Two fermions and a test particle: a

 detailed analysisDomenico Finco

Università Telematica Internazionale Uninettuno

Mathematical challenges of zero-range Physics: rigorous results and open problems

26-28 February 2014, Center for Advanced Studies, LMU Munich

Joint work with M.Correggi, G. Dell'Antonio, A.Michelangeli, A.Teta

- Quadratic forms for the Fermionic Unitary Gas, D.F and A.Teta, Reports on Mathematical Physics, 69 (2012)
- Stability for a system of N fermions a different particle with zero-range interactions, M.Correggi, G. Dell'Antonio, D.Finco, A.MIchelangeli, A.Teta, Reviews in Mathematical Physics, 24, (2012).

Many body Hamiltonians

System of n quantum particles in \mathbb{R}^{3}, interacting via a zero-range, two-body interaction. Formally

$$
\mathcal{H}=-\sum_{i=1}^{n} \frac{1}{2 m_{i}} \Delta_{\mathbf{x}_{i}}+\sum_{\substack{i, j=1 \\ i<j}}^{n} \mu_{i j} \delta\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)
$$

where $\mathbf{x}_{i} \in \mathbb{R}^{3}, i=1, \ldots, n, m_{i}$ is the mass, $\Delta_{\mathbf{x}_{i}}$ is the Laplacian relative to \mathbf{x}_{i}, and $\mu_{i j} \in \mathbb{R}$. We set $\hbar=1$.

Motivation: Nuclear Physics, ultra-cold quantum gases.

Many body Hamiltonians

System of n quantum particles in \mathbb{R}^{3}, interacting via a zero-range, two-body interaction. Formally

$$
\mathcal{H}=-\sum_{i=1}^{n} \frac{1}{2 m_{i}} \Delta_{\mathrm{x}_{i}}+\sum_{\substack{i, j=1 \\ i<j}}^{n} \mu_{i j} \delta\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)
$$

where $\mathbf{x}_{i} \in \mathbb{R}^{3}, i=1, \ldots, n, m_{i}$ is the mass, $\Delta_{\mathbf{x}_{i}}$ is the Laplacian relative to \mathbf{x}_{i}, and $\mu_{i j} \in \mathbb{R}$. We set $\hbar=1$.

Motivation: Nuclear Physics, ultra-cold quantum gases.

Mathematical problem: rigorous construction and stability

Many body Hamiltonians

Elements in the domain of \mathcal{H} are regular away from $\left\{\mathbf{x}_{i}-\mathbf{x}_{j}=0\right\}$ but we must specify a boundary condition at the coincidence planes (Bethe-Peierls contact condition).

Many body Hamiltonians

Elements in the domain of \mathcal{H} are regular away from $\left\{\mathbf{x}_{i}-\mathbf{x}_{j}=0\right\}$ but we must specify a boundary condition at the coincidence planes (Bethe-Peierls contact condition).

For $\mathbf{n}=\mathbf{2}$, in the relative coordinate \mathbf{x}

$$
\mathcal{H}=-\frac{1}{2 m} \Delta_{\mathbf{x}}+\delta(\mathbf{x})
$$

The domain is $\psi \in L^{2}\left(\mathbb{R}^{3}\right) \cap H^{2}\left(\mathbb{R}^{3} \backslash\{0\}\right)$ satisfying the b.c. at the origin

$$
\psi(\mathbf{x})=\frac{q}{|\mathbf{x}|}+\alpha q+o(1), \quad \text { for } \quad|\mathbf{x}| \rightarrow 0, \quad q \in \mathbb{C}, \alpha \in \mathbb{R}
$$

Many body Hamiltonians

Elements in the domain of \mathcal{H} are regular away from $\left\{\mathbf{x}_{i}-\mathbf{x}_{j}=0\right\}$ but we must specify a boundary condition at the coincidence planes (Bethe-Peierls contact condition).

For $\mathbf{n}=\mathbf{2}$, in the relative coordinate \mathbf{x}

$$
\mathcal{H}=-\frac{1}{2 m} \Delta_{\mathbf{x}}+\delta(\mathbf{x})
$$

The domain is $\psi \in L^{2}\left(\mathbb{R}^{3}\right) \cap H^{2}\left(\mathbb{R}^{3} \backslash\{0\}\right)$ satisfying the b.c. at the origin

$$
\psi(\mathbf{x})=\frac{q}{|\mathbf{x}|}+\alpha q+o(1), \quad \text { for } \quad|\mathbf{x}| \rightarrow 0, \quad q \in \mathbb{C}, \alpha \in \mathbb{R}
$$

For $\mathbf{n}>2$, by analogy, one considers the Skornyakov-Ter-Martirosyan (STM) Hamiltonian \mathcal{H}_{α}, defined on $L^{2}\left(\mathbb{R}^{3 n}\right) \cap H^{2}\left(\mathbb{R}^{3 n} \backslash \cup_{i<j}\left\{\mathbf{x}_{i}=\mathbf{x}_{j}\right\}\right)$ and s.t.

$$
\psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{q_{i j}}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|}+\alpha q_{i j}+o(1), \quad \text { for } \quad\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right| \rightarrow 0, \quad \alpha \in \mathbb{R}
$$

$q_{i j}$ functions on $\left\{\mathbf{x}_{i}=\mathbf{x}_{j}\right\}$ and α parametrizes strength of the interaction

Three body Hamiltonians

Already for $\mathbf{n}=\mathbf{3}$ problems appears: in many cases the STM Hamiltonian is not s.a. and any s.a. extension is unbounded from below due to the presence of infinitely many eigenvalues E_{n} accumulating at $-\infty$, i.e. the Thomas effect.

Already for $\mathbf{n}=\mathbf{3}$ problems appears: in many cases the STM Hamiltonian is not s.a. and any s.a. extension is unbounded from below due to the presence of infinitely many eigenvalues E_{n} accumulating at $-\infty$, i.e. the Thomas effect.

- three identical bosons [Faddeev, Minlos 1961]
- three particles with equal masses [Minlos 1987]
- three particles with different masses [Mel'nikov, Minlos 1991]

Already for $\mathbf{n}=\mathbf{3}$ problems appears: in many cases the STM Hamiltonian is not s.a. and any s.a. extension is unbounded from below due to the presence of infinitely many eigenvalues E_{n} accumulating at $-\infty$, i.e. the Thomas effect.

- three identical bosons [Faddeev, Minlos 1961]
- three particles with equal masses [Minlos 1987]
- three particles with different masses [Mel'nikov, Minlos 1991]

One way to prevent the collapse of the system is to introduce fermionic symmetry (kills part of the interaction)

N fermions and a test particle

For some values of the physical parameters m and N it is possible to define this Hamiltonian ad a bounded from below s.a. operator

N fermions and a test particle

For some values of the physical parameters m and N it is possible to define this Hamiltonian ad a bounded from below s.a. operator

N fermions and a test particle

Consider 2 fermions of mass 1 and a test particle of mass m

$$
\mathcal{H}=-\frac{1}{2 m} \Delta_{\mathrm{x}_{0}}-\frac{1}{2} \Delta_{\mathrm{x}_{1}}-\frac{1}{2} \Delta_{\mathrm{x}_{2}}+\alpha \delta\left(\mathbf{x}_{0}-\mathbf{x}_{1}\right)+\alpha \delta\left(\mathbf{x}_{0}-\mathbf{x}_{2}\right)
$$

For some values of the physical parameters m and N it is possible to define this Hamiltonian ad a bounded from below s.a. operator

Stability for $N=2$

There is a threshold $m^{*}=0.0735=(13.607)^{-1}$ such that the system is stable for $m>m^{*}$ and unstable otherwise.

