POINT INTERACTIONS IN THE PROBLEM OF THREE PARTICLES WITH INTERNAL STRUCTURE*

Alexander K. Motovilov

BLTP, Joint Institute for Nuclear Research, Dubna

Mathematical Challenges of Zero-Range Physics:
Rigorous Results and Open Problems
CAS ${ }^{\text {LMU }}$, Munich, February 26, 2014
*Based on joint work with K. A. Makarov and V.V. Melezhik
[Makarov, Melezhik, M.: Theor. Math. Phys. 102 (1995), 188-207]
doi: 10.1007 /BF01040400

1 Introduction

[Bethe-Peirls 1931]: due to the small radius of (nuclear) forces many low-energy properties of a two-body system (deuteron) practically do not depend on the interaction details. Only one parameter is sufficient, the scattering length a. Assuming $\hbar=1$ and $\mu=\frac{1}{2}$, the potential may be replaced by the boundary condition

$$
\begin{equation*}
\left.\frac{d}{d r} \ln [r \psi(\mathbf{r})]\right|_{r=0}=-\frac{1}{\mathrm{a}}, \tag{1.1}
\end{equation*}
$$

where \mathbf{r} is the relative position vector of the particles.
[Berezin-Faddeev 1961]: one-parametric extensions of $-\Delta$ restricted to $C_{0}^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}\right)$.

Till now a source of explicitly solvable problems for various areas of physics (see, e.g., the fundamental book [Albeverio, Gesztesy, Høegh-Krohn and Holden 1988/2005]).

Zero-range interactions in a three-body problem produce mathematical difficulties [Minlos-Faddeev 1961] that are not present in the case of "regular" interactions. This comes from the fact that the supports of point interactions in two-body subsystems $\alpha=1,2,3$, are 3 -dim hyperplanes \mathscr{M}_{α}. Codimension of \mathscr{M}_{α} w.r.t. the configuration space \mathbb{R}^{6} is too high. The triple collision point $X=0$, the only intersection point of \mathscr{M}_{α} 's plays a crucial role. A natural switching on zero-range interactions produces a symmetric Hamiltonian [which is behind Skornyakov-Ter-Martirosyan equations (1956)] with nonzero deficiency indices. An extension is needed. Danilov conditions (1961) lead to a Hamiltonian that is not semibounded from below (Thomas effect 1935). Regularizing \rightarrow three-body forces.

It is a priori clear that any generalization of the zero-range potential (that still remains non-trivial only at $r=0$) should produce the scattering wave functions $\psi(\mathbf{r}, \mathbf{k})$ satisfying

$$
\left.\frac{d}{d r} \ln [r \psi(\mathbf{r}, \mathbf{k})]\right|_{r=0}=k \cot \delta(k)
$$

where k is the modulus of the relative momentum and $\delta(k)$ the scattering phase shift. The low-energy expansion

$$
\begin{equation*}
k \cot \delta(k) \underset{E \downarrow 0}{=}-\frac{1}{a}+\frac{1}{2} r_{0} E+A r_{0}^{2} E^{2}+\ldots \tag{1.2}
\end{equation*}
$$

where $E=k^{2}>0$ is the energy, and r_{0} the effective radius (of the interaction).
[Shondin 1982], [LE Thomas 1984]: first example of a semibounded three-body Hamiltonian with δ-like interaction, efficiently with extra degrees of freedom: $L_{2}\left(\mathbb{R}^{3}\right)$ was extended to $L_{2}\left(\mathbb{R}^{3}\right) \oplus \mathbb{C} ; r_{0} \neq 0$.

Another approach [Pavlov 1984], [Pavlov-Shushkov 1988]: a joint extension of

$$
\left.\left.\Delta\right|_{C_{0}^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}\right)} \oplus A\right|_{D_{A}}, \quad D_{A} \subset \mathfrak{H}^{\text {in }}
$$

where A is a (self-adjoint) operator on an auxiliary, rather arbitrary Hilbert space $\mathfrak{H}^{\text {in }}$ (describing "internal degrees of freedom"). Pavlov's "restriction-extension" model involves the deficiency elements of restricted channel operators. An equivalent direct description in [Makarov 1992] (boundary conditions) and [M. 1993] (singular potentials and singular coupling operators).
[M. 1993]: a two-channel operator matrix

$$
\widehat{\mathbf{h}}=\left(\begin{array}{cc}
-\widehat{\Delta}+\widehat{V}_{h} & B \tag{1.3}\\
B^{+} & A
\end{array}\right),
$$

where $\widehat{\Delta}$ is the Laplacian understood in the distributional sense; the operator A describes the internal degrees of freedom; \widehat{V}_{h} is a generalized singular potential corresponding to the standard zerorange interaction; B and B^{+}are (singular) coupling operators.

