 and k2 and the angle θ ∈ [0,π] be-
tween k1 and k2, with the fermionic symmetry imposing

f (l)
ml(k2, k1, θ) = (−1)l+1f (l)

−ml
(k1, k2, θ) [11]:

D(k1,k2) =
l

∑

ml=−l

[Y ml

l (γ, δ)]∗ eimlθ/2f (l)
ml

(k1, k2, θ).

(10)
Here Y ml

l (γ, δ) are the usual spherical harmonics, γ and
δ are the polar and azimuthal angles of the unit vec-
tor vector ez along z in the direct orthonormal basis
(e1, e2⊥, e12), with e1 = k1/k1, e2 = k2/k2, e2⊥ =
(e2 − e1 cos θ)/ sin θ and e12 = e1 ∧ e2/ sin θ [12]. The
action of parity ki → −ki on this general ansatz is to
multiply each term of index ml in Eq.(10) by a factor
(−1)ml , which allows to decouple the evenml terms (even
parity) from the odd ml terms (odd parity). A relevant
example, as we shall see, is the even parity channel with
l = 1, where the ansatz reduces to a single term, which
is obviously the component along z of a vectorial spinor:

D(k1,k2) ∝ ez ·
k1 ∧ k2

||k1 ∧ k2||
f (1)
0 (k1, k2, θ). (11)

The last step is to use the scaling invariance of D, see
Eq.(8), setting

f (l)
ml

(k1, k2, θ) = (k21 + k22)
−(s+7/2)/2(coshx)3/2Φ(l)

ml
(x, u)
(12)

where u = cos θ. The introduction of the logarithmic
change of variable x = ln(k2/k1) is motivated by Efimov
physics, and the factor involving the hyperbolic cosine
ensures that the final integral equation involves a Hermi-
tian operator. The fermionic symmetry imposes

Φ(l)
ml

(−x, u) = (−1)l+1Φ(l)
−ml

(x, u) (13)

which allows to restrict the unknown functions Φ(l)
ml to

x ≥ 0. Restricting to s = iS, S ≥ 0, we finally obtain

0 =

[

1 + 2α

(1 + α)2
+

αu

(1 + α)2 coshx

]1/2

Φ(l)
ml

(x, u)

+

∫

R+

dx′

∫ 1

−1
du′

l
∑

m′

l=−l

K(l)
ml,m′

l
(x, u;x′, u′)Φ(l)

m′

l
(x′, u′).

(14)

The symmetrized kernel K(l)
ml,m′

l
(x, u;x′, u′) =

∑

ε,ε′=±1(εε
′)l+1K(l)

εml,ε′m′

l
(εx, u; ε′x′, u′) is expressed

s



4 bosons                  

strong numerical + some experimental evidence:
no 4-body parameter
only 

[Hammer Platter 2007; von Stecher D’Incao Greene 2009; Deltuva 2011] 
[Ferlaino et al. 2009]

4-body quasi-bound states   (i.e. resonances)

a,Rt



Many-body problem

Fermions, N↑ = N↓ → ∞

n =
N

L3
fixed

n−1/3

a

|a| =∞unitary gas

0 1-1

BCS BEC of molecules����

strongly correlated 
regime

BEC-BCS crossover
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Figure 3 | Constructing the EOS from in situ imaging. The atom cloud shown contains N=8× 10
4
atoms for each spin state, with a local Fermi energy of

EF = 370 nK at the centre. a, Absorption image of the atomic cloud after quadrant averaging. b, Reconstructed local density n(ρ,z). c, Equipotential
averaging produces a low-noise density profile, n versus V. Thermometry is performed by fitting the experimental data (red) to the known portion of the

EOS (solid blue line), starting with the virial expansion for βµ<−1.25 (green dashed line). In this example, the EOS is known for βµ≤−0.25, and the fit to

the density profile yields T= 113 nK, and βµ = 1.63. d, Given µ and T, the density profile can be rescaled to produce the EOS nλ3 versus βµ.
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deviation systematic plus statistical errors, with the additional uncertainty from the Feshbach resonance position shown by the upper and lower margins as

red solid lines. Black dashed line and red triangles: Theory and experiment (this work) for the ideal Fermi gas, used to assess the experimental systematic

error. Green solid line: third order virial expansion. Open squares: first order bold diagram
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. Green open circles: Auxiliary Field QMC (ref. 11). Star:

superfluid transition point from Determinental Diagrammatic Monte Carlo
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. Filled diamonds: experimental pressure EOS (ref. 22). Open pentagons:

pressure EOS (ref. 23).
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Equation of state of the unitary gas in the normal unpolarised phase:
Cross-validation between Bold Diagrammatic Monte Carlo and ultracold-atoms precision measurements
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in-situ absorbtion image [MIT]



bn comes from the n− body problem

Application:
Exact calculation of 3rd virial coefficient
of homogeneous unitary gas
[Liu, Hu & Drummond, PRL ’09]

Agrees with Diagrammatic Monte-Carlo
[Van Houcke, Werner, Prokofev, Svistunov; in progress]

Disagrees with diagrammatic calculation [Rupak, PRL ’07]

b3 = −0.29095295 . . . .

nλ3 =
βµ→−∞

2(eβµ + 2b2e
2βµ + 3b3e

3βµ + . . .)

virial expansion:

Application:
Exact calculation of 3rd virial coefficient
of homogeneous unitary gas
[Liu, Hu & Drummond, PRL ’09]

Agrees with Diagrammatic Monte-Carlo
[Van Houcke, Werner, Prokofev, Svistunov; in progress]

Disagrees with diagrammatic calculation [Rupak, PRL ’07]

b3 = −0.29095295 . . . .

nλ3 =
βµ→−∞

2(eβµ + 2b2e
2βµ + 3b3e

3βµ + . . .)

