POINT INTERACTIONS IN THE PROBLEM OF THREE PARTICLES WITH INTERNAL STRUCTURE*

Alexander K. Motovilov

BLTP, Joint Institute for Nuclear Research, Dubna

Mathematical Challenges of Zero-Range Physics: Rigorous Results and Open Problems CAS^{LMU}, Munich, February 26, 2014

*Based on joint work with K. A. Makarov and V. V. Melezhik

[Makarov, Melezhik, M.: Theor. Math. Phys. **102** (1995), 188–207] doi: 10.1007/BF01040400

1 Introduction

[Bethe-Peirls 1931]: due to the small radius of (nuclear) forces many low-energy properties of a two-body system (deuteron) practically do not depend on the interaction details. Only one parameter is sufficient, the scattering length a. Assuming $\hbar = 1$ and $\mu = \frac{1}{2}$, the potential may be replaced by the boundary condition

$$\frac{d}{dr}\ln\left[r\psi(\mathbf{r})\right]\Big|_{r=0} = -\frac{1}{a},$$
(1.1)

where \mathbf{r} is the relative position vector of the particles.

[Berezin-Faddeev 1961]: one-parametric extensions of $-\Delta$ restricted to $C_0^{\infty}(\mathbb{R}^3 \setminus \{0\})$.

Till now a source of explicitly solvable problems for various areas of physics (see, e.g., the fundamental book [Albeverio, Gesztesy, Høegh-Krohn and Holden 1988/2005]).

Zero-range interactions in a three-body problem produce mathematical difficulties [Minlos-Faddeev 1961] that are not present in the case of "regular" interactions. This comes from the fact that the supports of point interactions in two-body subsystems $\alpha = 1, 2, 3$, are 3-dim hyperplanes \mathcal{M}_{α} . Codimension of \mathcal{M}_{α} w.r.t. the configuration space \mathbb{R}^6 is too high. The triple collision point X = 0, the only intersection point of \mathcal{M}_{α} 's plays a crucial role. A natural switching on zero-range interactions produces a symmetric Hamiltonian [which is behind Skornyakov–Ter-Martirosyan equations (1956)] with nonzero deficiency indices. An extension is needed. Danilov conditions (1961) lead to a Hamiltonian that is not semibounded from below (Thomas effect 1935). Regularizing \rightarrow three-body forces.

It is a priori clear that any generalization of the zero-range potential (that still remains non-trivial only at r = 0) should produce the scattering wave functions $\psi(\mathbf{r}, \mathbf{k})$ satisfying

$$\left. \frac{d}{dr} \ln \left[r \boldsymbol{\psi}(\mathbf{r}, \mathbf{k}) \right] \right|_{r=0} = k \cot \delta(k),$$

where k is the modulus of the relative momentum and $\delta(k)$ the scattering phase shift. The low-energy expansion

$$k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2}r_0E + Ar_0^2E^2 + \dots$$
 (1.2)

where $E = k^2 > 0$ is the energy, and r_0 the effective radius (of the interaction).

[Shondin 1982], [LE Thomas 1984]: first example of a semibounded three-body Hamiltonian with δ -like interaction, efficiently with extra degrees of freedom: $L_2(\mathbb{R}^3)$ was extended to $L_2(\mathbb{R}^3) \oplus \mathbb{C}$; $r_0 \neq 0$. Another approach [Pavlov 1984], [Pavlov-Shushkov 1988]: a joint extension of

 $\Delta|_{C_0^\infty(\mathbb{R}^3\setminus\{0\})}\oplus A|_{D_A}, \quad D_A\subset\mathfrak{H}^{in}$

where A is a (self-adjoint) operator on an auxiliary, rather arbitrary Hilbert space \mathfrak{H}^{in} (describing "internal degrees of freedom"). Pavlov's "restriction-extension" model involves the deficiency elements of restricted channel operators. An equivalent direct description in [Makarov 1992] (boundary conditions) and [M. 1993] (singular potentials and singular coupling operators).

