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1 Introduction

[BethePeirls 1931]: due to the small radius of (nuclear) forces many
lowenergy properties of a twobody system (deuteron) practically
do not depend on the interaction details. Only one parameter is
sufficient, the scattering length a. Assuming h̄ = 1 and µ = 1

2, the
potential may be replaced by the boundary condition

d
dr

ln [rψ(r)]
∣∣∣∣
r=0

=−1
a
, (1.1)

where r is the relative position vector of the particles.

[BerezinFaddeev 1961]: oneparametric extensions of −∆ restricted
to C∞

0 (R3 \{0}).

http://dx.doi.org/10.1007/BF01040400
http://dx.doi.org/10.1007/BF01040400
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Till now a source of explicitly solvable problems for various areas
of physics (see, e.g., the fundamental book [Albeverio, Gesztesy,
HøeghKrohn and Holden 1988/2005]).

Zerorange interactions in a threebody problem produce mathe
matical difficulties [MinlosFaddeev 1961] that are not present in
the case of “regular” interactions. This comes from the fact that the
supports of point interactions in twobody subsystems α = 1,2,3,
are 3dim hyperplanes Mα. Codimension of Mα w.r.t. the configu
ration space R6 is too high. The triple collision point X = 0, the only
intersection point of Mα’s plays a crucial role. A natural switching
on zerorange interactions produces a symmetric Hamiltonian [which
is behind Skornyakov–TerMartirosyan equations (1956)] with non
zero deficiency indices. An extension is needed. Danilov conditions
(1961) lead to a Hamiltonian that is not semibounded from below
(Thomas effect 1935). Regularizing → threebody forces.
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It is a priori clear that any generalization of the zerorange poten
tial (that still remains nontrivial only at r = 0) should produce the
scattering wave functions ψ(r,k) satisfying

d
dr

ln [rψ(r,k)]
∣∣∣∣
r=0

= k cotδ (k),

where k is the modulus of the relative momentum and δ (k) the
scattering phase shift. The lowenergy expansion

k cotδ (k) =
E↓0

−1
a
+

1
2

r0E +Ar2
0E2+ ... (1.2)

where E = k2 > 0 is the energy, and r0 the effective radius (of the
interaction).

[Shondin 1982], [LE Thomas 1984]: first example of a semibounded
threebody Hamiltonian with δ like interaction, efficiently with extra
degrees of freedom: L2(R3) was extended to L2(R3)⊕C; r0 ̸= 0.
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Another approach [Pavlov 1984], [PavlovShushkov 1988]: a joint
extension of

∆|C∞
0 (R3\{0})⊕A|DA, DA ⊂ Hin

where A is a (selfadjoint) operator on an auxiliary, rather arbi
trary Hilbert space Hin (describing “internal degrees of freedom”).
Pavlov’s “restrictionextension” model involves the deficiency ele
ments of restricted channel operators. An equivalent direct de
scription in [Makarov 1992] (boundary conditions) and [M. 1993]
(singular potentials and singular coupling operators).

[M. 1993]: a twochannel operator matrix

ĥ =

(
−∆̂+V̂h B

B+ A

)
, (1.3)

where ∆̂ is the Laplacian understood in the distributional sense;
the operator A describes the internal degrees of freedom; V̂h is a
generalized singular potential corresponding to the standard zero
range interaction; B and B+ are (singular) coupling operators.
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The spectral problem for ĥ reduces to the “external” channel equa
tion (

−∆̂+ ŵ(z)− z
)

Ψ = 0

with the energy dependent interaction

ŵ(z) = V̂h−B(A− zI)−1B+. (1.4)

If Hin is a finitedimensional (and, thus, A finite rank), the corre
sponding function (−kctgδ ) is a rational Herglotz function of the
energy z of the form

− k ctgδ (k) =
PN(z)
QN(z)

, z = k2, (1.5)

where PN and QN are polynomials of the power N ≤ dim(Hin) (notice
that necessarily r0 ≤ 0).