Liu Hu Drummond 2009



physics 
nature  

~10^6 diagrams at order 9

Diagrammatic Monte Carlo
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#

FIG. 2. Cross-validation between resummation proce-

dure and experiment at βµ = +1. Bold Diagrammatic

Monte Carlo data for the dimensionless density nλ3
, as a

function of the parameter � controlling the resummation pro-

cedure, for three different resummation methods: Lindelöf

(blue circles), shifted Lindelöf (black diamonds), and Gauss

(open green squares). The solid lines are linear fits to the

Monte Carlo data, their � → 0 extrapolation agrees within er-

ror bars with the experimental data point (filled red square).

[In the opposite limit � → ∞, the Lindelöf (resp. shifted Lin-

delöf) curves will asymptote to the first [15, 19] (resp. third)

order results, shown by the dashed (resp. dash-dotted) line.]

Error bars for each � represent the statistical error, together

with the estimated systematic error coming from not sampling

diagrams of order > 9.

F (x) =
� x
−∞ dx�f(x�). We normalize it by the pressure of

the ideal Fermi gas and show F (βµ)/F0(βµ), see Fig. 4b.
The agreement between BDMC and experiment is ex-
cellent. The comparison is sufficiently sensitive to vali-
date the procedure of resumming and extrapolating (see
Fig. 2). The result was checked to be independent of the
maximal sampled diagram order Nmax ∈ {7; 8; 9} within
the error bars displayed in Fig. 2 for each �. The BDMC
final error bar in Fig. 4 is the sum of the conservatively
estimated systematic errors from the uncertainty of the
� → 0 extrapolation and from the dependence on numeri-
cal grids and cutoffs, the latter being reduced by analyti-
cally treating high-momentum short-time singular parts.
The systematic error in the experiment is determined to
be about 1% by the independent determination of the
EOS of the non-interacting Fermi gas. The experimen-
tal error bars of Fig. 4 also include the statistical error,
which is < 0.5% thanks to the scale invariance of the
balanced unitary gas: irrespective of shot-to-shot fluctu-
ations of atom number and temperature, all experimen-
tal profiles contribute to the same scaled EOS-function
f . The dominant uncertainty on the experimental EOS
stems from the uncertainty in the position of the 6Li Fes-
hbach resonance known to be at 834.15±1.5G from spec-
troscopic measurements [20]. The change in energy, pres-
sure and density with respect to the interaction strength
is controlled by the so-called contact [21] that is obtained
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FIG. 3. Constructing the EOS from in situ imaging.

The atom cloud shown contains N = 8 × 10
4
atoms for each

spin-state, with a local Fermi energy of EF = 370 nK at the

center. a) Absorption image of the atomic cloud after quad-

rant averaging. b) Reconstructed local density n(ρ, z). c)

Equipotential averaging produces a low-noise density profile

n vs V . Thermometry is performed by fitting the experi-

mental data (red) to the known portion of the EOS (solid

blue line), starting with the virial expansion for βµ < −1.25
(green dashed line). In this example, the EOS is known

to βµ ≤ −0.25, and the fit to the density profile yields

T = 113nK, and βµ = 1.63. d) Given µ and T , the den-

sity profile can be rescaled to produce the EOS nλ3
vs βµ.

from Γ in the BDMC calculation. This allows us to de-
fine the uncertainty margins above and below the exper-
imental data (see Fig. 4) that give the prediction for the
unitary EOS if the true Feshbach resonance lied 1.5 G
below or above 834.15 G, respectively.

We clearly discriminate against previous theoretical
and experimental results. Deviations from the theory
based on the first-order Feynman diagrams [15, 19] are
expected, and rather remarkably moderate. Differences
with lattice Monte Carlo data [11, 13] may seem more
surprising, since in the particular case of the balanced
system these algorithms are free of the sign problem, al-
lowing in principle to approach the balanced unitary gas
model in an unbiased way. However, eliminating system-
atic errors from lattice-discretization and finite volume
requires extrapolations which are either not done [11]
or difficult to control [12, 13]. The ENS experimental
pressure EOS [22] lies systematically below ours, slightly
outside the reported error bar. The experimental results
from Tokyo [23] do not agree with the virial expansion at
high temperature. The BDMC results agree excellently
with the present experimental data all the way down to
the critical temperature for superfluidity (see Fig. 4). On
approach to (βµ)c, we observe the growth of the corre-
lation length in the BDMC pair correlation function Γ.

Gauss

Lindelöf

shifted-Lindelöf

order 1 
[Haussmann et al.]

order 3

MIT
experiment



For a = ∞ : V (r) =
1

mb2
f
�r
b

�

|E| ∼ 1

mb2

continuous-space finite-range model

H =
N�

i=1

�
− 1

2mi
∆�ri + U(�ri)

�
+

�

1≤i<j≤N

V (rij)

V(r)

r
b

3-body losses

deeply bound dimer

chemical reaction

zero-energy state



T = 0

Γ ≡ − ṅ

n

Γ ∼
b→0

K b2s n(2s+2)/3

K

Fermions

Example: Unitary Fermi gas
3-body loss rate vanishes in the zero-range limit

model-dependent constant

[Petrov Salomon Shlyapnikov 2004]

84 CHAPTER 3. THREE TRAPPED ATOMS WITH RESONANT INTERACTIONS

3 fermions
l n sl,n
0 0 2.166221977

1 5.127352163
2 7.114476303
3 8.832247757

1 0 1.772724267
1 4.358249309
2 5.716434034
3 8.053186622

2 0 3.104976920
1 4.795405385
2 7.238828843
3 8.837105068

3 0 3.959308833
1 6.127419552
2 7.816290593
3 10.172447785

3 bosons
l n sl,n
0 0 i · 1.0062378251

1 4.465294619
2 6.818360913
3 9.324685319

1 0 2.863799435
1 6.462200440
2 7.852831918
3 9.822928538

2 0 2.823341917
1 5.508249355
2 6.449306509
3 9.272652269

3 0 4.090404751
1 5.771443207
2 8.406560584
3 9.607381634

Table 3.1 – The transcendental numbers sl,n obtained by numerical solution of Eq. (3.39).

