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Many body Hamiltonians

System of n quantum particles in R3, interacting via a zero-range, two-body
interaction. Formally

H = −
n∑

i=1

1

2mi
∆xi +

n∑
i,j=1
i<j

µij δ(xi − xj),

where xi ∈ R3, i = 1, . . . , n, mi is the mass, ∆xi is the Laplacian relative to xi ,
and µij ∈ R. We set ~ = 1.

Motivation: Nuclear Physics, ultra-cold quantum gases.

Mathematical problem: rigorous construction and stability
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Many body Hamiltonians

Elements in the domain of H are regular away from {xi − xj = 0} but we must
specify a boundary condition at the coincidence planes (Bethe-Peierls contact
condition).

For n = 2, in the relative coordinate x

H = − 1

2m
∆x + δ(x)

The domain is ψ∈L2(R3) ∩ H2(R3\{0}) satisfying the b.c. at the origin

ψ(x) =
q

|x| + αq + o(1), for |x| → 0, q ∈ C, α ∈ R

For n > 2, by analogy, one considers the Skornyakov-Ter-Martirosyan (STM)
Hamiltonian Hα, defined on L2(R3n) ∩ H2(R3n \ ∪i<j{xi = xj}) and s.t.

ψ(x1, . . . , xn)=
qij

|xi − xj |
+ αqij + o(1), for |xi−xj | → 0, α ∈ R

qij functions on {xi = xj} and α parametrizes strength of the interaction
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Three body Hamiltonians

Already for n = 3 problems appears: in many cases the STM Hamiltonian is
not s.a. and any s.a. extension is unbounded from below due to the presence
of infinitely many eigenvalues En accumulating at −∞, i.e. the Thomas
effect.

three identical bosons [Faddeev, Minlos 1961]

three particles with equal masses [Minlos 1987]

three particles with different masses [Mel’nikov, Minlos 1991]

One way to prevent the collapse of the system is to introduce fermionic
symmetry (kills part of the interaction)
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N fermions and a test particle

Consider N fermions of mass 1 and a test particle of mass m

H = − 1

2m
∆x0 −

n∑
i=1

1

2
∆xi + α

n∑
i=1

δ(x0 − xi )

For some values of the physical parameters m and N it is possible to define
this Hamiltonian ad a bounded from below s.a. operator

Stability for N = 2

There is a threshold m∗ = 0.0735 = (13.607)−1 such that the system is stable
for m > m∗ and unstable otherwise.
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Quadratic forms

We shall use quadratic forms as the mail tool in constructing Hα.

Theorem (Representation Theorem)

The set of self adjoint semi bounded Hamiltonians is in 1 to 1 correspondence
with semi bounded closed quadratic forms.

Advantages

simpler than searching for all s.a. extensions of a symmetric operators

construction is quicker

One has to guess a quadratic form and then has to prove that it is closed and
bounded from below

We shall consider the following quadratic form Fα defined on L2(R6), (we can
subtract the center of mass motion)
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Quadratic form Fα

D(Fα) =
{
ψ ∈ L2

f (R6) s.t.ψ = φλ + Gλξ, φλ ∈ H1
f (R6), ξ ∈ H1/2(R3)

}
Gλξ(k1, k2) =

ξ(k1)− ξ(k2)

k2 + k ′2 + 2
m+1

k · k′ + λ

Fα[ψ] + λ‖ψ‖2L2(R6) = F0[φλ] + λ‖φλ‖2L2(R6) + Φλ,α[ξ]

Φλ,α[ξ] = Φλd [ξ] + Φλo [ξ] + α‖ξ‖2

Φλd [ξ] = 2π2

∫ √
m(m + 2)

(m + 1)2
k2 + λ |ξ(k)|2 dk

Φλo [ξ] =

∫
ξ(k)ξ(k′)

k2 + k ′2 + 2
m+1

k · k′ + λ
dk dk′
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Remarks on Fα

Some remarks are in order

λ > 0 is a free parameter which regularizes the behavior at infinity of 1
|x|

decomposition is meaningful

heuristic argument to justify Fα: renormalization of the energy through a
coupling constant renormalization (Γ-limit of regularized functionals)

if ψ ∈ D(Hα) then 〈ψ|Hα|ψ〉 = Fα[ψ]

all the interaction is concentrated in Φλ,α

Theorem

If there exists λ such that Φλ,α[ξ] ≥ c‖ξ‖2
H1/2(R3)

then Fα is closed and

bounded from below.
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Partial wave decomposition on Φλ