Quadratic forms

We shall use quadratic forms as the mail tool in constructing \mathcal{H}_{α}.

Quadratic forms

We shall use quadratic forms as the mail tool in constructing \mathcal{H}_{α}.

Theorem (Representation Theorem)
The set of self adjoint semi bounded Hamiltonians is in 1 to 1 correspondence with semi bounded closed quadratic forms.

Quadratic forms

We shall use quadratic forms as the mail tool in constructing \mathcal{H}_{α}.

Theorem (Representation Theorem)

The set of self adjoint semi bounded Hamiltonians is in 1 to 1 correspondence with semi bounded closed quadratic forms.

Advantages

- simpler than searching for all s.a. extensions of a symmetric operators
- construction is quicker

Quadratic forms

We shall use quadratic forms as the mail tool in constructing \mathcal{H}_{α}.

Theorem (Representation Theorem)
The set of self adjoint semi bounded Hamiltonians is in 1 to 1 correspondence with semi bounded closed quadratic forms.

Advantages

- simpler than searching for all s.a. extensions of a symmetric operators
- construction is quicker

One has to guess a quadratic form and then has to prove that it is closed and bounded from below

We shall consider the following quadratic form \mathcal{F}_{α} defined on $L^{2}\left(\mathbb{R}^{6}\right)$, (we can subtract the center of mass motion)

Quadratic form \mathcal{F}_{α}

$$
\begin{gathered}
\mathscr{D}\left(\mathcal{F}_{\alpha}\right)=\left\{\psi \in L_{f}^{2}\left(\mathbb{R}^{6}\right) \text { s.t. } \psi=\phi^{\lambda}+\mathcal{G}^{\lambda} \xi, \phi^{\lambda} \in H_{f}^{1}\left(\mathbb{R}^{6}\right), \xi \in H^{1 / 2}\left(\mathbb{R}^{3}\right)\right\} \\
\mathcal{G}^{\lambda} \xi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\frac{\xi\left(\mathbf{k}_{1}\right)-\xi\left(\mathbf{k}_{2}\right)}{k^{2}+k^{\prime 2}+\frac{2}{m+1} \mathbf{k} \cdot \mathbf{k}^{\prime}+\lambda} \\
\mathcal{F}_{\alpha}[\psi]+\lambda\|\psi\|_{L^{2}\left(\mathbb{R}^{6}\right)}^{2}=\mathcal{F}_{0}\left[\phi^{\lambda}\right]+\lambda\left\|\phi^{\lambda}\right\|_{L^{2}\left(\mathbb{R}^{6}\right)}^{2}+\Phi^{\lambda, \alpha}[\xi]
\end{gathered}
$$

Quadratic form \mathcal{F}_{α}

$$
\begin{aligned}
& \text { General } \\
& \begin{array}{l}
\text { Two } \\
\text { ferting } \\
\text { Fermions } \\
\text { and a test } \\
\text { particle }
\end{array} \\
& \begin{array}{l}
\text { Partial wave } \\
\text { analysis }
\end{array} \\
& \begin{array}{l}
\text { Further } \\
\text { extensions }
\end{array} \\
& \begin{array}{l}
\text { N fermions } \\
\text { and a test }
\end{array} \\
& \text { particle }
\end{aligned}
$$

Quadratic form \mathcal{F}_{α}

$$
\begin{gathered}
\mathscr{D}\left(\mathcal{F}_{\alpha}\right)=\left\{\psi \in L_{f}^{2}\left(\mathbb{R}^{6}\right) \text { s.t. } \psi=\phi^{\lambda}+\mathcal{G}^{\lambda} \xi, \phi^{\lambda} \in H_{f}^{1}\left(\mathbb{R}^{6}\right), \xi \in H^{1 / 2}\left(\mathbb{R}^{3}\right)\right\} \\
\mathcal{G}^{\lambda} \xi\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\frac{\xi\left(\mathbf{k}_{1}\right)-\xi\left(\mathbf{k}_{2}\right)}{k^{2}+k^{\prime 2}+\frac{2}{m+1} \mathbf{k} \cdot \mathbf{k}^{\prime}+\lambda} \\
\mathcal{F}_{\alpha}[\psi]+\lambda\|\psi\|_{L^{2}\left(\mathbb{R}^{6}\right)}^{2}=\mathcal{F}_{0}\left[\phi^{\lambda}\right]+\lambda\left\|\phi^{\lambda}\right\|_{L^{2}\left(\mathbb{R}^{6}\right)}^{2}+\Phi^{\lambda, \alpha}[\xi] \\
\Phi^{\lambda, \alpha}[\xi]=\Phi_{d}^{\lambda}[\xi]+\Phi_{o}^{\lambda}[\xi]+\alpha\|\xi\|^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \Phi_{d}^{\lambda}[\xi]=2 \pi^{2} \int \sqrt{\frac{m(m+2)}{(m+1)^{2}} k^{2}+\lambda}|\xi(\mathbf{k})|^{2} d \mathbf{k} \\
& \boldsymbol{\Phi}_{o}^{\lambda}[\xi]=\int \frac{\overline{\xi(\mathbf{k})} \xi\left(\mathbf{k}^{\prime}\right)}{k^{2}+k^{\prime 2}+\frac{2}{m+1} \mathbf{k} \cdot \mathbf{k}^{\prime}+\lambda} d \mathbf{k} d \mathbf{k}^{\prime}
\end{aligned}
$$

Remarks on \mathcal{F}_{α}

Some remarks are in order

- $\lambda>0$ is a free parameter which regularizes the behavior at infinity of $\frac{1}{|x|}$
- decomposition is meaningful
- heuristic argument to justify \mathcal{F}_{α} : renormalization of the energy through a coupling constant renormalization (Γ-limit of regularized functionals)
- if $\psi \in \mathscr{D}\left(\mathcal{H}_{\alpha}\right)$ then $\langle\psi| \mathcal{H}_{\alpha}|\psi\rangle=\mathcal{F}_{\alpha}[\psi]$
- all the interaction is concentrated in $\Phi^{\lambda, \alpha}$

Remarks on \mathcal{F}_{α}

Some remarks are in order

- $\lambda>0$ is a free parameter which regularizes the behavior at infinity of $\frac{1}{|x|}$
- decomposition is meaningful
- heuristic argument to justify \mathcal{F}_{α} : renormalization of the energy through a coupling constant renormalization (Γ-limit of regularized functionals)
- if $\psi \in \mathscr{D}\left(\mathcal{H}_{\alpha}\right)$ then $\langle\psi| \mathcal{H}_{\alpha}|\psi\rangle=\mathcal{F}_{\alpha}[\psi]$
- all the interaction is concentrated in $\Phi^{\lambda, \alpha}$

Theorem

If there exists λ such that $\Phi^{\lambda, \alpha}[\xi] \geq c\|\xi\|_{H^{1 / 2}\left(\mathbb{R}^{3}\right)}^{2}$ then \mathcal{F}_{α} is closed and bounded from below.