This equation has some spurious integer solutions (l = 0, s = 2 for fermions ; l = 0, s = 4 and
l = 1, s = 3 for bosons) which must be eliminated because they lead to a vanishing wavefunction ψ.
For l = 0, Eq. (3.39) reduces to :

−s cos
(

s
π

2

)

+ η
4√
3
sin

(

s
π

6

)

= 0. (3.40)

Eq. (3.39) is readily solved numerically : for each l, the solutions form an infinite sequence (sl,n)n≥0,
see Table 3.1 and Fig. 3.2. An expected fact which we proved analytically in Article III is that
all solutions sl,n are real, except for bosons in the l = 0 channel, where a single purely imaginary
solution exists,

sl=0,n=0 ≡ s0 $ i× 1.00624, (3.41)

the well known Efimov solution.

3.1.d Hyperradial problem

The hyperradial problem writes :

−F ′′(R)− 1

R
F ′(R) +

(

s2

R2
+ ω2R2

)

F (R) = 2EF (R). (3.42)

We recall that the allowed values of s are given by the hyperangular problem discussed above.
Eq. (3.42) can be interpreted as Schrödinger’s equation for a fictitious particle of mass unity moving
in two dimensions in the effective potential (s2/R2 +ω2R2)/2, the hyperradius R being interpreted
as the distance of the fictious particle from the origin, and the hyperradial part F (R) of the 3-body
wavefunction being interpreted as the wavefunction of the fictitious particle. A detailed discussion
of this problem is given in Appendix B page 65, which we summarize here. The key point is that one
has to chose a boundary condition for R → 0 in order for the hyperradial problem to be hermitian

smallest solution s = . . .



η∗ inelasticity parameter

Bosons
3-body loss rate does not vanish in the zero-range limit

Efimov trimers

modified 3-body contact condition  [Braaten Hammer 2003]

F. Werner

Re E

Im E

E(η∗)

E(η∗ = 0)

2η∗
|s|

Fig. 1: Without three-body losses the inelasticity parameter
η∗ = 0 and the energy of an Efimov state lies on the negative
real axis. The effect of three-body losses is to rotate this
energy in the complex plane by an angle 2η∗/|s|, where |s|=
1.00624 . . . . When this angle approaches π, the decay rate
Γ=−2 ImE/! vanishes.

model solves i) the Schrödinger equation

− !
2

2m

3∑

i=1

∆riψ=E ψ (1)

when all interparticle distances rij are different from zero,
and ii) the Bethe-Peierls boundary condition, imposing
that there exists a function A such that

ψ(r1, r2, r3) =
rij→0

(
1

rij
− 1
a

)
A(Rij , rk)+O(rij) (2)

in the limit rij→ 0 where particles i and j approach each
other while the position of their center of mass Rij and of
the third particle rk are fixed. In what follows we assume
that |a| is much larger than the typical distance between
particles, so that we can set |a|=∞. Equations (1), (2)
are then solved by Efimov’s Ansatz [1]

ψ(r1, r2, r3) = F (R)
(
1+ P̂13+ P̂23

) 1
rρ
sin
[
s arctan

(ρ
r

)]

(3)

where P̂ij exchanges particles i and j, s$ i · 1.00624 is the
only solution s∈ i · (0;+∞) of the equation s cos (sπ/2)−
8/
√
3 sin (sπ/6) = 0, the Jacobi coordinates are r=

‖ r2− r1 ‖ and ρ=‖ 2r3− r1− r2 ‖ /
√
3, the hyperradius is

R=
√
(r2+ρ2)/2, and the hyperradial wavefunction F (R)

solves the hyperradial Schrödinger equation

[
−
(
d2

dR2
+
1

R

d

dR

)
+
s2

R2

]
F (R) =

2m

!2 E F (R). (4)

In the limit R→ 0 where all three particles approach each
other, the attractive effective potential s2/R2 diverges
strongly, and it is necessary to impose a boundary

condition on the hyperradial wavefunction F (R), as first
realized by Danilov [25]. This boundary condition is
conveniently expressed as

F (R) ∝
R→0

(
R

Rt

)−s
−
(
R

Rt

)s
, (5)

where the three-body parameter Rt depends on short-
range physics and is a parameter of the zero-range model.
The solution of eqs. (4), (5) is given by the famous
geometric series of Efimov trimers

E0n =−
2!2
mR 2t

exp

[
2

|s|argΓ(1+ s)
]
exp

(
n
2π

|s|

)
, n∈Z,

(6)
with a (here unnormalized) wavefunction

F (R) =Ks(κR), (7)

where K is a Bessel function and κ is defined by

E =−!
2κ2

2m
(8)

with the determination κ> 0 ensuring that F (R) decays
exponentially for R→∞. Efimov’s spectrum (6) is
unbounded from below, in agreement with the Thomas
effect [26] and with the fact that the spectrum for an
interaction of finite range b coincides with Efimov’s
spectrum only in the zero-range limit, i.e. for weakly
bound trimers satisfying |E|) !2/(mb2) [1,3,4,21,27–29].