The question was how to include the point interaction with internal
degrees of freedom into the threebody Hamiltonian. We followed
an idea first developed in the case of a singular interaction with a
surface support [KuperinMakarovMerkurievM.Pavlov, 1986].
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Then — Faddeev equations. Two cases, depending on the asymp
totic behavior of the twobody scattering matrices:

If sα(E) → −1 as E → +∞, α = 1,2,3 (or at least two of them)
then the threebody Hamiltonian is not semibounded from below
[Makarov 1992] and Faddeev equations are not Fredholm [Makarov
MelezhikM., 1995].

If sα(E)→ +1 as E → +∞, α = 1,2,3, we have both the opposite
statements, in particular, the semiboundedness (cf. [Pavlov 1988]).
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2 Twobody problem, some details

2.1 “Structureless” point interaction

First, recall the definition of the standard zerorange potential.

Let x, x ∈ R3 be the relative variable (Jacobi coordinate) for the
system of two particles. Introduce a function class

D̂ = {ψ ∈ W̃ 2
2 (R3 \{0}),

ψ(x) =
x→0

a
4π|x|

+b+o(1)}, for some a,b ∈ C. (2.1)

(D̂ is simply the domain of the adjoint of ∆0 := ∆|C∞
0 (R3\{0}).)

The Hamiltonian h acts as the Laplacian −∆ on D(h) ⊂ D̂ fixed by
the condition

a = γb for some γ ∈ R (2.2)

γ parametrizes all possible selfadjoint extensions of −∆0 in L2(R3).



9

Furthermore, − γ
4π

= a is just the scattering length.

Equivalent (weak sense) formulation in terms of a quasipotential.

The initial Hamiltonian h is associated with a generalized Hamiltonian
ĥ understood in the distributional sense, say, over C∞

0 (R3). The
operator ĥ should be such that for f ∈ L2(R3), z ∈ C, the equations

(ĥ− z)ψ = f , ψ ∈ D̂, (2.3)

and
(h− z)ψ = f , ψ ∈ D(h), (2.4)

are equivalent.
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To describe the generalized Hamiltonians, we use the natural func
tionals a and b on D̂, defined by

a : ψ 7→ a , aψ = lim
x→0

4π|x|ψ(x), (2.5)

b : ψ 7→ b , bψ = lim
x→0

(
ψ(x)− aψ

4π|x|

)
. (2.6)

In terms of these functionals, the condition (2.2) reads

aψ = γ bψ. (2.7)

The generalized Laplacian −∆̂ acts on D̂ according to the formula

− ∆̂ψ =−∆ψ +δ (x)aψ , (2.8)

where −∆ is the classical Laplacian (on W̃ 2
2 (R3 \0)). It then follows

that the condition (2.7) is automatically reproduced if

ĥ =−∆̂+V̂h,

with the generalized potential (quasipotential)

V̂hψ =−γδ (x)bψ . (2.9)
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Actually, in this case (ĥ− z)ψ = f for ψ ∈ D̂, transforms into

(−∆− z)ψ +δ (x)(a− γb)ψ = f (2.10)

Separately equating regular and singular terms on the both sides of
(2.10), one arrives at

(h− z)ψ = f , ψ ∈ D(h)

and
aψ = γ bψ. (2.11)

That is, one comes to the original boundary value problem associ
ated with the zerorange interaction. (In other words, the require
ment of regularity of the image of the generalized Hamiltonian ĥ is
equivalent to condition (2.11)...)
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2.2 Point interactions with internal structure

Let A be a (for simplicity) bounded selfadjoint operator on a Hilbert
space Hin. Introduce a (generalized) 2×2 matrix Hamiltonian

ĥ =

(
−∆̂+V̂h B

B+ A

)
, (2.12)

on the orthogonal sum H = L2(R3)⊕Hin of the “external”, L2(R3),
and “internal”, Hin, spaces. Domain: D̂⊕Hin. Here(

V̂hψ
)
(x) = δ (x)

µ12

µ11
bψ, ψ ∈ D̂, (2.13)

(Bu)(x) =−δ (x)
1

µ11
⟨u , θ⟩, u ∈ Hin, (2.14)

B+ψ = θ (µ21a+µ22b)ψ, (2.15)

