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1. Introduction

Let S : D(S) ⊆H →H , S ≥ 0, be a linear symmetric positive
operator on the Hilbert space H .

By the famed Birman-Krĕın-Vishik theory we know how to find its
positive self-adjoint extensions.

Question: is there some nonlinear analogue of such a theory?

If A ≥ 0 is a linear self-adjoint extension of S then e−tA, t ≥ 0, is
a continuous semi-group of contractions in H , i.e.

‖e−tAu‖ ≤ ‖u‖ (equivalently ‖e−tAu − e−tAv‖ ≤ ‖u − v‖ ) .

Thus in the nonlinear case we are lead to look for nonlinear
extensions which are generators of continuous nonlinear
semi-groups of contractions, i.e.

St , t ≥ 0, such that ‖St(u)− St(v)‖ ≤ ‖u − v‖.



By the theory of one-parameter continuous nonlinear semi-groups
of contractions there follows that St has a nonlinear generator A
given by a monotone operator which is the principal section A0 of
a maximal monotone relation A ⊂H ×H .

Since maximal monotonicity can be characterized in terms of
nonlinear resolvents and since, in the linear case, the theory of
self-adjoint extensions can be formulated in terms of the famed
Krĕın’s resolvent formula, one is led to look for a nonlinear version
of such a formula.



2. Maximal monotone nonlinear operators (Brezis, Kato,
Komura, Minty, Moreau, Pazy, Rockafellar,....)

A nonlinear operator A : D(A) ⊆H →H in the real Hilbert
space H is said to be monotone of type ω (monotone if ω = 0)
whenever

∀ u, v ∈ D(A) , 〈A(u)− A(v), u − v〉 ≥ −ω‖u − v‖2 ,

and maximal monotone of type ω if for some λ > ω (equivalently
for any λ > ω) one has

Range (A + λ) = H .



A nonlinear operator Ã : D(Ã) ⊆ H̃ → H̃ , H̃ the complex
Hilbert space H̃ = H + i H , is said to be monotone of type ω
whenever

∀ u, v ∈ D(Ã) , Re〈Ã(u)− Ã(v), u − v〉 ≥ −ω‖u − v‖2 .

Defining A1, A2 by

Ã(u1 + iu2) = A1(u1, u2) + iA2(u1, u2) ,

one has that Ã is monotone in H if and only if A defined by

A(u1 ⊕ u2) := A1(u1, u2)⊕ A2(u1, u2)

is monotone in the real Hilbert space H ⊕H . Similarly Ã is
maximal monotone if and only if A is maximal monotone. Thus the
whole theory of maximal monotone operators in real Hilbert spaces
extends, with the obvious modifications, to complex Hilbert spaces.



If A is monotone of type ω then

〈(A + λ)(u)− (A + λ)(v), u − v〉 ≥ (λ− ω)‖u − v‖2 .

and so if A is maximal then

(A + λ) : D(A)→H

is bijective for any λ > ω and the nonlinear resolvent

(A + λ)−1 : H →H , λ > ω ,

is monotone and Lipschitz with Lipschitz constant (λ− ω)−1.



The notion of maximal monotone operator can be generalized to
multi-valued maps:

A ⊂H ×H is said to be a monotone relation of type ω
(monotone relation in case ω = 0) if

∀ (u, ũ), (v , ṽ) ∈ A , 〈ũ − ṽ , u − v〉 ≥ −ω‖u − v‖2

and is said to be a maximal monotone relation of type ω if it is not
properly contained in any other monotone relation of type ω.

The graph

Graph(A) := {(u, ũ) ∈H ×H : u ∈ D(A), ũ = A(u)}

of a maximal monotone operator of type ω is a maximal monotone
relation of type ω.



Any A ⊂H ×H defines a set-valued operator by

u 7→ A(u) := {ũ ∈H : (u, ũ) ∈ A}

with domain
D(A) := {u ∈H : A(u) 6= ∅}

If A is maximal monotone then A(u) is closed and convex and so

∃!umin ∈H such that ‖umin‖ = inf{ ‖v‖ : v ∈ A(u) }.

Therefore the single-valued nonlinear operator

A0 : D(A) ⊆H →H , A0(u) := umin

is well defined; it is called the principal section of A.