We exploit rotational invariance and reduce to the subspace of angular
momentum l

Φλd [f ] = 2π2

∫ ∞
0

√
m(m + 2)

(m + 1)2
k2 + λ|f (k)|2 k2 dk

Φλo,l [f ] = 2π

∫ ∞
0

dk dk ′
∫ 1

−1

dy Pl(y)
k2 k ′2

k2 + k ′2 + 2y
m+1

k k ′ + λ
f (k)f (k ′)

Proposition

The off diagonal term has definite sign depending on the parity of l and it is
monotone w.r.t. to λ that is

0 ≤ Φλo,l [f ] ≤ Φo,l [f ] for even l

Φo,l [f ] ≤ Φλo,l [f ] ≤ 0 for odd l
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Diagonalization

The previous proposition suggests that we carefully analyze the case λ = 0.
We can get optimal results since Φ[f ] can be diagonalized.

Φd [f ] = 2π2

√
m(m + 2)

(m + 1)2

∫ ∞
0

|f (k)|2 k3 dk

Φo,l [f ] = 2π

∫ ∞
0

dk dk ′
∫ 1

−1

dy Pl(y)
k2 k ′2

k2 + k ′2 + 2y
m+1

k k ′
f (k)f (k ′)

Define

f ](z) =
1√
2π

∫
dk e−ikz e2k f (ek)

then

Φl [f ] =

∫ ∞
−∞

dz Sl(z) |f ](z)|2 =

∫ ∞
−∞

dz (Sd + So,l(z)) |f ](z)|2
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Diagonalization

We have

Φl [f ] =

∫ ∞
−∞

dz Sl(z) |f ](z)|2 =

∫ ∞
−∞

dz (Sd + So,l(z)) |f ](z)|2

Sd = 2π2

√
m(m + 2)

(m + 1)2

So,l(z) = π

∫ 1

−1

dy Pl(y)

∫
dk e−ikz 1

cosh(k) + y
m+1

We have to find the infimum of Sl(z) over l and z
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Diagonalization

Plot of S1(z), S3(z), S5(z) for m = 0.1.
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Diagonalization

From the picture it is clear that the infimum is achieved by S1(0).

It is sufficient to prove

Proposition

For fixed z , Sl(z) is an increasing function function of l . Moreover S1(z) has
an absolute minimum for z = 0.

It is sufficient to search for which m

F ∗1 (m) = S1(0) = 2π2

√
m(m + 2)

(m + 1)2
+ π

∫ 1

−1

dy y

∫
dk

1

cosh(k) + y
m+1
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Diagonalization

The plot of F ∗1 (m) is simple

The condition F ∗1 (m) > 0 is equivalent to m > m∗
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Conclusions from partial wave analysis

Let us introduce
Λ = |S1(0)|/Sd

The condition m > m∗ implies

0 < Λ < 1

the negative part of Φλo is small in the sense of quadratic forms compared
to Φλd

Φλ is coercive and Φλ ≥ (1− Λ)Φλd

Stability

For m > m∗ the quadratic form Fα defines a s.a. and bounded from below
operator that we identify with Hα
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operator that we identify with Hα
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Instability

Take ψn such that φλn = 0 and ξn has non trivial components only for l = 1
given by

fn(k) =
1

n
f

(
k

n

)
With this scaling ‖Gλξn‖ < c

Then
Fα[ψn] = n2 Φ[f ] + o(n2)

If m < m∗ then S1(0) < 0 and we can find f such that Φ[f ] < 0.

Theorem

The quadratic form Fα is closed and bounded from below iff m > m∗
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Further extensions

Recently Minlos, analyzing the case l = 1, pointed that there is a richer
structure and there is not a unique Hamiltonian for m > m∗.

Tl = Td + To,l D(Tl) = D(Td)

Td [f ] = 2π2

√
m(m + 2)

(m + 1)2
kf (k)

To,l [f ] = 2π

∫ ∞
0

dk ′
∫ 1

−1

dy Pl(y)
k ′2

k2 + k ′2 + 2y
m+1

k k ′
f (k ′)

Minlos

There is a second threshold m∗∗ such that

for m∗ < m < m∗∗, T1 is not essentially s.a. and there is a one
parameter family of s.a. extensions

for m > m∗∗,T1 is essentially s.a.
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General picture

A big part of this picture can be easily carried to any subspace with odd l .