[M. 1993]: a two-channel operator matrix

$$\widehat{\mathbf{h}} = \begin{pmatrix} -\widehat{\Delta} + \widehat{V}_h & B \\ B^+ & A \end{pmatrix}, \qquad (1.3)$$

where $\widehat{\Delta}$ is the Laplacian understood in the distributional sense; the operator A describes the internal degrees of freedom; \widehat{V}_h is a generalized singular potential corresponding to the standard zerorange interaction; B and B⁺ are (singular) coupling operators. The spectral problem for $\widehat{\mathbf{h}}$ reduces to the "external" channel equation

$$\left(-\widehat{\Delta}+\widehat{w}(z)-z\right)\Psi=0$$

with the energy dependent interaction

$$\widehat{w}(z) = \widehat{V}_h - B(A - zI)^{-1}B^+.$$
 (1.4)

If \mathfrak{H}^{in} is a finite-dimensional (and, thus, A finite rank), the corresponding function $(-k \operatorname{ctg} \delta)$ is a rational Herglotz function of the energy z of the form

$$-k \operatorname{ctg} \delta(k) = \frac{P_N(z)}{Q_N(z)}, \qquad z = k^2,$$
 (1.5)

where P_N and Q_N are polynomials of the power $N \leq \dim(\mathfrak{H}^{in})$ (notice that necessarily $r_0 \leq 0$).

The question was how to include the point interaction with internal degrees of freedom into the three-body Hamiltonian. We followed an idea first developed in the case of a singular interaction with a surface support [Kuperin-Makarov-Merkuriev-M.-Pavlov, 1986].

Then — Faddeev equations. Two cases, depending on the asymptotic behavior of the two-body scattering matrices:

If $s_{\alpha}(E) \rightarrow -1$ as $E \rightarrow +\infty$, $\alpha = 1,2,3$ (or at least two of them) then the three-body Hamiltonian is not semibounded from below [Makarov 1992] and Faddeev equations are not Fredholm [Makarov-Melezhik-M., 1995].

If $s_{\alpha}(E) \rightarrow +1$ as $E \rightarrow +\infty$, $\alpha = 1, 2, 3$, we have both the opposite statements, in particular, the semiboundedness (cf. [Pavlov 1988]).

2 Two-body problem, some details

2.1 "Structureless" point interaction

First, recall the definition of the standard zero-range potential. Let x, $x \in \mathbb{R}^3$ be the relative variable (Jacobi coordinate) for the system of two particles. Introduce a function class

$$\widehat{D} = \{ \psi \in \widetilde{W}_2^2(\mathbb{R}^3 \setminus \{0\}), \\ \psi(x) = \frac{a}{4\pi |x|} + b + o(1) \}, \text{ for some } a, b \in \mathbb{C}.$$
 (2.1)

(\widehat{D} is simply the domain of the adjoint of $\Delta_0 := \Delta|_{C_0^{\infty}(\mathbb{R}^3 \setminus \{0\})}$.) The Hamiltonian h acts as the Laplacian $-\Delta$ on $\mathscr{D}(h) \subset \widehat{D}$ fixed by the condition

$$a = \gamma b$$
 for some $\gamma \in \mathbb{R}$ (2.2)

 γ parametrizes all possible self-adjoint extensions of $-\Delta_0$ in $L_2(\mathbb{R}^3)$.

Furthermore, $-\frac{\gamma}{4\pi}$ = a is just the scattering length.

Equivalent (weak sense) formulation in terms of a quasipotential.

The initial Hamiltonian h is associated with a generalized Hamiltonian \hat{h} understood in the distributional sense, say, over $C_0^{\infty}(\mathbb{R}^3)$. The operator \hat{h} should be such that for $f \in L_2(\mathbb{R}^3)$, $z \in \mathbb{C}$, the equations

$$(\widehat{h}-z)\psi = f, \qquad \psi \in \widehat{D},$$
 (2.3)

and

$$(h-z)\Psi = f, \qquad \Psi \in \mathscr{D}(h),$$
 (2.4)

are equivalent.