Remarks on \mathcal{F}_{α}

Some remarks are in order

- $\lambda>0$ is a free parameter which regularizes the behavior at infinity of $\frac{1}{|x|}$
- decomposition is meaningful
- heuristic argument to justify \mathcal{F}_{α} : renormalization of the energy through a coupling constant renormalization (Γ-limit of regularized functionals)
- if $\psi \in \mathscr{D}\left(\mathcal{H}_{\alpha}\right)$ then $\langle\psi| \mathcal{H}_{\alpha}|\psi\rangle=\mathcal{F}_{\alpha}[\psi]$
- all the interaction is concentrated in $\Phi^{\lambda, \alpha}$

Theorem

If there exists λ such that $\Phi^{\lambda, \alpha}[\xi] \geq c\|\xi\|_{H^{1 / 2}\left(\mathbb{R}^{3}\right)}^{2}$ then \mathcal{F}_{α} is closed and bounded from below.

Partial wave decomposition on Φ^{λ}

We exploit rotational invariance and reduce to the subspace of angular momentum /

$$
\begin{aligned}
\Phi_{d}^{\lambda}[f] & =2 \pi^{2} \int_{0}^{\infty} \sqrt{\frac{m(m+2)}{(m+1)^{2}} k^{2}+\lambda|f(k)|^{2} k^{2} d k} \\
\Phi_{o, l}^{\lambda}[f] & =2 \pi \int_{0}^{\infty} d k d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{k^{2} k^{\prime 2}}{k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}+\lambda} \overline{f(k)} f\left(k^{\prime}\right)
\end{aligned}
$$

Partial wave decomposition on Φ^{λ}

We exploit rotational invariance and reduce to the subspace of angular momentum /

$$
\begin{aligned}
& \Phi_{d}^{\lambda}[f]=2 \pi^{2} \int_{0}^{\infty} \sqrt{\frac{m(m+2)}{(m+1)^{2}} k^{2}+\lambda|f(k)|^{2} k^{2} d k} \\
& \Phi_{o, l}^{\lambda}[f]=2 \pi \int_{0}^{\infty} d k d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{k^{2} k^{\prime 2}}{k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}+\lambda} \overline{f(k)} f\left(k^{\prime}\right)
\end{aligned}
$$

Proposition

The off diagonal term has definite sign depending on the parity of $/$ and it is monotone w.r.t. to λ that is

- $0 \leq \Phi_{o, l}^{\lambda}[f] \leq \Phi_{o, l}[f]$ for even $/$
- $\boldsymbol{\Phi}_{o, l}[f] \leq \boldsymbol{\Phi}_{o, l}^{\lambda}[f] \leq 0$ for odd $/$

Diagonalization

The previous proposition suggests that we carefully analyze the case $\lambda=0$. We can get optimal results since $\Phi[f]$ can be diagonalized.

$$
\begin{gathered}
\Phi_{d}[f]=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} \int_{0}^{\infty}|f(k)|^{2} k^{3} d k \\
\Phi_{o, l}[f]=2 \pi \int_{0}^{\infty} d k d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{k^{2} k^{\prime 2}}{k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}} \overline{f(k)} f\left(k^{\prime}\right)
\end{gathered}
$$

Diagonalization

The previous proposition suggests that we carefully analyze the case $\lambda=0$. We can get optimal results since $\Phi[f]$ can be diagonalized.

$$
\begin{gathered}
\Phi_{d}[f]=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} \int_{0}^{\infty}|f(k)|^{2} k^{3} d k \\
\Phi_{o, l}[f]=2 \pi \int_{0}^{\infty} d k d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{k^{2} k^{\prime 2}}{k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}} \overline{f(k)} f\left(k^{\prime}\right)
\end{gathered}
$$

Define

$$
f^{\sharp}(z)=\frac{1}{\sqrt{2 \pi}} \int d k e^{-i k z} e^{2 k} f\left(e^{k}\right)
$$

then

$$
\Phi_{l}[f]=\int_{-\infty}^{\infty} d z S_{l}(z)\left|f^{\sharp}(z)\right|^{2}=\int_{-\infty}^{\infty} d z\left(S_{d}+S_{o, l}(z)\right)\left|f^{\sharp}(z)\right|^{2}
$$

Diagonalization

 settingWe have

$$
\begin{gathered}
\Phi_{l}[f]=\int_{-\infty}^{\infty} d z S_{l}(z)\left|f^{\sharp}(z)\right|^{2}=\int_{-\infty}^{\infty} d z\left(S_{d}+S_{o, l}(z)\right)\left|f^{\sharp}(z)\right|^{2} \\
S_{d}=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} \\
S_{o, l}(z)=\pi \int_{-1}^{1} d y P_{l}(y) \int d k e^{-i k z} \frac{1}{\cosh (k)+\frac{y}{m+1}}
\end{gathered}
$$

Diagonalization

 settingWe have

$$
\begin{gathered}
\Phi_{l}[f]=\int_{-\infty}^{\infty} d z S_{l}(z)\left|f^{\sharp}(z)\right|^{2}=\int_{-\infty}^{\infty} d z\left(S_{d}+S_{o, l}(z)\right)\left|f^{\sharp}(z)\right|^{2} \\
S_{d}=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} \\
S_{o, l}(z)=\pi \int_{-1}^{1} d y P_{l}(y) \int d k e^{-i k z} \frac{1}{\cosh (k)+\frac{y}{m+1}}
\end{gathered}
$$

We have to find the infimum of $S_{l}(z)$ over I and z

Diagonalization

Plot of $S_{1}(z), S_{3}(z), S_{5}(z)$ for $m=0.1$.

Diagonalization

From the picture it is clear that the infimum is achieved by $S_{1}(0)$.

Diagonalization

From the picture it is clear that the infimum is achieved by $S_{1}(0)$. It is sufficient to prove

Proposition

For fixed $z, S_{l}(z)$ is an increasing function function of I. Moreover $S_{1}(z)$ has an absolute minimum for $z=0$.

Diagonalization

From the picture it is clear that the infimum is achieved by $S_{1}(0)$. It is sufficient to prove

Proposition

For fixed $z, S_{l}(z)$ is an increasing function function of I. Moreover $S_{1}(z)$ has an absolute minimum for $z=0$.