The spectral problem for $\widehat{\mathbf{h}}$ reduces to the "external" channel equation

$$
(-\widehat{\Delta}+\widehat{w}(z)-z) \Psi=0
$$

with the energy dependent interaction

$$
\begin{equation*}
\widehat{w}(z)=\widehat{V}_{h}-B(A-z I)^{-1} B^{+} . \tag{1.4}
\end{equation*}
$$

If $\mathfrak{H}^{\text {in }}$ is a finite-dimensional (and, thus, A finite rank), the corresponding function $(-k \operatorname{ctg} \delta)$ is a rational Herglotz function of the energy z of the form

$$
\begin{equation*}
-k \operatorname{ctg} \delta(k)=\frac{P_{N}(z)}{Q_{N}(z)}, \quad z=k^{2} \tag{1.5}
\end{equation*}
$$

where P_{N} and Q_{N} are polynomials of the power $N \leq \operatorname{dim}\left(\mathfrak{H}^{i n}\right)$ (notice that necessarily $r_{0} \leq 0$).
The question was how to include the point interaction with internal degrees of freedom into the three-body Hamiltonian. We followed an idea first developed in the case of a singular interaction with a surface support [Kuperin-Makarov-Merkuriev-M.-Pavlov, 1986].

Then - Faddeev equations. Two cases, depending on the asymptotic behavior of the two-body scattering matrices:
If $s_{\alpha}(E) \rightarrow-1$ as $E \rightarrow+\infty, \alpha=1,2,3$ (or at least two of them) then the three-body Hamiltonian is not semibounded from below [Makarov 1992] and Faddeev equations are not Fredholm [Makarov-Melezhik-M., 1995].
If $s_{\alpha}(E) \rightarrow+1$ as $E \rightarrow+\infty, \alpha=1,2,3$, we have both the opposite statements, in particular, the semiboundedness (cf. [Pavlov 1988]).

2 Two-body problem, some details

2.1 "Structureless" point interaction

First, recall the definition of the standard zero-range potential.
Let $x, x \in \mathbb{R}^{3}$ be the relative variable (Jacobi coordinate) for the system of two particles. Introduce a function class

$$
\begin{align*}
\widehat{D}= & \left\{\psi \in \widetilde{W}_{2}^{2}\left(\mathbb{R}^{3} \backslash\{0\}\right),\right. \\
& \left.\psi(x) \underset{x \rightarrow 0}{=} \frac{a}{4 \pi|x|}+b+o(1)\right\}, \quad \text { for some } a, b \in \mathbb{C} . \tag{2.1}
\end{align*}
$$

(\widehat{D} is simply the domain of the adjoint of $\Delta_{0}:=\left.\Delta\right|_{C_{0}^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}\right)}$.)
The Hamiltonian h acts as the Laplacian $-\Delta$ on $\mathscr{D}(h) \subset \widehat{D}$ fixed by the condition

$$
\begin{equation*}
a=\gamma b \quad \text { for some } \gamma \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

γ parametrizes all possible self-adjoint extensions of $-\Delta_{0}$ in $L_{2}\left(\mathbb{R}^{3}\right)$.

Furthermore, $-\frac{\gamma}{4 \pi}=\mathrm{a}$ is just the scattering length.
Equivalent (weak sense) formulation in terms of a quasipotential.
The initial Hamiltonian h is associated with a generalized Hamiltonian \widehat{h} understood in the distributional sense, say, over $C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$. The operator \widehat{h} should be such that for $f \in L_{2}\left(\mathbb{R}^{3}\right), z \in \mathbb{C}$, the equations

$$
\begin{equation*}
(\widehat{h}-z) \psi=f, \quad \psi \in \widehat{D} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(h-z) \psi=f, \quad \psi \in \mathscr{D}(h), \tag{2.4}
\end{equation*}
$$

are equivalent.