To describe the generalized Hamiltonians, we use the natural functionals \mathbf{a} and \mathbf{b} on \widehat{D} , defined by

$$\mathbf{a}: \boldsymbol{\psi} \mapsto \boldsymbol{a}, \qquad \mathbf{a} \boldsymbol{\psi} = \lim_{x \to 0} 4\pi |x| \boldsymbol{\psi}(x), \qquad (2.5)$$

b:
$$\psi \mapsto b$$
, $\mathbf{b}\psi = \lim_{x \to 0} \left(\psi(x) - \frac{\mathbf{a}\psi}{4\pi |x|} \right)$. (2.6)

In terms of these functionals, the condition (2.2) reads

$$\mathbf{a}\boldsymbol{\psi} = \boldsymbol{\gamma}\mathbf{b}\boldsymbol{\psi}.\tag{2.7}$$

The generalized Laplacian $-\widehat{\Delta}$ acts on \widehat{D} according to the formula

$$-\Delta \psi = -\Delta \psi + \delta(x) \mathbf{a} \psi, \qquad (2.8)$$

where $-\Delta$ is the classical Laplacian (on $\widetilde{W}_2^2(\mathbb{R}^3 \setminus 0)$). It then follows that the condition (2.7) is automatically reproduced if

$$\widehat{h} = -\widehat{\Delta} + \widehat{V}_h,$$

with the generalized potential (quasipotential)

$$\widehat{V}_h \boldsymbol{\psi} = -\gamma \boldsymbol{\delta}(\boldsymbol{x}) \mathbf{b} \boldsymbol{\psi} \,. \tag{2.9}$$

Actually, in this case $(\widehat{h} - z)\psi = f$ for $\psi \in \widehat{D}$, transforms into $(-\Delta - z)\psi + \delta(x)(\mathbf{a} - \gamma \mathbf{b})\psi = f$ (2.10)

Separately equating regular and singular terms on the both sides of (2.10), one arrives at

$$(h-z)\Psi = f, \qquad \Psi \in \mathscr{D}(h)$$

and

$$\mathbf{a}\boldsymbol{\psi} = \boldsymbol{\gamma}\mathbf{b}\boldsymbol{\psi}. \tag{2.11}$$

That is, one comes to the original boundary value problem associated with the zero-range interaction. (In other words, the requirement of regularity of the image of the generalized Hamiltonian \hat{h} is equivalent to condition (2.11)...)

2.2 Point interactions with internal structure

Let A be a (for simplicity) bounded self-adjoint operator on a Hilbert space \mathfrak{H}^{in} . Introduce a (generalized) 2×2 matrix Hamiltonian

$$\widehat{\mathbf{h}} = \begin{pmatrix} -\widehat{\Delta} + \widehat{V}_h & B \\ B^+ & A \end{pmatrix}, \qquad (2.12)$$

on the orthogonal sum $\mathscr{H} = L_2(\mathbb{R}^3) \oplus \mathfrak{H}^{in}$ of the "external", $L_2(\mathbb{R}^3)$, and "internal", \mathfrak{H}^{in} , spaces. Domain: $\widehat{D} \oplus \mathfrak{H}^{in}$. Here

$$\left(\widehat{V}_{h}\psi\right)(x) = \delta(x)\frac{\mu_{12}}{\mu_{11}}\mathbf{b}\psi, \qquad \psi \in \widehat{D},$$
 (2.13)

$$(Bu)(x) = -\delta(x)\frac{1}{\mu_{11}}\langle u, \theta \rangle, \qquad u \in \mathfrak{H}^{in}, \qquad (2.14)$$

$$B^{+}\psi = \theta \left(\mu_{21}\mathbf{a} + \mu_{22}\mathbf{b} \right) \psi, \qquad (2.15)$$

heta is a arbitrary fixed element from \mathfrak{H}^{in} , and

$$\mu_{ij} \in \mathbb{C}, \quad i, j = 1, 2, \quad \mu_{11} \neq 0.$$

The regularity requirement $f^{ex} \in L_2(\mathbb{R}^3)$ of the external component f^{ex} of the vector

$$f = (\widehat{\mathbf{h}} - z)\mathcal{U}, \quad f = (f^{ex}, f^{in}), \quad f^{in} \in \mathfrak{H}^{in},$$

for $\mathscr{U} \in \widehat{D} \oplus \mathfrak{H}^{in}$, $\mathscr{U} = (\Psi, u)$, yields the following equations $\begin{cases} (-\Delta - z)\Psi = f^{ex} \\ \theta (\mu_{21}\mathbf{a} + \mu_{22}\mathbf{b})\Psi + (A - z)u = f^{in} \end{cases}$ (2.16)

and boundary condition

$$\mu_{11}\mathbf{a}\boldsymbol{\psi} + \mu_{12}\mathbf{b}\boldsymbol{\psi} = \langle u, \boldsymbol{\theta} \rangle. \tag{2.17}$$