Theorem

There are two sequences of thresholds m∗l , m∗∗l with m∗l < m∗∗l ,
m∗1 > m∗3 > m∗5 > . . . and m∗∗1 > m∗∗3 > m∗∗5 > . . . such that

for m < m∗l , the form Φλl is unbounded from below

for m∗l < m < m∗∗l , Tl is not essentially s.a.

for m > m∗l , Tl is essentially s.a. and positive
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m < m∗
l

Define

F ∗l (m) ≡ Sl(0) = 2π2

√
m(m + 2)

(m + 1)2
+ π

∫ 1

−1

dy Pl(y)

∫
dk

1

cosh(k) + y
m+1

Then m∗l is defined by
F ∗l (m) = 0
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m∗
l < m < m∗∗

l

In order to prove that Tl is not s.a. it is sufficient to prove that
D(Tl) ( D(T ∗l ).

Consider

fγ(k) = χ{k>1}
1

k2−γ 0 < γ <
1

2

If γ satisfies

2π2

√
m(m + 2)

(m + 1)2
+ π

∫ 1

−1

dy Pl(y)

∫
dx

eγx

cosh(x) + y
m+1

= 0

then
fγ /∈ D(Tl) fγ ∈ D(T ∗l )

Notice that γ(m) is a monotone increasing function of m and (m∗l ,m
∗∗
l ) is

mapped onto (0, 1/2).
The picture is incomplete: at the moment we do not know the quadratic form
of the new family of Hamiltonians.
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m > m∗∗
l

If we prove that To,l is Kato-small w.r.t. Td then Tλ
l is positive and

essentially s.a.

‖To,l f ‖ ≤ Γ‖Td f ‖

Γ =

∣∣∣π ∫ 1

−1
dy Pl(y)

∫
dx ex/2

cosh(x)+ y
m+1

∣∣∣
2π2
√

m(m+2)

(m+1)2

The condtion Γ < 1 translates into

F ∗∗l (m) = 2π2

√
m(m + 2)

(m + 1)2
+ π

∫ 1

−1

dy Pl(y)

∫
dx

ex/2

cosh(x) + y
m+1

> 0

which is equivalent to m > m∗∗l
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Smallness properties

We can summarize the situation in the following way:

Smallness Properties

If the negative part of To is small compared to Td in quadratic form
sense then the system is stable

If the negative part of To is small compared to Td in Kato sense then the
system is essentially s.a.

The same statement holds true in each subspace of fixed angular momentum
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Numerical values of thresholds

Numerical values of the first thresholds

m1
∗ = 0.0735 = (13.607)−1 m1

∗∗ = 0.0812 = (12.31)−1

m3
∗ = 0.01316 = (75.99)−1 m3

∗∗ = 0.013415 = (74.54)−1

m5
∗ = 0.00532 = (187.97)−1 m5

∗∗ = 0.00536 = (186.57)−1
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Stability for N fermions

The previous results can be used also in the case of N fermions.

New ingredient: the charge ξ(k1, . . . , kN−1) is antisymmetric under exchange

Φλd [ξ] = 2π2

∫ √√√√m(m + 2)

(m + 1)2

N−1∑
i=1

k2
i +

2m

(m + 1)2

∑
i<j

ki · kj + λ |ξ(k1, . . . , kN−1)|2 dk1 . . . dkN−1

Φλo [ξ] = (N − 1)

∫
ξ(k0, k2, . . . , kN)ξ(k1, k2, . . . , kN)

m(m+2)

(m+1)2

∑N−1
i=0 k2

i + 2m
(m+1)2

∑
i<j ki · kj + λ

dk0 . . . dkN−1

With some change of variables we can reduce to the previous case
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Stability for N fermions

Define

σ = k0 +
1

m + 2

N−1∑
i=2

ki τ = k1 +
1

m + 2

N−1∑
i=2

ki

ξ̃(σ,K) = ξ

(
σ − 1

m + 2

N−1∑
i=2

ki ,K

)
K = k2, . . . , kN−1

D(K) =
m

(m + 1)(m + 2)

(
(m + 3)