It is sufficient to search for which m

$$
F_{1}^{*}(m)=S_{1}(0)=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}+\pi \int_{-1}^{1} d y y \int d k \frac{1}{\cosh (k)+\frac{y}{m+1}}
$$

Diagonalization

The plot of $F_{1}^{*}(m)$ is simple

Diagonalization

The plot of $F_{1}^{*}(m)$ is simple

Diagonalization

The plot of $F_{1}^{*}(m)$ is simple

The condition $F_{1}^{*}(m)>0$ is equivalent to $m>m^{*}$

Conclusions from partial wave analysis

Let us introduce

$$
\Lambda=\left|S_{1}(0)\right| / S_{d}
$$

Conclusions from partial wave analysis

Let us introduce

$$
\Lambda=\left|S_{1}(0)\right| / S_{d}
$$

The condition $m>m^{*}$ implies

- $0<\Lambda<1$
- the negative part of Φ_{o}^{λ} is small in the sense of quadratic forms compared to Φ_{d}^{λ}
- Φ^{λ} is coercive and $\Phi^{\lambda} \geq(1-\Lambda) \Phi_{d}^{\lambda}$

Conclusions from partial wave analysis

Let us introduce

$$
\Lambda=\left|S_{1}(0)\right| / S_{d}
$$

The condition $m>m^{*}$ implies

- $0<\Lambda<1$
- the negative part of Φ_{o}^{λ} is small in the sense of quadratic forms compared to Φ_{d}^{λ}
- Φ^{λ} is coercive and $\Phi^{\lambda} \geq(1-\Lambda) \Phi_{d}^{\lambda}$

Stability

For $m>m^{*}$ the quadratic form \mathcal{F}_{α} defines a s.a. and bounded from below operator that we identify with \mathcal{H}_{α}

Instability

Take ψ_{n} such that $\phi_{n}^{\lambda}=0$ and ξ_{n} has non trivial components only for $I=1$ given by

$$
f_{n}(k)=\frac{1}{n} f\left(\frac{k}{n}\right)
$$

With this scaling $\left\|\mathcal{G}^{\lambda} \xi_{n}\right\|<c$

Instability

Take ψ_{n} such that $\phi_{n}^{\lambda}=0$ and ξ_{n} has non trivial components only for $I=1$ given by

$$
f_{n}(k)=\frac{1}{n} f\left(\frac{k}{n}\right)
$$

With this scaling $\left\|\mathcal{G}^{\lambda} \xi_{n}\right\|<c$
Then

$$
\mathcal{F}_{\alpha}\left[\psi_{n}\right]=n^{2} \Phi[f]+o\left(n^{2}\right)
$$

Instability

Take ψ_{n} such that $\phi_{n}^{\lambda}=0$ and ξ_{n} has non trivial components only for $I=1$ given by

$$
f_{n}(k)=\frac{1}{n} f\left(\frac{k}{n}\right)
$$

With this scaling $\left\|\mathcal{G}^{\lambda} \xi_{n}\right\|<c$
Then

$$
\mathcal{F}_{\alpha}\left[\psi_{n}\right]=n^{2} \Phi[f]+o\left(n^{2}\right)
$$

If $m<m^{*}$ then $S_{1}(0)<0$ and we can find f such that $\Phi[f]<0$.

Instability

Take ψ_{n} such that $\phi_{n}^{\lambda}=0$ and ξ_{n} has non trivial components only for $I=1$ given by

$$
f_{n}(k)=\frac{1}{n} f\left(\frac{k}{n}\right)
$$

With this scaling $\left\|\mathcal{G}^{\lambda} \xi_{n}\right\|<c$
Then

$$
\mathcal{F}_{\alpha}\left[\psi_{n}\right]=n^{2} \Phi[f]+o\left(n^{2}\right)
$$

If $m<m^{*}$ then $S_{1}(0)<0$ and we can find f such that $\Phi[f]<0$.

Theorem

The quadratic form \mathcal{F}_{α} is closed and bounded from below iff $m>m^{*}$

Further extensions

Recently Minlos, analyzing the case $I=1$, pointed that there is a richer structure and there is not a unique Hamiltonian for $m>m^{*}$.

Further extensions

Recently Minlos, analyzing the case $I=1$, pointed that there is a richer structure and there is not a unique Hamiltonian for $m>m^{*}$.

> 果

$$
\begin{gathered}
T_{l}=T_{d}+T_{o, l} \quad \mathscr{D}\left(T_{l}\right)=\mathscr{D}\left(T_{d}\right) \\
T_{d}[f]=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} k f(k) \\
T_{o, l}[f]=2 \pi \int_{0}^{\infty} d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{k^{\prime 2}}{k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}} f\left(k^{\prime}\right)
\end{gathered}
$$

Further extensions

Recently Minlos, analyzing the case $I=1$, pointed that there is a richer structure and there is not a unique Hamiltonian for $m>m^{*}$.

$$
\begin{gathered}
T_{l}=T_{d}+T_{o, l} \quad \mathscr{D}\left(T_{l}\right)=\mathscr{D}\left(T_{d}\right) \\
T_{d}[f]=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} k f(k) \\
T_{o, l}[f]=2 \pi \int_{0}^{\infty} d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{k^{\prime 2}}{k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}} f\left(k^{\prime}\right)
\end{gathered}
$$

Minlos

There is a second threshold $m^{* *}$ such that

- for $m^{*}<m<m^{* *}, T_{1}$ is not essentially s.a. and there is a one parameter family of s.a. extensions
- for $m>m^{* *}, T_{1}$ is essentially s.a.

General picture

A big part of this picture can be easily carried to any subspace with odd I.

General picture

A big part of this picture can be easily carried to any subspace with odd I.

Theorem

There are two sequences of thresholds $m_{l}^{*}, m_{l}^{* *}$ with $m_{l}^{*}<m_{l}^{* *}$, $m_{1}^{*}>m_{3}^{*}>m_{5}^{*}>\ldots$ and $m_{1}^{* *}>m_{3}^{* *}>m_{5}^{* *}>\ldots$ such that - for $m<m_{1}^{*}$, the form Φ_{l}^{λ} is unbounded from below

- for $m_{l}^{*}<m<m_{l}^{* *}, T_{l}$ is not essentially s.a.
- for $m>m_{l}^{*}, T_{l}$ is essentially s.a. and positive

$$
m<m_{l}^{*}
$$

General

setting
Two
Fermions
and a test

particle

Define

$$
F_{l}^{*}(m) \equiv S_{l}(0)=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}+\pi \int_{-1}^{1} d y P_{l}(y) \int d k \frac{1}{\cosh (k)+\frac{y}{m+1}}
$$

$$
m<m_{I}^{*}
$$ setting

Define

$$
F_{l}^{*}(m) \equiv S_{l}(0)=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}+\pi \int_{-1}^{1} d y P_{l}(y) \int d k \frac{1}{\cosh (k)+\frac{y}{m+1}}
$$

Then m_{l}^{*} is defined by

$$
F_{1}^{*}(m)=0
$$

$$
m<m_{l}^{*}
$$

Plot of $F_{1}^{*}, F_{3}^{*}, F_{5}^{*}$

$$
m_{l}^{*}<m<m_{l}^{* *}
$$

In order to prove that T_{l} is not s.a. it is sufficient to prove that $\mathscr{D}\left(T_{l}\right) \subsetneq \mathscr{D}\left(T_{1}^{*}\right)$.

$$
m_{l}^{*}<m<m_{l}^{* *}
$$

In order to prove that T_{l} is not s.a. it is sufficient to prove that $\mathscr{D}\left(T_{l}\right) \subsetneq \mathscr{D}\left(T_{l}^{*}\right)$. Consider

$$
f_{\gamma}(k)=\chi_{\{k>1\}} \frac{1}{k^{2-\gamma}} \quad 0<\gamma<\frac{1}{2}
$$

$$
m_{l}^{*}<m<m_{l}^{* *}
$$

In order to prove that T_{l} is not s.a. it is sufficient to prove that $\mathscr{D}\left(T_{l}\right) \subsetneq \mathscr{D}\left(T_{1}^{*}\right)$. Consider

$$
f_{\gamma}(k)=\chi_{\{k>1\}} \frac{1}{k^{2-\gamma}} \quad 0<\gamma<\frac{1}{2}
$$