Thus, in this sense the generalized Hamiltonian $\widehat{\mathbf{h}}$ is equivalent to the "regular" operator

$$\mathbf{h}\begin{pmatrix} \boldsymbol{\psi}\\ \boldsymbol{u} \end{pmatrix} = \begin{pmatrix} -\Delta \boldsymbol{\psi}\\ A\boldsymbol{u} + \boldsymbol{\theta} \left(\boldsymbol{\mu}_{21} \mathbf{a} + \boldsymbol{\mu}_{22} \mathbf{b} \right) \boldsymbol{\psi} \end{pmatrix}$$
(2.18)

on the domain $\mathscr{D}(\mathbf{h}) \subset \widehat{D} \oplus \mathfrak{H}^{in}$ defined by the boundary condition (2.17).

The operator \mathbf{h} is self-adjoint if and only if

$$\det \begin{pmatrix} \mu_{11} \ \bar{\mu}_{12} \\ \mu_{21} \ \bar{\mu}_{22} \end{pmatrix} = -1, \quad \mu_{11}\bar{\mu}_{21} \in \mathbb{R}, \quad \mu_{12}\bar{\mu}_{22} \in \mathbb{R}.$$
 (2.19)

In the following, conditions (2.19) will be always assumed.

After excluding the internal component, in the external channel equation we have an energy-dependent quasipotential:

$$\left(-\widehat{\Delta}+\widehat{w}(z)-z\right)\psi=0,$$
 (2.20)

$$\widehat{w}(z) = \widehat{V}_h + B(zI - A)^{-1}B^+ = \delta(x)w(z)$$
(2.21)

where the functional w(z) acts on D and is given by

$$w(z) = \frac{\mu_{12}}{\mu_{11}} \mathbf{b} + \frac{\mu_{21}}{\mu_{11}} \rho(z) \mathbf{a} + \frac{\mu_{22}}{\mu_{11}} \rho(z) \mathbf{b}.$$

Here,

$$\rho(z) = \langle r_A(z)\theta, \theta \rangle$$
 where $r_A(z) = (A - zI)^{-1}$

The quasipotential $\widehat{w}(z)$ yields the boundary condition $\mathbf{a}\psi = w(z)\psi$ or, equivalently,

$$\frac{d}{d|x|} \ln \left[|x| \psi(x) \right] \Big|_{x=0} = -4\pi d_0(z),$$

where

$$d_0(z) = \frac{\mu_{11} + \mu_{21}\rho(z)}{\mu_{12} + \mu_{22}\rho(z)}.$$

Notice that if $\dim(\mathfrak{H}^{in}) < \infty$ and A has the eigenvalues $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_N$, then

$$\mathbf{p}(z) = \sum_{j=1}^{N} \sum_{k=1}^{l_j} \frac{|\boldsymbol{\beta}_{j,k}|^2}{\boldsymbol{\varepsilon}_j - z},$$

where $\beta_{j,k} = \langle \theta, u_{j,k} \rangle$ with $u_{j,k}$ the eigenvectors of A for the eigenvalue ε_j , l_j – multiplicity. Hence, $d_0(z)$ is rational,

$$d_0(z) = \frac{P_N(z)}{Q_N(z)}.$$

Furthermore, d_0 is Herglotz. If $\mu_{12} = 0$, then the degree of Q_N is N-1.