To describe the generalized Hamiltonians, we use the natural functionals \mathbf{a} and \mathbf{b} on \widehat{D}, defined by

$$
\begin{gather*}
\mathbf{a}: \psi \mapsto a, \quad \mathbf{a} \psi=\lim _{x \rightarrow 0} 4 \pi|x| \psi(x), \tag{2.5}\\
\mathbf{b}: \psi \mapsto b, \quad \mathbf{b} \psi=\lim _{x \rightarrow 0}\left(\psi(x)-\frac{\mathbf{a} \psi}{4 \pi|x|}\right) . \tag{2.6}
\end{gather*}
$$

In terms of these functionals, the condition (2.2) reads

$$
\begin{equation*}
\mathbf{a} \psi=\gamma \mathbf{b} \psi \tag{2.7}
\end{equation*}
$$

The generalized Laplacian $-\widehat{\Delta}$ acts on \widehat{D} according to the formula

$$
\begin{equation*}
-\widehat{\Delta} \psi=-\Delta \psi+\delta(x) \mathbf{a} \psi \tag{2.8}
\end{equation*}
$$

where $-\Delta$ is the classical Laplacian (on $\widetilde{W}_{2}^{2}\left(\mathbb{R}^{3} \backslash 0\right)$). It then follows that the condition (2.7) is automatically reproduced if

$$
\widehat{h}=-\widehat{\Delta}+\widehat{V}_{h},
$$

with the generalized potential (quasipotential)

$$
\begin{equation*}
\widehat{V}_{h} \psi=-\gamma \delta(x) \mathbf{b} \psi \tag{2.9}
\end{equation*}
$$

Actually, in this case $(\widehat{h}-z) \psi=f$ for $\psi \in \widehat{D}$, transforms into

$$
\begin{equation*}
(-\Delta-z) \psi+\delta(x)(\mathbf{a}-\gamma \mathbf{b}) \psi=f \tag{2.10}
\end{equation*}
$$

Separately equating regular and singular terms on the both sides of (2.10), one arrives at

$$
(h-z) \psi=f, \quad \psi \in \mathscr{D}(h)
$$

and

$$
\begin{equation*}
\mathbf{a} \psi=\gamma \mathbf{b} \psi \tag{2.11}
\end{equation*}
$$

That is, one comes to the original boundary value problem associated with the zero-range interaction. (In other words, the requirement of regularity of the image of the generalized Hamiltonian \widehat{h} is equivalent to condition (2.11)...)

2.2 Point interactions with internal structure

Let A be a (for simplicity) bounded self-adjoint operator on a Hilbert space $\mathfrak{H}^{\text {in }}$. Introduce a (generalized) 2×2 matrix Hamiltonian

$$
\widehat{\mathbf{h}}=\left(\begin{array}{cc}
-\widehat{\Delta}+\widehat{V}_{h} & B \tag{2.12}\\
B^{+} & A
\end{array}\right),
$$

on the orthogonal sum $\mathscr{H}=L_{2}\left(\mathbb{R}^{3}\right) \oplus \mathfrak{H}^{\text {in }}$ of the "external", $L_{2}\left(\mathbb{R}^{3}\right)$, and "internal", $\mathfrak{H}^{\text {in }}$, spaces. Domain: $\widehat{D} \oplus \mathfrak{H}^{\text {in }}$. Here

$$
\begin{gather*}
\left(\widehat{V}_{h} \psi\right)(x)=\delta(x) \frac{\mu_{12}}{\mu_{11}} \mathbf{b} \psi, \quad \psi \in \widehat{D}, \tag{2.13}\\
(B u)(x)=-\delta(x) \frac{1}{\mu_{11}}\langle u, \theta\rangle, \quad u \in \mathfrak{H}^{i n}, \tag{2.14}\\
B^{+} \psi=\theta\left(\mu_{21} \mathbf{a}+\mu_{22} \mathbf{b}\right) \psi, \tag{2.15}
\end{gather*}
$$

θ is a arbitrary fixed element from $\mathfrak{H}^{\text {in }}$, and

$$
\mu_{i j} \in \mathbb{C}, \quad i, j=1,2, \quad \mu_{11} \neq 0
$$

The regularity requirement $f^{e x} \in L_{2}\left(\mathbb{R}^{3}\right)$ of the external component $f^{e x}$ of the vector

$$
f=(\widehat{\mathbf{h}}-z) \mathscr{U}, \quad f=\left(f^{e x}, f^{i n}\right), \quad f^{\text {in }} \in \mathfrak{H}^{\text {in }},
$$

for $\mathscr{U} \in \widehat{D} \oplus \mathfrak{H}^{\text {in }}, \mathscr{U}=(\psi, u)$, yields the following equations

$$
\left\{\begin{array}{l}
(-\Delta-z) \Psi=f^{e x} \tag{2.16}\\
\theta\left(\mu_{21} \mathbf{a}+\mu_{22} \mathbf{b}\right) \psi+(A-z) u=f^{i n}
\end{array}\right.
$$

and boundary condition

$$
\begin{equation*}
\mu_{11} \mathbf{a} \psi+\mu_{12} \mathbf{b} \psi=\langle u, \theta\rangle \tag{2.17}
\end{equation*}
$$