If γ satisfies

$$
2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}+\pi \int_{-1}^{1} d y P_{l}(y) \int d x \frac{e^{\gamma x}}{\cosh (x)+\frac{y}{m+1}}=0
$$

then

$$
f_{\gamma} \notin \mathscr{D}\left(T_{l}\right) \quad f_{\gamma} \in \mathscr{D}\left(T_{l}^{*}\right)
$$

$$
m_{l}^{*}<m<m_{l}^{* *}
$$

In order to prove that T_{1} is not s.a. it is sufficient to prove that $\mathscr{D}\left(T_{l}\right) \subsetneq \mathscr{D}\left(T_{1}^{*}\right)$. Consider

$$
f_{\gamma}(k)=\chi_{\{k>1\}} \frac{1}{k^{2-\gamma}} \quad 0<\gamma<\frac{1}{2}
$$

If γ satisfies

$$
2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}+\pi \int_{-1}^{1} d y P_{l}(y) \int d x \frac{e^{\gamma x}}{\cosh (x)+\frac{y}{m+1}}=0
$$

then

$$
f_{\gamma} \notin \mathscr{D}\left(T_{l}\right) \quad f_{\gamma} \in \mathscr{D}\left(T_{l}^{*}\right)
$$

Notice that $\gamma(m)$ is a monotone increasing function of m and $\left(m_{l}^{*}, m_{l}^{* *}\right)$ is mapped onto $(0,1 / 2)$.

$$
m_{l}^{*}<m<m_{l}^{* *}
$$

In order to prove that T_{1} is not s.a. it is sufficient to prove that $\mathscr{D}\left(T_{l}\right) \subsetneq \mathscr{D}\left(T_{1}^{*}\right)$. Consider

$$
f_{\gamma}(k)=\chi_{\{k>1\}} \frac{1}{k^{2-\gamma}} \quad 0<\gamma<\frac{1}{2}
$$

If γ satisfies

$$
2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}+\pi \int_{-1}^{1} d y P_{l}(y) \int d x \frac{e^{\gamma x}}{\cosh (x)+\frac{y}{m+1}}=0
$$

then

$$
f_{\gamma} \notin \mathscr{D}\left(T_{l}\right) \quad f_{\gamma} \in \mathscr{D}\left(T_{l}^{*}\right)
$$

Notice that $\gamma(m)$ is a monotone increasing function of m and $\left(m_{l}^{*}, m_{l}^{* *}\right)$ is mapped onto ($0,1 / 2$).
The picture is incomplete: at the moment we do not know the quadratic form of the new family of Hamiltonians.

```
m> ml*
```

If we prove that $T_{o, l}$ is Kato-small w.r.t. T_{d} then T_{l}^{λ} is positive and essentially s.a.

```
m> ml*
```

If we prove that $T_{o, l}$ is Kato-small w.r.t. T_{d} then T_{l}^{λ} is positive and essentially s.a.

$$
\left\|T_{o, l} f\right\| \leq \Gamma\left\|T_{d} f\right\|
$$

```
m> m
```

If we prove that $T_{o, l}$ is Kato-small w.r.t. T_{d} then T_{l}^{λ} is positive and essentially s.a.

$$
\begin{gathered}
\left\|T_{o, l} f\right\| \leq \Gamma\left\|T_{d} f\right\| \\
\Gamma=\frac{\left|\pi \int_{-1}^{1} d y P_{l}(y) \int d x \frac{e^{x / 2}}{\cosh (x)+\frac{y}{m+1}}\right|}{2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}}
\end{gathered}
$$

```
\(m>m_{l}^{* *}\)
```

If we prove that $T_{o, l}$ is Kato-small w.r.t. T_{d} then T_{l}^{λ} is positive and essentially s.a.

$$
\begin{gathered}
\left\|T_{o, I} f\right\| \leq \Gamma\left\|T_{d} f\right\| \\
\Gamma=\frac{\left|\pi \int_{-1}^{1} d y P_{l}(y) \int d x \frac{e^{x / 2}}{\cosh (x)+\frac{y}{m+1}}\right|}{2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}}
\end{gathered}
$$

The condtion 「 <1 translates into

$$
F_{I}^{* *}(m)=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}+\pi \int_{-1}^{1} d y P_{l}(y) \int d x \frac{e^{x / 2}}{\cosh (x)+\frac{y}{m+1}}>0
$$

which is equivalent to $m>m_{l}^{* *}$

Smallness properties

We can summarize the situation in the following way:

Smallness properties

We can summarize the situation in the following way:

Smallness Properties

- If the negative part of T_{o} is small compared to T_{d} in quadratic form sense then the system is stable
- If the negative part of T_{o} is small compared to T_{d} in Kato sense then the system is essentially s.a.

The same statement holds true in each subspace of fixed angular momentum

Numerical values of thresholds

Numerical values of the first thresholds

$$
\begin{array}{ll}
m_{1}^{*}=0.0735=(13.607)^{-1} & m_{1}^{* *}=0.0812=(12.31)^{-1} \\
m_{3}^{*}=0.01316=(75.99)^{-1} & m_{3}^{* *}=0.013415=(74.54)^{-1} \\
m_{5}^{*}=0.00532=(187.97)^{-1} & m_{5}^{* *}=0.00536=(186.57)^{-1}
\end{array}
$$

Stability for N fermions

The previous results can be used also in the case of N fermions.

Stability for N fermions

The previous results can be used also in the case of N fermions.
New ingredient: the charge $\xi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N-1}\right)$ is antisymmetric under exchange

$$
\begin{gathered}
\Phi_{d}^{\lambda}[\xi]=2 \pi^{2} \int \sqrt{\frac{m(m+2)}{(m+1)^{2}} \sum_{i=1}^{N-1} k_{i}^{2}+\frac{2 m}{(m+1)^{2}} \sum_{i<j} \mathbf{k}_{i} \cdot \mathbf{k}_{j}+\lambda}\left|\xi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N-1}\right)\right|^{2} d \mathbf{k} \\
\Phi_{o}^{\lambda}[\xi]=(N-1) \int \frac{\overline{\xi\left(\mathbf{k}_{0}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{N}\right)} \xi\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{N}\right)}{\frac{m(m+2)}{(m+1)^{2}} \sum_{i=0}^{N-1} k_{i}^{2}+\frac{2 m}{(m+1)^{2}} \sum_{i<j} \mathbf{k}_{i} \cdot \mathbf{k}_{j}+\lambda} d \mathbf{k}_{0} \ldots d \mathbf{k}_{N-1}
\end{gathered}
$$