θ is a arbitrary fixed element from Hin, and

µi j ∈ C, i, j = 1,2, µ11 ̸= 0.
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The regularity requirement f ex ∈ L2(R3) of the external component
f ex of the vector

f = (ĥ− z)U , f = ( f ex , f in), f in ∈ Hin,

for U ∈ D̂⊕Hin, U = (ψ , u), yields the following equations{
(−∆− z)Ψ = f ex

θ (µ21a+µ22b)ψ +(A− z)u = f in (2.16)

and boundary condition

µ11aψ +µ12bψ = ⟨u , θ⟩. (2.17)

Thus, in this sense the generalized Hamiltonian ĥ is equivalent to
the “regular” operator

h
(

ψ
u

)
=

(
−∆ψ
Au+θ (µ21a+µ22b)ψ

)
(2.18)

on the domain D(h) ⊂ D̂⊕Hin defined by the boundary condition
(2.17).
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The operator h is selfadjoint if and only if

det
(

µ11 µ̄12

µ21 µ̄22

)
=−1, µ11µ̄21 ∈ R, µ12µ̄22 ∈ R. (2.19)

In the following, conditions (2.19) will be always assumed.

After excluding the internal component, in the external channel
equation we have an energydependent quasipotential:(

−∆̂+ ŵ(z)− z
)

ψ = 0, (2.20)

ŵ(z) = V̂h+B(zI −A)−1 B+ = δ (x)w(z) (2.21)

where the functional w(z) acts on D̂ and is given by

w(z) =
µ12

µ11
b+

µ21

µ11
ρ(z)a+

µ22

µ11
ρ(z)b.

Here,
ρ(z) = ⟨rA(z)θ , θ⟩ where rA(z) = (A− zI)−1 .

The quasipotential ŵ(z) yields the boundary condition

aψ = w(z)ψ
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or, equivalently,

d
d|x|

ln [|x|ψ(x)]
∣∣∣∣
x=0

=−4πd0(z),

where

d0(z) =
µ11+µ21ρ(z)
µ12+µ22ρ(z)

.

Notice that if dim(Hin)< ∞ and A has the eigenvalues ε1, ε2, ..., εN,
then

ρ(z) =
N

∑
j=1

l j

∑
k=1

|β j,k|2

ε j − z
,

where β j,k = ⟨θ ,u j,k⟩ with u j,k the eigenvectors of A for the eigen
value ε j, l j – multiplicity. Hence, d0(z) is rational,

d0(z) =
PN(z)
QN(z)

.

Furthermore, d0 is Herglotz. If µ12 = 0, then the degree of QN is
N −1.
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2.3 Two classes of point interactions

In the model under consideration, the scattering matrix is given by

s(k̂, k̂′,z) = δ (k̂, k̂′)− i
8π2

1

d0(z)+
i
√

z
4π

,

z = E ± i0, E > 0, k̂, k̂′ ∈ S2. It differs from the identity operator only
in the sstate (L = 0). The sstate component reads

s(z) =
4πd0(z)− i

√
z

4πd0(z)+ i
√

z
.

Notice that in the case of the standard zero range interaction

s(z) =
−4πγ−1− i

√
z

−4πγ−1+ i
√

z
.
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Behavior of s(E ± i0) as E → +∞ is determined by the asymptotics
of d0(z).

Two cases
A) µ12 ̸= 0, (2.22)

R) µ12 = 0. (2.23)

In the case (A) the function d0(E ± i0) is bounded =⇒ “anomalous”
behavior of the scattering matrix,

s(E ± i0) →
E→+∞

−1.

The class (A) contains the standard zerorange interactions V̂h (for
θ = 0 and γ =−µ12/µ11).

In the case (R), on the contrary, d0(E± i0) is unbounded as E →+∞,

d0(E ± i0) =
E→+∞

cE +o(E)

with some c > 0. Hence, we have the “regular” highenergy behav
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ior
s(E ± i0) →

E→+∞
1.

In other words, only the potential V̂h is responsible for the “anomaly”.
It is the zerorange interaction V̂h that leads to the nonsemiboundedness
of the threebody Hamiltonian and to the “bad” properties of the
corresponding version of Faddeev equations (due to Skornyakov–
TerMartirosyan).