Thus, in this sense the generalized Hamiltonian $\widehat{\mathbf{h}}$ is equivalent to the "regular" operator

$$
\begin{equation*}
\mathbf{h}\binom{\psi}{u}=\binom{-\Delta \psi}{A u+\theta\left(\mu_{21} \mathbf{a}+\mu_{22} \mathbf{b}\right) \psi} \tag{2.18}
\end{equation*}
$$

on the domain $\mathscr{D}(\mathbf{h}) \subset \widehat{D} \oplus \mathfrak{H}^{\text {in }}$ defined by the boundary condition (2.17).

The operator \mathbf{h} is self-adjoint if and only if

$$
\operatorname{det}\left(\begin{array}{ll}
\mu_{11} & \bar{\mu}_{12} \tag{2.19}\\
\mu_{21} & \bar{\mu}_{22}
\end{array}\right)=-1, \quad \mu_{11} \bar{\mu}_{21} \in \mathbb{R}, \quad \mu_{12} \bar{\mu}_{22} \in \mathbb{R}
$$

In the following, conditions (2.19) will be always assumed.
After excluding the internal component, in the external channel equation we have an energy-dependent quasipotential:

$$
\begin{align*}
(-\widehat{\Delta}+\widehat{w}(z)-z) \psi & =0 \tag{2.20}\\
\widehat{w}(z)=\widehat{V}_{h}+B(z I-A)^{-1} B^{+} & =\delta(x) w(z) \tag{2.21}
\end{align*}
$$

where the functional $w(z)$ acts on \widehat{D} and is given by

$$
w(z)=\frac{\mu_{12}}{\mu_{11}} \mathbf{b}+\frac{\mu_{21}}{\mu_{11}} \rho(z) \mathbf{a}+\frac{\mu_{22}}{\mu_{11}} \rho(z) \mathbf{b} .
$$

Here,

$$
\rho(z)=\left\langle r_{A}(z) \theta, \theta\right\rangle \quad \text { where } \quad r_{A}(z)=(A-z I)^{-1} .
$$

The quasipotential $\widehat{w}(z)$ yields the boundary condition

$$
\mathbf{a} \psi=w(z) \psi
$$

or, equivalently,

$$
\left.\frac{d}{d|x|} \ln [|x| \psi(x)]\right|_{x=0}=-4 \pi d_{0}(z)
$$

where

$$
d_{0}(z)=\frac{\mu_{11}+\mu_{21} \rho(z)}{\mu_{12}+\mu_{22} \rho(z)}
$$

Notice that if $\operatorname{dim}\left(\mathfrak{H}^{\text {in }}\right)<\infty$ and A has the eigenvalues $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{N}$, then

$$
\rho(z)=\sum_{j=1}^{N} \sum_{k=1}^{l_{j}} \frac{\left|\beta_{j, k}\right|^{2}}{\varepsilon_{j}-z},
$$

where $\beta_{j, k}=\left\langle\theta, u_{j, k}\right\rangle$ with $u_{j, k}$ the eigenvectors of A for the eigenvalue ε_{j}, l_{j} - multiplicity. Hence, $d_{0}(z)$ is rational,

$$
d_{0}(z)=\frac{P_{N}(z)}{Q_{N}(z)}
$$

Furthermore, d_{0} is Herglotz. If $\mu_{12}=0$, then the degree of Q_{N} is $N-1$.

2.3 Two classes of point interactions

In the model under consideration, the scattering matrix is given by

$$
s\left(\widehat{k}, \widehat{k}^{\prime}, z\right)=\boldsymbol{\delta}\left(\widehat{k}, \widehat{k}^{\prime}\right)-\frac{i}{8 \pi^{2}} \frac{1}{d_{0}(z)+\frac{i \sqrt{z}}{4 \pi}},
$$

