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1. Introduction

Let S: 2(S) C o — o, S >0, be a linear symmetric positive
operator on the Hilbert space 7.

By the famed Birman-Krein-Vishik theory we know how to find its
positive self-adjoint extensions.

Question: is there some nonlinear analogue of such a theory?

If A> 0is a linear self-adjoint extension of S then e A t>0,is
a continuous semi-group of contractions in J7, i.e.

le™ull < [lull  (equivalently [le”u — e v|| < [lu—v]|).

Thus in the nonlinear case we are lead to look for nonlinear
extensions which are generators of continuous nonlinear
semi-groups of contractions, i.e.

St, t >0, such that ||S¢(u) — St (V)| < ||lu— v|.



By the theory of one-parameter continuous nonlinear semi-groups
of contractions there follows that S; has a nonlinear generator A
given by a monotone operator which is the principal section A° of
a maximal monotone relation A C S x J7.

Since maximal monotonicity can be characterized in terms of
nonlinear resolvents and since, in the linear case, the theory of
self-adjoint extensions can be formulated in terms of the famed
Krein's resolvent formula, one is led to look for a nonlinear version
of such a formula.



2. Maximal monotone nonlinear operators (Brezis, Kato,
Komura, Minty, Moreau, Pazy, Rockafellar,....)

A nonlinear operator A : Z(A) C A — A in the real Hilbert
space 7 is said to be monotone of type w (monotone if w = 0)
whenever

Vuve (A, (Alu)—A(v),u—v)> —w|u-— sz,

and maximal monotone of type w if for some A\ > w (equivalently
for any A > w) one has

Range (A+ \) = 2.



A nonlinear operator A: D(A) C H# — H#, # the complex
Hilbert space 5 = J¢ + i ¢, is said to be monotone of type w
whenever

Yu,ve 2(A), Re(A(u)—A(v),u—v)>—w|u—v|>.
Defining A1, Az by
A(uy + i) = Ar(ur, ) + iAx(ur, ),
one has that A is monotone in # if and only if A defined by
Alur & u2) == Ar(u, u2) & Ag(ur, u2)

is monotone in the real Hilbert space % & . Similarly A is

maximal monotone if and only if A is maximal monotone. Thus the
whole theory of maximal monotone operators in real Hilbert spaces
extends, with the obvious modifications, to complex Hilbert spaces.



If A is monotone of type w then
(A+ X)) = (A+X)(v),u—v) = (A= w)llu—v|?.
and so if A is maximal then
(A+)N):2(A) —» &
is bijective for any A > w and the nonlinear resolvent
A+NLeo =, A>w,

is monotone and Lipschitz with Lipschitz constant (A — w)™!.



The notion of maximal monotone operator can be generalized to
multi-valued maps:

A C A x  is said to be a monotone relation of type w
(monotone relation in case w = 0) if

V(U,'[I),(V,V)EA, <E—V,U—V>Z—W‘|U—V”2

and is said to be a maximal monotone relation of type w if it is not
properly contained in any other monotone relation of type w.

The graph
Graph(A) := {(u,0) € S x H# :u e D(A), i =A(u)}

of a maximal monotone operator of type w is a maximal monotone
relation of type w.



Any A C 2 x S defines a set-valued operator by
ur— A(u) :={te s :(u, ) e A}

with domain

PD(A) :={ue: Alu) # 0}

If A is maximal monotone then A(u) is closed and convex and so
WNumin € A such that ||umin|| = inf{||v] : v € A(uv) }.
Therefore the single-valued nonlinear operator
A’ 9A) ot — o, Au) = tmin
is well defined; it is called the principal section of A.

The principal section is unique: A? = A} = A; = A,.



While the domain of a linear maximal monotone relation is
necessarily dense, in the nonlinear case this can be false.

A is maximal monotone = Z(.A) is a convex set.

Let € be a closed convex nonempty subset of #. The family of
nonlinear operators S; : 4 — %, t > 0, is said to be a
one-parameter nonlinear continuous semi-group of type w (of
contractions in case w = 0) on ¥ if

So =1Id, 5t1 © 5t2 = 5t1+t2 s
Yue®, lim|S:(v)—u|=0,
t10

Vuve?d, [Se(u) = Se(v)Il < e fu—v].