2.3 Two classes of point interactions

In the model under consideration, the scattering matrix is given by

$$s(\widehat{k},\widehat{k}',z) = \delta(\widehat{k},\widehat{k}') - \frac{i}{8\pi^2} \frac{1}{d_0(z) + \frac{i\sqrt{z}}{4\pi}},$$

 $z = E \pm i0$, E > 0, $\hat{k}, \hat{k'} \in S^2$. It differs from the identity operator only in the *s*-state (L = 0). The *s*-state component reads

$$s(z) = rac{4\pi d_0(z) - i\sqrt{z}}{4\pi d_0(z) + i\sqrt{z}}.$$

Notice that in the case of the standard zero range interaction

$$s(z) = \frac{-4\pi\gamma^{-1} - i\sqrt{z}}{-4\pi\gamma^{-1} + i\sqrt{z}}.$$

Behavior of $s(E \pm i0)$ as $E \rightarrow +\infty$ is determined by the asymptotics of $d_0(z)$.

Two cases

A)
$$\mu_{12} \neq 0$$
, (2.22)

R)
$$\mu_{12} = 0.$$
 (2.23)

In the case (A) the function $d_0(E \pm i0)$ is bounded \implies "anomalous" behavior of the scattering matrix,

$$s(E\pm i0) \xrightarrow[E\to+\infty]{} -1.$$

The class (A) contains the standard zero-range interactions \widehat{V}_h (for $\theta = 0$ and $\gamma = -\mu_{12}/\mu_{11}$).

In the case (R), on the contrary, $d_0(E \pm i0)$ is unbounded as $E \to +\infty$,

$$d_0(E\pm i0) = cE + o(E)$$

with some c > 0. Hence, we have the "regular" high-energy behav-

$$s(E\pm i0) \xrightarrow[E\to+\infty]{} 1.$$

In other words, only the potential \widehat{V}_h is responsible for the "anomaly". It is the zero-range interaction \widehat{V}_h that leads to the non-semiboundedness of the three-body Hamiltonian and to the "bad" properties of the corresponding version of Faddeev equations (due to Skornyakov– Ter-Martirosyan).

If $\widehat{V}_h = 0$ then none of these two problems arizes [Makarov 1992], [Makarov-Melezhik-M. 1995].

3 Three-particle system with point interactions

3.1 Hamiltonian H_{α}

Center-of-mass frame; reduced Jacobi variables x_{α} , y_{α} , $\alpha = 1, 2, 3$. For example,

$$x_{1} = \left(\frac{2m_{2}m_{3}}{m_{2} + m_{3}}\right)^{1/2} (r_{2} - r_{3})$$
$$y_{1} = \left[\frac{2m_{1}(m_{2} + m_{3})}{m_{1} + m_{2} + m_{3}}\right]^{1/2} \left(r_{1} - \frac{m_{2}r_{2} + m_{3}r_{3}}{m_{2} + m_{3}}\right)$$

Configuration space \mathbb{R}^6 ; six-vectors $X = (x_\alpha, y_\alpha)$. Transition from one to another set of Jacobi variables:

$$\begin{pmatrix} x_{\alpha} \\ y_{\alpha} \end{pmatrix} = \begin{pmatrix} c_{\alpha\beta} & s_{\alpha\beta} \\ -s_{\alpha\beta} & c_{\alpha\beta} \end{pmatrix} \begin{pmatrix} x_{\beta} \\ y_{\beta} \end{pmatrix},$$

where $c_{\alpha\beta}$, $s_{\alpha\beta}$ depend only on the particle masses and form an orthogonal (rotation) matrix.

First, the case where only the particle of a pair α interact. Generalized Hamiltonian \hat{H}_{α} is build of the two-body Hamiltonian $\hat{\mathbf{h}}_{\alpha}$ as

$$\widehat{H}_{\alpha} = \widehat{\mathbf{h}}_{\alpha} \otimes I_{y_{\alpha}} + I_{\alpha} \otimes (-\Delta_{y_{\alpha}})$$

Here, $I_{y_{\alpha}}$ and I_{α} are the identity operators in $L_2(\mathbb{R}^3_{y_{\alpha}})$ and $\mathfrak{H}^{in}_{\alpha}$, resp. The operator \widehat{H}_{α} acts from

$$\mathscr{G}_{\alpha} = \mathscr{H}_{\alpha} \otimes L_2(\mathbb{R}^3_{y_{\alpha}}) = \mathscr{G}^{ex} \oplus \mathscr{G}^{in}_{\alpha},$$

