Spectral properties of Schrödinger operators with singular interactions on Lipschitz surfaces

Jussi Behrndt (TU Graz)

with Pavel Exner and Vladimir Lotoreichik

PART I

δ and δ^{\prime}-interactions on one smooth compact hypersurface

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \cup \dot{\mathcal{C}} \cup \dot{\cup} \Omega_{e}$ in interior and exterior domain

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \cup \dot{\mathcal{C}} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\left.\begin{array}{rl}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right):\right. \\
{ }_{\alpha} \psi\left|\mathcal{C}=\partial_{n_{i}} \psi_{i}\right| \mathcal{C}+\left.\partial_{n_{e}} \psi_{\boldsymbol{e}}\right|_{\mathcal{C}}
\end{array}\right\} .
$$

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\left.\begin{array}{rl}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right):\right. \\
{ }_{\alpha}\left|\psi_{\mathcal{C}}\right| \mathcal{C}=\partial_{n_{i}} \psi_{i}\left|\mathcal{C}+\partial_{n_{e}} \psi_{e}\right| \mathcal{C}
\end{array}\right\}, ~ l
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta, \alpha}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\left.\begin{array}{rl}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right):\right. \\
{ }_{\alpha}\left|\psi_{\mathcal{C}}\right| \mathcal{C}=\partial_{n_{i}} \psi_{i}\left|\mathcal{C}+\partial_{n_{e}} \psi_{e}\right| \mathcal{C}
\end{array}\right\}, ~ l
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta, \alpha}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta, 0}$ unperturbed Laplacian

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\left.\begin{array}{rl}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right):\right. \\
{ }_{\alpha}\left|\psi_{\mathcal{C}}\right| \mathcal{C}=\partial_{n_{i}} \psi_{i}\left|\mathcal{C}+\partial_{n_{e}} \psi_{e}\right| \mathcal{C}
\end{array}\right\}, ~ l
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta, \alpha}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta, 0}\right)=[0, \infty)$

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\left.\begin{array}{rl}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right):\right. \\
\psi_{i}\left|\mathcal{C}=\psi_{e}\right| \mathcal{C} \\
\alpha \psi\left|\mathcal{C}=\partial_{n_{i}} \psi_{i}\right| \mathcal{C}+\partial_{n_{e}} \psi_{e} \mid \mathcal{C}
\end{array}\right\}, ~ l
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta, \alpha}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta, 0}\right)=[0, \infty)$
- $\left(H_{\delta, \alpha}-\lambda\right)^{-1}-\left(H_{\delta, 0}-\lambda\right)^{-1} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{3}$

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\left.\begin{array}{rl}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right):\right. \\
\psi_{i}\left|\mathcal{C}=\psi_{e}\right| \mathcal{C} \\
\alpha \psi\left|\mathcal{C}=\partial_{n_{i}} \psi_{i}\right| \mathcal{C}+\partial_{n_{e}} \psi_{e} \mid \mathcal{C}
\end{array}\right\}, ~ l
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta, \alpha}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta, 0}\right)=[0, \infty)$
- $\left(H_{\delta, \alpha}-\lambda\right)^{-1}-\left(H_{\delta, 0}-\lambda\right)^{-1} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{3}$, and

$$
\sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)=[0, \infty),
$$

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\left.\begin{array}{rl}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right):\right. \\
\psi_{i}\left|\mathcal{C}=\psi_{e}\right| \mathcal{C} \\
& =\partial_{n_{i}} \psi_{i}\left|\mathcal{C}+\partial_{n_{e}} \psi_{e}\right| \mathcal{C}
\end{array}\right\}, ~ l
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta, \alpha}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta, 0}\right)=[0, \infty)$
- $\left(H_{\delta, \alpha}-\lambda\right)^{-1}-\left(H_{\delta, 0}-\lambda\right)^{-1} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{3}$, and

$$
\sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)=[0, \infty), \quad \sigma_{p}\left(H_{\delta, \alpha}\right) \cap(-\infty, 0) \text { finite }
$$

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \cup \dot{\mathcal{C}} \cup \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
H_{\delta, \alpha}=-\Delta
$$

$$
\operatorname{dom} H_{\delta, \alpha}=\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\psi_{i}\left|\mathcal{C}=\psi_{e}\right|_{\mathcal{C}} \\
\alpha \psi\left|\mathcal{C}=\partial_{n_{i}} \psi_{i}\right| \mathcal{C}+\partial_{n_{e}} \psi_{e} \mid \mathcal{C}
\end{array}\right\}
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta, \alpha}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta, 0}\right)=[0, \infty)$
- $\left(H_{\delta, \alpha}-\lambda\right)^{-k}-\left(H_{\delta, 0}-\lambda\right)^{-k} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{2 k+1}$