The generator of the semigroup S; is defined by

ALIA)CH 5, —Aw) = lim %(St(u) ),

where Z(A) C € is the set of u such that the above limit exists.
Z(A) is dense in € and invariant.

For all u € Z(A), u(t) := S¢(u) is the unique solution of the
Cauchy problem

{gt u(t) = —A(u(t)), ae t>0



Theorem. (Komura-Kato)

A maximal monotone of type w

Y

A generates a strongly continuous semigroup of type w on Z(A)

4

A is the principal section of a maximal monotone relation A of type w.



Given A maximal monotone the corresponding one-parameter
nonlinear continuous semi-group S; is constructed in the following
way: defining the nonlinear Yosida approximation

Ay = %(1 —(1+ XA,

maximal monotonicity implies that Ay is a Lipschitz map and that

Yu e 2(A), )I\iLnoA)‘(u) = A(u).

By the Lipschitz property the Cauchy problem

Zux(t) = Ax(ua(1))
ux(0) =uv e

has a unique solution t — uy(t) which defines the semi-group
S (u) := uy(t). Finally

VT >0, VYue2(A), lim sup HSt)‘(u) —Si(u)|| =0.

|
A—=0 o<t<T



Let ¢ : S — (—00,+00] be a proper (i.e. not identically +00)
convex function. lts sub-differential Dp C ¢ x H is defined by

0o ={(u,0) e A x H :NveA, plu) <p(v)+(0,u—v)}
Notice that (u,0) € Oy if and only if u is @ minimum point of .

If ¢ is Gateaux-differentiable at u then dp(u) = V(u).

Sub-differentials are the main source of maximal monotone
operators:

© convex, lower semi-continuous == J¢ is maximal monotone.



Let S/ be the nonlinear semigroup generated by A = d¢. Then
one has the following regularity results:

Vue 9(A), vVt >0, Sf(u)e 2(A),

1
Vu e T(AY, Vv € D(A), ¥t >0, Hjt SP)| < v+ lu—vl)

2

o T
Vue 2(A), VT >0, /t %Sf(u) dt < 400,
0
T d 2
Vu: p(u) < 400, VT >0, / an(u) dt < 400,
0

- T
Yue 2(A), VT >0, / lo(Sf ()| dt < +c0,
0

T
Yu:p(u) < +oo, VT >0, /
0

d %
p o(5{ (u))‘ dt < +00.



3. Nonlinear maximal monotone extensions

Let S > —w be a densely defined, symmetric lower bounded
operator. It is linear monotone of type w but is not maximal
monotone since its Friedrich’s extensions Ag > —w is a proper
monotone extension. We want to define nonlinear maximal
monotone operators A such that

SCACS*.

Without loss of generality we can suppose that S = A|./, where
A is the (dense in ) kernel of a continuos (w.r.t. the graph
norm of Ag) surjective linear map

TZ.@(A())—>[],

b being an auxiliary Hilbert space.



For any A > w we pose RY := (Ag + A)~! and define the bounded
linear operator

Gy:h =€ 2, Gy = (TR))*.
By the denseness hypothesis on .4 one has
Range(Gy) N Z(Ao) = {0}
and, by first resolvent identity,

(A=) R)Gy = G, — Gy.



We try to define a nonlinear extension A by producing its nonlinear
resolvent. Given a nonlinear resolvent Ry = (A + A)~!, one has

~1 -1
R&-=A=A= R, —u,

which is equivalent to the nonlinear resolvent identity
Ry=R,o(1—(A—p)Ry).

Thus if Ry : € — 5, A > w, is a family of monotone and
injective nonlinear maps which satisfies the nonlinear resolvent
identity, then

A=(R7T=XN:2(A) CH - A, PD(A):=Range(Ry),

is a A-independent, maximal monotone nonlinear operator of type
w.



Therefore we need to produce a family Ry, A > w, of monotone
and injective nonlinear maps which satisfies the nonlinear resolvent
identity.