Effect of three-body losses. – We now determine
how Efimov’s result is modified by three-body losses
within the model of Braaten and Hammer. The only
difference between the Braaten-Hammer model and the
zero-range model is that the boundary condition (5) is
replaced by [3,4]

F (R) ∝
R→0

(
R

Rt

)−s
− e−2η∗

(
R

Rt

)s
, (9)

where the inelasticity parameter η∗ and the three-body
parameter Rt are parameters of the Braaten-Hammer
model, whose values depend on the details of the finite-
range interactions which one wishes to model2. The
physical meaning of (9) is that the outgoing wave ∝Rs has
an amplitude which is smaller than the amplitude of the
ingoing wave ∝R−s by a factor e−2η∗ , i.e. three ingoing
atoms are reflected with a probability e−4η∗ and are lost
by three-body recombination with a probability 1− e−4η∗ .
The Braaten-Hammer model is expected to become

exact in the zero-range limit [3,4,10,11]. This is supported
by numerical calculations of the three-body loss rate
from an atomic gas with finite-range interaction poten-
tials, which are in good agreement with the predic-
tion of the Braaten-Hammer model in the zero-range

2E.g. for 133Cs atoms near the −11G Feshbach resonance, the fit
of the theoretical result of [11] to the experimental data of [2] gives
η∗ " 0.06 [2] and Rt " 30 nm [2,17].

66006-p2

Efimov states with strong three-body losses

regime [19]. Moreover this can be explained using the
adiabatic hyperspherical description [3,6,30,31]: in addi-
tion to the “atomic” adiabatic channel responsible for the
Efimov effect, there is one “molecular” channel associated
with each deep two-body bound state; one can thus look
for decaying Gamov states with a complex energy E by
imposing outgoing boundary conditions in the molecular
channels; the coupling between the atomic channel and
the molecular channels is only effective at distances on
the order of the potential range, where the wavefunction is
insensitive to E in the zero-range limit; and matching this
short-distance wavefunction to the atomic-channel wave-
function at hyperradii much larger than the range and
much smaller than the typical atomic-channel de Broglie
wavelength yields the boundary condition (9).
In the absence of losses (η∗ = 0), the boundary condi-

tion (9) reduces to Efimov’s boundary condition (5), and
one recovers Efimov’s spectrum (6):

En(η∗ = 0) =E
0
n. (10)

In the presence of losses (η∗ > 0), we solve the hyperra-
dial problem (4, 9) with the additional boundary condition
that F (R) must decay quickly enough at infinity3.
Using the known properties of Bessel functions [32], we
obtain the energies

En(η∗) = exp

(
i
2η∗
|s|

)
En(η∗ = 0), (11)

i.e. the spectrum is rotated in the complex plane coun-
terclockwise around the origin by an angle 2η∗/|s|. The
result (11) only holds if the angle 2η∗/|s|< π, i.e. for
η∗ < η∗c with

η∗c =
π|s|
2
= 1.5806 . . . , (12)

while for η∗ > η∗c there is no normalisable solution.
The wavefunction is still given by eqs. (7), (8), now with

the determination
Reκ> 0 (13)

of the sign of κ, which ensures that the wavefunction is
normalisable since

F (R) ∝
R→∞

e−κR√
R
. (14)

The decay rate

Γ≡−2! ImE (15)

is given by

!Γ= 2 sin
(
2η∗
|s|

)
|E(η∗ = 0)|. (16)

3More precisely the normalisation condition is∫∞
0 dRR |F (R)|

2 <∞, since the quantity
∫
dr1 dr2 |ψ(r1, r2, r3)|2,

which does not depend on r3, has to be finite.

In the limit of small losses η∗% 1 we recover the known
result [10]

!Γ& 4η∗|s| |E(η∗ = 0)|. (17)

The proportionality between Γ and the energy was first
observed in numerical calculations with finite-range inter-
actions and explained using the adiabatic hyperspherical
description in [6].
An interesting effect occurs when η∗ approaches the

critical value η∗c from below: the energies approach the
opposite of the energies of the Efimov states without losses

E(η∗) −→
η∗→η∗c

|E(η∗ = 0)|, (18)

so that the decay rates tend to zero. Moreover, the
sizes of the states diverge: since the imaginary part of κ
tends to a positive value and its real part tends to 0+,
the behavior (14) of the wavefunction at large R is an
ingoing wave with a slowly decaying envelope. Physically,
it is not surprising that the states become increasingly
delocalised before disappearing into the continuum. Since
the wavefunction is normalized, this divergence of the size
implies that the probability for the three particles to be
close to each other vanishes, so that Γ vanishes.
This effect occurs within the effective low-energy

model of Braaten and Hammer. We thus expect that
it also occurs for finite-range interactions supporting
deeply bound dimers, provided the two-body interaction
potential is tuned in such a way that η∗ is slightly below
η∗c; this could be checked numerically using the methods
of [5,6,8,19,31].
Experimentally, it is rather unlikely to find a Feshbach

resonance close to which η∗ is slightly below η∗c. However
this regime may become accessible if interatomic inter-
actions are tuned using an additional control parameter,
e.g. an electric field [33].
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insensitive to E in the zero-range limit; and matching this
short-distance wavefunction to the atomic-channel wave-
function at hyperradii much larger than the range and
much smaller than the typical atomic-channel de Broglie
wavelength yields the boundary condition (9).
In the absence of losses (η∗ = 0), the boundary condi-

tion (9) reduces to Efimov’s boundary condition (5), and
one recovers Efimov’s spectrum (6):

En(η∗ = 0) =E
0
n. (10)

In the presence of losses (η∗ > 0), we solve the hyperra-
dial problem (4, 9) with the additional boundary condition
that F (R) must decay quickly enough at infinity3.
Using the known properties of Bessel functions [32], we
obtain the energies