Stability for N fermions

The previous results can be used also in the case of N fermions.
New ingredient: the charge $\xi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N-1}\right)$ is antisymmetric under exchange

$$
\begin{gathered}
\Phi_{d}^{\lambda}[\xi]=2 \pi^{2} \int \sqrt{\frac{m(m+2)}{(m+1)^{2}} \sum_{i=1}^{N-1} k_{i}^{2}+\frac{2 m}{(m+1)^{2}} \sum_{i<j} \mathbf{k}_{i} \cdot \mathbf{k}_{j}+\lambda}\left|\xi\left(\mathbf{k}_{1}, \ldots, \mathbf{k}_{N-1}\right)\right|^{2} d \mathbf{k} \\
\Phi_{o}^{\lambda}[\xi]=(N-1) \int \frac{\overline{\xi\left(\mathbf{k}_{0}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{N}\right)} \xi\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \ldots, \mathbf{k}_{N}\right)}{\frac{m(m+2)}{(m+1)^{2}} \sum_{i=0}^{N-1} k_{i}^{2}+\frac{2 m}{(m+1)^{2}} \sum_{i<j} \mathbf{k}_{i} \cdot \mathbf{k}_{j}+\lambda} d \mathbf{k}_{0} \ldots d \mathbf{k}_{N-1}
\end{gathered}
$$

With some change of variables we can reduce to the previous case

Stability for N fermions

Define

$$
\begin{gathered}
\boldsymbol{\sigma}=\mathbf{k}_{0}+\frac{1}{m+2} \sum_{i=2}^{N-1} \mathbf{k}_{i} \quad \boldsymbol{\tau}=\mathbf{k}_{1}+\frac{1}{m+2} \sum_{i=2}^{N-1} \mathbf{k}_{i} \\
\widetilde{\xi}(\boldsymbol{\sigma}, \mathbf{K})=\xi\left(\boldsymbol{\sigma}-\frac{1}{m+2} \sum_{i=2}^{N-1} \mathbf{k}_{i}, \mathbf{K}\right) \mathbf{K}=\mathbf{k}_{2}, \ldots, \mathbf{k}_{N-1} \\
D(\mathbf{K})=\frac{m}{(m+1)(m+2)}\left((m+3) \sum_{i=2}^{N-1} k_{i}^{2}+2 \sum_{i<j} \mathbf{k}_{i} \cdot \mathbf{k}_{j}\right)
\end{gathered}
$$

Stability for N fermions

Define

$$
\left.\begin{array}{c}
\boldsymbol{\sigma}=\mathbf{k}_{0}+\frac{1}{m+2} \sum_{i=2}^{N-1} \mathbf{k}_{i} \quad \boldsymbol{\tau}=\mathbf{k}_{1}+\frac{1}{m+2} \sum_{i=2}^{N-1} \mathbf{k}_{i} \\
\widetilde{\xi}(\boldsymbol{\sigma}, \mathbf{K})=\xi\left(\boldsymbol{\sigma}-\frac{1}{m+2} \sum_{i=2}^{N-1} \mathbf{k}_{i}, \mathbf{K}\right) \mathbf{K}=\mathbf{k}_{2}, \ldots, \mathbf{k}_{N-1} \\
D(\mathbf{K})=\frac{m}{(m+1)(m+2)}\left((m+3) \sum_{i=2}^{N-1} k_{i}^{2}+2 \sum_{i<j} \mathbf{k}_{i} \cdot \mathbf{k}_{j}\right) \\
\Phi_{d}^{\lambda}[\xi]=2 \pi^{2} \int \sqrt{\frac{m(m+2)}{(m+1)^{2}} \sigma^{2}+D(\mathbf{K})+\lambda|\widetilde{\xi}(\boldsymbol{\sigma}, \mathbf{K})|^{2} d \boldsymbol{\sigma} d \mathbf{K}} \\
\boldsymbol{\Phi}_{o}^{\lambda}[\xi]=(N-1) \int \frac{\widetilde{\xi}(\boldsymbol{\sigma}, \mathbf{K})}{\tilde{\xi}}(\boldsymbol{\tau}, \mathbf{K}) \\
\sigma^{2}+\tau^{2}+\frac{2}{m+1} \boldsymbol{\tau} \cdot \boldsymbol{\sigma}+D(\mathbf{K})+\lambda \\
\end{array} \boldsymbol{\tau} d \boldsymbol{\sigma} d \mathbf{K}\right)
$$

Stability for N fermions

Define $m^{*}(N)$ as the solution of

$$
2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}+(N-1) \pi \int_{-1}^{1} d y y \int d k \frac{1}{\cosh (k)+\frac{y}{m+1}}=0
$$

Stability for N fermions

Define $m^{*}(N)$ as the solution of

$$
2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}+(N-1) \pi \int_{-1}^{1} d y y \int d k \frac{1}{\cosh (k)+\frac{y}{m+1}}=0
$$

Theorem

The quadratic form $\Phi^{\lambda, \alpha}$ is closed and bounded from below for $m>m^{*}(N)$ and it is unbounded from below for $m<m^{*}(2)$

Final remarks

Final remarks and perspectives
analysis
Further extensions

N fermions

 and a test particle
Final remarks

Final remarks and perspectives

- The partial wave analysis can be applied also to other variants of the three body problems: for instance three bosons are stable outside $I=0$

Final remarks

Final remarks and perspectives

- The partial wave analysis can be applied also to other variants of the three body problems: for instance three bosons are stable outside $I=0$
- We want to understand the new family of Hamiltonians for $m_{l}^{*}<m<m_{l}^{* *}$

Final remarks

Final remarks and perspectives

- The partial wave analysis can be applied also to other variants of the three body problems: for instance three bosons are stable outside $I=0$
- We want to understand the new family of Hamiltonians for $m_{l}^{*}<m<m_{l}^{* *}$
- Construction of the $2+2$ fermion model

Final remarks

Final remarks and perspectives

- The partial wave analysis can be applied also to other variants of the three body problems: for instance three bosons are stable outside $I=0$
- We want to understand the new family of Hamiltonians for $m_{l}^{*}<m<m_{l}^{* *}$
- Construction of the $2+2$ fermion model
- Improvement of the analysis of $\mathrm{N}+1$ model

Representation Theorems

Definition (Closed Form)

A quadratic form Q on an Hilbert space is said to be closed if for any $\left\{u_{n}\right\} \subset \mathscr{D}(Q)$ such that $u_{n} \rightarrow u$ and $Q\left[u_{n}-u_{m}\right] \rightarrow 0$ then $u \in \mathscr{D}(Q)$ and $Q\left[u_{n}-u\right] \rightarrow 0$

Theorem (First representation Theorem)
Let Q be closed and bdd from below then there is a unique s.a. and bdd from below operator T such that $\mathscr{D}(T) \subset \mathscr{D}(Q)$ and

$$
Q[u, v]=(u, T v) \quad u \in \mathscr{D}(Q), v \in \mathscr{D}(T)
$$

The domain $\mathscr{D}(T)$ are the vectors v such that $Q[\cdot, v]$ is continuous.
Theorem (Second representation Theorem)
Let Q be a positive and closed quadratic form and let T be the associated s.a. operator, then $\mathscr{D}(Q)=\mathscr{D}(\sqrt{T})$ and

$$
Q[u, v]=(\sqrt{T} u, \sqrt{T} v) \quad u, v \in \mathscr{D}(\sqrt{T})
$$

Definite sign of $\Phi_{o, l}^{\lambda}$

Remember

$$
P_{l}(y)=\frac{1}{2^{\prime} l!} \frac{d^{\prime}}{d y^{\prime}}\left(y^{2}-1\right)
$$