Krein's linear resolvent formula suggests us to write the presumed
resolvent as
0
R)\:R/\—FG)\V)\OG;:,

where the nonlinear map V) : h — b has to be determined. Since
RE is monotone,

(Ra(4) = Ra(v), u — v) > (VA(G{u) = VA(Gv), Giu — Giv),
so that R) is monotone whenever

v§7C€h7 <VA(£)_VA(C),E—C>ZO,

namely whenever V) is monotone.



Lemma. Let V) : h — h be monotone. Then
Ry = R+ G\Vy 0 G5

satisfies the nonlinear resolvent identity if and only if there exists a
family of maximal monotone relations [y C h x b such that
' =V and

My =Tu=(A—p)GiGy. (1)

Lemma. Let © C b x h be a maximal monotone relation and let
Ao > w. Then

r@::@‘i‘()‘_)\O)G*G)\a A>w, G::G)\O7

is a maximal monotone relation for any A > Ag. It fulfills (1) and it
has a single-valued monotone inverse for any A > Ag.



By collecting the above results one gets the following nonlinear
version of Krein's resolvent formula:

Theorem.
Let A\g > w and let © C h x h be a maximal monotone relation.
Then

RO =RV 4+ G\(O+(AN—X)G*G\) Lo Gy, A>X

is the resolvent of a nonlinear maximal monotone operator Ag of
type \o; Ae is monotone of type w whenever @1 is single-valued.
Such an operator is defined by

P(Ae) ={ueH :u=uy+ G, up € 2(Av), ({u, 7o) € O},

A@(u) = A()Uo — )\()G&,_, .



Remarks.
Ao C S* ,

P(A)N2(Ae) #0 — 0€ 2(0),
P(Ao) N Z(Ae) is convex and closed in Z(Ay),
Yu e .@(Ao)ﬁ.@(A@), A@(u) = Agu,

SCAe < (0,00 €0 = P(Ap) =7 .



Theorem. X
Suppose © = 0¢ and Range(G) N Z((Ao + Xo)2) = {0}. Define
the proper convex function ¢ : 7 — (—o0, +0o0| by

O(u) == % (Ao + AO)%U0||2 + (&) ue (D)
|+ otherwise,

where
D(O) = {u € A u=u+GE, up € D((Ao+ro)?), p(€) < +oo}.

Then B
Ao +Xg=0¢ =00,

where ¢ denotes the lower semi-continuous regularization of ¢ i.e.
® is the largest lower semi-continuous minorant of &:

®(v) := liminf ®(u).

u—v



Corollary.
Let Agp > 0 and take A\g = 0. Suppose © = Jp and that & is the
unique minimum point of ¢. Then AgG&y =0 and

Yue 2(As), w- t—li—rpoo Si(u) = G&p.

If ¢ is an even function then the above weak limit becomes a
strong one.



4. Examples.

Laplacians with nonlinear singular perturbations supported on
null sets.

Let Ap = —A : H?(R") C L2(R") — L2(R") and let N C R" be a
d-set with 2 < n—d < 4. A Borel set N C R" is called a d-set, if

e, >0 :VxeN,Vre(0,1), ar? < pug(B(x)NM) < cor?,

where 14 is the d-dimensional Hausdorff measure and B,(x) is the
closed n-dimensional ball of radius r centered at the point x.
Examples of d-sets for d integer are finite unions of d-dimensional
Lipschitz submanifolds and, in the not integer case, self-similar
fractals of Hausdorff dimension d. Then we take 7 = yp, where

n—d
2

v HA(R™) — H5(N),  s=2-—

is the unique linear continuous and surjective map with coincide on
smooth functions with the evaluation at points in N.



Here H*(N), 0 < s < 1, is defined as the Hilbert space of functions
f € L2(N; up) having finite norm

£69 ~ F)P
0o = g+ | o dbn) i),

where upy denotes the restriction of the d-dimensional Hausdorff

measure pg to the set N.
Given f € H*(N), let vn(f) € H72(R") be the signed measure
with supp(vn(f)) = N defined by

(n(f)s u)—22 = {FLyNU) s (M) »

where (-,-)_22 denotes the H=2-H? duality.
Given A > 0, let g, be the kernel of (—A + A)~1. Then

Gy : H5(N) — [*(R"), Grf = gy vn(f).