En(η∗) = exp

(
i
2η∗
|s|

)
En(η∗ = 0), (11)

i.e. the spectrum is rotated in the complex plane coun-
terclockwise around the origin by an angle 2η∗/|s|. The
result (11) only holds if the angle 2η∗/|s|< π, i.e. for
η∗ < η∗c with

η∗c =
π|s|
2
= 1.5806 . . . , (12)

while for η∗ > η∗c there is no normalisable solution.
The wavefunction is still given by eqs. (7), (8), now with

the determination
Reκ> 0 (13)

of the sign of κ, which ensures that the wavefunction is
normalisable since

F (R) ∝
R→∞

e−κR√
R
. (14)

The decay rate

Γ≡−2! ImE (15)

is given by

!Γ= 2 sin
(
2η∗
|s|

)
|E(η∗ = 0)|. (16)

3More precisely the normalisation condition is∫∞
0 dRR |F (R)|

2 <∞, since the quantity
∫
dr1 dr2 |ψ(r1, r2, r3)|2,

which does not depend on r3, has to be finite.

In the limit of small losses η∗% 1 we recover the known
result [10]

!Γ& 4η∗|s| |E(η∗ = 0)|. (17)

The proportionality between Γ and the energy was first
observed in numerical calculations with finite-range inter-
actions and explained using the adiabatic hyperspherical
description in [6].
An interesting effect occurs when η∗ approaches the

critical value η∗c from below: the energies approach the
opposite of the energies of the Efimov states without losses

E(η∗) −→
η∗→η∗c

|E(η∗ = 0)|, (18)

so that the decay rates tend to zero. Moreover, the
sizes of the states diverge: since the imaginary part of κ
tends to a positive value and its real part tends to 0+,
the behavior (14) of the wavefunction at large R is an
ingoing wave with a slowly decaying envelope. Physically,
it is not surprising that the states become increasingly
delocalised before disappearing into the continuum. Since
the wavefunction is normalized, this divergence of the size
implies that the probability for the three particles to be
close to each other vanishes, so that Γ vanishes.
This effect occurs within the effective low-energy

model of Braaten and Hammer. We thus expect that
it also occurs for finite-range interactions supporting
deeply bound dimers, provided the two-body interaction
potential is tuned in such a way that η∗ is slightly below
η∗c; this could be checked numerically using the methods
of [5,6,8,19,31].
Experimentally, it is rather unlikely to find a Feshbach

resonance close to which η∗ is slightly below η∗c. However
this regime may become accessible if interatomic inter-
actions are tuned using an additional control parameter,
e.g. an electric field [33].
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high− temperature regime T � n2/3

m

ṅ = −n3 L3(T )

L3(T ) =
1

m3T 2
f(Rt

√
T , η∗)

f dimensionless function
periodic function of ln(Rt

√
T ), period π/s0

f ≈ 36
√
3π2(1− e−4η∗)

s0 = 1.0062378 . . .

Unitary Bose gas

analytical expression for f [Petrov FW 2013]



model are not applicable [34]. In the limit jaj ! !th, we
observe that L3ðaÞ saturates to the same value on both sides
of the resonance. In the opposite limit jaj $ !th, our data
connect to the zero-temperature behavior [20] studied
experimentally in Refs. [22–26]. On the a < 0 side, the
dashed line is the zero-temperature prediction for L3 from
Ref. [20]. We clearly see that finite temperature reduces the
three-body loss rate. On the a > 0 side, temperature effects
become negligible for a < 2000a0, as testified by our mea-
surements performed on a low-temperature Bose-Einstein
condensate (green squares), which agree with the total
recombination rate to shallow and deep dimers calculated
at T ¼ 0 in Ref. [20] (dashed line). The data around uni-
tarity and on the a < 0 side are seen to be in excellent
agreement with our theory Eq. (4) described below.

In order to understand the dependence L3ða; TÞ theoreti-
cally, we employ the S-matrix formalism developed in
Refs. [20,35,36]. According to themethod, at hyperradiiR !
jaj one defines three-atom scattering channels (i ¼ 3; 4; . . . )
for which the wave function factorizes into a normalized

hyperangular part !iðR̂Þ and a linear superposition of the

incoming, R&5=2e&ikR, and outgoing, R&5=2eþikR, hyperra-
dial waves. The channel i ¼ 2 is defined for a > 0 and
describes the motion of an atom relative to a shallow dimer.
The recombination or relaxation to deep molecular states
(with a size of order the van der Waals range Re) requires
inclusion of other atom-dimer channels. In the zero-range
approximation, valid when Re $ Rm ( minð1=k; jajÞ, the
overall effect of these channels and all short-range physics
in general can be taken into account by introducing a single
Efimov channel (i ¼ 1) defined for Re $ R $ Rm: the
wave function at these distances is a linear superposition of

the incoming, !1ðR̂ÞR&2þis0 , and outgoing, !1ðR̂ÞR&2&is0 ,
Efimov radial waves. Here s0 ) 1:00624. The notion
‘‘incoming’’ or ‘‘outgoing’’ is defined with respect to the
long-distance region Rm & R & jaj, so that, for example,
the incoming Efimovwave actually propagates towards larger
R whereas incoming waves in all other channels propagate

towards smaller hyperradii. The matrix sij relates the incom-
ing amplitude in the ith channel with the outgoing one in the
jth channel and describes the reflection, transmission, and
mixing of channels in the long-distance region. This matrix
is unitary and independent of the short-range physics. The
short-range effects are taken into account by fixing the relative
phase and amplitude of the incoming and outgoing Efimov
waves R2" / ðR=R0Þis0 & e2"* ðR=R0Þ&is0 , where R0 is the
three-body parameter and the short-range inelastic processes
are parametrized by "* > 0, which implies that the number
of triples going towards the region of R+ Re is by
the factor e4"* larger than the number of triples leaving this
region [37]. Braaten et al. [36] have shown that for a given
incoming channel i , 2 the probability of recombination
to deeply bound states is Pi ¼ ð1& e&4"* Þjsi1j2=j1þ
ðkR0Þ&2is0e&2"*s11j2 [38]. For a < 0, by using the fact
that s11 is unitary (