N−1∑
i=2

k2
i + 2

∑
i<j

ki · kj

)

Φλd [ξ] = 2π2

∫ √
m(m + 2)

(m + 1)2
σ2 + D(K) + λ |ξ̃(σ,K)|2 dσdK

Φλo [ξ] = (N − 1)

∫
ξ̃(σ,K)ξ̃(τ ,K)

σ2 + τ 2 + 2
m+1

τ · σ + D(K) + λ
dτdσdK
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Stability for N fermions

Define m∗(N) as the solution of

2π2

√
m(m + 2)

(m + 1)2
+ (N − 1)π

∫ 1

−1

dy y

∫
dk

1

cosh(k) + y
m+1

= 0

Theorem

The quadratic form Φλ,α is closed and bounded from below for m > m∗(N)
and it is unbounded from below for m < m∗(2)
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Final remarks and perspectives

The partial wave analysis can be applied also to other variants of the
three body problems: for instance three bosons are stable outside l = 0

We want to understand the new family of Hamiltonians for
m∗l < m < m∗∗l

Construction of the 2+2 fermion model

Improvement of the analysis of N+1 model
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Representation Theorems

Definition (Closed Form)

A quadratic form Q on an Hilbert space is said to be closed if for any
{un} ⊂ D(Q) such that un → u and Q[un − um]→ 0 then u ∈ D(Q) and
Q[un − u]→ 0

Theorem (First representation Theorem)

Let Q be closed and bdd from below then there is a unique s.a. and bdd from
below operator T such that D(T ) ⊂ D(Q) and

Q[u, v ] = (u,Tv) u ∈ D(Q), v ∈ D(T )

The domain D(T ) are the vectors v such that Q[·, v ] is continuous.

Theorem (Second representation Theorem)

Let Q be a positive and closed quadratic form and let T be the associated s.a.
operator, then D(Q) = D(

√
T ) and

Q[u, v ] = (
√
Tu,
√
Tv) u, v ∈ D(

√
T )
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o,l

Remember

Pl(y) =
1

2l l!

d l

dy l
(y 2 − 1)

Φλo,l [f ] =

π

∫ ∞
0

dk dk ′
∫ 1

−1

dy Pl(y)
k2 k ′2

k2 + k ′2 + 2y
m+1

k k ′ + λ
f (k)f (k ′)
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Monotonicity of Sl(z)

For odd l

Sl(z) =2π2

√
m(m + 2)

(m + 1)2

+ π

∫ 1

−1

dy Pl(y)

∫
dx e−ikz 1

cosh(x) + 2y
m+1

This representation allows to derive all the monotonicity properties of F ∗l and
F ∗∗l .
Notice that ∫

e−izx

(cosh(x))2
> 0 =⇒

∫
e−izx

(cosh(x))l+1+2k
> 0
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Kato smallness

We can estimate Γ2 by the the norm of O : L2(R+, dk ′)→ L2(R+, dk ′′)

O(k ′, k ′′) =

(
2π2

√
m(m + 2)

(m + 1)2

)−1

4π2

∫ 1

−1

dy ′ Pl(y
′)

∫ 1

−1

dy ′′ Pl(y
′′)∫ ∞

0

dk
k2

(k2 + k ′2 + 2y
m+1

k k ′)(k2 + k ′′2 + 2y
m+1

k k ′′)
(1)

Generalized Schur’s test with 1/
√
k as test function. Notice the pointwise

positivity of the kernel O.



General
setting

Two
Fermions
and a test
particle

Partial wave
analysis

Further
extensions

N fermions
and a test
particle

Proofs

Kato smallness

We can estimate Γ2 by the the norm of O : L2(R+, dk ′)→ L2(R+, dk ′′)

O(k ′, k ′′) =

(
2π2

√
m(m + 2)

(m + 1)2

)−1

4π2

∫ 1

−1

dy ′ Pl(y
′)

∫ 1

−1

dy ′′ Pl(y
′′)∫ ∞

0

dk
k2

(k2 + k ′2 + 2y
m+1

k k ′)(k2 + k ′′2 + 2y
m+1

k k ′′)
(1)

Generalized Schur’s test with 1/
√
k as test function. Notice the pointwise

positivity of the kernel O.


	General setting
	Two Fermions and a test particle
	Partial wave analysis
	Further extensions
	N fermions and a test particle
	Proofs