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \cup \dot{\mathcal{C}} \cup \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
H_{\delta, \alpha}=-\Delta
$$

$$
\operatorname{dom} H_{\delta, \alpha}=\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\psi_{i}\left|\mathcal{C}=\psi_{e}\right|_{\mathcal{C}} \\
\left.\alpha \psi\right|_{\mathcal{C}}=\partial_{n_{i}} \psi_{i}\left|\mathcal{C}+\partial_{n_{e}} \psi_{e}\right| \mathcal{C}
\end{array}\right\}
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta, \alpha}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta, 0}\right)=[0, \infty)$
- $\left(H_{\delta, \alpha}-\lambda\right)^{-k}-\left(H_{\delta, 0}-\lambda\right)^{-k} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{2 k+1}$
- Wave operators for $\left\{H_{\delta, \alpha}, H_{\delta, 0}\right\}$ exist and are complete

δ-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\alpha \delta_{\mathcal{C}}$ with \mathcal{C} hypersurface, $\alpha \in L^{\infty}(\mathcal{C})$ real

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
H_{\delta, \alpha}=-\Delta
$$

$$
\operatorname{dom} H_{\delta, \alpha}=\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\left.\psi_{i}\right|_{\mathcal{C}}=\left.\psi_{e}\right|_{\mathcal{C}} \\
\left.\alpha \psi\right|_{\mathcal{C}}=\left.\partial_{n_{i}} \psi_{i}\right|_{\mathcal{C}}+\left.\partial_{n_{e}} \psi_{e}\right|_{\mathcal{C}}
\end{array}\right\}
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta, \alpha}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta, 0}\right)=[0, \infty)$
- $\left(H_{\delta, \alpha}-\lambda\right)^{-k}-\left(H_{\delta, 0}-\lambda\right)^{-k} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{2 k+1}$
- Wave operators for $\left\{H_{\delta, \alpha}, H_{\delta, 0}\right\}$ exist and are complete
- ac-parts of $H_{\delta, \alpha}$ and $H_{\delta, 0}$ unitarily equivalent

Other points of view on the Hamiltonian $H_{\delta, \alpha}$

$$
\begin{aligned}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\left.\psi_{i}\right|_{\mathcal{C}}=\left.\psi_{e}\right|_{\mathcal{C}} \\
\left.\alpha \psi\right|_{\mathcal{C}}=\left.\partial_{n_{i}} \psi_{i}\right|_{\mathcal{C}}+\left.\partial_{n_{e}} \psi_{e}\right|_{\mathcal{C}}
\end{array}\right\}
\end{aligned}
$$

Observation

$H_{\delta, \alpha}$ corresponds to closed symmetric form on $H^{1}\left(\mathbb{R}^{n}\right)$:

$$
\mathfrak{a}_{\delta}[\psi, \phi]:=(\nabla \psi, \nabla \phi)_{L^{2}\left(\mathbb{R}^{n}\right)^{n}}-(\alpha \psi, \phi)_{L^{2}(\mathcal{C})} .
$$

Other points of view on the Hamiltonian $H_{\delta, \alpha}$

$$
\begin{aligned}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\left.\psi_{i}\right|_{\mathcal{C}}=\left.\psi_{e}\right|_{\mathcal{C}} \\
\left.\alpha \psi\right|_{\mathcal{C}}=\left.\partial_{n_{i}} \psi_{i}\right|_{\mathcal{C}}+\left.\partial_{n_{e}} \psi_{e}\right|_{\mathcal{C}}
\end{array}\right\}
\end{aligned}
$$

Observation

$H_{\delta, \alpha}$ corresponds to closed symmetric form on $H^{1}\left(\mathbb{R}^{n}\right)$:

$$
\mathfrak{a}_{\delta}[\psi, \phi]:=(\nabla \psi, \nabla \phi)_{L^{2}\left(\mathbb{R}^{n}\right)^{n}}-(\alpha \psi, \phi)_{L^{2}(\mathcal{C})} .
$$

Theorem [Popov,Shimada][Exner,Ichinose,Kondej][Holzmann]
$H_{\delta, \alpha}$ norm resolvent limit of $H_{\varepsilon}=-\Delta-V_{\varepsilon}$, where supp $V_{\varepsilon} \rightarrow \mathcal{C}$,

$$
\alpha(x)=\int_{-\gamma}^{\gamma} V\left(x+s \nu_{i}(x)\right) d s .
$$

Other points of view on the Hamiltonian $H_{\delta, \alpha}$

$$
\begin{aligned}
H_{\delta, \alpha} & =-\Delta \\
\operatorname{dom} H_{\delta, \alpha} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\psi_{i}\left|\mathcal{C}=\psi_{e}\right|_{\mathcal{C}} \\
\left.\alpha \psi\right|_{\mathcal{C}}=\partial_{n_{i}} \psi_{i}\left|\mathcal{C}+\partial_{n_{e}} \psi_{e}\right|_{\mathcal{C}}
\end{array}\right\}
\end{aligned}
$$