Therefore, given Ag > 0 and posing g := gy,, for any nonlinear
maximal monotone relation © C H*(N) x H*(N), one gets a
nonlinear maximal monotone operator —Ag of type Ao defined by

—Aou=—Auy— Mg *xvn(fu),

7(-Do)
= {u € L2(R”) cu=uo+ gx*vn(fy), up € Hz(R"), (fu,ynuo) € @}

and with nonlinear resolvent
(—Ap4+X0) "t = (—A+X0) Hagnsun((0+T3) To(yn(—A+A) 1)),

where
F)\f = ()\ — )\O)P)/N(g * g\ * I/N(f)) .



Notice that, since (—A + X\g)g = do, —Ag can be alternatively
defined by

(—Ao + Xo)u = (—A+ Xo)u—vn(fy).
When N is a Riemannian manifold with volume form dv, since
vn(f) = ((—Ars + Xo)°f)on

where, for any f € H7*(N),
(fon, u) 22 Z/(ALB+)\0)_S/2f(X) ((—ALs+X0)* 2ynu)(x) dv(x) ,
N

one has

(—A@ + /\o)u = (—A + )\o)u — ((—ALB + )\o)sfu) ON -



In the case ©~1 is single-valued one can also write

(—Ae + Xo)u = (—A+ Xo)u — ((—ALg + X0)°O ' (Ynuo)) On -

If © = 9y, where ¢ : H*(N) — (—o0, +00] is a proper lower
semicontinuous function, then —Ag + Ag = 09, where

_ 32+ 202wl + () ue 2(9)
d(u) = .
100 otherwise,

P(®) == {u € L’(R") : u= up+g+vn(f), ug € H(R"), ¢(f) < 400} .



The Laplacian with nonlinear boundary conditions on a
bounded domain.

Let Q C R”, n > 1, be a bounded open set with a regular
boundary 0€2. The continuous and surjective linear operator

v HA(Q) — H¥2(8Q) x HY2(8Q), ~u = (you,mu), ,

is defined as the unique bounded linear operator such that, in the

case u € C*(Q),

o0 () =0 (), Mul) =20, xeoQ,

where n is the inner normal vector on 0€2. The map = can be
extended to a bounded linear operator

AL D(Dmax) — H2(0Q) x H32(8Q),  4¢ = (Boug, 1u),

where
D(Dmax) = {u € L3(Q) : Aue [(Q)} .



Let Ag = —Ap be the self-adjoint operator in L2(Q) given by the
Dirichlet Laplacian, i.e.

P(Ap) = H* Q) NHNQ), HI(Q):= {ue HY(Q) : you = 0} .

We take
h=HY2(0Q) and 7 =|2(AP).

Thus we are looking for nonlinear maximal monotone extensions of
the strictly positive symmetric operator S = —A i, given by the
minimal Laplacian with domain

D(Amin) = {u € H Q) : vou=~1u=0} .



Let ¢ : L2(Q) — (—00, +0oc] be a proper lower semicontinuous
convex function such that

int({f € L2(09) : p(f) < +oo}) N HY2(9Q) # 0.
Defining the maximal monotone relation
0, = (p — P) o (=Ap + 1)V/2 ¢ HY2(0Q) x HY?(8Q)

where P is the Dirichlet-to-Neumann operator, one obtains the
nonlinear maximal monotone operator —A,, := —Ag,, defined by

“0, H(-D,) € L2(Q) - X(Q), ~Apu=—Au,

P(—Dy) = {u € D(Amax) : (Jou, f1u) € Op}.



Moreover —A, = 0P, where

o(u) {;erﬁwmu), ue 9(9)
100, otherwise,

2(®) = {u € HY(Q) : p(you) < +o0}.

If © has an unique minimum point fy € L2(9) then, denoting by
S¢ the nonlinear semigroup of contractions generated by —A,,
one has

Vue P(—Ay), w- lim Sf(u) = up,

t——+o00

where ug is the unique harmonic function in € such that yug = f.
If ¢ is an even function then the above limit holds in strong sense.