P1
i¼1 js1ij2 ¼ 1) and averaging over the

FIG. 3 (color online). (a) 7Li scattering-length dependence of
the three-body rate constant L3ðaÞ for constant T ¼ 5:9ð6Þ #K
(filled and open circles). For small positive a, L3ðaÞ for a low-
temperature condensate is also shown (green squares). The solid
blue line corresponds to our theoretical prediction Eq. (4) for
T ¼ 5:9 #K. The blue range is the same theory for 5.3 to
6:5 #K. The dashed lines show the zero-temperature prediction
for L3ðaÞ [20] fitted to the measurements in Refs. [30,39] with
the parameters "* ¼ 0:21 and R0 ¼ 270a0. The vertical dotted
lines correspond to jaj=!th ¼ 1. The open circles in the range
1500a0 < a< 5000a0 are not corrected for residual evaporation
as our model is not applicable. (b) Logarithmic plot of the a < 0
side, displaying the two Efimov loss resonances.
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FIG. 2 (color online). Temperature dependence of the
three-body loss rate L3. Filled circles, experimental data;
green dashed line, best fit to the data L3ðTÞ ¼ !3=T

2 with !3¼
2:5ð3Þstatð6Þsyst-10&20 ð#KÞ2cm6s&1; the shaded green band

shows the 1$ quadrature sum of uncertainties. Solid line,
prediction from Eq. (5), !3 ¼ 1:52- 10&20 ð#KÞ2 cm6 s&1

with "* ¼ 0:21 from Refs. [30,39].
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Partial derivatives of the energy

ψ(�r1, . . . ,�rN ) =
rij→0

�
1
rij
− 1

a

�
Aij(�Rij , (�rk)k �=i,j) + O(rij)

�
∂E

∂(−1/a)

�

Rt

=
�

i<j

�
d�Rij

� �

k �=i,j

d�rk

���Aij(Rij , (rk)k �=i,j)
��2

�
∂E

∂re

�

a

= 2π
�

i<j

�
d�R

� � �

k �=i,j

d�rk

�
Aij(�R, (�rk)k �=i,j)

·



E +
�2

4m
∆�R +

�2

2m

�

k �=i,j

∆�rk −
N�

l=1

U(�rl)



Aij(�R, (�rk)k �=i,j)

For universal states:

Appendix 1:



Applications:  3 particles,      a =∞

Efimov trimers:

Universal states in isotropic harmonic trap:
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FEYNMAN DIAGRAMS for the unitary gas 
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Gσ(�p, τ) ≡ −�Tτ c�p,σ(τ)c
†
�p,σ(0)�Single-particle propagator:
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Appendix 2: More on Diagrammatic Monte Carlo



G0(�p, τ1 − τ3){contribution to G(�p, τ1 − τ2) } = (g0)
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Γ(�r = �0, τ = 0−) = g 2
0 · P(�r = �0, τ = 0−)

= −g 2
0 · � n̂↑(�0 ) n̂↓(�0 ) �

= −C

3

D. Bold pair propagator

Bethe-Salpeter equation:

For any (p,Ωn) we have

Γ = Γ0
+ Γ0 Π Γ (15)

and thus

1

Γ
=

1

Γ0
−Π. (16)

Lowest order:

Π(1)
= −[GG−G(0) G(0)

]. (17)

Fourier transform Γ(Ωn) −→ Γ(τ):
When subtract gamma0tilde=true, we write in frequency domain

Γ = Γ̃0�
+ (Γ− Γ̃0�

) (18)

Here we have defined

Γ̃0�
(Ωn) = Γ̃0

(Ωn) for n �= 0 (19)

Γ̃0�
(Ωn) = 0 for n = 0, (20)

whose FT Γ̃0�
(τ) is indeed given by (A27). The FT of the first term, Γ̃0�

(τ), is done by summing all frequencies

analytically, see (A30,A32). The FT of the second term, (Γ− Γ̃0�
)(τ) is calculated by FFT.

Γ is directly related to the pair Green’s function

P(�r, τ) ≡ −
�
T (Ψ↓Ψ↑)(�r, τ)(Ψ

†
↑Ψ

†
↓)(

�0, 0)
�

(21)

via

Γ(�p, τ) = g0 δ(τ) + g 2
0 · P(�p, τ). (22)

E. Feynman rules for the skeleton diagrams

Q = Σ or Π
external variables Y = (p; τ1, τ2)
bold-reducible diagrams are not allowed.

Q(Y ) = Q(�p; τ1, τ2) = Q(p, τ1 − τ2)
Lemma: For any topology T of order N , one can find N ‘loop momenta’ �q1, . . . , �qN (...).

For a given topology, we label the internal lines by an index l for G-lines (resp. λ for Γ-lines), and denote the

corresponding internal momenta by �kl (resp. �κλ). All these internal momenta are uniquely determined by the loop

momenta and the external momentum. The time-difference between the end-point and the origin of a line is denoted
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The only exception is the first order diagram for Π, for which we have to subtract G(0)G(0)
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whose FT Γ̃0�
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(τ), is done by summing all frequencies

analytically, see (A30,A32). The FT of the second term, (Γ− Γ̃0�
)(τ) is calculated by FFT.

Γ is directly related to the pair Green’s function
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†
↑Ψ

†
↓)(
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via

Γ(�p, τ) = g0 δ(τ) + g 2
0 · P(�p, τ). (22)

E. Feynman rules for the skeleton diagrams

Q = Σ or Π
external variables Y = (p; τ1, τ2)
bold-reducible diagrams are not allowed.