Observation

$H_{\delta, \alpha}$ corresponds to closed symmetric form on $H^{1}\left(\mathbb{R}^{n}\right)$:

$$
\mathfrak{a}_{\delta}[\psi, \phi]:=(\nabla \psi, \nabla \phi)_{L^{2}\left(\mathbb{R}^{n}\right)^{n}}-(\alpha \psi, \phi)_{L^{2}(\mathcal{C})} .
$$

Theorem [Popov,Shimada][Exner,Ichinose,Kondej][Holzmann]
$H_{\delta, \alpha}$ norm resolvent limit of $H_{\varepsilon}=-\Delta-V_{\varepsilon}$, where supp $V_{\varepsilon} \rightarrow \mathcal{C}$,

$$
\alpha(x)=\int_{-\gamma}^{\gamma} V\left(x+s \nu_{i}(x)\right) d s .
$$

Remark

Assumption $\alpha \in L^{\infty}(\mathcal{C})$ allows to study non-closed surfaces

Literature

Literature

Some references

- [BrascheExnerKuperinSeba] JMAA 184 (1994), 112-139
- Exner \& Fraas, Ichinose, Kondej, Němcová, Yoshitomi
- [AntoineGesztesyShabani'87][Herczyński'89][Shabani'88]
- [Teta'90][BrascheTeta'92][BrascheFigariTeta'98]
- [AlbeverioNizhnik'00][BirmanSuslinaShterenberg'00]
- [Posilicano'01][DerkachHassiSnoo'03][KondejVeselić'07] and many, many more

More recent related work

- [CorreggiDell'AntonioFincoMichelangeliTeta'12]
- [AlbeverioKostenkoMalamudNeidhart'13][ExnerJex'13]
- [DucheneRaymond'14][ExnerPankrashkin'14]

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\left.\begin{array}{rl}
H_{\delta^{\prime}, \beta} & =-\Delta \\
\operatorname{dom} H_{\delta^{\prime}, \beta} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\partial_{n_{n}} \psi_{\psi}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{\psi}\right| \mathcal{C} \\
\beta \partial_{n_{e}} \psi_{e} \mid \mathcal{C}
\end{array}=\psi_{e}\left|\mathcal{C}-\psi_{i}\right| \mathcal{C}\right.
\end{array}\right\}, ~ l
$$

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\left.\begin{array}{rl}
H_{\delta^{\prime}, \beta} & =-\Delta \\
\operatorname{dom} H_{\delta^{\prime}, \beta} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\partial_{n_{i}} \psi_{\psi}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{\psi}\right| \mathcal{C} \\
\beta \partial_{n_{e}} \psi_{e} \mid \mathcal{C}
\end{array}=\psi_{e}\left|\mathcal{C}-\psi_{i}\right| \mathcal{C}\right.
\end{array}\right\}, ~ l
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta^{\prime}, \beta}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\begin{aligned}
H_{\delta^{\prime}, \beta} & =-\Delta \\
\operatorname{dom} H_{\delta^{\prime}, \beta} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\partial_{n_{i}} \psi_{\psi}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{\psi}\right| \mathcal{C} \\
\beta \partial_{n_{e}} \psi_{e}\left|\mathcal{C}=\psi_{e}\right| \mathcal{C}-\psi_{i} \mid \mathcal{C}
\end{array}\right\}
\end{aligned}
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta^{\prime}, \beta}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta^{\prime}, 0}$ unperturbed Laplacian

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\begin{aligned}
H_{\delta^{\prime}, \beta} & =-\Delta \\
\operatorname{dom} H_{\delta^{\prime}, \beta} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\partial_{n_{n}} \psi_{\psi}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{\psi}\right| \mathcal{C} \\
\beta \partial_{n_{e}} \psi_{e}\left|\mathcal{C}=\psi_{e}\right| \mathcal{C}-\psi_{i} \mid \mathcal{C}
\end{array}\right\}
\end{aligned}
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta^{\prime}, \beta}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta^{\prime}, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta^{\prime}, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta^{\prime}, 0}\right)=[0, \infty)$

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\begin{aligned}
H_{\delta^{\prime}, \beta} & =-\Delta \\
\operatorname{dom} H_{\delta^{\prime}, \beta} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\partial_{n_{n}} \psi_{\psi}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{\psi}\right| \mathcal{C} \\
\beta \partial_{n_{e}} \psi_{e}\left|\mathcal{C}=\psi_{e}\right| \mathcal{C}-\psi_{i} \mid \mathcal{C}
\end{array}\right\}
\end{aligned}
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta^{\prime}, \beta}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta^{\prime}, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta^{\prime}, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta^{\prime}, 0}\right)=[0, \infty)$
- $\left(H_{\delta^{\prime}, \beta}-\lambda\right)^{-1}-\left(H_{\delta^{\prime}, 0}-\lambda\right)^{-1} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{2}$