$\Phi_{o, l}^{\lambda}[f]=$

$$
\pi \int_{0}^{\infty} d k d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{k^{2} k^{\prime 2}}{k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}+\lambda} \overline{f(k)} f\left(k^{\prime}\right)
$$

Definite sign of $\Phi_{o, l}^{\lambda}$

Remember

$$
P_{l}(y)=\frac{1}{2^{\prime} l!} \frac{d^{\prime}}{d y^{\prime}}\left(y^{2}-1\right)
$$

$$
\Phi_{o, l}^{\lambda}[f]=
$$

$$
2 \pi \int_{0}^{\infty} d k d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{1}{k^{2}+k^{\prime 2}+\lambda} \frac{k^{2} k^{\prime 2}}{1+\frac{2 y}{m+1} \frac{k k^{\prime}}{k^{2}+k^{\prime 2}+\lambda}} \overline{f(k)} f\left(k^{\prime}\right)
$$

Definite sign of $\Phi_{o, l}^{\lambda}$

Remember

$$
\begin{aligned}
& P_{l}(y)=\frac{1}{2^{\prime} l!} \frac{d^{\prime}}{d y^{\prime}}\left(y^{2}-1\right) \\
& \Phi_{o, l}^{\lambda}[f]= \\
& 2 \pi \int_{0}^{\infty} d k d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{k^{2} k^{\prime 2}}{k^{2}+k^{\prime 2}+\lambda} \sum_{n=0}^{\infty}\left(-\frac{2 y}{m+1} \frac{k k^{\prime}}{k^{2}+k^{\prime 2}+\lambda}\right)^{n} \overline{f(k)} f\left(k^{\prime}\right)
\end{aligned}
$$

Definite sign of $\phi_{o, l}^{\lambda}$

Remember

$$
P_{l}(y)=\frac{1}{2^{\prime} l!} \frac{d^{\prime}}{d y^{\prime}}\left(y^{2}-1\right)
$$

$\Phi_{o, l}^{\lambda}[f]=$

$$
2 \pi \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{2}{m+1}\right)^{n} \int_{-1}^{1} d y P_{l}(y) y^{n} \int_{0}^{\infty} d k d k^{\prime} \frac{k^{2+n} \overline{f(k)} k^{\prime 2+n} f\left(k^{\prime}\right)}{\left(k^{2}+k^{\prime 2}+\lambda\right)^{n+1}}
$$

Definite sign of $\phi_{o, l}^{\lambda}$

Remember

$$
P_{l}(y)=\frac{1}{2^{\prime}!!} \frac{d^{\prime}}{d y^{\prime}}\left(y^{2}-1\right)
$$

$$
\Phi_{o, l}^{\lambda}[f]=
$$

$$
2 \pi \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{2}{m+1}\right)^{n} \int_{-1}^{1} d y P_{l}(y) y^{n} \int_{0}^{\infty} d k d k^{\prime} \frac{k^{2+n} \overline{f(k)} k^{\prime 2+n} f\left(k^{\prime}\right)}{\left(k^{2}+k^{\prime 2}+\lambda\right)^{n+1}}
$$

$$
\int_{0}^{\infty} d k d k^{\prime} \frac{k^{2+n} \overline{f(k)} k^{\prime 2+n} f\left(k^{\prime}\right)}{\left(k^{2}+k^{\prime 2}+\lambda\right)^{n+1}}=
$$

Definite sign of $\phi_{o, l}^{\lambda}$

Remember

$$
P_{l}(y)=\frac{1}{2^{\prime}!!} \frac{d^{\prime}}{d y^{\prime}}\left(y^{2}-1\right)
$$

$$
\Phi_{o, l}^{\lambda}[f]=
$$

$$
2 \pi \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{2}{m+1}\right)^{n} \int_{-1}^{1} d y P_{l}(y) y^{n} \int_{0}^{\infty} d k d k^{\prime} \frac{k^{2+n} \overline{f(k)} k^{\prime 2+n} f\left(k^{\prime}\right)}{\left(k^{2}+k^{\prime 2}+\lambda\right)^{n+1}}
$$

$$
\int_{0}^{\infty} d k d k^{\prime} \frac{k^{2+n} \overline{f(k)} k^{\prime 2+n} f\left(k^{\prime}\right)}{\left(k^{2}+k^{\prime 2}+\lambda\right)^{n+1}}=\int_{0}^{\infty} d k d k^{\prime} k^{2+n} \overline{f(k)} k^{\prime 2+n} f\left(k^{\prime}\right) \frac{1}{n!} \int_{0}^{\infty} \nu^{n} e^{-\nu\left(k^{2}+k^{\prime 2}+\lambda\right)}
$$

Definite sign of $\phi_{o, l}^{\lambda}$

Remember

$$
P_{l}(y)=\frac{1}{2^{\prime} l!} \frac{d^{\prime}}{d y^{\prime}}\left(y^{2}-1\right)
$$

$$
\Phi_{o, l}^{\lambda}[f]=
$$

$$
\begin{gathered}
2 \pi \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{2}{m+1}\right)^{n} \int_{-1}^{1} d y P_{l}(y) y^{n} \int_{0}^{\infty} d k d k^{\prime} \frac{k^{2+n} \overline{f(k)} k^{\prime 2+n} f\left(k^{\prime}\right)}{\left(k^{2}+k^{\prime 2}+\lambda\right)^{n+1}} \\
\int_{0}^{\infty} d k d k^{\prime} \frac{k^{2+n} \overline{f(k)} k^{\prime 2+n} f\left(k^{\prime}\right)}{\left(k^{2}+k^{\prime 2}+\lambda\right)^{n+1}}=\frac{1}{n!} \int_{0}^{\infty} d \nu \nu^{n} e^{-\nu \lambda}\left|\int_{0}^{\infty} d k k^{2+n} f(k) e^{-\nu k^{2}}\right|^{2}
\end{gathered}
$$

Definite sign of $\phi_{o, l}^{\lambda}$

Remember

$$
\begin{aligned}
& P_{l}(y)=\frac{1}{2^{\prime} l!} \frac{d^{\prime}}{d y^{\prime}}\left(y^{2}-1\right) \\
& \Phi_{o, l}^{\lambda}[f]= \\
& 2 \pi \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n!}\left(\frac{2}{m+1}\right)^{n} \int_{-1}^{1} d y P_{l}(y) y^{n} \int_{0}^{\infty} \nu^{n} e^{-\nu \lambda}\left|\int_{0}^{\infty} d k k^{2+n} f(k) e^{-\nu k^{2}}\right|^{2}
\end{aligned}
$$

Definite sign of $\phi_{o, l}^{\lambda}$

Remember

$$
P_{l}(y)=\frac{1}{2^{\prime}!!} \frac{d^{\prime}}{d y^{\prime}}\left(y^{2}-1\right)
$$

$$
\phi_{o, l}^{\lambda}[f]=
$$

$$
\frac{2 \pi}{2^{\prime}!!} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n!}\left(\frac{2}{m+1}\right)^{n} \int_{-1}^{1} d y\left(1-y^{2}\right)^{\prime} \frac{d^{\prime}}{d y^{\prime}} y^{n} \int_{0}^{\infty} \nu^{n} e^{-\nu \lambda}\left|\int_{0}^{\infty} d k k^{2+n} f(k) e^{-\nu k^{2}}\right|^{2}
$$