Q(Y ) = Q(�p; τ1, τ2) = Q(p, τ1 − τ2)
Lemma: For any topology T of order N , one can find N ‘loop momenta’ �q1, . . . , �qN (...).

For a given topology, we label the internal lines by an index l for G-lines (resp. λ for Γ-lines), and denote the

corresponding internal momenta by �kl (resp. �κλ). All these internal momenta are uniquely determined by the loop
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Q(Y ) =

�

T ∈SQ

�
dX D(T , X, Y ) (23)
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Lemma: For any topology T of order N , one can find N ‘loop momenta’ �q1, . . . , �qN (...).

For a given topology, we label the internal lines by an index l for G-lines (resp. λ for Γ-lines), and denote the

corresponding internal momenta by �kl (resp. �κλ). All these internal momenta are uniquely determined by the loop
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The only exception is the first order diagram for Π, for which we have to subtract G(0)G(0)
so that

D = Π(1)
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Γ(�r = �0, τ = 0−) = −C

Γ

Pair propagator (fully dressed):
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Figure 1 | Bold diagrammatic Monte Carlo The skeleton diagrammatic

series for the self-energy Σ and the pair self-energy Π is evaluated

stochastically (lower box). The diagrams are built on dressed one-body

propagators G and pair propagators Γ , which themselves are the solution

of the Dyson and Bethe-Salpeter equations (upper box). This cycle is

repeated until convergence is reached. G0
is the non-interacting propagator

and Γ0
is the partially dressed pair propagator obtained by summing the

bare ladder diagrams.

for the zero-range continuous-space interaction, the zero-range
limit can also be taken analytically. This is in sharp contrast with
other numerical methods11–13, where taking the thermodynamic
and zero-range limits is computationally very expensive. BDMC
performs a random walk in the space of irreducible diagrams using
local updates. The simulation is run in a self-consistent cycle (along
the lines of ref. 2) until convergence is reached. Full details will
be presented elsewhere. In essence, our approach upgrades the
standard many-body theories based on one lowest-order diagram
(for example, refs 14,15) to millions of graphs.

In the quantum degenerate regime, we do not observe
convergence of the diagrammatic series for Σ and Π evaluated
up to order 9. Here, order N means Σ -diagrams with N vertices
(that is, N Γ -lines) and Π -diagrams with N − 1 vertices. To
extract the infinite-order result, we apply the following Abelian
resummation methods16. The contribution of all diagrams of order
N is multiplied by e−�λN−1 , where λn depends on the resummation
method: (1) λn =n logn (with λ0 =0) for Lindelöf16, (2) λn = (n−1)
log(n−1) (with λ0 = λ1 = 0) for ‘shifted Lindelöf’, or (3) λn =n2 for
Gaussian17. A full simulation is performed for each �, and the final
result is obtained by extrapolating to � =0 (Fig. 2).

This protocol relies on the following crucial mathematical
assumptions: (1) the N th order contribution of the diagrammatic
expansion for Σ (for fixed external variables) is the N th coefficient
of the Taylor series at z = 0 of a function g (z) which has a non-zero
convergence radius, (2) the analytic continuation g (1), performed
by the above resummation methods16,17, is the physically correct
value ofΣ . The same assumptions should hold forΠ .

Proving these assumptions is an open mathematical challenge.
Note that Dyson’s collapse argument18 is not applicable to immedi-
ately disprove the assumption (1) of a non-zero convergence radius:
indeed, unlike QED, our skeleton series is not an expansion in
powers of a coupling constant whose sign change would lead to
an instability. The first important evidence for the validity of our
mathematical assumptions is that the three different resummation
methods yield consistent results. For an independent test, we
turn to experiments.

The present experiment furnishes high-precision data for the
density n as a function of the local value V of the trapping potential
(Fig. 3 and Methods). We start the process by obtaining the EOS at
high temperatures in the non-degenerate wings of the atom cloud,

n
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λ
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Figure 2 | Cross-validation between resummation procedure and
experiment at βµ = +1. Bold diagrammatic Monte Carlo data for the

dimensionless density nλ3, as a function of the parameter � controlling the

resummation procedure, for three different resummation methods: Lindelöf

(blue circles), shifted Lindelöf (black diamonds), and Gauss (open green

squares). The solid lines are linear fits to the Monte Carlo data, their � →0

extrapolation agrees within error bars with the experimental data point

(filled red square). (In the opposite limit � → ∞, the Lindelöf (resp. shifted

Lindelöf) curves will asymptote to the first
15,21

(resp. third) order results,

shown by the dashed (resp. dash–dotted) line.) Error bars for each �

represent the statistical error, together with the estimated systematic error

coming from not sampling diagrams of order >9.

where the virial expansion is applicable. Once the temperature
and the chemical potential have been determined from fits to the
wings of the cloud, the data closer to the cloud centre provides
a new prediction of the EOS. The process is iterated to access
lower temperatures.