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\begin{aligned}
H_{\delta^{\prime}, \beta} & =-\Delta \\
\operatorname{dom} H_{\delta^{\prime}, \beta} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\partial_{n_{i}} \psi_{i}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{e}\right| \mathcal{C} \\
\beta \partial_{n_{e}} \psi\left|{ }_{e}\right| \mathcal{C}=\psi_{e}\left|\mathcal{C}-\psi_{i}\right| \mathcal{C}
\end{array}\right\}
\end{aligned}
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta^{\prime}, \beta}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta^{\prime}, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta^{\prime}, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta^{\prime}, 0}\right)=[0, \infty)$
- $\left(H_{\delta^{\prime}, \beta}-\lambda\right)^{-1}-\left(H_{\delta^{\prime}, 0}-\lambda\right)^{-1} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{2}$, and

$$
\sigma_{\text {ess }}\left(H_{\delta^{\prime}, \beta}\right)=[0, \infty),
$$

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta-\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\begin{aligned}
H_{\delta^{\prime}, \beta} & =-\Delta \\
\operatorname{dom} H_{\delta^{\prime}, \beta} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\partial_{n_{n}} \psi_{\psi}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{\psi}\right| \mathcal{C} \\
\beta \partial_{n_{e}} \psi_{e}\left|\mathcal{C}=\psi_{e}\right| \mathcal{C}-\psi_{i} \mid \mathcal{C}
\end{array}\right\}
\end{aligned}
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta^{\prime}, \beta}$ unbounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta^{\prime}, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta^{\prime}, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta^{\prime}, 0}\right)=[0, \infty)$
- $\left(H_{\delta^{\prime}, \beta}-\lambda\right)^{-1}-\left(H_{\delta^{\prime}, 0}-\lambda\right)^{-1} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{2}$, and

$$
\sigma_{\text {ess }}\left(H_{\delta^{\prime}, \beta}\right)=[0, \infty), \quad \sigma_{p}\left(H_{\delta^{\prime}, \beta}\right) \cap(-\infty, 0) \text { finite }
$$

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta+\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \dot{\cup} \mathcal{C} \cup \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
\begin{aligned}
H_{\delta^{\prime}, \beta} & =-\Delta \\
\operatorname{dom} H_{\delta^{\prime}, \beta} & =\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}
\partial_{n_{i}} \psi_{\psi}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{e}\right| \mathcal{C} \\
\left.\beta \partial_{n_{e}} \psi_{e}\right|_{\mathcal{C}}=\psi_{e}\left|\mathcal{C}-\psi_{i}\right| \mathcal{C}
\end{array}\right\}
\end{aligned}
$$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta^{\prime}, \beta}$ semibounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta^{\prime}, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta^{\prime}, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta^{\prime}, 0}\right)=[0, \infty)$
- $\left(H_{\delta^{\prime}, \beta}-\lambda\right)^{-k}-\left(H_{\delta^{\prime}, 0}-\lambda\right)^{-k} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{2 k}$

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta+\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \cup \dot{\mathcal{C}} \cup \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
H_{\delta^{\prime}, \beta}=-\Delta
$$

$\operatorname{dom} H_{\delta^{\prime}, \beta}=\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}\partial_{n_{i}} \psi_{i}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{e}\right| \mathcal{C} \\ \beta \partial_{n_{e}} \psi_{\boldsymbol{e}}\left|\mathcal{C}=\psi_{\boldsymbol{e}}\right| \mathcal{C}-\psi_{i} \mid \mathcal{C}\end{array}\right\}$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta^{\prime}, \beta}$ semibounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta^{\prime}, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta^{\prime}, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta^{\prime}, 0}\right)=[0, \infty)$
- $\left(H_{\delta^{\prime}, \beta}-\lambda\right)^{-k}-\left(H_{\delta^{\prime}, 0}-\lambda\right)^{-k} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{2 k}$
- Wave operators for $\left\{H_{\delta^{\prime}, \beta}, H_{\delta^{\prime}, 0}\right\}$ exist and are complete

δ^{\prime}-hypersurface interactions in \mathbb{R}^{n}

Give meaning to $-\Delta+\beta \delta_{\mathcal{C}}^{\prime}$ with \mathcal{C} hypersurface, $\beta^{-1} \in L^{\infty}(\mathcal{C})$

Definition

Decompose $\mathbb{R}^{n}=\Omega_{i} \cup \dot{\mathcal{C}} \cup \dot{\cup} \Omega_{e}$ in interior and exterior domain

$$
H_{\delta^{\prime}, \beta}=-\Delta
$$

$\operatorname{dom} H_{\delta^{\prime}, \beta}=\left\{\psi \in H_{\Delta}^{3 / 2}\left(\mathbb{R}^{n} \backslash \mathcal{C}\right): \begin{array}{c}\partial_{n_{i}} \psi_{i}\left|\mathcal{C}=-\partial_{n_{e}} \psi_{e}\right| \mathcal{C} \\ \beta \partial_{n_{e}} \psi_{\boldsymbol{e}}\left|\mathcal{C}=\psi_{\boldsymbol{e}}\right| \mathcal{C}-\psi_{i} \mid \mathcal{C}\end{array}\right\}$