$z=E \pm i 0, E>0, \widehat{k}, \widehat{k}^{\prime} \in S^{2}$. It differs from the identity operator only in the s-state $(L=0)$. The s-state component reads

$$
s(z)=\frac{4 \pi d_{0}(z)-i \sqrt{z}}{4 \pi d_{0}(z)+i \sqrt{z}} .
$$

Notice that in the case of the standard zero range interaction

$$
s(z)=\frac{-4 \pi \gamma^{-1}-i \sqrt{z}}{-4 \pi \gamma^{-1}+i \sqrt{z}}
$$

Behavior of $s(E \pm i 0)$ as $E \rightarrow+\infty$ is determined by the asymptotics of $d_{0}(z)$.
Two cases

$$
\begin{array}{ll}
A) & \mu_{12} \neq 0 \\
R) & \mu_{12}=0 \tag{2.23}
\end{array}
$$

In the case (A) the function $d_{0}(E \pm i 0)$ is bounded \Longrightarrow "anomalous" behavior of the scattering matrix,

$$
s(E \pm i 0) \underset{E \rightarrow+\infty}{\rightarrow}-1 .
$$

The class (A) contains the standard zero-range interactions \widehat{V}_{h} (for $\theta=0$ and $\left.\gamma=-\mu_{12} / \mu_{11}\right)$.
In the case (R), on the contrary, $d_{0}(E \pm i 0)$ is unbounded as $E \rightarrow+\infty$,

$$
d_{0}(E \pm i 0)_{E \rightarrow+\infty}^{=} c E+o(E)
$$

with some $c>0$. Hence, we have the "regular" high-energy behav-
ior

$$
s(E \pm i 0) \underset{E \rightarrow+\infty}{\rightarrow} 1
$$

In other words, only the potential \widehat{V}_{h} is responsible for the "anomaly". It is the zero-range interaction \widehat{V}_{h} that leads to the non-semiboundedness of the three-body Hamiltonian and to the "bad" properties of the corresponding version of Faddeev equations (due to Skornyakov-Ter-Martirosyan).
If $\widehat{V}_{h}=0$ then none of these two problems arizes [Makarov 1992], [Makarov-Melezhik-M. 1995].

3 Three-particle system with point interactions

3.1 Hamiltonian H_{α}

Center-of-mass frame; reduced Jacobi variables $x_{\alpha}, y_{\alpha}, \alpha=1,2,3$. For example,

$$
\begin{gathered}
x_{1}=\left(\frac{2 \mathrm{~m}_{2} \mathrm{~m}_{3}}{\mathrm{~m}_{2}+\mathrm{m}_{3}}\right)^{1 / 2}\left(r_{2}-r_{3}\right) \\
y_{1}=\left[\frac{2 \mathrm{~m}_{1}\left(\mathrm{~m}_{2}+\mathrm{m}_{3}\right)}{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}}\right]^{1 / 2}\left(r_{1}-\frac{\mathrm{m}_{2} r_{2}+\mathrm{m}_{3} r_{3}}{\mathrm{~m}_{2}+\mathrm{m}_{3}}\right)
\end{gathered}
$$

Configuration space \mathbb{R}^{6}; six-vectors $X=\left(x_{\alpha}, y_{\alpha}\right)$. Transition from one to another set of Jacobi variables:

$$
\binom{x_{\alpha}}{y_{\alpha}}=\left(\begin{array}{cc}
c_{\alpha \beta} & s_{\alpha \beta} \\
-s_{\alpha \beta} & c_{\alpha \beta}
\end{array}\right)\binom{x_{\beta}}{y_{\beta}}
$$

where $c_{\alpha \beta}, s_{\alpha \beta}$ depend only on the particle masses and form an orthogonal (rotation) matrix.

First, the case where only the particle of a pair α interact. Generalized Hamiltonian \widehat{H}_{α} is build of the two-body Hamiltonian $\widehat{\mathbf{h}}_{\alpha}$ as

$$
\widehat{H}_{\alpha}=\widehat{\mathbf{h}}_{\alpha} \otimes I_{y_{\alpha}}+I_{\alpha} \otimes\left(-\Delta_{y_{\alpha}}\right)
$$

Here, $I_{y_{\alpha}}$ and I_{α} are the identity operators in $L_{2}\left(\mathbb{R}_{y_{\alpha}}^{3}\right)$ and $\mathfrak{H}_{\alpha}^{\text {in }}$, resp. The operator \widehat{H}_{α} acts from

$$
\mathscr{G}_{\alpha}=\mathscr{H}_{\alpha} \otimes L_{2}\left(\mathbb{R}_{y_{\alpha}}^{3}\right)=\mathscr{G}^{e x} \oplus \mathscr{G}_{\alpha}^{i n}
$$