Diagonalization of ϕ

Remember

$$
\begin{gathered}
f^{\sharp}(z)=\frac{1}{\sqrt{2 \pi}} \int d k e^{-i k z} e^{2 k} f\left(e^{k}\right) \\
\Phi_{d}[f]=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} \int_{0}^{\infty}|f(k)|^{2} k^{3} d k \\
\Phi_{o, l}[f]=2 \pi \int_{0}^{\infty} d k d k^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{k^{2} k^{\prime 2}}{k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}} \overline{f(k)} f\left(k^{\prime}\right)
\end{gathered}
$$

Diagonalization of Φ

Remember

$$
\begin{gathered}
f^{\sharp}(z)=\frac{1}{\sqrt{2 \pi}} \int d k e^{-i k z} e^{2 k} f\left(e^{k}\right) \\
\Phi_{d}[f]=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} \int_{-\infty}^{\infty}\left|f\left(e^{x}\right)\right|^{2} e^{4 x} d k \\
\Phi_{o, l}[f]=2 \pi \int_{0}^{\infty} d x d x^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{e^{x+x^{\prime}}}{e^{2 x}+e^{2 x^{\prime}}+\frac{2 y}{m+1} e^{x+x^{\prime}}} \overline{f\left(e^{x}\right)} e^{2 x} f\left(e^{x^{\prime}}\right) e^{2 x^{\prime}}
\end{gathered}
$$

Diagonalization of Φ

setting
Remember

$$
\begin{gathered}
f^{\sharp}(z)=\frac{1}{\sqrt{2 \pi}} \int d k e^{-i k z} e^{2 k} f\left(e^{k}\right) \\
\Phi_{d}[f]=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} \int_{-\infty}^{\infty}\left|f^{\sharp}(z)\right|^{2} d z \\
\Phi_{o, l}[f]=\pi \int_{0}^{\infty} d x d x^{\prime} \int_{-1}^{1} d y P_{l}(y) \frac{1}{\cosh \left(x-x^{\prime}\right)+\frac{2 y}{m+1}} \overline{f\left(e^{x}\right)} e^{2 x} f\left(e^{x^{\prime}}\right) e^{2 x^{\prime}}
\end{gathered}
$$

Diagonalization of Φ

Remember

$$
\begin{gathered}
f^{\sharp}(z)=\frac{1}{\sqrt{2 \pi}} \int d k e^{-i k z} e^{2 k} f\left(e^{k}\right) \\
\Phi_{d}[f]=2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} \int_{-\infty}^{\infty}\left|f^{\sharp}(z)\right|^{2} d z \\
\Phi_{o, l}[f]=\int_{-\infty}^{\infty} d z S_{l}(z)\left|f^{\sharp}(z)\right|^{2} \\
S_{l}(z)=\pi \int_{-1}^{1} d y P_{l}(y) \int d x e^{-i k z} \frac{1}{\cosh (x)+\frac{2 y}{m+1}}
\end{gathered}
$$

Monotonicity of $S_{l}(z)$

For odd I

$$
\begin{aligned}
S_{l}(z)= & 2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}} \\
& +\pi \int_{-1}^{1} d y P_{l}(y) \int d x e^{-i k z} \frac{1}{\cosh (x)+\frac{2 y}{m+1}}
\end{aligned}
$$

Monotonicity of $S_{l}(z)$

For odd I

$$
\begin{aligned}
S_{l}(z)= & 2 \pi^{2} \sqrt{1-\frac{1}{(m+1)^{2}}} \\
& +\pi \sum_{j=0}^{\infty}\left(-\frac{2}{m+1}\right)^{j} \int_{-1}^{1} d y P_{l}(y) y^{n} \int d x e^{-i k z} \frac{1}{\cosh ^{j+1}(x)}
\end{aligned}
$$

This representation allows to derive all the monotonicity properties of F_{l}^{*} and $F_{1}^{* *}$.

Monotonicity of $S_{l}(z)$

For odd I

$$
\begin{aligned}
S_{l}(z)= & 2 \pi^{2} \sqrt{1-\frac{1}{(m+1)^{2}}} \\
& -\frac{1}{2^{\prime}} \sum_{k=0} \frac{1}{(m+1)^{I+2 k}}\binom{I+2 k}{2 k} \int_{-1}^{1}\left(1-y^{2}\right)^{\prime} y^{2 k} \int \frac{e^{-i z x}}{(\cosh (x))^{1+1+2 k}}
\end{aligned}
$$

This representation allows to derive all the monotonicity properties of F_{l}^{*} and $F_{I}^{* *}$.
Notice that

$$
\int \frac{e^{-i z x}}{(\cosh (x))^{2}}>0 \Longrightarrow \int \frac{e^{-i z x}}{(\cosh (x))^{1+1+2 k}}>0
$$

Kato smallness

We can estimate Γ^{2} by the the norm of $\mathcal{O}: L^{2}\left(\mathbb{R}^{+}, d k^{\prime}\right) \rightarrow L^{2}\left(\mathbb{R}^{+}, d k^{\prime \prime}\right)$

$$
\begin{align*}
& \mathcal{O}\left(k^{\prime}, k^{\prime \prime}\right)=\left(2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}\right)^{-1} 4 \pi^{2} \int_{-1}^{1} d y^{\prime} P_{l}\left(y^{\prime}\right) \int_{-1}^{1} d y^{\prime \prime} P_{l}\left(y^{\prime \prime}\right) \\
& \int_{0}^{\infty} d k \frac{k^{2}}{\left(k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}\right)\left(k^{2}+k^{\prime \prime 2}+\frac{2 y}{m+1} k k^{\prime \prime}\right)} \tag{1}
\end{align*}
$$

Kato smallness

We can estimate Γ^{2} by the the norm of $\mathcal{O}: L^{2}\left(\mathbb{R}^{+}, d k^{\prime}\right) \rightarrow L^{2}\left(\mathbb{R}^{+}, d k^{\prime \prime}\right)$

$$
\begin{align*}
& \mathcal{O}\left(k^{\prime}, k^{\prime \prime}\right)=\left(2 \pi^{2} \sqrt{\frac{m(m+2)}{(m+1)^{2}}}\right)^{-1} 4 \pi^{2} \int_{-1}^{1} d y^{\prime} P_{l}\left(y^{\prime}\right) \int_{-1}^{1} d y^{\prime \prime} P_{l}\left(y^{\prime \prime}\right) \\
& \int_{0}^{\infty} d k \frac{k^{2}}{\left(k^{2}+k^{\prime 2}+\frac{2 y}{m+1} k k^{\prime}\right)\left(k^{2}+k^{\prime \prime 2}+\frac{2 y}{m+1} k k^{\prime \prime}\right)} \tag{1}
\end{align*}
$$

Generalized Schur's test with $1 / \sqrt{k}$ as test function. Notice the pointwise positivity of the kernel \mathcal{O}.