Theorem [B. Langer Lotoreichik '13]

- $H_{\delta^{\prime}, \beta}$ semibounded selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$
- $H_{\delta^{\prime}, 0}$ unperturbed Laplacian; $\sigma\left(H_{\delta^{\prime}, 0}\right)=\sigma_{\text {ess }}\left(H_{\delta^{\prime}, 0}\right)=[0, \infty)$
- $\left(H_{\delta^{\prime}, \beta}-\lambda\right)^{-k}-\left(H_{\delta^{\prime}, 0}-\lambda\right)^{-k} \in \mathfrak{S}_{p}$ for all $p>\frac{n-1}{2 k}$
- Wave operators for $\left\{H_{\delta^{\prime}, \beta}, H_{\delta^{\prime}, 0}\right\}$ exist and are complete
- ac-parts of $H_{\delta^{\prime}, \beta}$ and $H_{\delta^{\prime}, 0}$ unitarily equivalent

PART II

δ and δ^{\prime}-interactions on Lipschitz partitions

Support of δ : Boundary $\Sigma:=\cup_{k=1}^{n} \partial \Omega_{k}$ of Lipschitz partition \mathcal{P}
Ω_{k} Lipschitz domains, $\quad \mathbb{R}^{d}=\bigcup_{k=1}^{n} \bar{\Omega}_{k}, \quad \Omega_{k} \cap \Omega_{l}=\varnothing$.

Chromatic number of a Lipschitz partition $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$

$\chi=$ minimal number of colours needed to colour all Ω_{k} such that any two neighbouring domains have different colours

Chromatic number of a Lipschitz partition $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$

$\chi=$ minimal number of colours needed to colour all Ω_{k} such that any two neighbouring domains have different colours

Four Colour Theorem

The chromatic number of any Lipschitz partition \mathcal{P} of \mathbb{R}^{2} is ≤ 4.

Chromatic number of a Lipschitz partition $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$

$\chi=$ minimal number of colours needed to colour all Ω_{k} such that any two neighbouring domains have different colours

Four Colour Theorem

The chromatic number of any Lipschitz partition \mathcal{P} of \mathbb{R}^{2} is ≤ 4.

More examples: A german colouring

EUROPE ACCORDING TO
3 GEYZERS
GERMANS
designed by alphadesignercam
zuweation

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ
- χ chromatic number of the partition \mathcal{P}

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha} .
$$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha} .
$$

Comparison with 1D-case (hence $\chi=2$)

For $\alpha, \beta>0$ recall $\sigma_{p}\left(H_{\delta, \alpha}\right)=\left\{-\frac{\alpha^{2}}{4}\right\}$ and $\sigma_{p}\left(H_{\delta^{\prime}, \beta}\right)=\left\{-\frac{4}{\beta^{2}}\right\}$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha} .
$$

Comparison with 1D-case (hence $\chi=2$)
For $\alpha, \beta>0$ recall $\sigma_{p}\left(H_{\delta, \alpha}\right)=\left\{-\frac{\alpha^{2}}{4}\right\}$ and $\sigma_{p}\left(H_{\delta^{\prime}, \beta}\right)=\left\{-\frac{4}{\beta^{2}}\right\}$

$$
0<\beta \leq \frac{4}{\alpha} \quad \Longrightarrow \quad-\frac{4}{\beta^{2}} \leq-\frac{\alpha^{2}}{4}
$$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\left.\delta^{\prime}, \beta\right)}\right) U \leq H_{\delta, \alpha} .
$$

Corollary

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\left.\delta^{\prime}, \beta\right)}\right) U \leq H_{\delta, \alpha} .
$$

Corollary

- $\min \sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right) \leq \min \sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha} .
$$

Corollary

- $\min \sigma_{\text {ess }}\left(H_{\delta^{\prime}, \beta}\right) \leq \min \sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)$
- $\lambda_{k}\left(H_{\delta^{\prime}, \beta}\right) \leq \lambda_{k}\left(H_{\delta, \alpha}\right)$ for all $k \in \mathbb{N}$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition of \mathbb{R}^{d} with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\left.\delta^{\prime}, \beta\right)}\right) U \leq H_{\delta, \alpha} .
$$

Corollary

- $\min \sigma_{\text {ess }}\left(H_{\delta^{\prime}, \beta}\right) \leq \min \sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)$
- $\lambda_{k}\left(H_{\delta^{\prime}, \beta}\right) \leq \lambda_{k}\left(H_{\delta, \alpha}\right)$ for all $k \in \mathbb{N}$
- If $\min \sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)=\min \sigma_{\text {ess }}\left(H_{\delta^{\prime}, \beta}\right)$ then $N\left(H_{\delta, \alpha}\right) \leq N\left(H_{\delta^{\prime}, \beta}\right)$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}
$$

Corollary

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}
$$

Corollary

$$
\text { - } \chi=2 \text { and } 0<\beta \leq \frac{4}{\alpha} \quad \Longrightarrow \quad U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}
$$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}
$$