The external and internal channel spaces:

$$
\begin{gathered}
\mathscr{G}^{e x}=L_{2}\left(\mathbb{R}^{6}\right), \quad \mathscr{G}_{\alpha}^{\text {in }}=L_{2}\left(\mathbb{R}_{y_{\alpha}}^{3}, \mathfrak{H}_{\alpha}^{i n}\right) \\
\mathscr{U} \in \mathscr{G}_{\alpha} \Leftrightarrow \mathscr{U}=\left(\Psi, u_{\alpha}\right) \quad, \Psi \in \mathscr{G}^{e x}, u_{\alpha} \in \mathscr{G}_{\alpha}^{\text {in }} .
\end{gathered}
$$

The operator \widehat{H}_{α} is defined on

$$
\begin{equation*}
\widehat{\mathbf{D}}_{\alpha}=\left(\widehat{D}_{\alpha} \oplus \mathfrak{H}_{\alpha}^{i n}\right) \otimes W_{2}^{2}\left(\mathbb{R}_{y_{\alpha}}^{3}\right)=\widehat{\mathbf{D}}_{\alpha}^{e x} \oplus \mathbf{D}_{\alpha}^{i n} \tag{3.1}
\end{equation*}
$$

where

$$
\widehat{\mathbf{D}}_{\alpha}^{e x}=\widehat{D}_{\alpha} \otimes W_{2}^{2}\left(\mathbb{R}_{y_{\alpha}}^{3}\right) \quad \text { and } \quad \mathbf{D}_{\alpha}^{i n}=\mathfrak{H}_{\alpha}^{i n} \otimes W_{2}^{2}\left(\mathbb{R}_{y_{\alpha}}^{3}\right)
$$

Thus, $\widehat{\mathbf{D}}_{\alpha}$ is formed of the vectors $\mathscr{U}=\left(\Psi, u_{\alpha}\right)$ whose external components $\Psi, \Psi \in \widehat{\mathbf{D}}_{\alpha}^{e x}$, behave like

$$
\begin{equation*}
\Psi(X) \underset{x_{\alpha} \rightarrow 0}{\sim} \frac{a_{\alpha}\left(y_{\alpha}\right)}{4 \pi|x|}+b_{\alpha}\left(y_{\alpha}\right)+o(1) \tag{3.2}
\end{equation*}
$$

with $a_{\alpha}, b_{\alpha} \in W_{2}^{2}\left(\mathbb{R}_{y_{\alpha}}^{3}\right)$, and

$$
\Psi \in \widetilde{W}_{2}^{2}\left(\mathbb{R}^{6} \backslash \mathscr{M}_{\alpha}\right), \quad \mathscr{M}_{\alpha}=\left\{X \in \mathbb{R}^{6} \mid x_{\alpha}=0\right\}
$$

Internal components: $u_{\alpha} \in \mathbf{D}_{\alpha}^{i n}=W_{2}^{2}\left(\mathbb{R}_{y_{\alpha}}^{3}, \mathfrak{H}_{\alpha}^{i n}\right)$. One may identify $\mathbf{D}_{\alpha}^{i n}$ with $W_{2}^{2}\left(\mathscr{M}_{\alpha}, \mathfrak{H}_{\alpha}^{\text {in }}\right)$.
The Hamiltonian \widehat{H}_{α} (on $\widehat{\mathbf{D}}_{\alpha}$) may be viewed as a 2×2 block matrix,

$$
\widehat{H}_{\alpha}=\left(\begin{array}{cc}
-\widehat{\Delta}_{x_{\alpha}}+\widehat{V}_{h}^{(\alpha)}-\Delta_{y_{\alpha}} & B_{\alpha} \\
B_{\alpha}^{+} & A_{\alpha}-\Delta_{y_{\alpha}}
\end{array}\right)=\left(\begin{array}{cc}
-\widehat{\Delta}_{X}+\widehat{V}_{h}^{(\alpha)} & B_{\alpha} \\
B_{\alpha}^{+} & A_{\alpha}-\Delta_{y_{\alpha}}
\end{array}\right) .
$$

The Laplacian $-\widehat{\Delta}_{X}=-\widehat{\Delta}_{x_{\alpha}}-\Delta_{y_{\alpha}}$ should be understood in the sense of distributions over $C_{0}^{\infty}\left(\mathbb{R}^{6}\right)$.