The external and internal channel spaces:

$$\mathscr{G}^{ex} = L_2(\mathbb{R}^6), \quad \mathscr{G}^{in}_{\alpha} = L_2(\mathbb{R}^3_{y_{\alpha}}, \mathfrak{H}^{in}_{\alpha}).$$

 $\mathscr{U} \in \mathscr{G}_{\alpha} \Leftrightarrow \mathscr{U} = (\Psi, u_{\alpha}) \quad , \Psi \in \mathscr{G}^{ex}, u_{\alpha} \in \mathscr{G}^{in}_{\alpha}.$

The operator \widehat{H}_{α} is defined on

$$\widehat{\mathbf{D}}_{\alpha} = \left(\widehat{D}_{\alpha} \oplus \mathfrak{H}_{\alpha}^{in}\right) \otimes W_2^2(\mathbb{R}^3_{y_{\alpha}}) = \widehat{\mathbf{D}}_{\alpha}^{ex} \oplus \mathbf{D}_{\alpha}^{in}, \qquad (3.1)$$

where

$$\widehat{\mathbf{D}}_{\alpha}^{ex} = \widehat{D}_{\alpha} \otimes W_2^2(\mathbb{R}^3_{y_{\alpha}}) \quad \text{and} \quad \mathbf{D}_{\alpha}^{in} = \mathfrak{H}_{\alpha}^{in} \otimes W_2^2(\mathbb{R}^3_{y_{\alpha}})$$

Thus, $\widehat{\mathbf{D}}_{\alpha}$ is formed of the vectors $\mathscr{U} = (\Psi, u_{\alpha})$ whose external components Ψ , $\Psi \in \widehat{\mathbf{D}}_{\alpha}^{ex}$, behave like

$$\Psi(X) \underset{x_{\alpha} \to 0}{\sim} \frac{a_{\alpha}(y_{\alpha})}{4\pi |x|} + b_{\alpha}(y_{\alpha}) + o(1), \qquad (3.2)$$

with a_{α} , $b_{\alpha} \in W_2^2(\mathbb{R}^3_{y_{\alpha}})$, and

$$\Psi \in \widetilde{W}_2^2(\mathbb{R}^6 \setminus \mathscr{M}_\alpha), \quad \mathscr{M}_\alpha = \{ X \in \mathbb{R}^6 \, | \, x_\alpha = 0 \}$$

Internal components: $u_{\alpha} \in \mathbf{D}_{\alpha}^{in} = W_2^2(\mathbb{R}^3_{y_{\alpha}}, \mathfrak{H}_{\alpha}^{in})$. One may identify \mathbf{D}_{α}^{in} with $W_2^2(\mathscr{M}_{\alpha}, \mathfrak{H}_{\alpha}^{in})$.

The Hamiltonian \widehat{H}_{lpha} (on $\widehat{\mathbf{D}}_{lpha}$) may be viewed as a 2×2 block matrix,

$$\widehat{H}_{\alpha} = \begin{pmatrix} -\widehat{\Delta}_{x_{\alpha}} + \widehat{V}_{h}^{(\alpha)} - \Delta_{y_{\alpha}} & B_{\alpha} \\ B_{\alpha}^{+} & A_{\alpha} - \Delta_{y_{\alpha}} \end{pmatrix} = \begin{pmatrix} -\widehat{\Delta}_{x} + \widehat{V}_{h}^{(\alpha)} & B_{\alpha} \\ B_{\alpha}^{+} & A_{\alpha} - \Delta_{y_{\alpha}} \end{pmatrix}$$

The Laplacian $-\widehat{\Delta}_X = -\widehat{\Delta}_{x_{\alpha}} - \Delta_{y_{\alpha}}$ should be understood in the sense of distributions over $C_0^{\infty}(\mathbb{R}^6)$.