Corollary

- $\chi=2$ and $0<\beta \leq \frac{4}{\alpha} \quad \Longrightarrow \quad U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}$
- $\chi=3$ and $0<\beta \leq \frac{3}{\alpha} \quad \Longrightarrow \quad U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}$

An operator inequality for $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$

- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ Lipschitz partition with boundary Σ
- χ chromatic number of the partition \mathcal{P}
- $\alpha, \beta^{-1} \in L^{\infty}(\Sigma)$ real and assume that

$$
0<\beta \leq \frac{4}{\alpha} \sin ^{2}(\pi / \chi)
$$

Theorem

There exists unitary operator $U: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}
$$

Corollary

- $\chi=2$ and $0<\beta \leq \frac{4}{\alpha} \quad \Longrightarrow \quad U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}$
- $\chi=3$ and $0<\beta \leq \frac{3}{\alpha} \quad \Longrightarrow \quad U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}$
- $d=2$ and $0<\beta \leq \frac{2}{\alpha} \quad \Longrightarrow \quad U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}$

Example 1: Partition of \mathbb{R}^{2} into two halfplanes

Example 1: Partition of \mathbb{R}^{2} into two halfplanes

Result is sharp for $\chi=2$ (that is $0<\beta \leq \frac{4}{\alpha}$)
$\mathcal{P}=\left\{\mathbb{R}_{+}^{2}, \mathbb{R}_{-}^{2}\right\}$ with boundary $\Sigma=\mathbb{R}$ and $\alpha, \beta>0$ constant.

Example 1: Partition of \mathbb{R}^{2} into two halfplanes

Result is sharp for $\chi=2$ (that is $0<\beta \leq \frac{4}{\alpha}$)
$\mathcal{P}=\left\{\mathbb{R}_{+}^{2}, \mathbb{R}_{-}^{2}\right\}$ with boundary $\Sigma=\mathbb{R}$ and $\alpha, \beta>0$ constant.
Then

$$
\begin{aligned}
\sigma\left(H_{\delta, \alpha}\right) & =\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)=\left[-\frac{\alpha^{2}}{4}, \infty\right) \\
\sigma\left(H_{\delta^{\prime}, \beta}\right) & =\sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=\left[-\frac{4}{\beta^{2}}, \infty\right)
\end{aligned}
$$

Example 1: Partition of \mathbb{R}^{2} into two halfplanes

Result is sharp for $\chi=2$ (that is $0<\beta \leq \frac{4}{\alpha}$)
$\mathcal{P}=\left\{\mathbb{R}_{+}^{2}, \mathbb{R}_{-}^{2}\right\}$ with boundary $\Sigma=\mathbb{R}$ and $\alpha, \beta>0$ constant.
Then

$$
\begin{aligned}
\sigma\left(H_{\delta, \alpha}\right) & =\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)=\left[-\frac{\alpha^{2}}{4}, \infty\right) \\
\sigma\left(H_{\delta^{\prime}, \beta}\right) & =\sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=\left[-\frac{4}{\beta^{2}}, \infty\right)
\end{aligned}
$$

Hence if $\beta>\frac{4}{\alpha}$ then

$$
\min \sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=-\frac{4}{\beta^{2}}>-\frac{\alpha^{2}}{4}=\min \sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)
$$

Example 1: Partition of \mathbb{R}^{2} into two halfplanes

Result is sharp for $\chi=2$ (that is $0<\beta \leq \frac{4}{\alpha}$)
$\mathcal{P}=\left\{\mathbb{R}_{+}^{2}, \mathbb{R}_{-}^{2}\right\}$ with boundary $\Sigma=\mathbb{R}$ and $\alpha, \beta>0$ constant.
Then

$$
\begin{aligned}
\sigma\left(H_{\delta, \alpha}\right) & =\sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)=\left[-\frac{\alpha^{2}}{4}, \infty\right) \\
\sigma\left(H_{\delta^{\prime}, \beta}\right) & =\sigma_{\text {ess }}\left(H_{\delta^{\prime}, \beta}\right)=\left[-\frac{4}{\beta^{2}}, \infty\right)
\end{aligned}
$$

Hence if $\beta>\frac{4}{\alpha}$ then

$$
\min \sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=-\frac{4}{\beta^{2}}>-\frac{\alpha^{2}}{4}=\min \sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)
$$

and there is no unitary operator such that $U^{-1}\left(H_{\delta^{\prime}, \beta}\right) U \leq H_{\delta, \alpha}$.