The principal section is unique: A0
1 = A0

2 =⇒ A1 = A2.



While the domain of a linear maximal monotone relation is
necessarily dense, in the nonlinear case this can be false.

A is maximal monotone =⇒ D(A) is a convex set.

Let C be a closed convex nonempty subset of H . The family of
nonlinear operators St : C → C , t ≥ 0, is said to be a
one-parameter nonlinear continuous semi-group of type ω (of
contractions in case ω = 0) on C if

S0 = Id , St1 ◦ St2 = St1+t2 ,

∀u ∈ C , lim
t↓0
‖St(u)− u‖ = 0 ,

∀ u, v ∈ C , ‖St(u)− St(v)‖ ≤ eωt‖u − v‖ .



The generator of the semigroup St is defined by

A : D(A) ⊆H →H , −A(u) := lim
t↓0

1

t
(St(u)− u) ,

where D(A) ⊆ C is the set of u such that the above limit exists.

D(A) is dense in C and invariant.

For all u ∈ D(A), u(t) := St(u) is the unique solution of the
Cauchy problem{

d
dt u(t) = −A(u(t)) , a.e. t > 0

u(0) = u .



Theorem. (Komura-Kato)

A maximal monotone of type ω

⇓

A generates a strongly continuous semigroup of type ω on D(A)

⇓

A is the principal section of a maximal monotone relation A of type ω.



Given A maximal monotone the corresponding one-parameter
nonlinear continuous semi-group St is constructed in the following
way: defining the nonlinear Yosida approximation

Aλ :=
1

λ
(1− (1 + λA)−1) ,

maximal monotonicity implies that Aλ is a Lipschitz map and that

∀u ∈ D(A) , lim
λ→0

Aλ(u) = A(u) .

By the Lipschitz property the Cauchy problem{
d
dt uλ(t) = Aλ(uλ(t))

uλ(0) = u ∈H

has a unique solution t 7→ uλ(t) which defines the semi-group
Sλt (u) := uλ(t). Finally

∀T ≥ 0 , ∀u ∈ D(A) , lim
λ→0

sup
0≤t≤T

‖Sλt (u)− St(u)‖ = 0 .



Let ϕ : H → (−∞,+∞] be a proper (i.e. not identically +∞)
convex function. Its sub-differential ∂ϕ ⊂H ×H is defined by

∂ϕ := {(u, ũ) ∈H ×H : ∀v ∈H , ϕ(u) ≤ ϕ(v) + 〈ũ, u − v〉 }

Notice that (u, 0) ∈ ∂ϕ if and only if u is a minimum point of ϕ.

If ϕ is Gâteaux-differentiable at u then ∂ϕ(u) = ∇ϕ(u).

Sub-differentials are the main source of maximal monotone
operators:

ϕ convex, lower semi-continuous =⇒ ∂ϕ is maximal monotone.



Let Sϕt be the nonlinear semigroup generated by A = ∂ϕ. Then
one has the following regularity results:

∀u ∈ D(A) , ∀t > 0 , Sϕt (u) ∈ D(A) ,

∀u ∈ D(A) , ∀v ∈ D(A) , ∀t > 0 ,

∥∥∥∥ d

dt
Sϕt (u)

∥∥∥∥ ≤ ‖Av‖+1

t
‖u−v‖ ,

∀u ∈ D(A) , ∀T > 0 ,

∫ T

0
t

∥∥∥∥ d

dt
Sϕt (u)

∥∥∥∥2

dt < +∞ ,

∀u : ϕ(u) < +∞ , ∀T > 0 ,

∫ T

0

∥∥∥∥ d

dt
Sϕt (u)

∥∥∥∥2

dt < +∞ ,

∀u ∈ D(A) , ∀T > 0 ,

∫ T

0
|ϕ(Sϕt (u))| dt < +∞ ,

∀u : ϕ(u) < +∞ , ∀T > 0 ,

∫ T

0

∣∣∣∣ d

dt
ϕ(Sϕt (u))

∣∣∣∣ dt < +∞ .