Scale invariance allows one to write the density EOS as
n(µ,T )λ3 = f (βµ), with λ=

√
2π h̄2/(mkBT ) the thermal de Broglie

wavelength, β = 1/(kBT ) the inverse temperature and f a universal
function. A convenient normalization of the data is provided
by the EOS of a non-interacting Fermi gas, n0λ3 = f0(βµ). In
Fig. 4a, we thus report the ratio n(µ,T )/n0(µ,T )= f (βµ)/f0(βµ),
bringing out the difference between the ideal and the strongly
interacting Fermi gas. The Gibbs–Duhem relation allows us to also
calculate the pressure at a given chemical potential, P(µ0,T ) =� µ0

−∞dµ n(µ,T )= 1/(βλ3)F(βµ0), where F(x)=
� x

−∞dx �f (x �). We
normalize it by the pressure of the ideal Fermi gas and show
F(βµ)/F0(βµ) (Fig. 4b). The agreement between BDMC and
experiment is excellent. The comparison is sufficiently sensitive to
validate the procedure of resumming and extrapolating (Fig. 2).
The result was checked to be independent of the maximal sampled
diagram order Nmax ∈ {7;8;9} within the error bars shown in
Fig. 2 for each �. The BDMC final error bar in Fig. 4 is the
sum of the conservatively estimated systematic errors from the
uncertainty of the � → 0 extrapolation and from the dependence
on numerical grids and cutoffs, the latter being reduced by
analytically treating high-momentum short-time singular parts.
The systematic error in the experiment is determined to be
about 1% by the independent determination of the EOS of
the non-interacting Fermi gas. The experimental error bars of
Fig. 4 also include the statistical error, which is <0.5%, thanks
to the scale invariance of the balanced unitary gas: irrespective
of shot-to-shot fluctuations of atom number and temperature,
all experimental profiles contribute to the same scaled EOS-
function f . The dominant uncertainty on the experimental EOS
stems from the uncertainty in the position of the 6Li Feshbach
resonance, known to be at 834.15 ± 1.5G from spectroscopic
measurements19. The change in energy, pressure and density with
respect to the interaction strength is controlled by the so-called
contact20 that is obtained from Γ in the BDMC calculation.
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FIG. 2. Cross-validation between resummation proce-

dure and experiment at βµ = +1. Bold Diagrammatic

Monte Carlo data for the dimensionless density nλ3
, as a

function of the parameter � controlling the resummation pro-

cedure, for three different resummation methods: Lindelöf

(blue circles), shifted Lindelöf (black diamonds), and Gauss

(open green squares). The solid lines are linear fits to the

Monte Carlo data, their � → 0 extrapolation agrees within er-

ror bars with the experimental data point (filled red square).

[In the opposite limit � → ∞, the Lindelöf (resp. shifted Lin-

delöf) curves will asymptote to the first [15, 19] (resp. third)

order results, shown by the dashed (resp. dash-dotted) line.]

Error bars for each � represent the statistical error, together

with the estimated systematic error coming from not sampling

diagrams of order > 9.

F (x) =
� x
−∞ dx�f(x�). We normalize it by the pressure of

the ideal Fermi gas and show F (βµ)/F0(βµ), see Fig. 4b.
The agreement between BDMC and experiment is ex-
cellent. The comparison is sufficiently sensitive to vali-
date the procedure of resumming and extrapolating (see
Fig. 2). The result was checked to be independent of the
maximal sampled diagram order Nmax ∈ {7; 8; 9} within
the error bars displayed in Fig. 2 for each �. The BDMC
final error bar in Fig. 4 is the sum of the conservatively
estimated systematic errors from the uncertainty of the
� → 0 extrapolation and from the dependence on numeri-
cal grids and cutoffs, the latter being reduced by analyti-
cally treating high-momentum short-time singular parts.
The systematic error in the experiment is determined to
be about 1% by the independent determination of the
EOS of the non-interacting Fermi gas. The experimen-
tal error bars of Fig. 4 also include the statistical error,
which is < 0.5% thanks to the scale invariance of the
balanced unitary gas: irrespective of shot-to-shot fluctu-
ations of atom number and temperature, all experimen-
tal profiles contribute to the same scaled EOS-function
f . The dominant uncertainty on the experimental EOS
stems from the uncertainty in the position of the 6Li Fes-
hbach resonance known to be at 834.15±1.5G from spec-
troscopic measurements [20]. The change in energy, pres-
sure and density with respect to the interaction strength
is controlled by the so-called contact [21] that is obtained
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FIG. 3. Constructing the EOS from in situ imaging.

The atom cloud shown contains N = 8 × 10
4
atoms for each

spin-state, with a local Fermi energy of EF = 370 nK at the

center. a) Absorption image of the atomic cloud after quad-

rant averaging. b) Reconstructed local density n(ρ, z). c)

Equipotential averaging produces a low-noise density profile

n vs V . Thermometry is performed by fitting the experi-

mental data (red) to the known portion of the EOS (solid

blue line), starting with the virial expansion for βµ < −1.25
(green dashed line). In this example, the EOS is known

to βµ ≤ −0.25, and the fit to the density profile yields

T = 113nK, and βµ = 1.63. d) Given µ and T , the den-

sity profile can be rescaled to produce the EOS nλ3
vs βµ.

from Γ in the BDMC calculation. This allows us to de-
fine the uncertainty margins above and below the exper-
imental data (see Fig. 4) that give the prediction for the
unitary EOS if the true Feshbach resonance lied 1.5 G
below or above 834.15 G, respectively.

We clearly discriminate against previous theoretical
and experimental results. Deviations from the theory
based on the first-order Feynman diagrams [15, 19] are
expected, and rather remarkably moderate. Differences
with lattice Monte Carlo data [11, 13] may seem more
surprising, since in the particular case of the balanced
system these algorithms are free of the sign problem, al-
lowing in principle to approach the balanced unitary gas
model in an unbiased way. However, eliminating system-
atic errors from lattice-discretization and finite volume
requires extrapolations which are either not done [11]
or difficult to control [12, 13]. The ENS experimental
pressure EOS [22] lies systematically below ours, slightly
outside the reported error bar. The experimental results
from Tokyo [23] do not agree with the virial expansion at
high temperature. The BDMC results agree excellently
with the present experimental data all the way down to
the critical temperature for superfluidity (see Fig. 4). On
approach to (βµ)c, we observe the growth of the corre-
lation length in the BDMC pair correlation function Γ.
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