Then the generalized Hamiltonian \widehat{H}_{α} is equivalent to the selfadjoint operator

$$
\begin{equation*}
H_{\alpha}\binom{\Psi}{u_{\alpha}}=\binom{\left(-\Delta_{X}+v_{\alpha}\right) \Psi}{\left(A_{\alpha}-\Delta_{y_{\alpha}}\right) u_{\alpha}+\theta_{\alpha}\left(\mu_{21}^{(\alpha)} \mathbf{a}_{\alpha}+\mu_{22}^{(\alpha)} \mathbf{b}_{\alpha}\right) \Psi} \tag{3.3}
\end{equation*}
$$

whose domain $\mathscr{D}\left(H_{\alpha}\right)$ consists of those elements from $\widehat{\mathbf{D}}_{\alpha}$ that satisfy the boundary condition

$$
\begin{equation*}
\left(\left[\mu_{11}^{(\alpha)} \mathbf{a}_{\alpha}+\mu_{12}^{(\alpha)} \mathbf{b}_{\alpha}\right] \Psi\right)\left(y_{\alpha}\right)=\left\langle u_{\alpha}\left(y_{\alpha}\right), \theta_{\alpha}\right\rangle . \tag{3.4}
\end{equation*}
$$

3.2 Total Hamiltonian H

If every pair subsystem has an internal channel, the generalized three-body Hamiltonian is introduced as the following operator matrix

$$
\widehat{H}=\left(\begin{array}{cccc}
-\widehat{\Delta}_{X}+\sum_{\alpha} \widehat{V}_{h}^{(\alpha)} & B_{1} & B_{2} & B_{3} \tag{3.5}\\
B_{1}^{+} & A_{1}-\Delta_{y_{1}} & 0 & 0 \\
B_{2}^{+} & 0 & A_{2}-\Delta_{y_{2}} & 0 \\
B_{3}^{+} & 0 & 0 & A_{3}-\Delta_{y_{3}}
\end{array}\right)
$$

considered in the Hilbert space $\mathscr{G}=\mathscr{G}^{e x} \oplus \bigoplus_{\alpha=1}^{3} \mathscr{G}_{\alpha}^{\text {in }}$. The operator \widehat{H} acts in \mathscr{G} on the set

$$
\widehat{\mathbf{D}}=\widehat{\mathbf{D}}^{e x} \oplus \bigoplus_{\alpha=1}^{3} \mathbf{D}_{\alpha}^{i n}
$$

where $\mathbf{D}_{\alpha}^{i n}=\mathfrak{H}_{\alpha}^{\text {in }} \otimes \widetilde{W}_{2}^{2}\left(\mathbb{R}_{y_{\alpha}}^{3} \backslash\{0\}\right)$. The external component $\widehat{\mathbf{D}}^{e x}$ consists of the functions

$$
\Psi \in \widetilde{W}_{2}^{2}\left(\mathbb{R}^{6} \backslash \bigcup_{\beta=1}^{3} \mathscr{M}_{\beta}\right)
$$

possessing the asymptics (3.2) for any $\alpha=1,2,3$ with the coefficients

$$
a_{\alpha}, b_{\alpha} \in \widetilde{W}_{2}^{2}\left(\mathbb{R}_{y_{\alpha}}^{3} \backslash\{0\}\right) .
$$

The structure of the matrix (3.5) demonstrates by itself the truly pairwise character of the point interactions in \widehat{H} (in contrast to [Pavlov 1988]).

A state of the system is a four-component vector $\mathscr{U}=\left(\Psi, u_{1}, u_{2}, u_{3}\right)$, $\Psi \in \mathscr{G}^{e x}, u_{\alpha} \in \mathscr{G}_{\alpha}^{i n}$.
Further, for $\mathscr{U} \in \widehat{\mathbf{D}}$, impose the regularity requirement for its image $\widehat{H} \mathscr{U} \ldots$ And obtain the corresponding Hamiltonian H that is
understood in the usual sense:

$$
\begin{equation*}
H_{\alpha} \mathscr{U}=\binom{-\Delta_{X} \Psi}{\bigoplus_{\alpha=1}^{3}\left[\left(A_{\alpha}-\Delta_{y_{\alpha}}\right) u_{\alpha}+\theta_{\alpha}\left(\mu_{21}^{(\alpha)} \mathbf{a}_{\alpha}+\mu_{22}^{(\alpha)} \mathbf{b}_{\alpha}\right)\right] \Psi} \tag{3.6}
\end{equation*}
$$