3. Nonlinear maximal monotone extensions

Let S ≥ −ω be a densely defined, symmetric lower bounded
operator. It is linear monotone of type ω but is not maximal
monotone since its Friedrich’s extensions A0 ≥ −ω is a proper
monotone extension. We want to define nonlinear maximal
monotone operators A such that

S ⊂ A ⊂ S∗ .

Without loss of generality we can suppose that S = A|N , where
N is the (dense in H ) kernel of a continuos (w.r.t. the graph
norm of A0) surjective linear map

τ : D(A0)→ h ,

h being an auxiliary Hilbert space.



For any λ > ω we pose R0
λ := (A0 + λ)−1 and define the bounded

linear operator

Gλ : h→∈H , Gλ := (τR0
λ)∗ .

By the denseness hypothesis on N one has

Range(Gλ) ∩D(A0) = {0}

and, by first resolvent identity,

(λ− µ) R0
µGλ = Gµ − Gλ .



We try to define a nonlinear extension A by producing its nonlinear
resolvent. Given a nonlinear resolvent Rλ = (A + λ)−1, one has

R−1
λ − λ = A = R−1

µ − µ ,

which is equivalent to the nonlinear resolvent identity

Rλ = Rµ ◦ (1− (λ− µ)Rλ) .

Thus if Rλ : H →H , λ > ω, is a family of monotone and
injective nonlinear maps which satisfies the nonlinear resolvent
identity, then

A := (R−1
λ − λ) : D(A) ⊆H →H , D(A) := Range(Rλ) ,

is a λ-independent, maximal monotone nonlinear operator of type
ω.



Therefore we need to produce a family Rλ, λ > ω, of monotone
and injective nonlinear maps which satisfies the nonlinear resolvent
identity.

Krĕın’s linear resolvent formula suggests us to write the presumed
resolvent as

Rλ = R0
λ + GλVλ ◦ G ∗λ ,

where the nonlinear map Vλ : h→ h has to be determined. Since
R0
λ is monotone,

〈Rλ(u)− Rλ(v), u − v〉 ≥ 〈Vλ(G ∗λu)− Vλ(G ∗λv),G ∗λu − G ∗λv〉 ,

so that Rλ is monotone whenever

∀ ξ, ζ ∈ h , 〈Vλ(ξ)− Vλ(ζ), ξ − ζ〉 ≥ 0 ,

namely whenever Vλ is monotone.



Lemma. Let Vλ : h→ h be monotone. Then

Rλ = R0
λ + GλVλ ◦ G ∗λ

satisfies the nonlinear resolvent identity if and only if there exists a
family of maximal monotone relations Γλ ⊂ h× h such that
Γ−1
λ = Vλ and

Γλ − Γµ = (λ− µ) G ∗µGλ . (1)

Lemma. Let Θ ⊂ h× h be a maximal monotone relation and let
λ0 > ω. Then

ΓΘ
λ := Θ + (λ− λ0)G ∗Gλ , λ > ω , G := Gλ0 ,

is a maximal monotone relation for any λ ≥ λ0. It fulfills (1) and it
has a single-valued monotone inverse for any λ > λ0.



By collecting the above results one gets the following nonlinear
version of Krĕın’s resolvent formula:

Theorem.
Let λ0 > ω and let Θ ⊂ h× h be a maximal monotone relation.
Then

RΘ
λ := R0

λ + Gλ(Θ + (λ− λ0)G ∗Gλ)−1 ◦ G ∗λ , λ > λ0

is the resolvent of a nonlinear maximal monotone operator AΘ of
type λ0; AΘ is monotone of type ω whenever Θ−1 is single-valued.
Such an operator is defined by

D(AΘ) := {u ∈H : u = u0 + Gξu , u0 ∈ D(A0) , (ξu, τu0) ∈ Θ} ,

AΘ(u) := A0u0 − λ0Gξu .



Remarks.
AΘ ⊂ S∗ ,

D(A0) ∩D(AΘ) 6= ∅ ⇐⇒ 0 ∈ D(Θ) ,

D(A0) ∩D(AΘ) is convex and closed in D(A0) ,

∀u ∈ D(A0) ∩D(AΘ) , AΘ(u) = A0u ,

S ⊂ AΘ ⇐⇒ (0, 0) ∈ Θ =⇒ D(AΘ) = H .