If V̂h = 0 then none of these two problems arizes [Makarov 1992],
[MakarovMelezhikM. 1995].
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3 Threeparticle system with point interactions

3.1 Hamiltonian Hα

Centerofmass frame; reduced Jacobi variables xα, yα, α = 1,2,3.
For example,

x1 =

(
2m2m3

m2+m3

)1/2

(r2− r3)

y1 =

[
2m1(m2+m3)

m1+m2+m3

]1/2(
r1−

m2r2+m3r3

m2+m3

)
Configuration space R6; sixvectors X = (xα, yα). Transition from
one to another set of Jacobi variables:(

xα
yα

)
=

(
cαβ sαβ
−sαβ cαβ

)(
xβ
yβ

)
,

where cαβ , sαβ depend only on the particle masses and form an
orthogonal (rotation) matrix.
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First, the case where only the particle of a pair α interact. Gen
eralized Hamiltonian Ĥα is build of the twobody Hamiltonian ĥα
as

Ĥα = ĥα ⊗ Iyα + Iα ⊗ (−∆yα)

Here, Iyα and Iα are the identity operators in L2(R3
yα) and Hin

α , resp.

The operator Ĥα acts from

Gα = Hα ⊗L2(R3
yα) = G ex⊕G in

α ,

The external and internal channel spaces:

G ex = L2(R6), G in
α = L2(R3

yα ,H
in
α ).

U ∈ Gα ⇔ U = (Ψ,uα) , Ψ ∈ G ex, uα ∈ G in
α .

The operator Ĥα is defined on

D̂α =
(

D̂α ⊕Hin
α

)
⊗W 2

2 (R3
yα) = D̂ex

α ⊕Din
α , (3.1)

where

D̂ex
α = D̂α ⊗W 2

2 (R3
yα) and Din

α = Hin
α ⊗W 2

2 (R3
yα).
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Thus, D̂α is formed of the vectors U = (Ψ,uα) whose external com
ponents Ψ, Ψ ∈ D̂ex

α , behave like

Ψ(X) ∼
xα→0

aα(yα)

4π|x|
+bα(yα)+o(1), (3.2)

with aα, bα ∈W 2
2 (R3

yα), and

Ψ ∈ W̃ 2
2 (R6 \Mα), Mα = {X ∈ R6 |xα = 0}

Internal components: uα ∈ Din
α =W 2

2 (R3
yα ,H

in
α ). One may identify Din

α
with W 2

2 (Mα,H
in
α ).

The Hamiltonian Ĥα (on D̂α) may be viewed as a 2×2 block matrix,

Ĥα =

(
−∆̂xα +V̂ (α)

h −∆yα Bα
B+

α Aα −∆yα

)
=

(
−∆̂X +V̂ (α)

h Bα
B+

α Aα −∆yα

)
.

The Laplacian −∆̂X =−∆̂xα −∆yα should be understood in the sense
of distributions over C∞

0 (R6).
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Then the generalized Hamiltonian Ĥα is equivalent to the self
adjoint operator

Hα

(
Ψ
uα

)
=

(
(−∆X + vα)Ψ
(Aα −∆yα)uα +θα

(
µ (α)

21 aα +µ (α)
22 bα

)
Ψ

)
(3.3)

whose domain D(Hα) consists of those elements from D̂α that
satisfy the boundary condition([

µ (α)
11 aα +µ (α)

12 bα

]
Ψ
)
(yα) = ⟨uα(yα) , θα⟩. (3.4)



23

3.2 Total Hamiltonian H

If every pair subsystem has an internal channel, the generalized
threebody Hamiltonian is introduced as the following operator ma
trix