Example 2: Symmetric star graph with 3 leads in \mathbb{R}^{2}

Example 2: Symmetric star graph with 3 leads in \mathbb{R}^{2}

- $\min \sigma\left(H_{\delta, \alpha}\right)=-\frac{\alpha^{2}}{4}$

Example 2: Symmetric star graph with 3 leads in \mathbb{R}^{2}

- $\min \sigma\left(H_{\delta, \alpha}\right)=-\frac{\alpha^{2}}{4}$ follows from BrownEasthamWood'09

Example 2: Symmetric star graph with 3 leads in \mathbb{R}^{2}

- $\min \sigma\left(H_{\delta, \alpha}\right)=-\frac{\alpha^{2}}{4}$ follows from BrownEasthamWood'09
- $\min \sigma\left(H_{\delta^{\prime}, \beta}\right)>-C \frac{4}{\beta^{2}}$ with $C=1.0586>1$

Example 2: Symmetric star graph with 3 leads in \mathbb{R}^{2}

- $\min \sigma\left(H_{\delta, \alpha}\right)=-\frac{\alpha^{2}}{4}$ follows from BrownEasthamWood'09
- $\min \sigma\left(H_{\delta^{\prime}, \beta}\right)>-C \frac{4}{\beta^{2}}$ with $C=1.0586>1$

Corollary 'Chromatic number needed'

If $\chi=3$ the assumption $0<\beta \leq \frac{3}{\alpha}$ can NOT be replaced by the weaker assumption $0<\beta \leq \frac{4}{\alpha}$ (which corresponds to $\chi=2$)

Example 3: Compact Lipschitz partitions

$\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{3}, \quad \chi=3$
\mathbb{R}^{2}

$$
\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{4}, \quad \chi=4
$$

Example 3: Compact Lipschitz partitions

$\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{3}, \quad \chi=3$
\mathbb{R}^{2}

$\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{4}, \quad \chi=4$

Theorem

$$
\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)=\sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=[0, \infty), \quad \alpha, \beta^{-1} \in L^{\infty}(\Sigma, \mathbb{R})
$$

Example 3: Compact Lipschitz partitions - $\sigma_{p}\left(H_{\delta^{\prime}, \beta}\right)$

$$
\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{3}, \quad \chi=3
$$

$\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{4}, \quad \chi=4$

Theorem

'A special 8' $^{\prime}$ type spectral effect'

$$
\beta>0 \text { on some } \partial \Omega_{k} \Longrightarrow N\left(H_{\delta^{\prime}, \beta}\right) \geq 1
$$

Example 4: Locally deformed Lipschitz partitions

$\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{7}, \quad \chi=4$

$\mathcal{P}^{\prime}=\left\{\Omega_{k}^{\prime}\right\}_{k=1}^{6}, \chi=3$

Example 4: Locally deformed Lipschitz partitions

$$
\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{7}, \quad \chi=4
$$

$$
\mathcal{P}^{\prime}=\left\{\Omega_{k}^{\prime}\right\}_{k=1}^{6}, \chi=3
$$

$\mathcal{P}^{\prime}=\left\{\Omega_{k}^{\prime}\right\}_{k=1}^{6}, \quad \chi=3$

Theorem.
Assume $\alpha=\alpha^{\prime}$ and $\beta=\beta^{\prime}$ outside compact set.

$$
\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)=\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha^{\prime}}^{\prime}\right) \quad \sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=\sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta^{\prime}}^{\prime}\right)
$$

Example 5: Local deformations of a wedge Ω in \mathbb{R}^{2}

- $\alpha, \beta>0$ constant
- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ local deformation of $\mathcal{P}^{\prime}=\left\{\Omega, \mathbb{R}^{2} \backslash \bar{\Omega}\right\}$

Example 5: Local deformations of a wedge Ω in \mathbb{R}^{2}

- $\alpha, \beta>0$ constant
- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ local deformation of $\mathcal{P}^{\prime}=\left\{\Omega, \mathbb{R}^{2} \backslash \bar{\Omega}\right\}$

Corollary

$$
\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)=\left[-\frac{\alpha^{2}}{4}, \infty\right) \quad \sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=\left[-\frac{4}{\beta^{2}}, \infty\right)
$$

Example 5: Local deformations of a wedge Ω in \mathbb{R}^{2}

- $\alpha, \beta>0$ constant
- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ local deformation of $\mathcal{P}^{\prime}=\left\{\Omega, \mathbb{R}^{2} \backslash \bar{\Omega}\right\}$

Corollary

$$
\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)=\left[-\frac{\alpha^{2}}{4}, \infty\right) \quad \sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=\left[-\frac{4}{\beta^{2}}, \infty\right)
$$

Corollary Assume $\chi(\mathcal{P})=2$ and $\beta=\frac{4}{\alpha}$

- $\lambda_{k}\left(H_{\delta^{\prime}, \beta}\right) \leq \lambda_{k}\left(H_{\delta, \alpha}\right)$ for all $k \in \mathbb{N}$

Example 5: Local deformations of a wedge Ω in \mathbb{R}^{2}

- $\alpha, \beta>0$ constant
- $\mathcal{P}=\left\{\Omega_{k}\right\}_{k=1}^{n}$ local deformation of $\mathcal{P}^{\prime}=\left\{\Omega, \mathbb{R}^{2} \backslash \bar{\Omega}\right\}$