Theorem.
Suppose Θ = ∂ϕ and Range(G ) ∩D((A0 + λ0)

1
2 ) = {0}. Define

the proper convex function Φ : H → (−∞,+∞] by

Φ(u) :=

{
1
2 ‖(A0 + λ0)

1
2 u0‖2 + ϕ(ξ) u ∈ D(Φ)

+∞ otherwise,

where

D(Φ) := {u ∈H : u = u0+Gξ , u0 ∈ D((A0+λ0)
1
2 ) , ϕ(ξ) < +∞} .

Then
AΘ + λ0 = ∂Φ = ∂Φ̄ ,

where Φ̄ denotes the lower semi-continuous regularization of Φ i.e.
Φ is the largest lower semi-continuous minorant of Φ:

Φ̄(v) := lim inf
u→v

Φ(u) .



Corollary.
Let A0 > 0 and take λ0 = 0. Suppose Θ = ∂ϕ and that ξ0 is the
unique minimum point of ϕ. Then AΘGξ0 = 0 and

∀u ∈ D(AΘ) , w- lim
t→+∞

St(u) = Gξ0 .

If ϕ is an even function then the above weak limit becomes a
strong one.



4. Examples.

Laplacians with nonlinear singular perturbations supported on
null sets.

Let A0 = −∆ : H2(Rn) ⊆ L2(Rn)→ L2(Rn) and let N ⊂ Rn be a
d-set with 2 < n − d < 4. A Borel set N ⊂ Rn is called a d-set, if

∃ c1, c2 > 0 : ∀ x ∈ N, ∀ r ∈ (0, 1), c1rd ≤ µd(Br (x)∩M) ≤ c2rd ,

where µd is the d-dimensional Hausdorff measure and Br (x) is the
closed n-dimensional ball of radius r centered at the point x .
Examples of d-sets for d integer are finite unions of d-dimensional
Lipschitz submanifolds and, in the not integer case, self-similar
fractals of Hausdorff dimension d . Then we take τ = γN , where

γN : H2(Rn)→ Hs(N) , s = 2− n − d

2

is the unique linear continuous and surjective map with coincide on
smooth functions with the evaluation at points in N.



Here Hs(N), 0 < s < 1, is defined as the Hilbert space of functions
f ∈ L2(N;µN) having finite norm

‖f ‖2
H2(N) := ‖f ‖2

L2(N;µN) +

∫
|x−y |<1

|f (x)− f (y)|2

|x − y |d+2s
dµN(x) dµN(y) ,

where µN denotes the restriction of the d-dimensional Hausdorff
measure µd to the set N.
Given f ∈ Hs(N), let νN(f ) ∈ H−2(Rn) be the signed measure
with supp(νN(f )) = N defined by

(νN(f ), u)−2,2 = 〈f , γNu〉Hs(M) ,

where (·, ·)−2,2 denotes the H−2-H2 duality.
Given λ > 0, let gλ be the kernel of (−∆ + λ)−1. Then

Gλ : Hs(N)→ L2(Rn) , Gλf := gλ ∗ νN(f ) .



Therefore, given λ0 > 0 and posing g := gλ0 , for any nonlinear
maximal monotone relation Θ ⊂ Hs(N)× Hs(N), one gets a
nonlinear maximal monotone operator −∆Θ of type λ0 defined by

−∆Θu = −∆u0 − λ0 g ∗ νN(fu) ,

D(−∆Θ)

:=
{

u ∈ L2(Rn) : u = u0 + g ∗ νN(fu), u0 ∈ H2(Rn), (fu, γNu0) ∈ Θ
}

and with nonlinear resolvent

(−∆Θ+λ0)−1 = (−∆+λ0)−1+gλ∗νN((Θ+Γλ)−1◦(γN(−∆+λ)−1)) ,

where
Γλf = (λ− λ0) γN(g ∗ gλ ∗ νN(f )) .



Notice that, since (−∆ + λ0)g = δ0, −∆Θ can be alternatively
defined by

(−∆Θ + λ0)u := (−∆ + λ0)u − νN(fu) .