Ĥ =


−∆̂X +∑

α
V̂ (α)

h B1 B2 B3

B+
1 A1−∆y1 0 0

B+
2 0 A2−∆y2 0

B+
3 0 0 A3−∆y3

 , (3.5)

considered in the Hilbert space G = G ex ⊕
3⊕

α=1
G in

α . The operator Ĥ

acts in G on the set

D̂ = D̂ex⊕
3⊕

α=1

Din
α ,
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where Din
α = Hin

α ⊗W̃ 2
2 (R3

yα \{0}). The external component D̂ex con
sists of the functions

Ψ ∈ W̃ 2
2

(
R6 \

3
∪

β=1
Mβ

)
,

possessing the asymptics (3.2) for any α = 1,2,3 with the coeffi
cients

aα,bα ∈ W̃ 2
2 (R3

yα \{0}).
The structure of the matrix (3.5) demonstrates by itself the truly pair
wise character of the point interactions in Ĥ (in contrast to [Pavlov
1988]).

A state of the system is a fourcomponent vector U = (Ψ,u1,u2,u3),
Ψ ∈ G ex, uα ∈ G in

α .

Further, for U ∈ D̂, impose the regularity requirement for its im
age ĤU ... And obtain the corresponding Hamiltonian H that is
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understood in the usual sense:

HαU =

−∆XΨ
3⊕

α=1

[
(Aα −∆yα)uα +θα

(
µ (α)

21 aα +µ (α)
22 bα

)]
Ψ

 (3.6)

The domain D(H) consists of those elements from D̂ that satisfy the
boundary conditions([

µ (α)
11 aα +µ (α)

12 bα

]
Ψ
)
(yα) = ⟨uα(yα) , θα⟩, ∀α = 1,2,3. (3.7)

By inspection, H is symmetric on D(H). Furthermore, if µ (α)
12 = 0,

∀α = 1,2,3 [class (R)], H is selfadjoint and semibounded from be
low [Makarov 1992]. This follows, e.g., from the study of the cor
responding Faddeev equations (see [MakarovMelezhikM. 1995]).

If µ (α)
12 ̸= 0 at least for two of α ’s [class (A)], one encounters the

same problems as in the SkornyakovTerMartirosyan case.
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The study of the spectral properties of H is reduced to the study of
the resolvent R(z) = (H − z)−1 which is a 4×4 matrix with the com
ponents Rab (a,b = 0,1,2,3) (0 – external channel; 1,2,3 – internal
channels). All the study is reduced to that of R(z) := R00(z).
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3.3 Faddeev integral equations

R(z) satisfies the resolvent identities (LippmannSchwinger equa
tions)

Rα(z) = Rα(z)−Rα(z) ∑
β ̸=α

Ŵβ(z)R(z) (α = 1,2,3), (3.8)

where Rα(z) is the external component the resolvent (Hα − z)−1.
This equations are nonFredholm.

Introduce M̂α(z) = Ŵα(z)R(z), α = 1,2,3. Clearly,

R(z) = R0(z)−R0(z)∑
α

M̂α(z),

and, from (3.8),

M̂α(z) = Ŵα(z)Rα(z)−Ŵα(z)Rα(z) ∑
β ̸=α

M̂β(z) (α = 1,2,3), (3.9)

the Faddeev integral equations. Extract δ factors δ (xα) in M̂α
and pass to the regular kernels (functions) Mα (yα,X ′,z), M̂α(z) =
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δ (xα)Mα(z). This results in

Mα(z) =Wα(z)Rα(z)−Wα(z)Rα(z) ∑
β ̸=α

δβMβ(z), (3.10)

where δβ is multiplication by the δ function δ (xβ).

If one deals with the (R) case, all further study follows the usual
Faddeev procedure: good, improving iterations with a nicer and
nicer asymptotic behavior of the iterated kernels. The fourth itera
tion gives a compact operator (+ known estimates concerning the
behavior with respect to z).

In case (A) one can not prove that the kernel (Wα(z)Rα)(yα,X ′,z)
is integrable over a domain where X ′ ∈ Mβ , β ̸= α and |x′α| and
|yα − y′α| are both small (this is just the neighborhood of the triple
collision point). Details in [MakarovMelezhikM. 1995]. [Makarov
Melezhik 1996] used the momentum space representation.

Recall that if θ = 0 (i.e. the standard zerorange interactions), equa
tions (3.10) are nothing but the SkornyakovTerMartirosyan ones.
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