Then the generalized Hamiltonian \hat{H}_{α} is equivalent to the selfadjoint operator

$$H_{\alpha} \begin{pmatrix} \Psi \\ u_{\alpha} \end{pmatrix} = \begin{pmatrix} (-\Delta_{X} + v_{\alpha}) \Psi \\ (A_{\alpha} - \Delta_{y_{\alpha}}) u_{\alpha} + \theta_{\alpha} \left(\mu_{21}^{(\alpha)} \mathbf{a}_{\alpha} + \mu_{22}^{(\alpha)} \mathbf{b}_{\alpha} \right) \Psi \end{pmatrix}$$
(3.3)

whose domain $\mathscr{D}(H_{\alpha})$ consists of those elements from $\widehat{\mathbf{D}}_{\alpha}$ that satisfy the boundary condition

$$\left(\left[\boldsymbol{\mu}_{11}^{(\alpha)}\mathbf{a}_{\alpha}+\boldsymbol{\mu}_{12}^{(\alpha)}\mathbf{b}_{\alpha}\right]\Psi\right)(y_{\alpha})=\langle u_{\alpha}(y_{\alpha}),\,\boldsymbol{\theta}_{\alpha}\rangle.$$
 (3.4)

3.2 Total Hamiltonian *H*

If every pair subsystem has an internal channel, the generalized three-body Hamiltonian is introduced as the following operator matrix

$$\widehat{H} = \begin{pmatrix} -\widehat{\Delta}_{X} + \sum_{\alpha} \widehat{V}_{h}^{(\alpha)} & B_{1} & B_{2} & B_{3} \\ B_{1}^{+} & A_{1} - \Delta_{y_{1}} & 0 & 0 \\ B_{2}^{+} & 0 & A_{2} - \Delta_{y_{2}} & 0 \\ B_{3}^{+} & 0 & 0 & A_{3} - \Delta_{y_{3}} \end{pmatrix}, \quad (3.5)$$

considered in the Hilbert space $\mathscr{G} = \mathscr{G}^{ex} \oplus \bigoplus_{\alpha=1}^{3} \mathscr{G}^{in}_{\alpha}$. The operator \widehat{H} acts in \mathscr{G} on the set

$$\widehat{\mathbf{D}} = \widehat{\mathbf{D}}^{ex} \oplus \bigoplus_{\alpha=1}^{3} \mathbf{D}_{\alpha}^{in},$$

where $\mathbf{D}_{\alpha}^{in} = \mathfrak{H}_{\alpha}^{in} \otimes \widetilde{W}_{2}^{2}(\mathbb{R}^{3}_{y_{\alpha}} \setminus \{0\})$. The external component $\widehat{\mathbf{D}}^{ex}$ consists of the functions

$$\Psi \in \widetilde{W}_2^2 \left(\mathbb{R}^6 \setminus \bigcup_{\beta=1}^3 \mathscr{M}_\beta \right),$$

possessing the asymptics (3.2) for any $\alpha = 1, 2, 3$ with the coefficients

$$a_{\alpha}, b_{\alpha} \in \widetilde{W}_{2}^{2}(\mathbb{R}^{3}_{y_{\alpha}} \setminus \{0\}).$$

The structure of the matrix (3.5) demonstrates by itself the truly pairwise character of the point interactions in \hat{H} (in contrast to [Pavlov 1988]).

A state of the system is a four-component vector $\mathscr{U} = (\Psi, u_1, u_2, u_3)$, $\Psi \in \mathscr{G}^{ex}$, $u_{\alpha} \in \mathscr{G}^{in}_{\alpha}$.

Further, for $\mathscr{U} \in \widehat{\mathbf{D}}$, impose the regularity requirement for its image $\widehat{H}\mathscr{U}$... And obtain the corresponding Hamiltonian H that is understood in the usual sense:

$$H_{\alpha}\mathscr{U} = \begin{pmatrix} -\Delta_{X}\Psi \\ \bigoplus_{\alpha=1}^{3} \left[(A_{\alpha} - \Delta_{y_{\alpha}}) u_{\alpha} + \theta_{\alpha} \left(\mu_{21}^{(\alpha)} \mathbf{a}_{\alpha} + \mu_{22}^{(\alpha)} \mathbf{b}_{\alpha} \right) \right] \Psi \end{pmatrix}$$
(3.6)