The domain $\mathscr{D}(H)$ consists of those elements from $\widehat{\mathbf{D}}$ that satisfy the boundary conditions

$$
\begin{equation*}
\left(\left[\mu_{11}^{(\alpha)} \mathbf{a}_{\alpha}+\mu_{12}^{(\alpha)} \mathbf{b}_{\alpha}\right] \Psi\right)\left(y_{\alpha}\right)=\left\langle u_{\alpha}\left(y_{\alpha}\right), \theta_{\alpha}\right\rangle, \quad \forall \alpha=1,2,3 \tag{3.7}
\end{equation*}
$$

By inspection, H is symmetric on $\mathscr{D}(H)$. Furthermore, if $\mu_{12}^{(\alpha)}=0$, $\forall \alpha=1,2,3$ [class (R)], H is self-adjoint and semibounded from below [Makarov 1992]. This follows, e.g., from the study of the corresponding Faddeev equations (see [Makarov-Melezhik-M. 1995]). If $\mu_{12}^{(\alpha)} \neq 0$ at least for two of α 's [class (A)], one encounters the same problems as in the Skornyakov-Ter-Martirosyan case.

The study of the spectral properties of H is reduced to the study of the resolvent $\mathbf{R}(z)=(H-z)^{-1}$ which is a 4×4 matrix with the components $R_{\mathrm{ab}}(\mathrm{a}, \mathrm{b}=0,1,2,3)(0-$ external channel; 1,2,3-internal channels). All the study is reduced to that of $R(z):=R_{00}(z)$.

3.3 Faddeev integral equations

$R(z)$ satisfies the resolvent identities (Lippmann-Schwinger equations)

$$
\begin{equation*}
R_{\alpha}(z)=R_{\alpha}(z)-R_{\alpha}(z) \sum_{\beta \neq \alpha} \widehat{W}_{\beta}(z) R(z) \quad(\alpha=1,2,3), \tag{3.8}
\end{equation*}
$$

where $R_{\alpha}(z)$ is the external component the resolvent $\left(H_{\alpha}-z\right)^{-1}$. This equations are non-Fredholm.
Introduce $\widehat{M}_{\alpha}(z)=\widehat{W}_{\alpha}(z) R(z), \alpha=1,2,3$. Clearly,

$$
R(z)=R_{0}(z)-R_{0}(z) \sum_{\alpha} \widehat{M}_{\alpha}(z),
$$

and, from (3.8),

$$
\begin{equation*}
\widehat{M}_{\alpha}(z)=\widehat{W}_{\alpha}(z) R_{\alpha}(z)-\widehat{W}_{\alpha}(z) R_{\alpha}(z) \sum_{\beta \neq \alpha} \widehat{M}_{\beta}(z) \quad(\alpha=1,2,3), \tag{3.9}
\end{equation*}
$$

the Faddeev integral equations. Extract δ-factors $\delta\left(x_{\alpha}\right)$ in \widehat{M}_{α} and pass to the regular kernels (functions) $M_{\alpha}\left(y_{\alpha}, X^{\prime}, z\right), \widehat{M}_{\alpha}(z)=$
$\delta\left(x_{\alpha}\right) M_{\alpha}(z)$. This results in

$$
\begin{equation*}
M_{\alpha}(z)=W_{\alpha}(z) R_{\alpha}(z)-W_{\alpha}(z) R_{\alpha}(z) \sum_{\beta \neq \alpha} \delta_{\beta} M_{\beta}(z) \tag{3.10}
\end{equation*}
$$

where δ_{β} is multiplication by the δ-function $\delta\left(x_{\beta}\right)$.
If one deals with the (R) case, all further study follows the usual Faddeev procedure: good, improving iterations with a nicer and nicer asymptotic behavior of the iterated kernels. The fourth iteration gives a compact operator (+ known estimates concerning the behavior with respect to z).
In case (A) one can not prove that the kernel $\left(W_{\alpha}(z) R_{\alpha}\right)\left(y_{\alpha}, X^{\prime}, z\right)$ is integrable over a domain where $X^{\prime} \in \mathscr{M}_{\beta}, \beta \neq \alpha$ and $\left|x_{\alpha}^{\prime}\right|$ and $\left|y_{\alpha}-y_{\alpha}^{\prime}\right|$ are both small (this is just the neighborhood of the triple collision point). Details in [Makarov-Melezhik-M. 1995]. [MakarovMelezhik 1996] used the momentum space representation.
Recall that if $\theta=0$ (i.e. the standard zero-range interactions), equations (3.10) are nothing but the Skornyakov-Ter-Martirosyan ones.