Corollary

$$
\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)=\left[-\frac{\alpha^{2}}{4}, \infty\right) \quad \sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=\left[-\frac{4}{\beta^{2}}, \infty\right)
$$

Corollary Assume $\chi(\mathcal{P})=2$ and $\beta=\frac{4}{\alpha}$

- $\lambda_{k}\left(H_{\delta^{\prime}, \beta}\right) \leq \lambda_{k}\left(H_{\delta, \alpha}\right)$ for all $k \in \mathbb{N}$
- $N\left(H_{\delta, \alpha}\right) \leq N\left(H_{\delta^{\prime}, \beta}\right)$

Example 6: Bound states appear

- $\mathcal{P}^{\prime}=\left\{\mathbb{R}_{+}^{2}, \mathbb{R}_{-}^{2}\right\}$ and $\mathcal{P}=\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}\right\}$

Example 6: Bound states appear

- $\mathcal{P}^{\prime}=\left\{\mathbb{R}_{+}^{2}, \mathbb{R}_{-}^{2}\right\}$ and $\mathcal{P}=\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}\right\}$
- $\alpha, \beta>0$ constant

Example 6: Bound states appear

- $\mathcal{P}^{\prime}=\left\{\mathbb{R}_{+}^{2}, \mathbb{R}_{-}^{2}\right\}$ and $\mathcal{P}=\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}\right\}$
- $\alpha, \beta>0$ constant, and hence

$$
\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)=\left[-\frac{\alpha^{2}}{4}, \infty\right) \quad \sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=\left[-\frac{4}{\beta^{2}}, \infty\right)
$$

Example 6: Bound states appear

- $\mathcal{P}^{\prime}=\left\{\mathbb{R}_{+}^{2}, \mathbb{R}_{-}^{2}\right\}$ and $\mathcal{P}=\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}\right\}$
- $\alpha, \beta>0$ constant, and hence

$$
\sigma_{\mathrm{ess}}\left(H_{\delta, \alpha}\right)=\left[-\frac{\alpha^{2}}{4}, \infty\right) \quad \sigma_{\mathrm{ess}}\left(H_{\delta^{\prime}, \beta}\right)=\left[-\frac{4}{\beta^{2}}, \infty\right)
$$

Theorem ' $H_{\delta, \alpha}$ and $H_{\delta^{\prime}, \beta}$ have at least one eigenvalue'

$$
N\left(H_{\delta, \alpha}\right)>1 \quad \text { and } \quad N\left(H_{\delta^{\prime}, \beta}\right)>1
$$

Example 7: Recent results for cones in \mathbb{R}^{3}

Example 7: Recent results for cones in \mathbb{R}^{3}

...discuss if time allows and audience is still awake

Example 7: Recent results for cones in \mathbb{R}^{3}

...discuss if time allows and audience is still awake

Draw cone \mathcal{C}_{ϑ} on the board and explain

- $\sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)=\left[-\alpha^{2} / 4, \infty\right)$ for any angle $\vartheta \in(0, \pi / 2]$

Example 7: Recent results for cones in \mathbb{R}^{3}

...discuss if time allows and audience is still awake

Draw cone \mathcal{C}_{ϑ} on the board and explain

- $\sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)=\left[-\alpha^{2} / 4, \infty\right)$ for any angle $\vartheta \in(0, \pi / 2]$
- Infinite discrete spectrum for any angle $\vartheta \in(0, \pi / 2)$

Example 7: Recent results for cones in \mathbb{R}^{3}

...discuss if time allows and audience is still awake

Draw cone \mathcal{C}_{ϑ} on the board and explain

- $\sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)=\left[-\alpha^{2} / 4, \infty\right)$ for any angle $\vartheta \in(0, \pi / 2]$
- Infinite discrete spectrum for any angle $\vartheta \in(0, \pi / 2)$
- Say a few words on δ^{\prime}

Example 7: Recent results for cones in \mathbb{R}^{3}

...discuss if time allows and audience is still awake

Draw cone \mathcal{C}_{ϑ} on the board and explain

- $\sigma_{\text {ess }}\left(H_{\delta, \alpha}\right)=\left[-\alpha^{2} / 4, \infty\right)$ for any angle $\vartheta \in(0, \pi / 2]$
- Infinite discrete spectrum for any angle $\vartheta \in(0, \pi / 2)$
- Say a few words on δ^{\prime}
...Stop now finally, it was too much material anyway !

Thank you for your attention

References

- J. Behrndt, M. Langer, V. Lotoreichik

Schrödinger operators with δ and δ^{\prime}-potentials supported on hypersurfaces
Ann. Henri Poincaré, 14 (2013), 385-423

- J. Behrndt, P. Exner, V. Lotoreichik

Schrödinger operators with δ and δ^{\prime}-interactions on
Lipschitz surfaces and chromatic numbers of associated partitions, submitted

- J. Behrndt, P. Exner, V. Lotoreichik

Schrödinger operators with δ-interactions supported on conical surfaces, in preparation