The domain $\mathscr{D}(H)$ consists of those elements from $\widehat{\mathbf{D}}$ that satisfy the boundary conditions

$$\left(\left[\mu_{11}^{(\alpha)}\mathbf{a}_{\alpha}+\mu_{12}^{(\alpha)}\mathbf{b}_{\alpha}\right]\Psi\right)(y_{\alpha})=\langle u_{\alpha}(y_{\alpha}), \theta_{\alpha}\rangle, \quad \forall \alpha=1,2,3.$$
(3.7)

By inspection, H is symmetric on $\mathscr{D}(H)$. Furthermore, if $\mu_{12}^{(\alpha)} = 0$, $\forall \alpha = 1, 2, 3$ [class (R)], H is self-adjoint and semibounded from below [Makarov 1992]. This follows, e.g., from the study of the corresponding Faddeev equations (see [Makarov-Melezhik-M. 1995]). If $\mu_{12}^{(\alpha)} \neq 0$ at least for two of α 's [class (A)], one encounters the same problems as in the Skornyakov-Ter-Martirosyan case. The study of the spectral properties of *H* is reduced to the study of the resolvent $\mathbf{R}(z) = (H-z)^{-1}$ which is a 4×4 matrix with the components R_{ab} (a,b = 0,1,2,3) (0 – external channel; 1,2,3 – internal channels). All the study is reduced to that of $R(z) := R_{00}(z)$.

3.3 Faddeev integral equations

R(z) satisfies the resolvent identities (Lippmann-Schwinger equations)

$$R_{\alpha}(z) = R_{\alpha}(z) - R_{\alpha}(z) \sum_{\beta \neq \alpha} \widehat{W}_{\beta}(z) R(z) \quad (\alpha = 1, 2, 3), \quad (3.8)$$

where $R_{\alpha}(z)$ is the external component the resolvent $(H_{\alpha} - z)^{-1}$. This equations are non-Fredholm.

Introduce
$$\widehat{M}_{\alpha}(z) = \widehat{W}_{\alpha}(z)R(z)$$
, $\alpha = 1, 2, 3$. Clearly,
 $R(z) = R_0(z) - R_0(z) \sum_{\alpha} \widehat{M}_{\alpha}(z)$,

and, from (3.8),

$$\widehat{M}_{\alpha}(z) = \widehat{W}_{\alpha}(z)R_{\alpha}(z) - \widehat{W}_{\alpha}(z)R_{\alpha}(z)\sum_{\beta\neq\alpha}\widehat{M}_{\beta}(z) \quad (\alpha = 1, 2, 3), \quad (3.9)$$

the Faddeev integral equations. Extract δ -factors $\delta(x_{\alpha})$ in \widehat{M}_{α} and pass to the regular kernels (functions) $M_{\alpha}(y_{\alpha}, X', z)$, $\widehat{M}_{\alpha}(z) =$

$\delta(x_{\alpha})M_{\alpha}(z)$. This results in $M_{\alpha}(z) = W_{\alpha}(z)R_{\alpha}(z) - W_{\alpha}(z)R_{\alpha}(z)\sum_{\beta \neq \alpha} \delta_{\beta}M_{\beta}(z),$ (3.10)

where δ_{β} is multiplication by the δ -function $\delta(x_{\beta})$.

If one deals with the (R) case, all further study follows the usual Faddeev procedure: good, improving iterations with a nicer and nicer asymptotic behavior of the iterated kernels. The fourth iteration gives a compact operator (+ known estimates concerning the behavior with respect to z).

In case (A) one can not prove that the kernel $(W_{\alpha}(z)R_{\alpha})(y_{\alpha},X',z)$ is integrable over a domain where $X' \in \mathcal{M}_{\beta}$, $\beta \neq \alpha$ and $|x'_{\alpha}|$ and $|y_{\alpha} - y'_{\alpha}|$ are both small (this is just the neighborhood of the triple collision point). Details in [Makarov-Melezhik-M. 1995]. [Makarov-Melezhik 1996] used the momentum space representation.

Recall that if $\theta = 0$ (i.e. the standard zero-range interactions), equations (3.10) are nothing but the Skornyakov-Ter-Martirosyan ones.