When N is a Riemannian manifold with volume form dv, since

νN(f ) = ((−∆LB + λ0)s f )δN ,

where, for any f ∈ H−s(N),

(f δN , u)−2,2 =

∫
N

(−∆LB+λ0)−s/2f (x) ((−∆LB+λ0)s/2γNu)(x) dv(x) ,

one has

(−∆Θ + λ0)u = (−∆ + λ0)u − ((−∆LB + λ0)s fu) δN .



In the case Θ−1 is single-valued one can also write

(−∆Θ + λ0)u = (−∆ + λ0)u − ((−∆LB + λ0)sΘ−1(γNu0)) δN .

If Θ = ∂ϕ, where ϕ : Hs(N)→ (−∞,+∞] is a proper lower
semicontinuous function, then −∆Θ + λ0 = ∂Φ, where

Φ(u) :=

{
1
2 ‖(−∆ + λ0)

1
2 u0‖2 + ϕ(f ) u ∈ D(Φ)

+∞ otherwise,

D(Φ) := {u ∈ L2(Rn) : u = u0+g∗νN(f ) , u0 ∈ H1(Rn) , ϕ(f ) < +∞} .



The Laplacian with nonlinear boundary conditions on a
bounded domain.
Let Ω ⊂ Rn, n > 1, be a bounded open set with a regular
boundary ∂Ω. The continuous and surjective linear operator

γ : H2(Ω)→ H3/2(∂Ω)× H1/2(∂Ω) , γu := (γ0u, γ1u) , ,

is defined as the unique bounded linear operator such that, in the
case u ∈ C∞(Ω̄),

γ0u (x) = u (x) , γ1u (x) =
∂u

∂n
(x) , x ∈ ∂Ω ,

where n is the inner normal vector on ∂Ω. The map γ can be
extended to a bounded linear operator

γ̂ : D(∆max)→ H−1/2(∂Ω)× H−3/2(∂Ω) , γ̂φ = (γ̂0uφ, γ̂1u) ,

where
D(∆max) :=

{
u ∈ L2(Ω) : ∆u ∈ L2(Ω)

}
.



Let A0 = −∆D be the self-adjoint operator in L2(Ω) given by the
Dirichlet Laplacian, i.e.

D(∆D) := H2(Ω) ∩ H1
0 (Ω) , H1

0 (Ω) :=
{

u ∈ H1(Ω) : γ0u = 0
}
.

We take
h = H1/2(∂Ω) and τ = γ1|D(∆D).

Thus we are looking for nonlinear maximal monotone extensions of
the strictly positive symmetric operator S = −∆min given by the
minimal Laplacian with domain

D(∆min) :=
{

u ∈ H2(Ω) : γ0u = γ1u = 0
}
.



Let ϕ : L2(Ω)→ (−∞,+∞] be a proper lower semicontinuous
convex function such that

int
(
{f ∈ L2(∂Ω) : ϕ(f ) < +∞}

)
∩ H1/2(∂Ω) 6= ∅.

Defining the maximal monotone relation

Θϕ := (∂ϕ− P) ◦ (−∆LB + 1)1/2 ⊂ H1/2(∂Ω)× H1/2(∂Ω)

where P is the Dirichlet-to-Neumann operator, one obtains the
nonlinear maximal monotone operator −∆ϕ := −∆Θϕ defined by

−∆ϕ : D(−∆ϕ) ⊆ L2(Ω)→ L2(Ω) , −∆ϕu = −∆u ,

D(−∆ϕ) = {u ∈ D(∆max) : (γ̂0u, γ̂1u) ∈ ∂ϕ} .



Moreover −∆ϕ = ∂Φ, where

Φ(u) =

{
1
2 ‖∇u‖2 + ϕ(γ0u) , u ∈ D(Φ)

+∞ , otherwise ,

D(Φ) = {u ∈ H1(Ω) : ϕ(γ0u) < +∞} .

If ϕ has an unique minimum point f0 ∈ L2(∂Ω) then, denoting by
Sϕt the nonlinear semigroup of contractions generated by −∆ϕ,
one has

∀u ∈ D(−∆ϕ) , w- lim
t→+∞

Sϕt (u) = u0 ,

where u0 is the unique harmonic function in Ω such that γ0u0 = f0.
If ϕ is an even function then the above limit holds in strong sense.


